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Abstract

This thesis presents a flexible RAID system integrated into GPU4FS, a novel GPU accelerated
file system. Software RAID systems provide flexibility over hardware RAID systems, yet
tasks involving complex parity coding strain CPUs, especially in double and triple parity
configurations. To address this, we propose a GPU based RAID system integrated into GPU4FS,
leveraging the GPUs parallel processing for efficient parity calculation and data handling.

Our core design concept centers on a logical address space managed by GPU4FS, allowing
dynamic allocation of files and pages with specific RAID configurations, tailoring performance
and redundancy to individual files and processes. Evaluations across RAID levels consistently
demonstrated higher write bandwidths and reduced CPU utilization compared to CPU based
RAID systems on Optane. Furthermore, the evaluation showed that parity calculation adds
minimal computational overhead, affirming the efficiency of our GPU centric approach.

By harnessing GPU computational power, we present an innovative alternative to CPU based
RAID systems, offering competitive bandwidths while reducing the average CPU usage by a
factor of x13 to x21 depending on the RAID level.

Kurzfassung In dieser Arbeit stellen wir ein flexibles RAID-System vor, welches wir in
GPU4FS einem neuartigen GPU beschleunigtem Dateisystem integrieren. Software RAID
Systeme bieten erhöhte Flexibilität gegenüber Hardware RAID Systemen, doch Aufgaben wie
komplexe Paritätscodierung belasten die CPUs insbesondere bei Nutzung von doppelter und
dreifacher Parität. Um dieses Problem zu lösen, stellen wir ein GPU basiertes RAID-System
vor. Das System ist in GPU4FS integriert und nutzt die Parallelverarbeitung der GPU für eine
effiziente Paritätsberechnung und Datenverarbeitung.

Unser zentrales Designkonzept basiert auf einem logischen Adressraum, der von GPU4FS
verwaltet wird und die dynamische Allokation von Dateien und Seiten mit spezifischen RAID
Konfigurationen ermöglicht, wodurch Leistung und Redundanz für einzelne Dateien und
Prozesse optimiert werden können. Die Auswertung über alle RAID Level hinweg zeigte
durchweg höhere Schreibbandbreiten und eine geringere CPU Auslastung im Vergleich zu CPU
basierten RAID-System auf Optane. Außerdem zeigte die Evaulation, dass die Berechnung der
Parität nur minimalen Rechenaufwand verursacht, was die Effizienz unseres GPU zentrierten
Ansatzes bestätigt.

Durch die Nutzung der GPU-Rechenleistung stellen wir eine innovative Alternative zu CPU
basierten RAID Systemen vor, die eine wettbewerbsfähige Bandbreite bietet und gleichzeitig
die durchschnittliche CPU-Nutzung um einen Faktor von x13 bis x21 abhängig vom RAID
Level reduziert.
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1 Introduction
New storage media promises higher performance, but the single-core performance of CPUs
has not kept pace with these advancements[23]. Consequently, an increasing demand for CPU
resources arises for storage-related tasks. To address this challenge, Maucher [23] introduced
GPU4FS, a file system designed to operate on GPUs. GPUs are suited for highly parallel
computations, and allow asynchronous and parallel handling of requests in Maucher’s file
system. Notably, their work demonstrated GPU4FS’s ability to compete in terms of write
bandwidth while significantly reducing CPU utilization [23].

In historical context, RAID systems were often implemented in hardware to enhance perfor-
mance [16]. As CPUs gained more processing power, entirely software-based RAID systems
emerged, capable of competing in terms of performance. Software RAID systems offered
increased flexibility and portability compared to proprietary hardware solutions [16]. However,
tasks involving parity coding, crucial for introducing data redundancy, demanded substantial
CPU resources for computation [16]. With single parity, the risk of a second disk failure during
recovery remained high, necessitating the transition to double parity [17], with triple parity be-
coming increasingly popular in recent years [22]. The shift to double and triple parity imposed
a heavier burden on CPUs for RAID management tasks. In response, prior research aimed to
reduce stress on the CPU by offloading coding tasks to dedicated hardware [16, 17, 21, 28].

Several approaches were explored, with some implementing coding on FPGAs [17] and
others leveraging GPUs [16, 21, 28]. Both approaches significantly improved throughput, but
GPUs, being more widely available and flexible, are our preferred choice. Thus, we advocate
for the integration of a GPU-based RAID system into GPU4FS, preserving the flexibility and
portability of software RAID systems while offloading management tasks to the GPU, thereby
relieving the CPU.

GPU4FS stands out as an ideal candidate for this integration, since the data required for
the parity calculation is already available on the GPU for writing the data to disk [23]. This
eliminates the need for additional data transfers, as seen in previous approaches that only utilized
the GPU for coding [16, 21]. Integrating our RAID subsystem into a file system permits the
creation of a versatile system supporting RAID levels on a file-by-file basis. Furthermore, it
paves the way for the future integration of checksums into our RAID system, analog to the
implementations in ZFS [19] and BTRFS [26].

This thesis spans several chapters, commencing with an exploration of the fundamentals
required for the conception of a (GPU-accelerated) software RAID in Chapter 2. We discuss
prior work proposing different approaches to RAID in Chapter 3. Chapter 4 introduces our
proposed design, followed by Chapter 5, which presents the actual implementation, offering
insights into our implementation process. In Chapter 6, we evaluate our implementation and
compare it to CPU-based RAID systems. The thesis concludes with Chapter 7, where we
outline future work, and Chapter 8, where we provide our concluding remarks.
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2 Background

This section serves as an initial exploration into the required background for the conception
of a (GPU-accelerated) software RAID. We describe the necessary fundamentals such as the
different RAID configurations, file systems and GPUs. This understanding serves as the basis
for our subsequent goal: enhancing an existing GPU-based file system (GPU4FS) with a
GPU-based RAID subsystem.

2.1 RAID
In 1988, Patterson et al. introduced the concept of Redundant Array of Inexpensive Disks
(RAID), a taxonomy encompassing five distinct configurations for disk arrays, which differ in
terms of disk space utilization, reliability, and performance [24]. In this section, we explore
both hardware and software implementations of RAID, while also discussing their benefits and
drawbacks.

2.1.1 RAID Levels
RAID configurations are commonly referred to as levels. RAID level 2 and 3 are less commonly
used and are therefore omitted from this section [7]. RAID level 6 was introduced later to
provide reliable redundancy for multiple disk failures [7].

Stripes represent arbitrary contiguous byte units, usually chosen to be a divisor of the
medium’s capacity. It’s worth noting that the stripe size is traditionally fixed and remains
constant for a given RAID instance setup [10].

The stripe size significantly impacts the array’s performance. A large stripe size leads to
most individual files being primarily written to a single disk, enabling parallelism for multiple
concurrent requests involving different files to achieve high throughput [7]. Conversely, using a
small stripe size results in individual files being striped across multiple disks, enhancing the
parallelism of reads and writes within a single file [7].

The evaluation of performance across various RAID levels is not addressed in this section,
as it heavily relies on the specific workload and the corresponding choice of stripe size [7].

Raid Level 0: Striping RAID-0 is the simplest form of data organization, where data stripes
are distributes across the disks. A full-stripe consists of the data stripes that are distributed in a
round-robin fashion across the disks, covering one complete cycle through all the disks before
starting from the first disk again [7].

An example illustrating the distribution of the data stripes 0, . . . , 15, which are written
sequentially, across the disks, is provided in Table 2.1.
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CHAPTER 2. BACKGROUND

Disk 0 Disk 1 Disk 2 Disk 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Table 2.1: RAID-0 on four disks: Data stripes are distributes across the four disks in a round-
robin fashion. The data stripes, between the horizontal lines, make up one full-stripe.

RAID-0 provides the upper limit for available disk capacity. With N disks, each containing
C stripes, RAID-0 (striping) yields a total capacity of N · C data stripes. However, RAID-0
offers no data redundancy. In case of a single disk failure or data corruption, data becomes
irrecoverable [7].

RAID Level 1: Mirroring On RAID-1 disks are partitioned into disjunct, equally sized
sets [7]. The disks within a set mirror their data to each other, and data stripes are distributed
across the different sets [7]. Reading can be done from any of the set’s disk, and writes need to
be duplicated to all the set’s disks [7].

Table 2.2 shows an example of how the data stripes 0, . . . , 7, which are written in sequence,
are distributed to two sets each containing two mirrors.

Set 0 Set 1
Disk 0 Disk 1 Disk 2 Disk 3

0 0 1 1
2 2 3 3
4 4 5 5
6 6 7 7

Table 2.2: RAID-1 on four disks: Data stripes are distributed across sets and mirrored within a
set.

Mirroring the data stripes to m disks reduces the capacity to C · N
m

available data stripes [7].
Theoretically, RAID-1 can suffer from N

m
· (m − 1) disk failures if exactly one disk per set

survives [7]. However, this scenario depends on chance. We can guarantee data recovery if any
m− 1 disks fail because at least one mirror disk per set survives, which holds a copy of the
data [7].

A Note on Consistency: We have to ensure that we update a RAID system atomically,
otherwise power losses and system failures can leave an inconsistent state [7]. This is known
as the consistent update problem [7]. For example, on RAID-1, one disk could already been
updated with a new data stripe whereas the mirror disk is not yet up to date [7]. After the
system reboots, we have an inconsistent state and don’t know which mirror has the updated
data stripe [7]. Note that the consistent update problem applies to all other RAID levels as
well.
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Raid Level 4: Using Parity Instead of having each data stripe duplicated, redundancy
can be achieved by adding a parity stripe to each full-stripe [7]. The parity is usually a simple
bit-wise XOR of each data stripe in the full-stripe [7]. In the case of RAID-4 the parity is
collected on a single disk [7].

To compute the parity: Let Dk
ij ∈ {0, 1} be the j-th bit of the k-th data stripe of the i-th

full-stripe, with k ∈ {0, . . . , N − 2}. Let Pij be the j-th bit of the parity stripe of the i-th
full-stripe. The parity bit Pij is computed as XOR(D0

ij, . . . , D
N−2
ij ) and is collected on the

N -th disk. An example can be found in Table 2.3.

Disk 0 (D0) Disk 1 (D1) Disk 2 (D2) Disk 3 (P )
D0

0 D1
0 D2

0 P0

D0
1 D1

1 D2
1 P1

D0
2 D1

2 D2
2 P2

D0
3 D1

3 D2
3 P3

Table 2.3: RAID-4 on four disks: Data stripes are distributed across the data disks (Disk 0-2)
and full-stripe’s parity stripe is stored on Disk 3.

The computation of the parity stripe can be easily parallelized by distributing the work across
multiple threads. To achieve this, each stripe is divided into equally sized blocks. Blocks at the
same offset within different data stripes are XORed by a single thread. A visualization can be
found in Figure 2.1. This approach ensures that the bitwise calculations for these corresponding
blocks within the stripes can be performed independently without the need for inter-thread
communication.

d0 d1 d2

d3 d4 d5

d6 d7 d8

d9 d10 d12

d13 d14 d15

d16 d17 d18

d0^d9 d1^d10 d2^d12

d3^d13 d4^d14 d5^d15

d6^d16 d7^d17 d8^d18

data stripe 0 data stripe 1 parity stripe

Figure 2.1: Parity stripes can be calculated in parallel. A single thread is responsible for
XORing (∧) the blocks at the same offset on each data stripe. For example, the
purple highlighted blocks, are processed by a single thread.

If a data word within the full-stripe is modified, a parity update needs to be calculated and
applied to the parity. The parity update is just an XOR of the original data word and the
modified data word. This update needs to be XORed with the parity word on the parity stripe
and committed to the parity disk [7].

RAID-4’s capacity is (N − 1) · C data stripes, higher than RAID-1’s capacity, but for the
sacrifice of the performance required to compute the parity [7].

Any single disk can fail without data loss [7]. If the parity disk fails, no data needs to be
reconstructed. The parity disk can be replaced, and the parity can be recomputed as stated
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above [7]. If a data disk fails, the data Dx from the failed disk x ∈ {0, . . . , N − 2} can be
reconstructed:

1. Compute the XOR of the non-failed data disk:

P̃ij = (D0
ij, . . . , D

x−1
ij , Dx+1

ij , . . . , DN−2
ij )

2. Reconstruct the lost data Dx by comparing P̃ with P .

• If Pij = P̃ij then Dx
ij = 0.

• Otherwise Dx
ij = 1.

Comparing the P̃ij with Pij is equivalent to Dx = P̃ij XORPij .

Raid Level 5: Striping Parity A problem with RAID-4 is that on each write, the parity
information needs to be written to the parity disk [7]. This puts a lot of stress on the parity
disk and bottlenecks parallel writes to different data disks [7]. This is known as the small
write problem [7]. Therefore, RAID-5 rotates the parity information across the disks [7]. A
visualization can be found in Table 2.4.

Disk 0 Disk 1 Disk 2 Disk 3
0 1 2 P0

3 4 P1 5
6 P2 7 8
P3 9 10 11

Table 2.4: RAID-5 on four disks: Data stripes are distributed across the disk, with parity stripes
being rotated across the disks.

Rotating the parity reduces the stress on a single disk and therefore increases the reliability
of the disk array. The capacity is the same as on RAID-4 [7]. Because RAID-5 eliminates
the small-write flaw of RAID-4 and otherwise behaves the same as RAID-4, it has replaced
RAID-4 nearly entirely [7].

Raid Level 6: Recovery From Multiple Disk Failures In contrast to other RAID levels,
RAID-6 disk arrays are able to recover from m ≥ 2 disk failures reliably by having m parity
stripes per full-stripe.

A commonly used code for RAID-6’s parity stripes is the Reed-Solomon erasure code [25].
For simplicity’s sake, we assume to have n data disks and m separate parity disks, whereas in
reality the parity stripes are rotated around the disks analog to RAID-5.

For simplicity’s sake, we assume that we only have one full-stripe with each disk only
containing one stripe to have fewer indices in the equations, but the math can be applied to
each full-stripe independently.

We can view our problem as the calculation of the parity stripe ci by applying the function
Fi to the n data stripes d1, . . . , dn with i = 1, . . . ,m [25]:

ci = Fi(d1, . . . , dn)
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2.1. RAID

We also need a function Gi to update the parity ci if one data stripe dj is modified to d′j [25]:

c′i = Gi,j(dj, d
′
j, ci)

We want ci to be a linear combination of the data stripes [25]:

ci = Fi(d1, . . . , dn) =
n∑

j=1

djfi,j

We can rewrite the data and parity stripes as the vectors D and C and Fi as the row of the
matrix F [25]:

FD = C

We choose F to be the m× n Vandermonde matrix with: fi,j = ji−1 [25]:
f1,1 f1,2 . . . f1,n
f2,1 f2,2 . . . f2,n

...
...

...
fm,1 fm,2 . . . fm,n



d1
d2
...
dn

 =


1 1 . . . 1
1 2 . . . n
...

...
...

1 2m−1 . . . nm−1



d1
d2
...
dn

 =


c1
c2
...
cm


On data stripe changes from dj to d′j , we can subtract out the portion of the parity that
corresponds to dj and add the required amount for d′j , because we chose F to be a linear
function [25]:

c′i = Gi,j(dj, d
′
j, ci) = ci + fi,j(d

′
j − dj)

To recover from disk failures, we define the matrix A =

(
I
F

)
(identity matrix stacked on

top of F ) and the vector E =

(
D
C

)
[25]. We get the following equation (AD = E) [25]:



1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

...
0 0 0 . . . 1
1 1 1 . . . 1
1 2 3 . . . n
...

...
...

...
1 2m−1 3m−1 . . . nm−1




d1
d2
...
dn

 =



d1
d2
...
dn
c1
c2
...
cm


Every disk has a corresponding row in the matrix A and in the vector E [25]. For the data
recovery, we delete the rows of each failed disk [25]. The result is a new matrix A′ and a new
vector E ′: A′D = E ′ [25].

Because F is a Vandermonde matrix (and because the stacked matrix was the identity), every
subset of n rows of the matrix A is linear independent [25]. A′ is therefore non-singular,
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and the values of D can be calculated by solving the linear equation system with Gaussian
elimination [25]. If exactly m devices fail, A′ is a n× n matrix, and we still have n equations
to solve for D [25]. Once the values of D are recomputed, the missing parity values of the
failed parity disks can be calculated [25].

The above linear algebra is guaranteed to be correct, but using regular arithmetic in a com-
puter with finite precision may render the Gaussian elimination unsolvable in many cases [25].
Therefore, all arithmetic operations have to be performed over Galois Fields, which operate on
a finite set of integers [25]. The details on how to perform arithmetic over Galois Fields is left
out for the sake of brevity.

Since all parity operations are just basic linear algebra, they are perfectly suited to be
parallelized on a GPU. Note that Reed-Solomon codes can be used to protect a RAID instance
from m ≥ 2 disks failures. For the common cases of m = 2 and m = 3 simpler coding
schemes are available such as Row-Diagonal Parity [12] and EVENODD [8].

2.1.2 Hardware RAID

Hardware RAID systems manage the disks independently of the operating system by using
an external hardware controller [7]. All management is done separately, and the disk array is
presented to the operating system as a single disk. The controller is responsible for striping the
data across the drives, and adding redundancy information. Usually, hardware RAID systems
only use the parity for reconstruction and don’t do any read verification [16]. Read verification
ensures that the data on the disk is not corrupted, for example by employing checksums.

A selling point for hardware RAID systems is that they do not need any additional CPU
time, for example for computing parity. To mitigate the consistent update problem, hardware
RAID systems are equipped with batteries to ensure consistent updates and write back of their
caches in case of a power loss [7].

2.1.3 Software RAID

Instead of having external hardware managing multiple disks, software RAID systems do all
management tasks in software. This approach provides more flexibility and transportability, as
the disks are presented to the host operating system individually [16]. This flexibility comes
with the cost of having to spend CPU time on RAID management tasks like parity calculation.
Additionally, software RAID systems cannot rely on batteries to leave a consistent state in case
of a power loss, instead they have to rely on logging [7].

Historically, software RAID systems were implemented as isolated software components
from file systems: The software RAID would abstract the individual disks into a single virtual
disk on which a regular RAID-agnostic file system could be created. On the one hand, this
approach hides the complexity of managing multiple disks from the file system. On the other
hand, the file system has no way of verifying the integrity of the data served by the software
RAID, as not all software RAID systems employ read verification. Another benefit of a software
managed RAID is the flexibility of configuring RAID Level and performance characteristics
like redundancy and disk usage for a specific use case [26].
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2.1.4 Discussion

RAID 5 and 6, which heavily involve linear algebra computations, can benefit from GPU
acceleration, as GPUs specialize in parallel linear algebra operations and have the potential to
significantly speed up these calculations. This potential speed-up could notably enhance the
data reconstruction and parity calculation processes.

Considering the trade-off between software and hardware RAID implementations, the former
exhibits distinct advantages in terms of flexibility and portability. Software RAID solutions
offer the freedom to adapt configurations based on specific requirements and are not tied
to proprietary hardware constraints. However, the utilization of software RAID places an
increased computational burden on the CPU. The CPU can also be freed from the RAID
management tasks by offloading expensive computing task like parity computing to the GPU
or dedicated programmable hardware [16]. Offloading the computational expensive tasks could
relieve the CPU and potentially lead to improved overall system performance.

2.2 File Systems

A file system is a software component that abstracts the linear, flat address space of a storage
medium into a hierarchical structure composed of files and directories. Each file within a file
system represents a linear array of bytes and is identified by a unique low-level name known as
the inode number. A file system encompasses two primary components: the file system’s data
structures and the driver implementation, both of which work in tandem to organize user data
and metadata to facilitate file system API requests. With an understanding of a file system’s
data structures and the intended API, one can implement their own driver [7].

2.2.1 On-Disk Data Structures

In this section, we summarize the basic building blocks which are adopted by the majority of
contemporary file systems to structure their metadata and file data on disk.

Blocks Initially developed for block devices like hard drives, file systems rely on a concept
known as blocks. Typically, a file system defines a block size along with additional special
block sizes that are integer multiples of the minimum. The file system manages the disk’s linear
address space in segments corresponding to the minimum block size [7].

Block Pointer Block pointers are responsible for indicating the location of specific data
structures within the file system. These pointers come in two primary flavors: direct and
indirect. A direct block pointer references data on the disk using an offset. In contrast, an
indirect block pointer points to a block containing a list of pointers, each of which points to
a specific data block or additional indirect pointers. This hierarchy of pointers contributes to
efficient data organization and retrieval [7].
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Extents Another method for handling block pointers is through the use of extents. Extents
combine block pointers with a length parameter, denoted as n, which specifies the number of
contiguous blocks. In contrast to a single block reference, an extent points to a sequence of n
continuous blocks [7]. Using extents eliminates the need for special block sizes [26].

Inode The inode is the data structure tasked with storing essential metadata about a file. Each
inode possesses a unique number associated with the file system instance, which aids the file
system driver in determining the inode’s block address. This metadata-rich structure includes
information such as timestamps, access control permissions, file size, and most crucially, a list
of pointers pointing to the actual data contained within the file. The inode has limited space for
pointers, necessitating the use of indirect pointers and/or extents to manage expansive files [7].

Directory Within the domain of file systems, a directory acts as a special file type. Instead
of containing arbitrary bytes, a directory holds a collection of mappings that associate user-
readable filenames with the corresponding file’s inode number. By forming nested directory
structures, a hierarchical directory tree emerges, with the root directory serving as the starting
point for this organizational hierarchy [7].

Superblock The superblock has a critical role within the file system architecture, as it stores
the metadata vital to the file system instance. Positioned at a fixed offset of the file system
partition, the superblock houses essential information to set up the file system driver, including
a pointer to the root inode and data structures dedicated to managing free space. Notably,
the superblock usually commences with a distinct magic string, which serves as an identifier
recognizable by the hosting operating system. This recognition enables the operating system to
invoke the correct driver for mounting the specific file system instance [7].

2.2.2 Checksums

During our discussion on RAID, our focus was primarily on data recovery following a disk
failure. However, an additional challenge arises from silent failures attributed to data corrup-
tion [7].

Data corruption can occur on disks due to unavoidable bit flips. To prevent serving bad data
to the user, a mechanism is required to identify corrupt data blocks [26].

Upon detection of a corrupted block, a RAID system can seamlessly replace the corrupted
block with an intact copy due to redundant information included by the RAID system [26].

For the detection of corrupted data blocks, checksums are used. A checksum involves a
function that takes a data block and generates a concise summary of its contents. The idea is
that if any bit within the block flips, the resulting checksum will differ [7].

On a read request to a data block, we recompute the block’s checksum and compare it to
the stored checksum, which was calculated when the data block was written. If the checksums
match, the data block can be delivered to the user. Conversely, if the checksums do not match,
it necessitates the recovery of the original content [7].
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Various checksum functions are available, each summarizing the contents of a larger data
block into a compact data word. While collisions between some data blocks are inevitable
due to compression, a well-designed checksum function minimizes the likelihood of such
occurrences, while remaining computationally efficient [7].

2.2.3 File Mapping

The POSIX-compliant UNIX system call mmap() facilitates the mapping of files or devices
into the virtual address space of the requesting process, a concept referred to as memory-
mapped I/O. The content is loaded on-demand, triggered by a page access. It is possible to map
a file as shared, creating a shared buffer between processes [1].

2.2.4 Crash Consistency

The primary objective of a file system is to persist data. Challenge to this goal potentially arise
from power losses or system (driver) failures, as they may render the file system inconsistent.
For instance, if a file system operation involves modifying two data structures, A and B, a
system crash after modifying A but before modifying B can result in an inconsistent on-disk
structure [7].

Journaling One method to address this issue is termed write-ahead logging or journaling.
The concept involves committing desired changes to a journal in an atomic manner prior to
making the changes. In the event of a system failure during an operation, the journal logs
provide a record of incomplete operations, enabling retries or rollbacks. Once an operation
concludes, the corresponding log entry is marked as invalid and is subsequently freed. While
this approach introduces a minor overhead to each operation, it reduces the recovery workload
significantly [7].

Copy-On-Write Another strategy is the utilization of copy-on-write methodology. Using
this technique, updates to data structures are never done in place, instead a copy is modified in
RAM and then written to a previously unused location on disk. Following this, the pointer in
the primary data structure, which references the unmodified version, is replaced atomically,
effectively committing the update. Subsequently, the original location of the updated data
structure can be freed [7].

2.2.5 Discussion

We have delved into the foundational elements that constitute contemporary file systems. This
knowledge will motivate our subsequent rationale for extending GPU4FS with a file system
managed RAID subsystem. Within this discourse, we have explored two distinct methods,
journaling and Copy-On-Write, that serve to establish crash consistency.

The consistent update problem, underscores the necessity for RAID systems to adopt
crash consistency. An approach could entail a hybrid strategy, wherein file updates transpire
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through copy-on-write, but the act of committing the updates requires a departure from the
copy-on-write paradigm. This is necessary as updates are performed across multiple disks,
making atomic updates of pointers impossible. To address this synchronization demand, a
journaling mechanism should be employed to confirm the synchronization of updates across all
disks.

Additionally, we have explained the concept of checksums and their role in augmenting
RAID systems. Employing checksums facilitates online verification during reads, thereby
acting as a safeguard against the propagation of corrupted data to users.

Introducing the notion of file mapping, we have unveiled the ability to map a file’s pages into
a process’s virtual address space or even map the contents of entire disks like Optane. Through
APIs like Vulkan these pages can also be mapped to the GPU, affording the GPU direct access
to disk resources to read and write RAID-related information [23].

2.3 GPU

GPUs, or Graphics Processing Units are coprocessors originally designed to handle graphics-
related tasks, such as projecting 3D scenes into flat 2D images that can be displayed on monitors.
Because of their origins in computer graphics, GPUs are specialized in accelerating linear
algebra. In recent years, GPUs have also been used for general-purpose computing, typically
on large data sets due to their parallel nature and specialization in linear algebra.

2.3.1 GLSL

GLSL is a programming language used to write programs for GPUs, known as shaders [3]. The
GPU4FS demonstrator employs the Vulkan API, and its shader code is written in GLSL [23].

Since we are extending this demonstrator and due to the absence of universal terminology
for GPU concepts, we will use GLSL terminology where available and revert to the terms used
by Hennessy and Patterson [18] as needed. We first discuss the abstraction introduced by GLSL
and then proceed to explain how these concepts correspond to GPU hardware.

Work is abstracted into a three-dimensional compute space [3]. The GPU programmer
divides the compute space’s work among several independent workgroups per dimension [3].
A workgroup comprises multiple shader invocations (workers). The amount of invocations per
workgroup is defined by the local size, represented as a three-dimensional vector [3]. Individual
invocations within a workgroup are executed in parallel and can communicate through shared
memory [3]. Workgroups are executed independently and in arbitrary order, while coordination
among them is facilitated by atomic memory operations over global memory [3].

2.3.2 Architecture

GPUs, are multiprocessors designed for parallel computing of vectors. They consist of single
instruction multiple data (SIMD) processors capable of executing workgroups simultaneously.
Each SIMD processor acts as an independent core, executing one workgroup at a time [18].
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A hardware scheduler assigns workgroups to these processors until all tasks in the compute
space are finished. Within each SIMD processor, multiple invocations grouped as threads of
SIMD instructions are scheduled and executed in lockstep [18].

These processors have their own on-chip memory, which is shared among their execution
units. Shared variables in GLSL are stored in this fast local memory [18].

Off-chip global memory, known as VRAM, is also available and shared by the entire GPU
and all workgroups. VRAM serves as a resource for sharing data and synchronizing work
among parallel-running workgroups [18].

In GPUs, vector loads are performed as gather operations, which involve a base address
and an index vector which offsets the individual loads from the base address. This allows
sparse vectors to be loaded into a dense vector within a register file. The counterpart operation
for storing a vector is called scatter and follows the same base address and index vector
approach [18].

To optimize memory access, the GPU’s memory interface unit identifies sequential memory
accesses within a SIMD processor by analyzing the index vector. It then combines these
requests into a more efficient, larger sequential memory access. To ensure optimal performance,
GPU programmers need to ensure that addresses used in loads and stores are contiguous [18].

In a SIMD processor, there’s only one program counter, which means invocations can’t
execute different instruction streams simultaneously. Instead, they have to take turns executing
sequentially [18].

For example, imagine eight invocations in a workgroup executing code with nested if-else
statements. Initially, all eight invocations work together in parallel. However, as they encounter
if-else branches, half follow the "then" path while the other take the "else" path. After each
branch, the number of invocations running parallel halves. The reduced parallelism leads to
lower efficiency and throughput [18]. After the first branch, only four invocations work in
parallel, at 50 % efficiency. After the second branch, this drops to two invocations at 25 %
efficiency. With more nested branches, only one invocation works per branch, severely limiting
parallelism. A visualization of the active invocations per branch can be found in Figure 2.2.

0 1 2 3 4 5 6 7

IF id < 4

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

IF id < 2
IF id < 6

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

THEN ELSE

THEN ELSE THEN ELSE

Figure 2.2: This figure illustrates the influence of branching on the scheduling of invocations
within a GPU. In the visualization, green shading signifies active invocations, while
red indicates inactive ones.
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2.3.3 Discussion
We discussed the hardware architecture of GPUs to motivate what a GPU programmer has
to keep in mind to effectively utilize the GPU hardware. The three main takeaways are:
Maintaining sequential memory accesses whenever feasible to keep gathering and scattering
operations effective. Furthermore, minimizing branching within a workgroup to have as many
invocations as possible running in parallel. While the programming model suggests that
each invocation is independent, the programmer needs to bear in mind that instructions of
single invocations are grouped into SIMD instructions and executed in parallel as a thread of
invocations.
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3 Related Work

In this chapter, we commence our exploration of software RAID systems by presenting two
distinct approaches. Our discussion starts with the conventional approach, where multiple disks
are abstracted into a single virtual disk, hiding block-level RAID management from the file
system through virtualization. Following this, we delve into an alternative paradigm where file
systems take on direct disk management.

While examining these approaches, it’s important to note that they are rooted in the concepts
introduced in the "A case for redundant arrays of inexpensive disks (RAID)" paper by Patterson
et al. [24], which first proposed the RAID taxonomy. These concepts have influenced various
disk array techniques discussed in this chapter and our own disk array design. A summary of
the RAID paper can be found in section 2.1.

We explore RAID hardware acceleration by studying one FPGA-based approach and prior
research efforts that utilize GPUs to offload particular RAID management tasks. To conclude
this chapter, we summarize GPU4FS, an innovative user-space file system on the GPU, and
justify why it is the ideal candidate for expansion to a RAID-aware file system.

3.1 Block Software RAID Systems

For the traditional block approach to RAID, we will discuss Linux’s Logical Volume Man-
ager [29] and Linux’s software RAID solution called Multiple Devices [29].

3.1.1 Logical Volume Manager (LVM)

Volume managers organize multiple devices and can abstract them into a single device in
software [29]. This can be necessary as RAID-agnostic file systems and databases must be
created on a single disk [29]. The solution on Linux is called Logical Volume Manager (LVM).

LVM is a suite of user level management tools and a mid-level block driver to map logical
to physical blocks before sending them to the lower level host bus adapter drivers [29]. This
is realized through queues to which block requests, abstracted as buffer_heads, can be
posted [29]. They each contain the fields rdev which is the device identifier, and rsector
which is the block number. In case of LVM the device identifier of the logical volume is
used [29]. The mid-level LVM driver will use rdev and rsector to translate to a physical
device and block. The driver posts the updated buffer_head to the request queue of the
physical device [29].

LVM manages storage on multiple levels: The lowest level is the Physical Volume, which
is a single device or a partition [29]. On each Physical Volume, a Volume Group Descriptor
Area is allocated to contain the configuration information [29]. Multiple Physical Volumes are

19



CHAPTER 3. RELATED WORK

merged into a Volume Group [29]. A Volume Group can be viewed as a large pool of storage
from which Logical Volumes can be allocated (comparable to partitions) [29]. Logical Volumes
are the virtual block devices on which file system or databases can be created [29].

A Volume Group splits each of its assigned Physical Volumes into small units called Physical
Extents [29]. These Physical Extents can then be allocated to Logical Volumes [29]. Each
Physical Extents can only be allocated to one Logical Volume [29]. This allows to move free
Physical Extents between Logical Volumes of one Volume Group in order to shrink or expand
them [29].

3.2 Multiple Devices

Multiple Devices (MD) is Linux’s software RAID solution. Compared to LVM, much less
administration is required as multiple disk are only abstracted as a single device [29]. MDs are
configured in a RAID table, which declares [29]:

• raiddev the identifier for the logical device.

• raid-level 0, 1, 5 or 6 to specify the RAID Level of the logical device.

• nr-raid-disks defines the number of physical disks.

• persistent-superblock if set to 1 the config is stored on each device for auto
mounting.

• chunk-size defines the stripe length.

• a list of all the physical devices (length must equal nr-raid-disks)

Once the RAID is set up, block requests are intercepted and translated analog to LVM’s
buffer_head translation [29]. The difference is the need to stripe and mirror the data or
complement the write request with parity information according to the specified RAID Level.
In case of RAID-1 the length of the requests queues can be used to select the least busy mirror
for a read.

3.3 File System Managed RAID

In the following section, we’ll examine two file systems that independently manage multiple
disks, exploring their underlying motivations.

3.3.1 ZFS

ZFS was developed by SUN™ in 2001 [9]. Among other things, it tried to solve the following
problems: The storage was divided into many sub-volumes, and an external logic volume
manager (like LVM) was needed to build the file system on a single logical unit [26]. Sometimes
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data on the disk became corrupted and since the file system had no way to detect this, the
corrupted data was passed to the application.

Consider a file system implementing checksums and running on a Linux’s MD RAID-
1 instance, which itself has no support for checksums [26]. If the file system detects a
checksum error while reading a block, it needs to retrieve a (hopefully) uncorrupted copy from
a mirror [26]. Linux’s MD hide from which disks the data came and does not allow to request
data from a specific mirror [26]. The file system knows that the data is corrupted, but has no
way to repair the data. Motivated by this issue, ZFS chooses to implement its own volume
manager and checksums every data block. ZFS includes the checksum into its block pointers,
allowing online read verification as the data is accessed [26].

ZFS manages disks as one large storage pool, no separate volume manager is used [9].
The file system is organized as a tree of data blocks [9]. Updates to the tree are performed
with copy-on-write [9]. To commit the updates, the pointer to the tree’s root is overwritten
atomically [9].

ZFS uses a RAID algorithm based on RAID-4, called RAID-Z [19]. The main difference is
that the stripe length varies between write requests. Like in RAID-4 the last chunk in a stripe is
the parity chunk to provide fault tolerance to single disk faults [26]. The stripe sizes dependents
on the IO request size [26]. Since the IO request size is varying, parity information will be
spread among the disks somewhat evenly [26], being close to a RAID-5 configuration. Because
of the varying stripe lengths, the parity information ends up being distributed among the disks,
thus avoiding the small write problem.

To overcome the consistent update problem, RAID-Z uses copy-on-write and adaptive
stripe size to ensure that updates are always full-stripe [26]. Updates are cumulated in DRAM
and atomically committed to the tree as described earlier, therefore avoiding complex logging.

An example of the adaptive stripe length can be seen in Table 3.1 and Table 3.2.

IO size data chunk parity chunk stripe size
4 kB d11 p12 1 + 1
12 kB d13, d14, d15 p21 3 + 1
8 kB d22, d23 p24 2 + 1
16 kB d25, d31, d32, d33 p34 4 + 1

Table 3.1: IO requests and their corresponding RAID-Z stripes. Example taken from [26].

disk D1 D2 D3 D4 D5

row 1 d11 p12 d13 d14 d15
row 2 p21 d22 d23 p24 d25
row 3 d31 d32 d33 p34

Table 3.2: State of the disk array after performing the requests from Table 3.1. Example taken
from [26].
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RAID-Z supports RAID level 0, 1, 5 (RAIDZ) and 6 with double parity (RAIDZ2) or triple
parity (RAIDZ3) [5]. The RAID level is set for the entire storage pool and cannot be managed
on a per-file level [9].

3.3.2 BTRFS

BTRFS is a file system that organizes every data structure into B-trees, hence the name BTRFS.
The BTRFS paper uses the term B-Trees [26], but actually uses B+-Trees [11]. Only in this
section we adhere to BTRFS naming convention.

Metadata duplication and RAID capabilities are directly incorporated into BTRFS, with
support for varying disk sizes within the BTRFS disk array. Instead of blocks, BTRFS uses
extents to eliminate the need for special block sizes. To circumvent serving corrupted data,
BTRFS chooses to employ checksums in pointers analog to ZFS [26].

BTRFS manages the file system as a forest of trees. For BTRFS’ RAID implementation, the
important trees are the chunk and the device tree. Each device is split into large chunks. The
chunk tree contains the mapping from logical chunks to physical chunks. While the device
tree contains the reverse mappings. The rest of the file system only sees and references logical
blocks [26].

Using large chunks keeps the trees small and therefore enables in-memory caching of these
trees to minimize the lookup overhead caused by the added indirection. The abstraction of
logical chunks also enables physical chunks to be moved around to combat fragmentation and
to rebalance disk usage when adding a new disk. This only requires an update of the mapping
without having to backtrack and fix references [26].

RAID level 0, 1, 5 and 6 can be configured on a logical chunk level. The abstraction to logical
chunks allows granular control of the RAID level and stripe length to optimize reliability or
adjust the bandwidth of subvolumes for different workload requirements. The physical chunks
are grouped according to the RAID level of the corresponding logical chunk [26]. For example,
to enable mirroring, the physical chunks are grouped into pairs [26] (cf. Table 3.4). For striping,
n physical chunks from different disks are grouped to a logic chunk [26] (cf. Table 3.3). For
level 5/6 additional physical chunks are reserved for parity information [26].

logical chunk disk 1 disk 2 disk 3
L1 C11 C21

L2 C22 C31

L3 C12 C23

L4 C24 C32

Table 3.3: RAID-1 with one large disk (disk 2) and to smaller disks (disk 1, 3). Example taken
from [26].
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logical chunk disk 1 disk 2 disk 3 disk 4
L1 C11 C21 C31 C41

L2 C12 C22 C32 C42

L3 C13 C23 C33 C43

Table 3.4: BTRFS: RAID-0 striping to four disks with a stripe size of four. Example taken
from [26].

3.4 Discussion

Modern file systems, like ZFS and BTRFS, are aware of their deployment across multiple
disks and actively manage these underlying disks. The significance of checksums, essential
for preserving data integrity, is emphasized by both works. This highlights the deficiencies in
conventional systems, such as Linux’s MD RAID, which lack comparable mechanisms.

BTRFS takes physical disks and RAID management and abstracts it into logical chunks.
This abstraction allows for dynamic adjustments in several ways. These chunks can have
different RAID levels, either increasing or decreasing reliability. They can also have varying
stripe lengths to fine-tune inner file or inter file parallelism and bandwidth.

This flexibility accommodates the specific needs of different subvolumes. Some subvolumes
might require higher reliability, while others may prioritize performance even if it means
sacrificing some reliability.

Furthermore, the file system and the user can determine the performance and reliability
characteristics for these logical chunks, allowing for tailored tuning of subvolumes to suit their
intended use cases.

3.5 Previous RAID Acceleration

In this section, we present prior publications that offload some of the RAID management
workload to external hardware.

3.5.1 FPGA Accelerated RAID-6

In 2006, hardware RAID systems were performing better than software RAID systems on
the CPU [17]. RAID-5 was widely used, and it was common for a second disk to fail during
the rebuild process, which highlights the need for RAID-6 [17]. However, the adoption of
RAID-6 was limited because only costly and complex proprietary hardware solutions were
available [17].

As an alternative, Gilroy and Ivrine [17] proposed an FPGA-based RAID-6 accelerator.
FPGAs offer a practical way to develop and implement accelerated RAID algorithms. Their
primary goals were to achieve better performance in terms of data throughput and rebuild speed
compared to software-based solutions, and to relieve the CPU from coding tasks [17].

The FPGA’s adaptability allows for easy system design modifications in the future. The
authors implemented Reed-Solomon Coding on the FPGA, resulting in faster rebuild speeds

23



CHAPTER 3. RELATED WORK

and higher data throughput. Notably, when facing single disk erasures, CPU utilization dropped
by one-third compared to software-only solutions. This reduction increased to half of the
CPU consumption for double disk erasures [17]. This work underscores the potential of using
hardware accelerators to improve RAID performance and system efficiency.

3.5.2 A Lightweight, GPU-Based Software RAID System

Curry et al. [16] developed a software RAID that offloads the computation of error-correcting
codes used in RAID-6 to the GPU. In their previous works [13, 14, 15], they demonstrated the
GPU’s superiority over the CPU in coding-related tasks. In this study, they integrated their
GPU-based coding into an existing software RAID named Gibraltar [16].

Their objectives were to keep the flexibility of a software RAID, while achieving higher
performance than a fully CPU-bound RAID by offloading coding to the GPU. This was
important since hardware RAID systems at that time promised superior performance. To
achieve this, they replaced their software RAID’s erasure correction engine with a GPU shader.
Additionally, they extended their software RAID’s capabilities beyond typical hardware RAID
systems. They introduced read verification and implemented Reed-Solomon coding support for
a variable number of parity disks (m ≥ 2) [16].

The implementation of their software RAID is entirely situated in user space. However, they
need to determine which files were present in the file system cache. This is necessary as they
only perform read verification on data retrieved from the disks, avoiding slowing down reads to
already verified data from the cache. Consequently, they bypass Linux’s buffers and cache the
file’s blocks in user space [16].

Owing to CUDA’s issues with mapping files opened with the O_DIRECT flag to bypass
Linux’s caches, they were unable to directly map the disk or the user space buffer to the GPU.
Instead, they opted to copy the entire stripe to VRAM. Despite this limitation, they were still
able to maintain speed improvements over a CPU-based software RAID [16].

All user reads and writes are directed to their user space stripe cache. Once a stripe is
completely written to the cache, the computation of the erasure codes occurs asynchronously
on the GPU. A "victimizer" process is responsible to asynchronously write back stripes,
complemented with coding information, to the disks using Linux’s asynchronous I/O [16].

Their GPU-based coding, introduced in 2012, achieved a bandwidth of 4 GB/s. A plot
of their achieved throughput can be found in Figure 3.1. The GPU shader, coded in CUDA,
accepted k data buffers and returned m parity buffers. The throughput of the error-coding
shader can be found in Figure 3.1.

A noteworthy outcome of their study is the observation that parity verification did not notably
slow down reads; the slowdown primarily resulted from the extra bandwidth required to read
the parity chunks from disk. Curry et al.’s [16] work not only establishes the feasibility of
offloading parity computation in software RAID to the GPU but also underscores its potential
to deliver significant performance gains.
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(a) Throughput (de-)coding m = 2 parity
blocks from k data blocks

(b) Throughput (de-)coding m = 3 parity
blocks from k data blocks.

Figure 3.1: Comparison of throughput for Reed-Solomon Coding on CPU (Jerasure) vs. GPU
(Gibraltar). Here, k represents the number of data blocks, each with a size of 2MB.
Both plots are taken from [16].

3.5.3 On the Use of GPUs in Realizing Cost-Effective Distributed
RAID

This section summarizes a paper by Khasymski et al. [21], presenting a software RAID solution
that utilizes GPU-based parity computation. This solution is tailored for parallel file systems
within high-performance computing environments. The authors deploy cost-effective GPUs on
both client and server nodes to accelerate the process of calculating parity[21].

The main focus of their work is to ensure end-to-end data integrity by conducting encoding
and decoding at the compute node. This strategy aligns with the point of data generation and
consumption. The authors adopt a distributed strategy for parity computation on a per-file basis
within compute nodes. This approach contrasts with a centralized backend, which commonly
handles all parity computations [21].

By following a file-oriented methodology, their system accommodates RAID-1 for achieving
redundancy for small files, seamlessly transitioning to RAID-6 as the file size increase. The
framework also enables concurrent rebuilds. In this client-centric rebuilding approach, tasks
for reconstruction of individual files are handled by individual clients [21].

The authors’ investigation into a CPU coding library uncovers that a substantial portion of
the runtime (95 %) is consumed by XOR operations. This outcome is not unexpected due to
the nature of RAID-6 parity computation on Galois Fields, where addition and multiplication
translate to bitwise XOR and AND operations. In response, the authors opt to transfer the
bitwise operations to the GPU, leveraging its inherent capacity for Single Instruction Multiple
Data (SIMD) parallelism[21].

The implementation on the GPU, realized using CUDA, demonstrates a coding throughput
of 3 GB/s on each client. This rate adequately saturates their available network bandwidth,
accommodating the transmission of both data and parity blocks[21].
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3.5.4 Discussion

All three studies underscore the superior computational capabilities of hardware accelerators
over the CPU in parity coding. Due to the general availability of GPUs in computer systems, it
makes sense to design a RAID system accelerated by the GPU for higher adoption rates instead
of relying on FPGAs. This distinction demonstrates the potential of a GPU-accelerated RAID
system.

In both GPU focused publications, the GPU is exclusively employed for computing coding
information, while disk read and write operations are managed by the CPU. This configuration
implies that a fully GPU-based system could potentially surpass the performance of these
approaches. This advantage stems from the fact that data is already accessible to the GPU
without necessitating additional data transfers between the CPU and GPU.

The paper "On the Use of GPUs in Realizing Cost-Effective Distributed RAID" highlights
the advantages of adopting a file-level approach to RAID implementation. This approach
enhances flexibility and load balancing in distributed environments.

3.6 GPU4FS

Modern file systems running on fast storage media consume valuable CPU resources to fully
utilize the underlying storage device, especially when Intel Optane is employed due to its
relatively low write bandwidth [23]. These accesses tie up the CPU and DMA is not an option
due to Optane’s synchronous memory accesses [23]. Therefore, it is reasonable to employ
a coprocessor capable of handling file system tasks asynchronously and in parallel. GPUs,
being affordable high-performance accelerators, serve as suitable candidates for offloading file
system tasks, as modern APIs like CUDA, OpenCL, and Vulkan provide convenient access
to the computational potential of GPUs. Maucher proposed an innovative solution known as
GPU4FS, a GPU-accelerated user-space file system designed for high-performance non-volatile
memory [23].

As the GPU cannot function independently and requires configuration from the CPU in user
space, a user space management process is needed. During the setup phase, the management
process maps the NVM disk to the GPU, which requires help from the kernel. When a process
intends to use a GPU4FS instance, the user space management process creates a shared memory
region between the requesting process and the GPU. The requesting process can directly
interact with the GPU via the shared memory region, eliminating the need for further kernel
involvement. Special permissions are required for the management process to remap pages
in different processes when dealing with shared pages [23]. A visualization can be found in
Figure 3.2.

The GPU takes over all file system management tasks from the CPU. Requests are queued
into a shared command buffer by the CPU and subsequently executed by the GPU. Completion
is indicated by a flag within the shared memory region. The commands are designed to offload
as much work as possible onto the GPU [23].

Considering that Optane behaves similarly to normal DRAM and is organized into 4kB,
2MB, and 1GB pages by the MMU on x86-64 systems, both DRAM and Optane can only be
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mapped in page granularity. To ensure process separation and visibility, GPU4FS aligns file
blocks with page boundaries and blocks are page-sized units. These blocks can be recursively
divided, with the smallest block size being 128 bytes, the size of an inode [23].

Figure 3.2: GPU4FS employs caching alongside a trusted component. Requests are enqueued
within the command buffer. Upon receiving a command, the GPU interprets it and
retrieves corresponding data from the FS caches, transferring it into the VRAM
cache. Subsequently, the GPU utilizes this data to facilitate writing operations to
NVM. In situations involving data retrieval, information is pulled from NVM to
the VRAM cache before being stored back into the FS caches. For commands
necessitating OS intervention, such as mmap(), the GPU takes an additional step by
introducing the command into the command buffer of a trusted component. This
trusted module subsequently initiates system calls to the kernel, allowing for the
execution of administrative tasks with elevated kernel privileges. This figure is
taken from [23].

3.6.1 On-Disk Data Structures

In this section, we provide an overview of some fundamental data structures in GPU4FS
that require extension in our RAID design. For in depth information about GPU4FS’s data
structures, we defer to [23].

Block Pointer Given the possible sizes of 128B, 4kB, 2MB, and 1GB, a two-bit tag is
necessary to encode the size of the referenced block within a pointer. Furthermore, a block
pointer contains a 1-bit flag indicating its validity and another 1-bit flag to indicate whether the
pointer is indirect or not, leaving three bits unused. The remaining 57 bits indicate the offset on
the physical drive where the referenced page start [23]. A visualization of the block pointer can
be found in Figure 3.3.

Inode Since our extension of GPU4FS with a RAID subsystem necessitates no changes to
the inode, we provide a concise section here and refer readers to [23]. In its pursuit of POSIX
compliance, GPU4FS adopts all necessary flags from EXT4. The fields are all 64-bit aligned
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Figure 3.3: Bit usage of GPU4FS’s block pointer. Three bits remain unused, 57 bits are used
for the offset of the referenced page on the disk. The remaining bits are used to
signal whether the pointer is valid and indirect and to differentiate between the size
of the page (tag). Figure taken from [23].

and grouped. A notable distinction from other file systems is the inode number, which directly
corresponds to the physical offset of the inode on the disk, without complex translation [23].

Directories To write to a directory, an exclusive lock needs to be acquired in the directory’s
inode on-disk. GPU4FS’s demonstrator currently only has one directory, the root directory [23].

3.6.2 Runtime

During runtime, commands are queued by the requesting process into the shared command
buffers and executed by the GPU. This section lists the most important commands and how
they are processed [23].

Commands As mentioned before, request are queued to a command buffer. Each command
comprises 128 bytes divided into 16 64-bit words. The commands form a linked list, com-
mencing with a metadata command and concluding with a termination command. Workgroups
are dispatched to traverse the list, aiming to atomically acquire each command descriptor and
execute the command if successful. Once the work is completed and the completion flag is set,
the workgroup proceeds to follow the list until the termination command is reached [23]. A
visualization of the command basics can be found in Figure 3.4

Figure 3.4: A basic command descriptor. The payload between offset 16 and 112 depends on
the command implementation. Figure taken from [23].

The metadata command descriptor holds information to configure the shader invocations:
The amount of shader invocations to be dispatched and a separate_execution flag. The flag
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indicates whether workgroups should work together on a single command or work on different
commands in parallel [23]. A visualization of the metadata command can be found in Figure 3.5

Figure 3.5: GPU4FS metadata command. Figure taken from [23].

The file write command descriptor is employed to establish a new file within GPU4FS and
transfer initial contents to NVM. The command descriptor includes the offset in the command
buffer to the file content, along with metadata like file size, length of the file name, offset in the
command buffer to the file name, position of the directory for adding the file, and the offset
of the CPU-prepared inode in the command buffer [23]. The exact 64 bit aligned command
descriptor can be found in Figure 3.6

A file write command involves the following steps [23]:

1. The process enqueues a write request, including information like the open file descriptor
or path and a pointer to the shared buffer containing the file content to be written.

2. The GPU reads the request, copies it to VRAM, and verifies it there.

3. The GPU executes the request:

a) The GPU allocates pages on NVM for the file’s content and the inode.

b) Subsequently, the file data and inode are sequentially written to the NVM disk,
ensuring uniform gathering and scattering to optimize GPU performance.

c) Following this, block pointers to the allocated pages are written to the copied inode.

d) In the final step, the file name and inode pointer are written to the specified directory.
Before a directory update, its inode must be atomically locked to secure exclusive
write privileges.

4. The GPU concludes the command by setting the completion flag in the command buffer.

A visualization of these steps can be found in Figure 3.7.
For reading, data is copied to VRAM and then forwarded to the DRAM space of the

requesting process. In the case of shared files, data is sent to the shared file system caches.
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Figure 3.6: GPU4FS’s file write command descriptor. Figure taken from [23].

VRAM serves as a second-level cache, potentially holding data previously written by a process
or retrieved from NVM, thus reducing the need to access NVM [23]. A visualization of the
read process can be found in Figure 3.8

Evaluation The initial exploration focused on determining the number of shader invocations
required to best utilize Optane’s 2 GB/s write bandwidth from the GPU using a GPU-based
parallel memcopy. The results indicated that a peak of 1.9 GB/s could be achieved using 320
shader invocations on Maucher’s test configuration. Optimal performance was found between
256 and 512 shader invocations. Thus, the next benchmark uses the file write command to write
multiple files in parallel. It runs on two workgroups, each consisting of 256 shader invocations,
allowing parallel handling of two files [23].

With 512 invocations, the memcopy benchmark measured 1.5 GB/s. Writing multiple files
using 512 invocations resulted in a bandwidth of 1.4 GB/s, suggesting that the Optane DIMM
get overwhelmed. For single-file writes with only 256 shader invocations, a performance of
1.9 GB/s was measured [23].

In summary, GPU4FS achieved over 80 % of the maximum Optane write bandwidth using a
GPU instead of a CPU. This achievement occurred while maintaining CPU usage below 5 % of
a single core [23].
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Figure 3.7: Visualization of a CPU process requesting a write command. Figure taken
from [23].

Figure 3.8: Visualization of a CPU process requesting to read a file. Figure taken from [23].

3.6.3 Discussion
GPU4FS has demonstrated the viability of a GPU-based file system, showcasing its potential
to compete effectively in terms of bandwidth while freeing CPU resources.

Earlier studies [21, 16, 28] have underscored the acceleration potential that GPUs offer for
parity coding. Capitalizing on this, GPU4FS takes advantage of its direct access to both data
queued for disk writing and the disk itself from the GPU. This strategic positioning empowers
GPU4FS to efficiently manage RAID tasks, enhancing system reliability and overall bandwidth
by capitalizing on the capabilities of multiple disks right from the GPU.
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4 Design

The main idea for GPU4FS’s RAID subsystem is that pages of RAID files live in a logical
(virtual) address space managed by the file system. A logical chunk is a continuous memory
area of arbitrary size within this logical address space. Each logical chunk comes with metadata
attached, which defines the properties of the chunk, for example its RAID level 4.1.4. Logical
block pointers reference pages in logical chunks within the logical address space 4.1.2. The
RAID level can therefore be set on a file or even on a page level.

The advantages of this approach are flexible and dynamic allocation of files and pages
of a specific RAID level without having to predefine subvolumes. Another benefit is that
performance and redundancy requirements for a specific file can be tuned for the access
patterns of a process interacting with these files.

When GPU4FS operates on multiple disks, a distinction must be made between the physical
address space of each disk and the logical address space. When a logical chunk is created,
chunks of physical memory of multiple disks are allocated and allotted to the logical chunk.
These logical data chunks are mapped into the logical address space of size 264 byte. A logical
block pointer references a page at an offset in this logical address space.

If a write to a block address in this logical address space occurs, the RAID subsystem
transparently resolves the chunk metadata and ensures that the data is written to the correct
physical disk(s) and supplement with the necessary information like parity. For example, in the
case of a RAID-1 chunk, copies must be distributed to all mirror disks.

To make the RAID system performant, we leverage the parallel nature of the GPU in our
design to efficiently handle write and read request to these logical chunks. The goal is to design
a flexible software RAID located on the GPU, which can compete in write bandwidth with
CPU based RAID systems while relieving the CPU from expensive management tasks.

4.1 On-Disk Data Structures

To incorporate a RAID subsystem into GPU4FS, certain modifications are necessary to its
on-disk data structures. First, supplementary information must be introduced to the superblock.
This information is required to bootstrap the RAID subsystem during mounting.

GPU4FS’s block pointer needs to be modified to enable the distinction between block
pointers referencing the local physical address space of a specific disk or the global logical
address space.

No modifications are made to the inode structure, given that the inode just stores our updated
block pointers without necessitating any supplementary metadata.

The on-disk structure of directories remains unchanged, although a few considerations
regarding updates and locking of directories need to be made in the context of a RAID system.
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We conclude this section by introducing the additional on-disk data structures logical chunk
tree and logical chunk descriptor necessary for the organization of our chunk based RAID
system.

4.1.1 Superblock
To be able to (re)mount a RAID instance of GPU4FS, a few additions to GPU4FS’s superblock
are necessary. Every disk in the disk array maintains its own superblock. Each of these
superblocks mirrors common information about the file system instance, therefore acting
as a RAID-1 chunk outside the logical address space. The superblock also accommodates
disk specific information, which is not mirrored. In case of a disk rebuild, the common
information can be copied from another disk with an uncorrupted superblock and the disk
specific information is reconstructed during rebuild 4.2.5. Each of the disks is identifiable by a
unique UUID.

Common information includes the total physical size and the total remaining physical space
of the disk array, the allocation information for the logical address space and an ordered list of
all UUIDs of the array’s disks.

Disk specific information includes the total physical size and remaining physical space on
this disk, a unique UUID to identify the disk and allocation information for the physical address
space of the disk. Additionally, physical block pointers to the root node of the logical chunk tree
and to the head of the chunk list (the chained leaf nodes of the chunk tree) 4.1.5 are included in
the device specific information of the superblock.

Since all disks of the array contain the list of all the disk’s UUIDs in their superblock, any
disk can be used to start the mounting process. The user space managing process uses the list
to verify that all the array’s disks are present. If any disk is missing, regular mounting cannot
proceed and the user is asked to run a rebuild attempt with replacement disks 4.2.5. In the case
that all disks are present, the user space managing process maps the disks in the order of the
list to GPU buffers. The order in which the disks are mapped to the buffer is important, as only
the list/buffer indices are used in structures like the logical chunk descriptor 4.1.4.

4.1.2 Block Pointer
In order to differentiate between the global logical address space and the physical address space
of each disk, modifications to the block pointer are required. By explicitly indicating whether a
block pointer refers to a physical location directly on one of the disks or a virtual location in
the logical address space, a number of advantages are realized:

RAID can be retroactively enabled on an existing GPU4FS instance without necessitating
any modifications to non-RAID files.

Requested pages cannot be mapped directly from disk to the address space of the requesting
process for the purpose of safeguarding the RAID system invariants. The requested page’s
content first has to be copied to a buffer before it can be mapped. Changes in the buffer must
be written back to the disks, taking into account the invariants of the RAID system. Supporting
physical block pointers allows the inclusion of files bypassing the RAID subsystem. Allowing
these page aligned files to be mapped directly from one physical disk to a process.
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Given the necessity of employing physical offsets for referencing metadata on the same disk,
explicit encoding of a pointer’s physical or logical nature simplifies the debugging process.

By supporting both physical and logical block pointers, the system gains increased flexibility
at the expense of a single bit.

First, we introduce a new flag called physical to indicate whether a block pointer ref-
erences a physical page (physical = 1) or a page within a logical chunk (physical
= 0).

For the physical pointer, we need m = ⌈log2 n⌉ bits to distinguish between the physical
address space of n disks. The disk/buffer index d is encoded within the m uppermost bits of the
block pointer, resulting in a maximum addressable physical address space of 264−m bytes per
disk. The disk index d references the disk mapped to the d-th buffer on the GPU. The list of
UUIDs in the superblock specifies the order in which the disks are mapped to the GPU buffers,
as explained in section 4.1.1. A bit-by-bit breakdown of the physical block pointer can be
found in Table 4.1.

disk index physical offset 00 physical = 1 valid indirect tag
63 63−m+ 1 63−m 7 6 5 4 3 2 1 0

Table 4.1: Bit usage of a physical block pointer. Two bits remain unused, m bits are used to
encode the disk id and 57 −m bits are used for the offset to the referenced page
on the specified disk. For physical block pointers, the physical flag is always set.
The remaining bits are used to signal whether the pointer is valid and indirect and to
differentiate between the size of the page (tag).

For the logical pointer, the pages offset in the global logical address space is included in the
pointer. A bit-by-bit breakdown of the logical block pointer can be found in Table 4.2.

logical offset 00 physical = 0 valid indirect tag
63 7 6 5 4 3 2 1 0

Table 4.2: Bit usage of a logical block pointer. Two bits remain unused, 57 bits are used for the
offset of the referenced page in the logical address space. For logical block pointers,
the physical flag is not set. The remaining bits are used to signal whether the pointer
is valid and indirect and to differentiate between the size of the page (tag).

4.1.3 Directories
GPU4FS’s directory consist of pairs of file names and inode numbers. In the unmodified
version of GPU4FS, the inode number corresponds directly to the physical on-disk offset of the
respective inode [23]. In essence, the 64 bit long inode number is a physical block pointer, as
the inode itself is page sized by design and aligned to page boundaries.

Rather than using the physical offset of the inode as the inode number, we use a direct block
pointer that points to the inode. Therefore, directories contain our updated block pointers
as inode numbers. During directory traversal, certain entries might reference inodes situated
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within the physical address space of a designated disk, while others reference inodes within the
logical address space. Using a block pointer as the inode number, allows us to include both
physical and logical files in the same directory.

Directories are special files and can thus be included in a logical chunk. GPU4FS gains
exclusive write access to a directory by atomically locking its inode directly on-disk. For a
RAID backed directory, this on-disk locking is not optimal, as every lock and unlock requires
a parity or mirror update to avoid violating the RAID invariants. As a solution, we propose
an atomically updatable list in VRAM of all locked directories instead of relying on on-disk
locking.

4.1.4 Logical Chunk Descriptor

The logical chunk descriptor contains metadata describing a logical chunk, primarily its RAID
level and size. This metadata must be redundant to enable chunk recovery. If we want to
recover from m disk failures, we need to mirror the logical chunk descriptor to m+ 1 disks.
However, mirroring does not necessarily occur at the same offset on all disks. We always
allocate each logical chunk descriptors on the same m+ 1 disks. The space required for these
logical chunk descriptors is negligible, as they are only 128 Bytes in size. To achieve high
performance, a RAID instance should keep the amount of logical chunks (and therefore the
amount of logical chunk descriptors) small to keep address lookups in the chunk tree fast 4.2.3.

A byte-wise breakdown of the metadata of a logical chunk can be found in Table 4.3.

0 1 2 3 4 5 6 7
0 size
8 raid_level redundancy unused stripe_length
16 linear_allocator
24 num_stripes unused
32 physical_chunk_size
40 list of physical chunks
...

120

Table 4.3: Byte wise composition of the metadata describing a logical chunk.

All logical chunks possess their own block allocator, responsible for managing allocation
requests within the logical chunk 4.2.2. The logical chunk descriptor includes a list of physical
chunks distributed across different disks, collectively forming the logical chunk. This list
solely comprises physical block pointers, which already encapsulate the disk ID and physical
offset 4.1.2. The block pointer’s tag is disregarded, as the physical chunk size may not align
with any of GPU4FS’s page sizes. Hence, the physical chunk size is explicitly included
within the logical chunk descriptor (physical_chunk_size). Each physical chunk has
the identical size.

The stripe length field denotes the number of bytes written sequentially to a single disk
before writing the next stripe length bytes to the next physical chunk in the cyclic list. The
stripe length therefore specifies after how many bytes the data should be striped.
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A notable field in the chunk descriptor is the redundancy value. For RAID-1, it encodes
the number of mirrors per set, while for RAID-6, it contains the amount of parity disks.
Consequently, for RAID-1, the physical chunk list encompasses redundancy · num_-
stripes entries, organized into num_stripes sets.

By default, the logical chunk is sized to match an inode, allowing it to accommodate
(128− 40)/8 = 11 block pointers pointing to distinct physical chunks. If more physical chunks
are needed due to the availability of more than 11 disks, the data structure can be conveniently
extended to a multiple of inode sized pages. The space available due to the extension can then
be used to accommodate 128/8 = 16 additional pointers per inode sized page.

4.1.5 Logical Chunk Tree
The logical chunk tree serves as the central data structure organizing the allocated logical
chunks within the RAID subsystem. Structured as an ordered, self-balancing B+-tree, the
chunk tree facilitates the mapping of logical addresses to their corresponding logical chunk
descriptors. Fast logical address translation, as outlined in section 4.2.3, is enabled through the
tree structure. Furthermore, the logical chunk tree acts as a list of all allocated chunks, offering
a means to iterate through all existing logical chunks in the system.

To ensure the ability to recover from m disk failures, we require m+ 1 replicas of the chunk
tree on different disks. Additionally, on each of the m+ 1 disks, there is a local copy for every
logical chunk descriptors positioned at distinct physical offsets, as detailed in section 4.1.4. It’s
important to note that each chunk tree contains physical offsets pointing to their corresponding
local replicas of the logical chunk descriptors on the same disk. This configuration ensures
redundancy and enables efficient recovery.

B+-Trees adhere to specific invariants defined by the minimum degree, denoted as t. All
non-root nodes are required to possess at least t− 1 keys. The root node, following its initial
insertion, may hold a minimum of one key. Each node can hold a maximum of 2 · t− 1 keys, all
arranged in ascending order. The child situated between two keys, ki and ki+1, encompasses all
keys within the range [ki, ki+1). Hence, we have a pointer between two adjacent keys, therefore
we need two additional pointers, one for the smallest key and one for the largest key. The
pointer associated with the smallest key directs to the child that holds all keys smaller than
the node’s minimum. Similarly, the pointer corresponding to the largest key directs to the
child containing keys equal to or greater than the node’s maximum. Consequently, the amount
of child nodes equates to the key count plus one. A visualization of an inner node’s keys
and corresponding child pointers can be found in Figure 4.1. Importantly, B+-Trees maintain
uniform leaf levels and exclusively insert values into leaves [6].

The base addresses (offsets) of the logical chunks are used as the sorting keys in the B+-
tree. The inner nodes exclusively store keys along with their corresponding < and ≥ child
references. This configuration establishes an index over the base addresses, allowing rapid
address lookups with a time complexity of O(log n), where n signifies the amount of inserted
logical chunks [11]. Inserting a chunk into the tree also has a time complexity of O(log n) [11].

Leaf nodes include the base address (key), size (limit) and offset to the logical chunk
descriptor of the contained logical chunks. The offset is physical, as the replica of the logical
chunk descriptor is stored on the same disk as the chunk tree. The Leaf nodes also includes a
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Figure 4.1: Visualization of an inner node with four keys and the five corresponding child
pointers.

subset of the metadata from the chunk descriptor for each contained chunk. These leaf nodes
are chained into a sorted list using a next pointer. To distinguish between inner nodes and leaf
nodes, a leaf flag is incorporated within every node.

The design ensures the absence of duplicates within the chunk tree. The logical chunk
allocator ensures that the address ranges of the chunks never overlap, thereby guaranteeing an
unambiguous mapping from logical address to logical chunk.

In lower level implementations of B+-Trees, nodes possess a size equivalent to that of a page.
Keeping nodes page sized allows efficient caching of frequently accessed nodes in memory and
enables infrequently accessed nodes to be swapped out effectively. The choice of the minimum
degree t depends on the selected page size, as the number of keys a node can accommodate is
constrained by this size [11].

To minimize the overhead linked to the logical chunk abstraction, a pragmatic approach
involves utilizing rather large sized chunks. Using large chunks results in a limited amount of
logical chunks within the system, keeping address translation fast and making debugging more
manageable during development. Since we don’t have many chunks in the tree, we choose the
smallest page size (inode size of 128B) for internal nodes.

Within an internal node, 16 bytes are allocated for metadata, such as the amount of keys
within the node and a leaf flag to differentiate internal nodes from leaves. Consequently,
128− 16 = 112 bytes remain for keys and child pointers. Considering the need for one more
child pointer than keys, this leaves room for (112/8− 1)/2 = 6.5 keys. Solving the equation
2 ∗ t− 1 = 6.5 yields t = 3.75, rounded down to t = 3. Thus, each node can accommodate
2 ∗ t− 1 = 2 ∗ 3− 1 = 5 keys. For a precise description of the byte-aligned internal node data
structure, refer to Table 4.4.

0 7
0 num_keys
8 metadata

16 list of 5 base addresses (keys)
48
56 list of 6 child pointers
96
104 unused
120

Table 4.4: The byte aligned inode sized inner node.
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Concerning leaf nodes, 16 bytes are allocated for metadata, encompassing the amount of
keys and the leaf flag that designates a leaf node. An additional 8 bytes are allocated for the
physical offset of the subsequent leaf node, facilitating the construction of an ordered linked
list of all leaf nodes. As leaf nodes lack children, no child pointers are stored within them.
Each key (base address) requires storage of the limit (chunk size) and the physical offset to
the corresponding logical chunk descriptor for address translation. Additionally, a subset of
metadata from the logical chunk descriptor is retained, including information like the RAID
level.

Each of these data components occupies 8 bytes, and with storage required for 5 keys, the
total space consumption becomes (2+1+5∗4)∗8 = 23∗8 = 184 bytes. To ensure alignment
with page boundaries, the size of a leaf node is extended to two inode-sized pages (256 bytes).
The precise byte-aligned structure of a leaf node is presented in Table 4.5.

0 7
0 num_keys
8 metadata

16 next_offset
24 list of 5 base addresses (keys)
56
64 list of 5 limits
96

104 list of 5 offsets
96

144 list of 5 chunk_metadata
176
184 unused
248

Table 4.5: The byte aligned two inode sized leaf node.

To understand the insertion of a chunk into the tree, consider the following example. We
choose t = 2 so each node can hold up to 2 ∗ t− 1 = 2 ∗ 2− 1 = 4− 1 = 3 keys. We want to
insert chunks of size 0x1000 into the tree. In the beginning, we have an empty leaf node as the
root. Both the head pointer of the list and the root node pointer reference the root. We insert
the chunks with the base address 0x0000, 0x1000 and 0x2000 into the root node.

Base 0x0000 0x1000 0x2000

Limit 0x1000 0x1000 0x1000

Offset + 
Metadata

Offset + 
Metadata

Offset + 
Metadata

Offset + 
Metadata

Root & Head Pointer

When we try to insert the next chunk with the base address 0x3000, we discover that the
root node is full and needs to be split. We need a new root node, but this time the root is an
inner node. We promote the t-th (second) key to the new root, and copy all the keys k and their
corresponding metadata with kt ≤ k to a new leaf node. We set the root pointer to the new root
and set the next pointer of the split leaf node to the new leaf node. We add the child pointers to
the leaf nodes to the new root.
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Base 0x0000

Limit 0x1000

Offset + 
Metadata

Offset + 
Metadata

0x1000

Base 0x1000 0x2000

Limit 0x1000 0x1000

Offset + 
Metadata

Offset + 
Metadata

Offset + 
Metadata

Head Pointer

Root Pointer

Now we can proceed to insert the 0x3000 chunk.

Base 0x0000

Limit 0x1000

Offset + 
Metadata

Offset + 
Metadata

0x1000

Base 0x1000 0x2000 0x3000

Limit 0x1000 0x1000 0x1000

Offset + 
Metadata

Offset + 
Metadata

Offset + 
Metadata

Offset + 
Metadata

Head Pointer

Root Pointer

When we attempt to insert the 0x4000 chunk, we discover that the target leaf node is full.
We split the full leaf into two analog to the first split, but this time we insert the t-th (second)
key as an index key into the existing root.

Base 0x0000

Limit 0x1000

Offset + 
Metadata

Offset + 
Metadata

0x1000 0x2000

Base 0x1000

Limit 0x1000

Offset + 
Metadata

Offset + 
Metadata

Head Pointer

Root Pointer

Base 0x2000 0x3000

Limit 0x1000 0x1000

Offset + 
Metadata

Offset + 
Metadata

Offset + 
Metadata

Inserting 0x4000 results in a full leaf node, when inserting 0x5000 the full leaf node is split
similar as before and 0x3000 is promoted to the root as an index key.
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Base 0x0000

Limit 0x1000

Offset + 
Metadata

Offset + 
Metadata

0x1000 0x2000 0x3000

Base 0x1000

Limit 0x1000

Offset + 
Metadata

Offset + 
Metadata

Root Pointer

Base 0x2000

Limit 0x1000

Offset + 
Metadata

Offset + 
Metadata

Base 0x3000 0x4000 0x5000

Limit 0x1000 0x1000 0x1000

Offset + 
Metadata

Offset + 
Metadata

Offset + 
Metadata

Offset + 
Metadata

Head Pointer

When inserting 0x6000, we discover that the root node is full and preemptively split it,
promoting the index key 0x2000 to a new root.

Base 0x0000

Limit 0x1000

Offset + 
Metadata

Offset + 
Metadata

0x1000

Base 0x1000

Limit 0x1000

Offset + 
Metadata

Offset + 
Metadata

Base 0x1000

Limit 0x1000

Offset + 
Metadata

Offset + 
Metadata

Base 0x3000 0x4000 0x5000

Limit 0x1000 0x1000 0x1000

Offset + 
Metadata

Offset + 
Metadata

Offset + 
Metadata

Offset + 
Metadata

0x2000

0x3000

Root Pointer

Head Pointer

Index

Afterwards, we can continue to insert 0x6000, which will split the full leaf node and promote
0x4000 as an index key to its parent node.

To summarize the insertion process, we follow the index formed by the inner nodes. If we
encounter a full inner node, we split it, and promote the key kt at position t to the parent node.
If the root is full, a new root needs to be allocated and the root pointer needs to be updated.
When a full leaf node is split, we need to copy the t biggest keys and metadata to the new leaf
node and update the next pointer of the split leaf node to the new leaf node. The key kt is also
inserted into the parent inner node as an index key.

Splitting full inner nodes while traversing down is called preemptive splitting. For example,
while we traverse down to the target leaf node, we encounter two full inner nodes, we discover
that the target leaf node is full as well and requires splitting. We promote its key to the parent,
but the parent is full as well and also requires splitting, but its parent is also full and requires
splitting.

Preemptive splitting avoids splits propagating up the tree, allowing us to implement B+-Tree
without needing back pointers to a node’s parent or recursion. The importance of the previous
point stems from the fact that back pointers require additional space, and recursion is simply
not possible in GLSL.

4.2 Runtime
In this section, we cover how the introduced data structures are used to facilitate read and writes
to the RAID subsystem. First, we explain how a logical chunk can be allocated and how pages
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can be claimed from a logical chunk. We describe how address translation is used to resolve
an accessed page from a logical chunk. We continue by explaining how reads and writes are
orchestrated and conclude by explaining how the system can recover from disk failures.

4.2.1 Logical Chunk Allocation
A logical chunk is allocated when a new file is created and no existing chunk of the requested
RAID level offers sufficient space 4.2.2. Alternatively, a blank chunk might be explicitly
requested. The size of a logical chunk can either adopt the default system value, initially set
through the metadata command 5.3.1, or assume the maximum of the chunk size and the initial
file size specified in the file write command.

Allowing the requesting process to specify the RAID level and chunk size at runtime brings
several benefits. The application can offer insights into application-specific sizes that align with
GPU4FS’s block sizes. This permits flexible tuning of a chunk’s performance configuration by
the file system or the user based on benchmark results. Moreover, the file system driver could
intelligently derive the block sizes accessed by the application, enabling it to optimize chunk
size and characteristics like stripe length for improved application-specific performance.

Permitting partial writes to full-stripes adds complexity to parity calculations and introduces
challenges in RAID management. To address this, we round up the chunk’s size to encompass
only complete full-stripes, while zeroing out any remaining bytes in partially used full-stripes.
Once the logical chunk’s size is determined, the global (logical) allocator is used to claim a
portion of the logical address space. The global allocator returns the base address of the logical
chunk. It is essential to update the global allocator’s state in each superblock 4.1.1.

Following this, we need to allocate the physical chunks constituting the logical chunk.
Calculating the size of each physical chunk requires consideration of the following factors. For
RAID-0, the logical chunk size is divided by the number of stripes, as the data gets equally
distributed among the stripes. RAID-1 necessitates allocation of physical space equal to the
logical chunk size times the number of mirrors (redundancy). The result is divided by the
number of disks (stripes), For RAID-5, the logical chunk size is divided by the number of
stripes minus one, as a complete physical chunk’s size is needed for parity. The same applies
to RAID-6, except here, the logical chunk size is divided by the number of stripes minus the
number of parity disks (redundancy). The calculated physical chunk size is rounded up to align
with page boundaries.

It is worth noting that rounding up each physical chunk to align with page boundaries results
in a surplus of unused physical bytes. The resulting physical chunk size should be taken into
consideration when requesting a chunk size for a specific RAID level and number of stripes
configuration.

With the physical chunk size determined, the next step is to allocate physical chunks from
a set of distinct disks. Several strategies can be employed to select the disks for allocation.
The simplest approach involves allocating from all available disks in a round-robin manner.
While effective when all disks share the same characteristics, such as bandwidth and size, this
approach might not be suitable when dealing with disks of varying sizes. In this scenario,
selecting disks with the lowest space utilization helps to maintain balance. If significant
bandwidth variations exist among the disks, users could specify the preferred performance
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group for a chunk, aiding in the selection of appropriate disks. Alternatively, monitoring the
access frequency of each disk and allocating from the least frequently accessed disk could
achieve balanced access across the disk array. This latter approach can also be used online to
migrate highly accessed chunks to separate disks for better load distribution.

After physical chunks are allocated and their physical block pointers buffered, logical chunk
descriptors are created on m + 1 disks 4.1.4. Initially, the logical chunk’s block allocator is
initialized, reserving the bytes for the file write request that triggered the creation of the chunk.
The physical chunk size is recorded in the logical chunk descriptor for tasks such as recovery
and defragmentation. In addition, the chunk’s size, RAID level, number of physical chunks,
the stripe length, and the redundancy for RAID levels 1 and 6 is copied to the logical chunk
descriptor 4.1.4.

The physical block pointer to the local logical chunk descriptor is inserted into the local
logical chunk tree 4.1.5. Once the logical chunk is incorporated into every tree, the original
file write request can proceed 4.2.4. Subsequent requests can allocate pages from the allocated
logical chunk if sufficient space is available 4.2.2.

To free a chunk, all pages within in the chunk, must have already been freed. The logical
chunk is then removed from the chunk tree. Afterwards, the physical chunks are freed and
finally the logical chunk descriptors are freed. Removing a chunk from the chunk tree, may
result in a node to contain fewer than t − 1 keys. In that case, nodes need to be merged,
potentially up to the root, to sustain the invariants of the B+-Tree [11].

4.2.2 Page Allocation From Chunks

To allocate pages of a specific RAID level, we first check for sufficient space in the existing
logical chunks. For each RAID level, we maintain a free list of chunks with available space.
The elements in the free list contain the base address of the logical chunk, an offset to its
descriptor, and the available space. If a chunk in the free list with available space is found, we
use its page allocator to claim the requested pages from the chunk 4.1.4.

If the allocation succeeds, the mirror logical chunk descriptors need to be updates as well.
We can resolve their offsets, by searching for the chunk’s base address in their respective local
logical chunk tree.

For every allocated page, we return a logical block pointer. The logical offset is the sum
of the chunk’s base address and the offset to the page within the chunk, returned by its page
allocator.

To free a page, we simply return the page to the chunk’s allocator. Afterwards, we insert or
update the chunk’s available space in the appropriate free list.

4.2.3 Address Translation

We have to translate read/write requests to a page via a block pointer to the RAID level
dependent disk operations. We need different translation strategies for physical and logical
block pointers. First, we check if the physical flag is set to tell physical and logical block
pointers apart 4.1.2.
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For physical block pointers, we take the m uppermost bit encoding the disk index to determine
which buffer we need to access 4.1.1. To access the requested page, we take the physical offset
included in the pointer to access the earlier identified buffer to facilitate reads and writes to that
page.

For logical block pointers, we take the logical offset to search the chunk tree. As mentioned in
4.1.5 we only have the base addresses as keys in the chunk tree, but we store the corresponding
limits in leaf nodes. Using the logical offset instead of the base address still directs us to the
correct leaf, as we always choose the child node between the base addresses k1 ≤ address < k2
until we reach a leaf node. The chunks do not overlap by design 4.1.5, guaranteeing that
the logical offset always satisfies the inequality k1 ≤ address < k2 for the sorted keys (base
addresses) within an inner node.

Once we reached a leaf node, we linearly follow the sorted base addresses and check if the
logical offset is between the current base address and the corresponding limit plus base. If no
match is found within the target leaf node, the address is invalid and an error is raised. If a
match is found, we get the offset to the logical chunk’s descriptor.

Base 0x0000

Limit 0x1000

Offset + 
Metadata

Offset + 
Metadata

0x1000 0x2000 0x3000

Base 0x1000

Limit 0x1000

Offset + 
Metadata

Offset + 
Metadata

Root Pointer

Base 0x2000

Limit 0x1000

Offset + 
Metadata

Offset + 
Metadata

Base 0x3000 0x4000 0x5000

Limit 0x1000 0x1000 0x1000

Offset + 
Metadata

Offset + 
Metadata

Offset + 
Metadata

Offset + 
Metadata

Head Pointer

Figure 4.2: A sample logical chunk tree containing five 0x1000 bytes sized logical chunks.

Consider the example chunk tree in Figure 4.2. If we want to resolve the chunk for the
address 0x4080, we sequentially walk the index keys in the root node until we find a bigger
or equal key than 0x4080. As there is no bigger or equal key, we take the last child pointer
and find a leaf node. In the leaf node, we sequentially check if our search value is between
the current base and limit (base ≤ value < base + limit). This is the case for the second key
0x4000, we follow the offset to the corresponding logical chunk descriptor.

The inner logical chunk offset is equal to the logical offset from the block pointer minus the
chunk’s base address.

The next step is to determine on which physical chunk and what inner physical offset the
page begins, This depends on the RAID level configuration and the stripe length.

To determine the starting position of a page address within a RAID system, we follow
different procedures based on the RAID level.

For RAID-0 we need to complete the following steps:

1. First, we find the number of stripes that precede our target stripe. This is achieved by
dividing the inner logical chunk offset by the stripe length, using integer division.

2. To pinpoint the offset within the current stripe, we calculate the modulo of the same
operands.
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3. Next, we determine how many full-stripes come before our target. This is achieved by
performing an integer division of the number of stripes (as calculated in step 1) by the
total number of data stripes.

4. The modulo operation on the same operands identifies the current stripe within the current
full-stripe.

These calculations provide us with the precise starting location of the page: both the full-stripe
and the stripe within that full-stripe, including the offset within the stripe.

For RAID-1, the steps are identical. For RAID-5 and RAID-6 the calculations are similar, but
we adjust the stripe count by adding the number of parity stripes found within the full-stripes
(step 3.) preceding our target stripe and within the target full-stripe. After we updated the stripe
count, we need to repeat step 3 and 4. This accounts for the additional parity stripes introduced
by these RAID levels.

We have now determined the starting point from where we can write or read the page
according to RAID level, as explained in the next section.

4.2.4 Reading and Writing

For reading, we simply translate the block pointer to the beginning of the referenced page as
explained is section 4.2.3 and copy the page’s content from the data stripes to VRAM. For a
RAID-1 read, we can simply choose a mirror chunk to read from and for RAID levels 5 and 6,
we just skip the parity stripes while copying the data. From VRAM, the page can be mapped to
the requesting process.

For writing, we need to touch multiple disks to ensure the RAID level invariants. For RAID-0
we simply translate the page’s address and copy data words until we reach the end of the stripe.
We resume copying on the next physical chunk until all content has been copied. For RAID-1
we duplicate a write to all mirrors, while ensure that a SIMD thread always writes to the same
mirror at a time, to keep accesses sequential.

For RAID level 5 and 6, we first consider how complete full-stripes are written to disk,
before discussing how a stripe can be updated. Each stripe contains an amount of data words.
This amount is a multiple of the workgroup size. When writing a stripe’s data words to disk,
we distribute the writes to the invocations of the workgroup. To visualize this, we organize the
stripe’s data words into k rows, where each row contains workgroup size data words. Each
invocation is responsible for copying the data words corresponding to its column to disk and
compute the parity for each stripe corresponding column. This visualization can be found in
Figure 4.3.

Distributing the data words to invocations in this way, results in SIMD threads only accessing
memory sequential, which increases bandwidth and allows for independent parity calculation
without synchronization overhead.

For RAID-5 we maintain a parity cache of a stripe’s capacity. The parity stripe is calculated
independently on a word by word basis. Due to the independence between parity words, we
can distribute their calculation to the invocations, eliminating the need for communication
between them. While copying the data stripes to one disk at the time, the invocations update
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data stripe 1 data stripe 2 parity stripe

Figure 4.3: A full-stripe, containing two data stripes and one parity stripe. A stripe contains 12
data words, organized into three rows. Each column is designed for one invocation
(4 invocations in total). For example, the second invocation is responsible for
writing each stripe’s second column and calculating the parity for data words in the
second column.

their portion of the parity cache in their local memory by XORing the read data word with their
cache’s content. After a full data stripe is written, the invocations copy their portion of the
parity cache to the disk and the cache is zeroed. This allows us to only touch the data buffer
once and use the fast private local memory, without any synchronization overhead. As a stripe
contains k times the workgroup size data words, one invocation calculates and caches k parity
words.

Consider an example where a sequential VRAM buffer contains eight data words. We want
to copy these data words into a RAID-5 chunk containing three stripes, with a stripe length
of four data words. We have a workgroup consisting out of two invocations. Invocation 0
and 1 work in parallel on copying the buffer. Since the stripe length is four, and we have two
invocations, we organize the stripe into k = 4/2 = 2 rows. The workgroups copy the data
stripe by stripe, and write stripes row by row.

For the visualization, we focus on invocation 1 (purple), but keep in mind that the following
steps happen for invocation 0 (grey) in lockstep for its column.

data stripe 1 data stripe 2 parity stripe

0 1 2 3 4 5 6 7

0 1

2 3

4 5

6 7

0 1

2 3

sequential VRAM buffer

displayed as stripes

invocation 1

1. read

3. write
0^1

0^3
2. XOR local parity cache
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Note that below the buffer in visualization we displayed the buffer’s data organized in stripes,
this is just for visualization purposes the data words contained in the sequential VRAM buffer.

Invocation 1 is responsible to copy each row of the second column and compute the parity
for the second column. First, invocation 1 reads data word 1 from the buffer, XORs it with its
zero initialized parity cache and writes the data word to the first data stripe. Since invocation 0
does the same for data word 0, the GPUs MMU can coalesce their buffer reads and disk writes
into sequential accesses. The parity cache is in private local memory, allowing invocations fast
access without any synchronization. The invocations 0 and 1 repeat the steps for the second
row (data words 2 and 3). Now the first stripe is completely written, and the invocations begin
to copy to the next stripe.

data stripe 1 data stripe 2 parity stripe

0 1 2 3 4 5 6 7

0 1

2 3

4 5

6 7

0 1

2 3

4 5

6 7

sequential VRAM buffer

displayed as stripes

invocation 1

1. read

3. write

0^1^5

0^3^7

2. XOR local parity cache

The steps are repeated for the next stripe. Note, that the local parity cache includes the XOR
result of the previous stripe’s column. After the last data stripe is completely written, the local
parity cache holds the computed parity for the second column.

data stripe 1 data stripe 2 parity stripe

0 1 2 3 4 5 6 7

0 1

2 3

4 5

6 7

0 1

2 3

4 5

6 7

0^0^4 0^1^5

0^2^6 0^3^7

sequential VRAM buffer

displayed as stripes

invocation 1

0^1^5

0^3^7

3. zero
local parity cache

2. write

1. read
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In the last step, the invocations copy the parity row by row to the parity stripe, resulting in
sequential writes. After each row is written to the parity cache, the invocations zero out their
local parity cache for the next full-stripe.

For RAID-6 the parity is also calculated on a word by word basis. We also employ the
distributed parity cache, but it has to hold m parity stripes and m is known at runtime. As
mentioned in 2.1.1, the Reed-Solomon coding works on a word by word basis, which enables
the invocations to calculate the parity independently without needing to communicate analog to
RAID-5.

As the computation is independent, we focus on one invocation for now, but keep in mind
the calculations happen in parallel on the other invocations. Again, we distribute the cache to
the invocations private local memory. To understand the computation of the parity disks, look
at the following example: We have three data words di and two parity words cj we want to
compute from the data words. fi,j denotes the entries of the Vandermonde matrix. The parity
words c1 and c2 are calculated like this:

(
f1,1 f1,2 f1,3
f2,1 f2,2 f2,3

)d1
d2
d3

 =

(
f1,1 · d1 + f1,2 · d2 + f1,3 · d3
f2,1 · d1 + f2,2 · d2 + f2,3 · d3

)
=

(
c1
c2

)

Instead of first copying the data and then doing the parity calculation, we do both simultaneously,
computing the parity step by step. In the first step, the invocation copies the first data word d1
to the first stripe. The invocation uses the scalar d1 to scale the first column of the Vandermonde
matrix, which has m rows, and write the resulting vector of length m to the invocation’s local
cache. Next, the invocation copies the data word d2 to the second stripe. The invocation use
the scalar d2 to scale the second column of the Vandermonde and add the result to the value in
the cache. The invocation repeats these steps until all data words are copied. Afterwards, the
invocation has the m parity words in its local cache and copies one at a time to the parity stripe
of the full-stripe. As a reminder, the add and multiply operations are performed over Galois
Fields 2.1.1. As a stripe contains k rows, one invocation calculates and caches k ·m parity
words.

Note that for RAID-5 and RAID-6 additional zeroed data words may need to be copied to
make writes full-stripe. Otherwise, the parity won’t include the data of the complete full-stripe
and a subsequent rebuild will fail.

For partial updates to a full-stripe, we first need to read in the data words which are about to
be overwritten. With the new and old data word, we can calculate the parity update in the local
cache as explained in 2.1.1 for RAID level 5 and 6. We can proceed to write the updated data
words and then update the corresponding parity words with the parity update. Note that for
partial row updates, some invocations need to idle.

If the complete full-stripe is overwritten, we can just consider this as a new write as explained
earlier.
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4.2.5 Rebuild
For rebuilding, let’s assume m disks failed, and we know which of the disks failed and replace
them with spare disks. While mounting the disk array, the CPU detects the replacement disks
and after confirmation from the user, the CPU continues to dispatch the shader code to the GPU
in rebuilding mode. The GPU copies a new superblock containing the common information
from an intact disk’s superblock to the replacement disks.

As m disks failed, we at least have one working copy of the chunk tree and of every logical
chunk descriptor. We use the list formed by the tree’s leaf nodes to verify and attempt to
restore the integrity of every chunk. For rebuilding, the existing chunks are split among the
workgroups. Each workgroup is responsible for restoring the allotted chunks.

For a chunk, a workgroup first has to check whether the replaced disks were used in the
chunk. If not, the chunk is still functional. Otherwise, the corresponding physical chunks need
to be restored by the workgroup.

A RAID-0 chunk offers no redundancy and can therefore not be restored. The user can opt
to free the resources associated to the logical chunk like the chunk descriptor and the physical
chunks or choose to insert zeroed replacement physical chunks instead. This might be useful
if the user wants to attempt data recovery, requiring application specific knowledge about the
chunk’s data. If more than m disks fail, and we still have a copy of the chunk tree, the user can
consider the same approach for the other RAID levels. If no copy of the chunk tree persists, no
recovery is possible.

In any case, we first need to allocate the new physical chunks on the replacement disks and
update each logical chunk descriptor, with the new physical chunk offset. The size for the
physical chunk is taken from the logical chunk descriptor 4.1.4.

For RAID-1 the invocations copy the contents of intact physical mirrors to the newly allocated
physical chunks. Again, if all the mirror disk of one set fail, we cannot rebuild the chunk.

For RAID-5 a chunk can only be repaired if exactly one disk failed m = 1. In that case, the
invocations XOR the intact stripes to restore the content of the replaced physical chunk.

For RAID-6 we can recover from m ≥ 2 disk failures. The intact data of a full-stripe needs
to be read to memory to solve the linear equation system as outlined in 2.1.1. As the linear
equation system can become quite big if multiple disks are used and to avoid branching during
the solving process, a SIMD thread’s invocations need to work together on solving one equation
system at a time. Afterwards, the invocations write back the restored data and repeat the steps
until the entire chunk has been restored.

After all chunks have been restored, the RAID subsystem has to ensure that m+ 1 copies
of the chunk tree and of each logical chunk descriptor exist. Afterwards, the system resumes
normal operation and workgroups begin to work on processes’ requests in the command buffer.
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5 Implementation

This chapter outlines the integration of our RAID subsystem into the GPU4FS demonstrator.
The proposed design was realized with certain simplifications necessitated by time constraints
and limitations imposed by GLSL.

We opted not to implement RAID-6 due to the time constraints it posed. The reconstruction
process involves efficiently solving linear equation systems over Galois Fields, which would
have constituted a significant undertaking deserving a separate thesis.

The chapter commences by an explanation of the limitations imposed by GLSL and the
existing GPU4FS demonstrator. Subsequently, we explore how these limitations influenced the
implementation of the chunk tree design. We then detail the process of integrating our RAID
system into the GPU4FS demonstrator.

We discuss our initial approach that we abandoned due to its poor performance, and explain
how the insights from this approach motivate the current design. We proceed to present the
implementation of this refined design, providing explanations for selected code snippets.

Furthermore, we describe the role of the CPU in our development process and benchmarks,
illustrating how it verifies the GPU’s work.

To conclude the chapter, we outline the implementation of the disk array rebuild.

5.1 Limitations

A major limitation of GLSL is the lack of dynamic memory allocation. Shared and local
memory can only be statically allocated, and VRAM can only be used in predefined buffers
bound by the CPU before the shader is dispatched. These limitations restrict us to statically
limit the size of some data structures, such as the local parity cache, and limits us to only update
data structures in place on disk.

Another challenge is the lack of a working block allocator, ensuring page aligned allocations
on the disks. To make allocations, a simple linear allocator is used, which reserves the requested
bytes via atomic adds to a counter and returns the previous counter value as base offset. The
caller must ensure to round up the request to a multiple of the inode size, otherwise the block
pointers do not work. To synchronize the counter of a linear allocator across multiple disks,
requests are performed exclusively on a single, predefined disk and the copies of the counter
are updated via an atomic maximum operation.
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5.2 Logical Chunk Tree Implementation

In a previous iteration of the design, a B-Tree was employed instead of a B+-Tree. The key
distinction lies in the fact that B-Trees permit data storage within their inner nodes, as opposed
to B+-Trees, where the inner nodes solely function as an index. B+-Trees exclusively store data
within their leaf nodes, enabling these leaf nodes to be linked together into a sorted list.

To address the need of allocating pages from pre-existing chunks and for reconstruction
purposes, we required a list of existing chunks. For the former, we initially proposed free
lists in our design. However, due to the lack of dynamic memory allocation and deallocation
capabilities, we chose not to implement the free list. This decision stems from the dynamic
nature of free lists, demanding unpredictable allocation and deallocation calls. Nevertheless, in
order to maintain a list of existing chunks, we converted our previously implemented B-Tree
into a B+-Tree.

The implementation of the B+-Tree in GLSL posed a challenge. GLSL provides support for
structs but lacks support for pointers [3], making it impossible to cast anonymous buffers to
a struct pointer. Interacting with an on-disk data structure requires adding up various offset
to access an eight-byte data word, followed by bitwise operations to extract the required
sub-bits from the data word. During development, the most prevalent issues stemmed from
miscalculated offsets and forgetting to convert between byte offsets and buffer indices. Due
to the unavailability of shader code debugging, we had to analyze the contents of each disk
using a hexadecimal editor after the shader’s completion. Although one adapts to this form of
debugging, it significantly slows down development, particularly when dealing with dynamic,
non-sequential data structures like the B+-Tree.

To ensure synchronized access to any tree copy across workgroups, a workgroup must obtain
a global read-write lock, situated in VRAM. Updates, including insertions, need to be applied
to all instances of the chunk tree. For each update operation, the write lock is acquired just
once, and all tree copies are updated before the lock is subsequently released.

An additional challenge arises from using the non-exclusive read lock before a workgroup
scans the existing chunks for available space. Initially, when no chunks are available and the
lock is non-exclusive, all workgroups reach the same conclusion that no chunks exist and
proceed to allocate their own chunks. If the number of files exceeds the number of workgroups,
subsequent files are allocated to the existing chunks. If all files should be written to a single
chunk, an exclusive lock is imperative, necessitating sequential processing for all chunk
allocations. A potential workaround involves allocating an initial chunk before workgroups
commence working on the command queue. Consequently, despite having implemented the
capability to locate and allocate pages from pre-existing chunks, we ultimately decided not to
use it, opting to allocate a separate chunk for each file. We decided on this to avoid the situation
for RAID-5 where workgroups have to synchronize parity calculations for adjacent files on a
full-stripe. This situation is explained in detail in a later section 5.5.
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5.3 Commands

In this section, we explain how we integrated our RAID subsystem into the GPU4FS demon-
strator. We used the file write command as our entry point. However, before processing the file
write commands, some configurations have to be done, therefore we had to extend the metadata
command as well.

5.3.1 Metadata

We expanded the functionality of GPU4FS’s metadata command to establish default values
for our RAID subsystem. We augmented it by incorporating information about the number of
disks connected to the GPU. In our specific implementation, we defined four buffers in the
shader. Each disk is mapped to a single of these buffers. Within the GLSL framework, all
defined buffers have to be mapped. Consequently, even if we only use two disks, we are still
required to map the two remaining buffers. In our particular scenario, we opted to map empty
files to allow the shader to execute. We then pass the maximum number of available disks to
the shader via the metadata command to instruct the shader to ignore the unneeded buffers.

Since the mounting process must be initiated on the CPU, the CPU needs to communicate
the IDs of the failed/missing disks to the shader for a rebuild before regular operations can
resume. This communication is facilitated through the disk_to_repair field within the
metadata command. However, it’s worth noting that in our current demonstrator, we’ve only
implemented the capability to recover from a single disk failure. Consequently, we only include
one ID in the metadata command.

Additionally, it is possible to specify the default size for a logical chunk via the command
buffer. As the command buffer possessed ample unused space, we employed an inefficient
eight-byte data word for each parameter, avoiding the need for bit shifting. The byte alignment
of extended metadata command can be found in Table 5.1.

0 7
0 type tag
8 (next)
16 separated_execution
24 num_work_items
32 num_disks
40 disk_to_repair
48 chunk_size
56
104
112 (atomic_acquire)
120 atomic_complete

Table 5.1: The extended metadata command.
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5.3.2 File Write

To integrate RAID into GPU4FS, additional parameters had to be incorporated into the file
write command. These parameters encompass the RAID level, the number of disks designated
for chunk allocation (num_stripes), the stripe length, and redundancy. In case of a physical
write (raid_level = −1), the target disk can be specified.

Once more, we chose the most convenient approach, avoiding bit shifting in favor of a less
space-efficient method for data alignment. The byte alignment of extended file write command
can be found in Table 5.2.

0 3 4 7
0 type tag
8 next
16 file_size
24 num_SIMD_lanes
32 file_data_offset
40 filename_length
48 directory_position
56 inode_offset
64 inode_position
72 file_position
80 raid_level
88 num_stripes disk
96 stripe_length redundancy
104
112 atomic_acquire
120 atomic_complete

Table 5.2: The extended file write command.

5.4 Caching

In our design, only one workgroup works on writing an individual file. All the workgroup’s
invocations need to know the information about the target chunk contained in its logical chunk
allocator. To avoid that each of the workgroups needs to read in the logical chunk descriptor
from disk, it is copied to faster shared memory. One invocation is responsible to read logical
chunk descriptor into shared memory. The invocation first resolves the target address to the
offset to the logical chunk descriptor by walking the chunk tree as explain in section 4.2.3.
After retrieving the offset, the invocation initializes the shared logical chunk descriptor cache.
Allowing the workgroup’s other invocations to quickly access the logical chunk descriptor
without having to walk the chunk tree and retrieving it from disk themselves.

5.5 Writing

GPU4FS’s demonstrator currently only writes files initially, but does not support file updates.
Therefore, we have excluded updates to full-stripes from our implementation. Updates require
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the calculation of a parity update for RAID 5 and 6, since GPU4FS does not yet support file
updates we have avoided the additional complexity in the implementation.

In our first implementation, chunks could be used for multiple files, now every file gets
their own chunk. This was changed because when multiple files are written to one full-stripe
in RAID-5, inter workgroup communication is required to correctly calculate the parity for
that full-stripe. In this approach, the parity is calculated inplace on the disk’s parity stripe
with atomic XOR operations. Early benchmark results showed that the performance suffered
strongly from the use of the atomic operations. We explain this approach in depth in the next
section.

Alternatively, one workgroup has to write its file first and then the other workgroups writes
its file afterwards and calculates a parity update as detailed in 2.1.1. However, this approach
would mean a sequentialization of the file writes to one chunk and thus destroy the advantage
of the GPU’s parallel architecture.

Certainly, it is possible to align pages of different files in a chunk in a way that they always
start in a new full-stripe, but for the demonstrator which only writes a few files, it is reasonable
to create a separate chunk per file.

To integrate our RAID subsystem, we first merged our chunk allocation into GPU4FS’s
allocate_blocks method. This method is responsible for allocating the target pages for
the file’s content. It reserves sequential space from a linear allocator and provides a block
pointer for each page. The code snippet can be found in Listing 1.

Listing 1 allocate_blocks allocates the requested pages from the block allocator and
writes the resulting block pointers to a buffer. We integrated our chunk allocation and page
allocation from existing chunks logic into the method.
uint64_t inode_offset;
int disk;
if (raid_level == -1) {

// if file should be written physically allocate from specified disk
// if no disk is specified, use disk with the most space
inode_offset = (disk == -1) ? alloc_from_any_disk(amount_bytes, disk)

: alloc_from_disk(disk, amount_bytes);
} else {

// try to allocate amount_bytes from exisiting chunk of raid_level
if (!tryAllocFromExistingChunk(raid_level, amount_bytes, inode_offset))
{

// no chunk has sufficient space, allocate new chunk
inode_offset = alloc_chunk(chunkSize, amount_bytes, raid_level,

numStripes, redundancy, stripeLength);
}

}

// add page offsets to inode_offset and format as block pointers

RAID level -1 indicates that the file should bypass the RAID subsystem, requiring the speci-
fication of the target disk. When specifying the target disk as -1, GPU4FS will automatically
select the disk with the most available space.
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The function alloc_from_any_disk returns the physical offset for the allocated blocks
and returns the chosen disk. Meanwhile, alloc_from_disk is responsible for allocating
amount_bytes from the specified disk and providing the offset.

If the file should be written to a RAID chunk, we proceed to verify the availability of a chunk
with adequate space and the requested RAID level. Here, the function tryAllocFromEx-
istingChunk traverses the chunk list formed by the chunk tree, evaluating whether the
referenced logical chunk has sufficient space and the required RAID level. If the required
space is found, it claims that space from the chunk’s linear allocator in an atomic operation.
Subsequently, the linear allocators in the replicas of the logical chunk descriptor must be
updated via an atomic maximum operation. Upon successful allocation, the function returns
true, and the target address is written to inode_offset. The target address is calculated as
the chunk’s base address plus the offset to the allocated block.

In cases where no chunk possesses adequate space, the function returns false, prompting the
allocation of a new chunk using the parameters from the file write command. Following this,
the block pointers for the requested pages are formatted and written to a buffer.

After the successful page allocation from a chunk, one workgroup resolves the target logical
chunk descriptor from the first returned block pointer by walking the chunk tree. The workgroup
initializes the shared logical chunk allocator cache as explain in section 5.4. The information is
then accessible from the cache to all invocation for the facilitation of the actual file write.

Now, the file_create method in GPU4FS invokes a copy operation, copying both the
inode and file content to the pages previously allocated by allocate_blocks. Into this
copy process, we integrate our RAID logic to distribute the data words across the stripes and
compute the parity.

5.5.1 First Approach: Copying Word by Word

The initial approach to writing data to a chunk allowed for a flexible stripe length and involved
determining where to write on a word by word basis. When selecting a stripe length that is
not a multiple of the workgroup size, it resulted in a performance bottleneck. This occurred
due to the non-uniform scatter operations of the invocations, because some invocations were
already writing data to a different disk. Another challenge was posed by multiple invocations
being responsible for computing the same parity word. Consequently, this required the caching
of parity in slow global memory and the use of atomic XOR operations for synchronization.
The atomic XORs proved notably slower compared to non-atomic XOR operations on local
memory.

Additionally, for each data word the complete target offset needs to be recalculated, without
retaining any context regarding the location of the current full-stripe and stripe itself. Since
the GPU can perform these offset calculations quickly, performance is not noticeably affected.
However, the code of write_to_address was unnecessarily complicated, which made
debugging difficult. A code snippet of this approach can be found in Listing 2.
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Listing 2 Copying from a VRAM buffer to a logical chunk on a word by word basis. For every
data word, the exact target location is determined independently.
void copy_to_address(int source_offset, uint64_t target_address,

int size, int work_group_size) {
uint worker = gl_LocalInvocationID.x;

uint outer_reps = rounded_up_division(size, work_group_size);
for (int i = 0; i < outer_reps; ++i) {

uint offset = i * work_group_size + worker;
if (offset >= size) return;
// load data word from VRAM
uint64_t loaded = config.data[uint(source_offset + offset)];
// write data word to logical chunk
write_to_address(target_address, int(offset), loaded);

}
}

5.5.2 Second Approach: Copying Stripe by Stripe

As stripe lengths that are not multiples of the workgroup size lead to poor performance, it is
reasonable to constrain the stripe length to a multiple of the workgroup size. Consequently, we
limit the stripe length to 8 ·k times the number of invocations per workgroup, measured in bytes.
We use the factor eight, because eight bytes is the word length of our shader. This approach
ensures sequential writes by a workgroup’s invocations to enhance write performance. As an
added benefit, it enables invocations to independently calculate parity without synchronization
over shared memory, as explained in section 4.2.4.

Initially, we determine the number of data stripes (stripes) required to accommodate
the entire bytes of the sequential VRAM buffer (size) containing both the inode and the file
content.

Subsequently, we determine the amount of full-stripes. It is important to note that, in the
context of RAID-5, one stripe per full-stripe is reserved for parity. Following this, we proceed
to initialize variables, such as the number of data rows per stripe. The file and stripe offsets
are set to the local ID of the invocation. This setup is designed to force sequential reading and
writing when considering all invocations within a workgroup simultaneously.

Next, we address each full-stripe independently. After writing each full-stripe, we update
the stripe offset to indicate the starting point of the next stripe, shifting it by the stripe length.
Additionally, we adjust the offset within the VRAM buffer by the cumulative size of the data
stripes written in the preceding full-stripe. For RAID-5, we also update the location of the
parity chunk for the next stripe in a round-robin fashion as it cycles through the stripes. The
code snippet responsible for the setup, updating the offsets and parity stripe after a full-stripe
write can be found in Listing 3.

Next, we explain the process of writing a complete stripe. In the context of RAID-5, for each
full-stripe, we initialize the local parity cache to zero. We then proceed to iterate through the
data stripes within the full-stripe, copying them one by one. In RAID-5, we defer copying the
full-stripe’s parity stripe until we have computed the parity, as previously mentioned.

57



CHAPTER 5. IMPLEMENTATION

In our design, we divide each stripe into rows rows. We perform a row-wise transfer of
the data words from the VRAM buffer to the physical stripe on the disk, adjusting the offset
based on the full-stripes copied earlier. After copying each data stripe, the parity cache stores
the parity information for each row in every column for RAID-5. Subsequently, the parity is
written row by row to the parity stripe. The code snippet for writing a full-stripe can be found
in Listing 4.

Next, we explain the process of writing the rows within a stripe. During this operation, an
invocation retrieves a data word from the buffer at the specified offset. If the entire file has been
copied but the full RAID-5 stripe is not yet complete, it is necessary to zero out the remaining
portion of the RAID-5 full-stripe. However, for other RAID levels, we can simply return after
copying the file’s data.

In the case of RAID-5, we update the parity cache by performing an XOR operation with
its current content and the read data word. For RAID-1, the data word must be written to the
mirrors. For all other RAID levels, the data is written to a single physical chunk. Regardless of
the RAID level, we translate the stripe number to a physical disk and the physical chunk offset
from the chunk’s logical chunk allocator. Subsequently, we write the data to the identified disk
at the physical chunk offset plus the stripe offset. We completed processing one row, and now
we need to repeat the same steps for the remaining rows within the stripe. To achieve this,
after each iteration, we update both the file offset and the stripe offset by the number of data
words per row (local_size). This adjustment ensures that we move to the next row in the
sequential VRAM buffer and on the target stripe.

The code snippet for writing a data stripe and updating the parity cache can be found in
Listing 5.

5.5.3 Directories

Following the successful copying of the inode and file content onto the disk array, the GPU4FS
file_create method proceeds to insert the filename and inode number into the root direc-
tory. As mentioned earlier, we did not implement updates to stripes, resulting in the GPU4FS
root directory residing outside logical chunks.

Given that every path within the file system originates from the root directory, ensuring
replicas of its content is essential to safeguarding the system against potential disk failures. To
maintain resilience against up to m disk failures, we mirror both the root directory and its inode
onto m+ 1 disks, all situated at the same physical offset.

The root directory and its associated inode are positioned at the same fixed offset on m = 2
disks. Any write operation to the memory region of the root directory and its inode is duplicated
to the mirror. Analog to the behavior of the superblock, the root directory acts as an RAID-1
chunk that exists outside the logical address space.
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5.6 CPU Verification

During development and benchmarking, we need to confirm that the GPU has performed its
tasks accurately. To achieve this, we employ verification on the CPU. It’s important to note that
this CPU verification would not be utilized in a production setting.

After the GPU completes its tasks, the CPU takes over to verify the consistency of on-disk
structures and invariants. We have to extend GPU4FS’s pre-existing CPU-side verification
mechanisms to verify our RAID invariants.

GPU4FS’s existing verification process involves a linear read of the root directory’s files to
ensure that each file has been correctly added to the root directory exactly once. The inode is
resolved from its corresponding inode number within the directory, and the inode’s metadata
is subjected to a verification process. Subsequently, the file’s content is read into a buffer and
verified for its intended content.

In this context, we introduce our verification code, since we must resolve the inode and file
data from multiple disks based on the RAID level in use. When the inode pointer is physical,
we can utilize the existing verification procedures, but we are required to read from the disk
encoded in the block inode number.

In scenarios where the inode pointer is not physical, the CPU relies on the chunk tree to
resolve the corresponding logical chunk descriptor. While traversing this tree, the CPU ensures
its integrity. Following successful resolution of the logical chunk descriptor, the CPU proceeds
to verify the RAID level’s associated invariants. For RAID-1, the CPU checks if the mirrors
contain identical content, while for RAID-5, the parity for each full-stripe is recomputed and
compared to ensure consistency.

After this verification process, the data containing the inode and the file’s content is copied
stripe by stripe into a buffer. This buffer is then passed to GPU4FS’s inode and file verification
routines.

The CPU’s verification process is important during development, as it provides detailed
error reporting, specifying the nature of the error and its exact on-disk offset. This information
facilitates further investigation using tools like a hex editor, enabling a thorough examination
and pinpointing of any issues and potential root causes back to the shader code.

5.7 Rebuilding

As mentioned earlier, we did not implement RAID-6. Consequently, we only implemented
the capability to reconstruct a single disk. In this section, we describe our implementation to
recover from a single disk failure.

To simulate a disk failure in our development and benchmark setting, the CPU first zeros
out the target disk. This zeroing is just used during development and would not be done in a
production environment. Following the disk zeroing, the CPU proceeds to write the default
superblock.

The linear logical chunk allocator is then copied from another disk to the replacement disk.
Subsequently, all workgroups collaborate to copy both the root directory and its associated
inode to the replacement disk.
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As detailed in Section 4.2.5, workgroups independently traverse the chunk tree’s chained list
to claim chunks for the rebuilding process. A chunk tree replica from an intact disk is used for
the traversal. Each workgroup selects the chunks whose list index modulo the total number of
workgroups is congruent to their workgroup ID.

For each claimed chunk, the workgroup allocates space for a replacement physical chunk and
a new logical chunk descriptor. The size of the physical chunk is taken from an intact replica of
the logical chunk descriptor. The offset to the logical chunk descriptor is inserted into the chunk
tree of the replacement disk. Subsequently, the invocations within the workgroup collaborate to
copy the contents of the replica logical chunk descriptor to the previously allocated location.
Following this, the offset of the replacement physical chunk is synchronized across all replicas
of the logical chunk descriptor.

To facilitate rebuilding, we employ the aforementioned caching mechanism for logical chunk
descriptors. Here, one invocation per workgroup copies the logical chunk descriptor to the
workgroup’s shared cache, eliminating the need for further disk accesses to the logical chunk
descriptor.

The invocations then initiate the RAID-level-dependent recovery process. For RAID-1,
the invocations collaborate to copy data from a mirror to the replacement stripe. In the case
of RAID-5, data from all intact stripes must be read in and XORed, with the resulting data
subsequently being written to the replacement stripe.

Afterwards, the CPU verification takes over, confirming the rebuild’s success. Again, this
verification is only employed during development and benchmarking.
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Listing 3 This code initializes the values necessary for to copying the buffer’s data in full-stripe
to the disks. After a full-stripe is written, the offsets are updated accordingly and the location
of the next parity stripe is updated.
void copy_to_address(int source_offset, uint64_t target_address,

int size, int work_group_size) {
if(isPhysicalAddress(target_address)) {

// use GPU4FS's old copy method but use disk encoded in target address
return;

}
// we assume that we begin at the beginning of the stripe
// and copy a files complete data to the chunk

uint worker = gl_LocalInvocationID.x;

// get value from already initialized shared cache
int raidLevel, stripeLength, numStripes, redundancy;

int stripes = rounded_up_division(size, stripeLength);
int numDataStripes = numStripes;
if (raidLevel == 5) {

numDataStripes--;
}
uint fullStripes = rounded_up_division(stripes, numDataStripes);

int rows = stripeLength / local_size;

// invocations read/write their own column
int offset = source_offset + int(worker);
int stripeOffset = int(worker);

int parityStripe = 0;

for (int fullstripe = 0; fullstripe < fullStripes; ++fullstripe) {
copy_full_stripe(raidLevel, redundancy, numStripes, rows,

parityStripe, size, offset, stripeOffset);
// update stripe offset by a stripe
stripeOffset += stripeLength;
// update offset by a full data stripe
offset += numDataStripes * stripeLength;
// move parity stripe in a round-robin fashion
parityStripe = (parityStripe + 1) % numStripes;

}
}
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Listing 4 Code for writing a full-stripe to the disk array. The parity cache is zeroed, then all
data stripes are copied while the parity is computed simultaneously. Afterwards, the computed
parity is written to the parity chunk.
void copy_full_stripe(int raidLevel, int redundancy, int numStripes,

int rows, int parityStripe, int size, int offset, int stripeOffset) {

uint64_t parityCache[maxRows];

if (raidLevel == 5) {
for (int row = 0; row < rows; ++row) {

// zero cache for next full-stripe
parityCache[row] = 0;

}
}
for (int stripe = 0; stripe < numStripes; ++stripe) {

if (raidLevel == 5 && stripe == parityStripe) {
// skip parity chunk
continue;

}
copy_rows(raidLevel, redundancy, rows, size,

offset, stripe, stripeOffset, parityCache);
// update offset by a stripe
offset += rows * local_size;

}

if (raidLevel == 5) {
copy_parity(rows, parityStripe, stripeOffset, parityCache);

}
}
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Listing 5 The stripe is written row by row, where each invocation copies one data word per
row. For RAID-5 the parity cache is updated and for the last full-stripe the remaining bytes are
zeroed out. For RAID-1 writes are duplicated to the mirror disks.
void copy_rows(int raidLevel, int redundancy, int rows, int size,

int offset, int stripe, int stripeOffset,
inout uint64_t parityCache[maxRows]) {

for (int row = 0; row < rows; ++row) {
uint64_t data = 0;
if (offset < size) {

// load data word from VRAM buffer
data = config.data[offset];
if (raidLevel == 5) {

// compute parity
parityCache[row] ^= data;

}
} else if (raidLevel != 5) {

return;
}

if (raidLevel == 1) {
copy_to_mirrors(redundancy, stripe, stripeOffset, data);

} else {
copy_to_stripe(stripe, stripeOffset, data);

}

// update offsets by a row
offset += local_size;
stripeOffset += local_size;

}
}
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The goal of this thesis is to integrate RAID functionalities into GPU4FS. Our objective is
to create a RAID subsystem capable of competing with CPU-based software RAID systems
in terms of write bandwidth while reducing stress on the CPU. We begin this chapter by
presenting our test system and setup. Next, we explain the different benchmarks we ran. We
begin the actual evaluation by exploring some parameters that are independent of the RAID
level. Subsequently, we present results for both write operations and data rebuilding for each
RAID level to assess the effectiveness of our implementation. We conduct a comparative
analysis, examining our system’s bandwidth and CPU utilization in relation to CPU-based
software RAID systems for each RAID level. Finally, we conclude this chapter by analyzing
the latency of our system and end with a discussion of our findings.

6.1 Test System

We evaluate our implementation on the following test system:

• Dual Intel(R) Xeon(R) Silver 4215 CPUs, running at 2.5 GHz.

• 128 GB of DDR4 at 2400 MT/s, distributed into 64 GB per CPU and eight 16 GB
DIMMs, respectively.

• 512 GB of DDR4-socket-compatible Intel Optane memory at 2400 MT/s, distributed
into 256 GB per CPU and four 128 GB DIMMs, respectively.

• AMD Radeon RX 6800 GPU, from AMD’s Navi 2 GPU generation, together with
16 GB of dedicated VRAM. The GPU is equipped with sixteen PCIe Gen4 lanes, but
communication falls back to PCIe Gen3 as the CPU only supports Gen3.

We attempted to utilize both the two local and two remote Optane DIMMs. However, write
performance was inconsistent from the GPU, primarily due to unknown Optane behavior when
writing through PCIe and the processor interconnect. This variability made it challenging to
maintain consistency across different benchmark runs and complicated the interpretation of
the results. Thus, we only used the Optane and DRAM DIMMs local to the CPU to which
the GPU is attached. To still be able to evaluate our disk array on four disks, we divided each
Optane DIMM into two DAX devices (later referred to as partitions). The CPU maps the total
of four DAX devices to the GPU.

For every test, we pin the benchmark to the CPU to which the GPU is attached using the
taskset command to avoid going through the processor interconnect.
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In our demonstrator, we arrange the block pointers to the physical chunk of a logical chunk
in the logical chunk descriptor 4.1.4 in a way that every two stripes written in succession end up
on two different Optane DIMMs, not just on different partitions. In addition, two consecutively
allocated logical chunks each start on two different DIMMs. This way, we can distribute the
accesses to the disk array as evenly as possible between the two local Optane DIMMs, even
if the different workgroups do not operate in lockstep. That’s why, we always choose two
workgroups for the following benchmarks so that ideally, only one workgroup writes to a single
Optane at a time. For some benchmarks, we alternatively present results for one workgroup per
partition, which totals to four workgroups.

6.2 Benchmarks

In this section, we introduce the benchmarks used throughout the evaluation. We explain which
parameters of a benchmark can be configured and what results are returned.

6.2.1 Memcopy

GPU4FS’s memcopy command uses all dispatched invocations to copy a sequential VRAM
buffer to a shader buffer [23]. We did not modify the original version of the memcopy command.

In our benchmarks, the target buffer is backed by either Optane or DRAM. For a single run,
the number of invocations, the amount of bytes to copy and the target buffer can be specified.
The benchmark returns the runtime of a single run. For each input, we record the runtime for
26 independent runs. To calculate the write bandwidth, we divide the amount of copied bytes
by the average runtime over these 26 runs.

6.2.2 File Write

To evaluate the write bandwidth to our disk array, we write x files using the file write com-
mand 5.3.2. The command writes x files, each of the same specified file size, to logical chunks
of the specified RAID level. Additionally, the stripe length needs to be configured.

Currently, GPU4FS’s inode supports up to 112 block pointers. That’s why we choose file
sizes that are multiples ranging from 1 to 112 of 4KB, 2MB, or 1GB pages for the following
benchmarks. We write x files with these file sizes. Unless otherwise specified we always use 1,
2, 3, 4, 6, 8 and 10 for the value of x.

The benchmark returns the runtime to write the x files. For each input, we record the runtime
for 26 independent runs. To calculate the write bandwidth, we divide the total written bytes (x
times the file size) by the average runtime over these 26 runs. We discuss both bandwidth and
runtime in our evaluation.

6.2.3 Rebuild

The rebuild benchmark is used to evaluate the required time to rebuild the disk array. The
benchmark first writes x files of a specified size and RAID level. Afterwards, one disk is
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zeroed and the RAID subsystems rebuilds the zeroed disk. Only the time to rebuild the disk
array is recorded. The inputs, amount of files and file size are the same as for the file write
benchmark 6.2.2.

For each input, we record the rebuild time for 26 independent runs and calculate the average
rebuild time.

6.3 Parameter Exploration
Before we can begin to evaluate our RAID subsystem, we first need to determine some
parameters required for the following benchmark and to properly contextualize the subsequent
results.

6.3.1 Maximum Bandwidth
First, want to determine the GPU’s maximum bandwidth when transferring data from VRAM
to Optane and DRAM. This information is crucial to accurately interpret the results of the
following RAID benchmarks.

We run the memcopy benchmark 6.2.1 to copy 512MB of data. We evaluated the bandwidth
for different amounts of shader invocations working together to copy the data. A plot of the
bandwidth per amount of shader invocations both on one Optane DIMM and DRAM can be
found in Figure 6.1.

101 102 103 104

0

2

4

6

8

10

Amount of Shader Invocations

B
an

dw
id

th
[G

B
/s

]

DRAM
Optane

Figure 6.1: Write bandwidth when x invocations copy 512 MB from a VRAM buffer to one
Optane DIMM or to DRAM.

For Optane there is no clear bandwidth peak, but a plateau begins at 256 shader invocations
with a bandwidth of 1.4 GB/s, slowly decreasing with an increased invocation count. This
is interesting as in GPU4FS’s evaluation, Maucher achieved a clear peak of 1.9 GB/s at
320 invocation on his configuration [23], close to Optane’s maximum write bandwidth of
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2 GB/s. Another difference is that in Maucher’s benchmark, Optane’s bandwidth rapidly falls
to 0.65 GB/s after the peak [23], but for us the bandwidth slowly decreases with an average of
1.2 GB/s for more than 256 invocations. We believe that the deviating behavior is due to the
combination of a different GPU and other PCIe specs, leading to bundled write requests that
overwhelm the Optane DIMM in our configuration.

For DRAM, a clear peak is reached at 3072 invocations at around 10.5 GB/s, which is about
double of the maximum bandwidth Maucher achieved on eight PCIe Gen3 lanes [23]. After
the peak, the bandwidth quickly falls down to an average of 3.7 GB/s for more than 3072
invocations.

For the next benchmarks, we assume that, on our test system, the maximum achievable write
bandwidth to one Optane DIMM from the GPU is 1.4 GB/s. The results indicate that when
writing with more than 256 invocations at a time, we can still sustain a bandwidth close to the
GPU’s maximum bandwidth, at approximately 1.2 GB/s per Optane DIMM.

6.3.2 Stripe Length

Before we can benchmark the write bandwidth for different RAID levels, we first need to
examine the impact of the stripe length factor on the bandwidth.

As a reminder, we choose the stripe length to be k times the workgroup size times the word
length in bytes. We named the involved factor k the stripe length factor. Choosing the stripe
length to be a multiple of workgroup size times the word length ensures that all invocations
write to a single disk sequentially before moving on to the next disk. This mechanism helps
us balance the accesses between the two Optane DIMMs because individual workgroups only
write to one DIMM at a time.

As GLSL only supports static allocations and a SIMD processor’s local memory is quite
small, we limited the parity cache to ten rows in the demonstrator. For this reason, the maximum
stripe factor is k = 10

As the stripe length depends on the invocations per workgroup and the stripe length factor,
we perform a two-dimensional grid search over both parameters. We dispatch two workgroups,
one for each Optane DIMM. For the number of invocations per workgroup, we choose a lower
bound of 128 invocations per workgroup, based on the previous memcopy result to start the
grid-search before the peak of 1.4 GB/s per Optane DIMM. We choose 128 invocation per
workgroup to still achieve acceptable bandwidth in the worst case that both workgroups write
to the same Optane DIMM at the same time. For the upper bound, we choose 1024 as this is
the maximum invocation count per workgroup supported by GLSL on our hardware. For the
stripe length factor, k we search between 1 and 10.

We investigate the impact of the stripe length factor only for RAID-0, because the two-
dimensional grid search takes significant time to complete. However, we assume the results to
be applicable to the other RAID levels, since the stripe length factor is only responsible for
how many bytes are written sequentially to a disk before the workgroup moves to the next disk.
Hence, we conclude that the stripe length factor only affects the write bandwidth per Optane
DIMM, independent of the RAID level.

In order to have enough data to copy, we write four 512MB files to RAID-0 chunks.
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Figure 6.2: Bandwidth when writing four 512 MB RAID-0 files with two workgroups with x
invocations per workgroup and a stripe factor k to two Optane DIMMs partitioned
into four DAX devices.

The three-dimensional plot with the grid search results can be found in Figure 6.2. We plot
the stripe length factor and the invocations per workgroup against the achieved write bandwidth.
It seems that the stripe factor k has a logarithmic impact on the bandwidth. We can observe this
effect independent of the number of invocations per workgroup. This means for our limited
search grid, the higher the stripe length factor k, the higher the bandwidth. However, for
most innovation counts, the impact of the stripe length factor becomes quite small for k > 5.
Nevertheless, regardless of the invocation count chosen k = 10 yields the highest bandwidth.
Hence, we choose a stripe length factor of k = 10 for all following benchmarks.

6.4 RAID-0

We begin the evaluation of our RAID-0 implementation by optimizing the number of work-
groups and invocations per workgroup that best utilize the write bandwidth of the two Optane
DIMMs in a RAID-0 configuration. We perform this optimization again because we cannot
be certain that the memcopy results can be transferred directly because of potential overhead
caused by the file system and the RAID subsystem. Subsequently, we evaluate our write
bandwidth using the established parameters for both Optane and DRAM. To conclude this
section, we compare our findings to other software RAID systems in terms of bandwidth and
CPU utilization.

6.4.1 Parameter Exploration

First, we need to find the ideal combination out of amount of workgroups and invocations per
workgroup that best utilize the bandwidth of both Optane DIMMs in a RAID-0 configuration.
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A new optimization is necessary because the memcopy results cannot be transferred directly
due to potential overhead of the file system and RAID subsystem. Additionally, if the accesses
from different workgroups are not evenly distributed across the disks, it may also be necessary
to reduce the number of invocations. For the above reasons, we again explore the appropriate
number of invocations.

As argued in 6.1, ideally only one workgroup writes to a single DIMM at a time, therefore
we dispatch two workgroups. Alternatively, we dispatch one workgroup per partition, totaling
to two workgroups per Optane DIMM, to compare the bandwidth between both approaches.

We start the search at a total count of 256 invocations, as this resulted in the highest
bandwidth of 1.4 GB/s per DIMM in the memcopy benchmark 6.1. We choose this number
to still achieve acceptable bandwidth in the worst case that all invocations write to the same
Optane DIMM at the same time. Again, we choose 1024 as the highest amount of invocation
per workgroup, as this is the limit imposed by GLSL. To find the highest bandwidth, we run
the file benchmark 6.2.2 to write four 512 MB files to RAID-0 chunks for different amounts of
invocations per workgroup for two and four workgroups.
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Figure 6.3: Bandwidth when writing four 512 MB RAID-0 files to two Optane DIMMs parti-
tioned as four DAX devices. Two and four workgroups were dispatched.

The achieved bandwidth for both two and four workgroups and different number of invoca-
tions per workgroup can be found in Figure 6.3.

We can see that between a total of 256 and 512 invocations, two and four workgroups
achieve close to the same bandwidth (Figure 6.3b). After 512 total invocation, two workgroups
achieve higher bandwidths. When we compare the total amount of invocations, we can see
that the amount of workgroups also has an impact on the performance. We observe that by
using two workgroups, we can achieve higher bandwidths compared to using four workgroups,
even though the same total number of invocations are dispatched. This could be due to the
chunk allocation enforcing sequenciality through an exclusive write-lock or the writes are more
balanced between the two DIMMs for two workgroups.
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When using two workgroups, the bandwidth peaks at 2.4 GB/s for 512 invocation per
workgroup, resulting in a total of 1024 invocations. The peak of 2.4 GB/s on two Optane
DIMMs in a RAID-0 configuration aligns perfectly with the 1.2 GB/s per DIMM that we
measured in the memcopy benchmark 6.1 when using more than 256 invocations per Optane
DIMM. For more than 512 invocations per workgroup for the RAID-0 file write, the bandwidth
decreases. The peak bandwidth of 1.4 GB/s per DIMM from the memcopy benchmark 6.1
is never reached, since the accesses of the workgroups are probably not equally distributed
between the two DIMMs.

When using four workgroups to write the four files, we get the highest peak of 2.18 GB/s for
480 invocations per workgroups. We also see peaks for 256 (2.06 GB/s) and 128 (2.1 GB/s)
invocations per workgroup. We can see that the bandwidth decreases after 512 invocation per
workgroup, suggesting that over a total of 2048 invocations the bandwidth starts to suffer.

Another observation is that the shader always timed out for invocations counts between 512
and 832 per workgroup for both two and four workgroups. We did not investigate this further.

To conclude, we achieve the highest bandwidth on Optane on RAID-0 when dispatching 512
innovations per workgroup and two workgroups.

6.4.2 File Write

Now that we determined that 512 innovations per workgroup and two workgroups yield the
highest bandwidth on two Optane DIMMs in a RAID-0 configuration, we can evaluate our
RAID-0 implementation for different number of files and file sizes. We use the file write
benchmark 6.2.2 to record the resulting bandwidth. We plot the total file bytes written against
the bandwidth. We compare the achieved bandwidth between Optane and DRAM for the same
input parameters (Figure 6.4a). Afterwards we compare the results to DRAM with optimized
input parameters (Figure 6.4b).
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(a) Two workgroups with 512 invocations each,
writing to Optane (x) and DRAM (+).
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Figure 6.4: Bandwidth when writing x file bytes contained in k files, to four partitions in a
RAID-0 configuration.
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We first discuss the results on Optane (Figure 6.4a). For file counts including multiples of
the amount of workgroups (2), we can achieve a bandwidth of around 2.4 GB/s. For one file
we get a maximum bandwidth of 1.3 GB/s as only one workgroup is working while the other
sits idle. We have the same effect for three files with 1.85 GB/s, as two files can be written in
parallel and for the remaining file only one workgroup works while the other sits idle. The
reason for the lower performance is that earlier we optimized performance for writing four files,
which implies writing multiple files in parallel.

When the number of files is a multiple of the number of workgroups, we observe that the
bandwidth primarily relies on the total number of bytes written, and the number of files written
doesn’t have a significant impact. The peak bandwidth of 2.45 GB/s is achieved when copying
with four files. This nearly aligns with the average write bandwidth of 1.2 GB/s measured
in the memcopy benchmark 6.2.1 for invocation counts higher than 256 on a single Optane
DIMM during memcopy operation.

When writing with the same input parameters and workgroup configuration to DRAM
(Figure 6.4a), we nearly get the same trend and behavior as on Optane, but the bandwidth on
Optane is on average around 90 MB/s higher. We don’t have an explanation for the deviating
behavior.

To prove that neither the GPU nor our shader code bottlenecks the bandwidth, we dispatch
10 workgroups, each of the maximum workgroup size of 1024 invocations, to write to DRAM
(Figure 6.4b). We achieve a maximum bandwidth of 4.1 GB/s which would be enough to
saturate both Optane DIMMs. When writing less than four files, it becomes evident that the
1024 invocations per workgroup copying a single file are not enough to exploit the available
bandwidth. Thus, a system which dynamically allows multiple workgroups to work on writing
a single file would make sense, as already proposed by Maucher [23].

For RAID-0, we can conclude that we achieved almost twice the bandwidth as compared
to the bandwidth of the memcopy benchmark 6.1 by using two Optane DIMMs in a RAID-0
configuration. The comparison to DRAM proves that the shader code is efficient enough to
fully utilize both Optane DIMMs, if the 2GB/s per Optane DIMM were available from the
GPU.

6.4.3 Comparison to CPU RAID Implementations

Next, we compare GPU4FS’s achieved bandwidth and CPU usage to BTRFS, the EXT4
file system on MD RAID and ZFS also running the same two Optane DIMMs in RAID-0
configuration. For each of the software RAID systems we choose the default configuration and
did not optimize any parameters ourselves.

Bandwidth To evaluate the bandwidth, we use the file write benchmark 6.2.2 to write one
to ten files to the disk array. To write the files to the software RAID systems, we deploy one
thread per file. After writing the file, the thread calls fsync to ensure that the file is written
to the disk array. We write the same file sizes as for GPU4FS, as explained in section 6.2.2.
We measure the time between dispatching the first thread and until all threads have joined the
main thread. Again, we perform 26 independent runs and use the average runtime to calculate
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the bandwidth. For GPU4FS, we use the previous results from the file write benchmark on
Optane 6.4a. We present a plot for the achieved bandwidth for one file and ten files (Figure 6.5).
The highest achieved bandwidth for each file system can be found in Table 6.1.
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Figure 6.5: Bandwidth for writing 1 and 10 files to a RAID-0 disk array for different software
RAID systems.

First, we can see that for all other RAID systems the bandwidth for small files is significantly
higher than for GPU4FS. This is due to the high start up latency that we will discuss later.

ZFS performs best for one file but performs the worst for ten files. BTRFS and MD RAID
seem to mostly follow the same trend. GPU4FS achieves the highest bandwidth of around
2.45 GB/s closely followed by BTRFS with 2.21 GB/s. This is interesting as already one thread
per Optane DIMM is enough to reach the max bandwidth of 2 GB/s. So theoretically, a CPU
based RAID-0 could achieve a bandwidth of up to 4 GB/s. A reason for the low performance
could but that these software RAID systems were designed for block devices, and running them
on byte addressable Optane in FSDAX mode results in suboptimal performance. Nevertheless,
by this comparison and by reaching just over 4 GB/s on DRAM, we can conclude that GPU4FS
is competitive in terms of write bandwidth and even outperforms its competitors on Optane in a
RAID-0 configuration.

BTRFS GPU4FS MD RAID + EXT4 ZFS
Max Bandwidth (GB/s) 2.31339 2.44166 2.08605 1.37827
Files 10 4 10 4
File Size (MB) 24 240 28 4

Table 6.1: Maximum achieved bandwidth for different software RAID systems, given the best
set of parameters, respectively. Higher is better.
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CPU Usage To compare the CPU usage we wrote 20 60 MB files to BTRFS, the EXT4 file
system on MD RAID, ZFS and GPU4FS in a RAID-0 configuration. To make the observation
period long enough, we repeat the benchmark 20 times back to back. We record the global
CPU utilization to measure the utilization of both the writing process and the kernel. The
global CPU utilization encompasses the utilization of every core of both CPUs (both NUMA
nodes), where 100 % means all cores of both CPUs are fully utilized. Due to the different
write bandwidths, the processes run for different lengths of time. We display only an extract
in Figure 6.6 because of the highly periodic utilization of the 20 repetitions. We recorded
the global CPU utilization every 0.1 seconds, because this is the smallest resolution that our
benchmark library supports [4].
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Figure 6.6: Global CPU utilization for writing 20 files to RAID-0. 50 % means all cores of one
CPU are fully utilized, and 100 % means all cores of both CPUs are fully utilized.

For the first 5 seconds, GPU4FS utilizes half of a single core to set up Vulkan and to compile
the shader. GPU4FS has close to zero CPU utilization while the shader is running. After
writing the files, GPU4FS utilizes half a single core to queue the files for the next iteration. On
average, GPU4FS has a global CPU utilization of 2 %.

Both BTRFS and MD RAID fully utilize all cores of one CPU (NUMA node) for writing the
files. Between benchmark runs, the CPU utilization drops for both RAID systems. The average
global CPU utilization of BTRFS is 39 % and 38 % for MD RAID. For ZFS, we assume that we
get the high peaks for writing the files to the file system cache and the lower plateaus reflect the
utilization for the fsync calls. We can also see that the utilization drops between benchmark
runs. For ZFS, the average global CPU utilization is 27 %.

Compared to the CPU based RAID systems, GPU4FS decreases the global average CPU
utilization 13.5 times compared to the competitor with the lowest CPU utilization (ZFS).
However, ZFS RAID cannot compete with GPU4FS in terms of bandwidth, but BTRFS can.
Therefore, it is reasonable to compare the global CPU utilization of GPU4FS to BTRFS instead
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of ZFS. Compared to BTRFS, GPU4FS decreases the average CPU utilization by a factor of
x18.

6.5 RAID-1

We begin the evaluation of our RAID-1 implementation by optimizing the number of work-
groups and invocations per workgroup that best utilize the write bandwidth of the two Optane
DIMMs in a RAID-1 configuration. We perform this optimization because in RAID-1 every
write is duplicated, therefore we cannot directly transfer the configuration from the memcopy or
the RAID-0 benchmarks. Subsequently, we evaluate our write bandwidth using the established
parameters for both Optane and DRAM. To conclude this section, we compare our findings to
other software RAID systems in terms of bandwidth and CPU utilization.

6.5.1 Parameter Exploration

First, we need to find the ideal combination out of amount of workgroups and invocations per
workgroup that best utilize the bandwidth of both Optane DIMMs in a RAID-1 configuration.
In RAID-1 for every VRAM buffer read, two disk writes follow. This changed access pattern
requires us to (re-)optimize the workgroup configuration again.

As argued in 6.1, ideally only one workgroup writes to a single DIMM at a time, therefore
we dispatch two workgroups. Alternatively, we dispatch one workgroup per partition, totaling
to two workgroups per Optane DIMM, to compare the bandwidth between both approaches.

We start the search at a total count of 256 invocations, as this resulted in the highest
bandwidth of 1.4 GB/s per DIMM in the memcopy benchmark 6.1. We choose this number
to still achieve acceptable bandwidth in the worst case that all invocations write to the same
Optane DIMM at the same time. Again, we choose 1024 as the highest amount of invocation
per workgroup, as this is the limit imposed by GLSL. To find the highest bandwidth, we run
the file benchmark 6.2.2 to write four 512 MB files to RAID-1 chunks for different amounts of
invocations per workgroup for two and four workgroups.

The achieved bandwidth for both two and four workgroups and different number of invo-
cations per workgroup can be found in Figure 6.7. Note that, as previously mentioned in the
context of RAID-1, every byte is duplicated. We are interested in the bandwidth for writing the
file and not interested in the actual raw write bandwidth to the disks. Therefore, only the file
bytes are included in the bandwidth calculation.

Like for RAID-0, two workgroups perform better than four workgroups on Optane. For two
workgroups, the highest bandwidth of 1.33 GB/s is reached for 256 invocations per workgroup,
which totals to 512 invocations. This is half of total invocations used in RAID-0. This makes
sense as for every read data word from VRAM, two Optane writes follow to write the data
word to both mirrors.

Another interesting observation is that the peak for four workgroups (1.17 GB/s) is achieved
when using 128 invocations per workgroup, which totals to 512 invocations. Even tough the
total number of invocations is the same, the bandwidth achieved by two workgroups is around
160 MB/s higher. This could be due to scheduling, more balanced disk accesses or when more
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Figure 6.7: Bandwidth when writing four 512 MB RAID-1 files to two Optane DIMMs parti-
tioned as four DAX devices. Two and four workgroups were dispatched.

workgroups are used, workgroups have to wait longer on average to acquire the exclusive lock
to modify the chunk tree. But without profiling, we have no way to investigate this further.

Analog to RAID-0 the shader always times out for invocations counts between 512 and 832
per workgroup for both two and four workgroups. We did not investigate this further.

To conclude, we achieve the highest bandwidth on Optane on RAID-1 when dispatching 256
innovations per workgroup and two workgroups.

6.5.2 File Write

Now that we determined that 256 innovations per workgroup and two workgroups yield the
highest bandwidth on two Optane DIMMs in a RAID-1 configuration, we can evaluate our
RAID-1 implementation for different number of files and file sizes. We use the file write
benchmark 6.2.2 to record the resulting bandwidth. We plot the total file bytes written against
the bandwidth. We compare the achieved bandwidth between Optane and DRAM for the same
input parameters (Figure 6.8a). Afterwards we compare the results to DRAM with optimized
input parameters (Figure 6.8b).

We first discuss the results on Optane (Figure 6.8a). We reach a peak bandwidth of around
1.3 GB/s, which is close to the 1.4 GB/s peak achieved per Optane DIMM in memcopy. Because
every write is duplicated to two both Optane DIMMs, it makes sense that we are close to the
maximum bandwidth of one Optane DIMM. The fact that we don’t quite reach the maximum
bandwidth per Optane may be due to the file system and RAID overhead. The results also
suggest, that the writes of both workgroups are relatively evenly balanced across the two Optane
DIMMs. Considering the maximum bandwidth of RAID-0 is 2.4 GB/s, one would expect
that on RAID-1 the bandwidth should roughly half to 1.2 GB/s. Considering that we achieve
1.3 GB/s, we even achieve 100 MB/s more.
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Figure 6.8: Bandwidth when writing x file bytes contained in k files, to four partitions in a
RAID-1 configuration.

We observe lower bandwidths for the file amount one (760 MB/s) and three (960 MB/s)
analog to RAID-0 because one workgroup has to idle. Interesting is the gap between the
bandwidth achieved when writing four files is a bit higher (around 100 MB/s) than for other
multiples of the amount of workgroups. This is not surprising as we optimized the bandwidth
for four files.

When writing with the same input parameters and workgroup configuration to DRAM
(Figure 6.8a), we nearly get the same trend and behavior as on Optane, but the bandwidth
on DRAM is on average around 90 MB/s higher. This is exactly the opposite to RAID-0,
where the bandwidth on Optane was around 90 MB/s higher than on DRAM. We don’t have an
explanation for the deviating behavior.

To prove that neither the GPU nor our shader code bottlenecks the bandwidth, we dispatch
10 workgroups, each of the maximum workgroup size of 1024 invocations, to write to DRAM
(Figure 6.8b). We observe that the bandwidth is also halved on DRAM than compared to
RAID-0. Otherwise, the behavior is analog to RAID-0. The peak of 2.5 GB/s is reached when
writing ten files with ten workgroups. Again we can see that with every additional active
workgroup we can achieve more performance, suggesting that we are not exploiting DRAM’s
available bandwidth. This is due to the limit of 1024 invocations per workgroup.

For RAID-1, we can conclude that we are able to almost sustain the write bandwidth to a
single Optane DIMM from the memcopy benchmark 6.1, while introducing redundancy by
copying the data to another DIMM.

6.5.3 Comparison to CPU RAID Implementations

Next, we compare GPU4FS’s achieved bandwidth and CPU usage to BTRFS, the EXT4
file system on MD RAID and ZFS also running the same two Optane DIMMs in RAID-1
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configuration. For each of the software RAID systems we choose the default configuration and
did not optimize any parameters ourselves.

Bandwidth Analog to RAID-0 6.4.3, to evaluate and compare the bandwidth, we use the
file write benchmark 6.2.2 to write one to ten files to each RAID system. For GPU4FS, we use
the previous results from the file write benchmark on Optane 6.8a. We present a plot for the
achieved bandwidth for one file and ten files (Figure 6.9). The highest achieved bandwidth for
each file system can be found in Table 6.2.
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Figure 6.9: Bandwidth for writing 1 and 10 files to a RAID-1 disk array for different software
RAID systems.

First, we can see that for all other RAID systems the bandwidth for small files is significantly
higher than for GPU4FS. Similar to RAID-0, this is due to the high start up latency that we
will discuss later. For all RAID systems the bandwidth is halved than compared to RAID-0,
which is expected due to the write duplication.

For ten files, GPU4FS reaches the highest bandwidth (1.15 GB/s), closely followed by
BTRFS (1.14 GB/s). Both achieve around twice the bandwidth of ZFS and MD RAID. For one
file, GPU4FS outperforms the next best contestant (BTRFS) by 400 MB/s.

Theoretically, two threads should have been enough to sustain the bandwidth (2 GB/s) of two
Optane DIMMs running in a RAID-1 configuration. However, no CPU-based RAID achieves
close to 2 GB/s. Again, a reason for the low performance could but that these software RAID
systems were designed for block devices, and running them on byte addressable Optane in
FSDAX mode results in suboptimal performance. Nevertheless, by this comparison and by
reaching around 2.5 GB/s on DRAM, we can conclude that GPU4FS is competitive in terms of
write bandwidth and even outperforms its competitors on Optane in a RAID-1 configuration.

CPU Usage Analog to RAID-0 6.4.3, to compare the CPU usage we wrote 20 60 MB files
on BTRFS, the EXT4 file system on MD RAID, ZFS and GPU4FS in a RAID-1 configuration.
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BTRFS GPU4FS MD RAID + EXT4 ZFS
Max Bandwidth (GB/s) 1.13683 1.28219 0.68266 0.56745
Files 10 4 4 10
File Size (MB) 128 240 160 28

Table 6.2: Maximum achieved bandwidth for different software RAID systems, given the best
set of parameters, respectively. Higher is better.

To make the observation period long enough, we again repeat the benchmark 20 times back
to back and record the global CPU utilization. The global CPU utilization encompasses the
utilization of every core of both CPUs (both NUMA nodes), where 100 % means all cores of
both CPUs are fully utilized. Again, we display only an extract in Figure 6.10 because of the
highly periodic utilization of the 20 repetitions.
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Figure 6.10: Global CPU utilization for writing 20 files to RAID-1. 50 % means all cores of
one CPU are fully utilized, and 100 % means all cores of both CPUs are fully
utilized.

We can see that the CPU usage of GPU4FS follows the same course as for RAID-0. Again,
for the first 5 seconds, GPU4FS utilizes half a single core to set up and has close to zero CPU
utilization while the shader is running. On average, GPU4FS has a global CPU utilization of
2 %. The utilization is very similar to RAID-0 since the CPU does not perform any RAID
management tasks.

Both BTRFS and MD RAID fully utilize one CPU for writing the files. Between benchmark
runs, the CPU utilization drops for both RAID systems. The average global CPU utilization
of BTRFS is 43 % and for MD RAID 49 %. For ZFS, we assume that we get the high peaks
for writing the files to the file system cache and the lower plateaus are the utilization for the
fsync calls. We can also see that the utilization drops between benchmark runs. For ZFS, the
average CPU utilization is 29 %.

79



CHAPTER 6. EVALUATION

Compared to the CPU based RAID systems, GPU4FS decreases the global average CPU
utilization 14.5 times compared to the competitor with the lowest CPU utilization (ZFS).
However, ZFS RAID cannot compete with GPU4FS in terms of bandwidth, but BTRFS can.
Therefore, it is reasonable to compare the global CPU utilization of GPU4FS to BTRFS instead
of ZFS. Compared to BTRFS, GPU4FS decreases the average CPU utilization by a factor of
x21.5.

6.5.4 Rebuild

Next, we evaluate how long a rebuild of a RAID-1 disk array takes. We run the rebuild
benchmark 6.2.3, that performs a file write, zeros one disk and records the time taken to rebuild
the disk array. We plot the total amount of repaired bytes against the elapsed repair time. We
use the same workgroup configuration as for writing.
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Figure 6.11: Time to repair for x RAID-1 bytes in k files. Two workgroups with 256 invocation
each were dispatched.

On Optane (Figure 6.11) the time to rebuild linear depends on the number of bytes. The
curves correlate for the different numbers of files. Thus, we can conclude that time to rebuild
mostly depends on the amount of bytes to rebuild and not on the amount of files. This suggests
that the overhead to walk the chunk tree, to copy the logical chunk descriptor and to insert a
new logical chunk descriptor into the local tree is neglectable. The main work is copying the
data from one mirror to another mirror.

We can use the time to repair and the amount of rebuilt bytes to calculate the rebuild
bandwidth. The maximum resulting bandwidth is around 1 GB/s suggesting that we lose
around 400 MB/s over writing to a single Optane DIMM in the memcopy benchmark 6.1.
When rebuilding two Optane DIMMs in a RAID-1 configuration, we read data from one DIMM
and copy it to the other DIMM. Either the reduced bandwidth means that the read time of the
source DIMM significantly impacts the rebuild time or that too many invocations write to the
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target Optane DIMM at a time and overwhelming it. Unfortunately, we did not have enough
time to investigate this.

We also ran the rebuild benchmark on DRAM. The execution time of the shader was 0.05s
on average. When repairing 1 GB of data, this would result in a write bandwidth of 20 GB/s
surpassing the bandwidth of the PCIe interconnect. Naturally, this phenomenon is impossible
to occur. Examination using CPU verification showed that the zeroed disk was not successfully
repaired. We suspect that due to a synchronization problem on DRAM, the workgroups never
iterate through the chunk list. The workgroups conclude that they reached the end of the list
and complete their execution. Thus, no chunk is repaired. Unfortunately, we could not find
the root cause for the problem. However, we can guarantee that our repair shader code works
because on Optane none of these problems exist and the verification passes successfully.

We can conclude that on Optane we need close to a second to recover one gigabyte of data
of the lost partition for RAID-1.

6.6 RAID-5

We begin the evaluation of our RAID-5 implementation by optimizing the number of work-
groups and invocations per workgroup that best utilize the write bandwidth of the two Optane
DIMMs in a RAID-5 configuration. We perform this optimization because due to the addi-
tional overhead of the parity calculation, it may be necessary to dispatch more invocations
compared to RAID-0 to utilize the two Optane DIMMs. Subsequently, we evaluate our write
bandwidth using the established parameters for both Optane and DRAM. To conclude this
section, we compare our findings to other software RAID systems in terms of bandwidth and
CPU utilization.

6.6.1 Parameter Exploration

First, we need to find the ideal combination out of amount of workgroups and invocations per
workgroup that best utilize the bandwidth of both Optane DIMMs in a RAID-5 configuration.
A new optimization is necessary because the RAID-0 configuration cannot be transferred
directly due to the potential overhead caused by the parity calculation. If the parity calculation
takes considerable time, it might be that a speed-up can be achieved if more invocations are
dispatched. This requires us to (re-)optimize the workgroup configuration again.

As argued in 6.1, ideally only one workgroup writes to a single DIMM at a time, therefore
we dispatch two workgroups. Alternatively, we dispatch one workgroup per partition, totaling
two workgroups per Optane DIMM, to compare the bandwidth between both approaches.

We start the search at a total count of 256 invocations, as this resulted in the highest
bandwidth of 1.4 GB/s per DIMM in the memcopy benchmark 6.1. We choose this number
to still achieve acceptable bandwidth in the worst case that all invocations write to the same
Optane DIMM at the same time. Again, we choose 1024 as the highest amount of invocation
per workgroup, as this is the limit imposed by GLSL. To find the highest bandwidth, we run
the file benchmark 6.2.2 to write four 512 MB files to RAID-5 chunks for different amounts of
invocations per workgroup for two and four workgroups.
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Figure 6.12: Bandwidth when writing four 512 MB RAID-5 files to two Optane DIMMs
partitioned as four DAX devices. Two and four workgroups were dispatched.

The achieved bandwidth for both two and four workgroups and different number of in-
vocations per workgroup can be found in Figure 6.12. When using for disks in a RAID-5
configuration, we need to write a parity stripe every three data stripes. Again, we only consider
the bandwidth for writing the file and not the actual raw write bandwidth to the disks. Therefore,
the parity bytes are not considered in the bandwidth calculation.

Like for RAID-0 and RAID-1, two workgroups perform better than four workgroups on
Optane.

For two workgroups, analog to RAID-0 the bandwidth increases for less than 512 invocations
per workgroup up to the peak of 2 GB/s at 512 invocations per workgroup. For more invocations
per workgroup, the bandwidth decreases.

For four workgroups, we reach the peak of 1.9 GB/s at 128 invocations per workgroup, which
aligns with the local peak when using 256 invocations per workgroup and two workgroups.

Analog to RAID-0 and RAID-1 the shader always times out for invocations counts between
512 and 832 per workgroup for both two and four workgroups. We did not investigate this
further.

To conclude, we achieve the highest bandwidth on Optane on RAID-5 when dispatching 512
innovations per workgroup and two workgroups. This is the same configuration as for RAID-0,
which indicates that the parity calculation does not add significant overhead. We investigate
this further in the next section.

6.6.2 File Write
Now that we determined that 512 innovations per workgroup and two workgroups yield the
highest bandwidth on Optane, we can evaluate our RAID-5 implementation for different number
of files and file sizes. We use the file write benchmark 6.2.2 to record the resulting bandwidth.
We plot the total file bytes written against the bandwidth. We compare the achieved bandwidth
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between Optane and DRAM for the same input parameters (Figure 6.13a). Afterwards we
compare the results to DRAM with optimized input parameters (Figure 6.13b).
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Figure 6.13: Bandwidth when writing x file bytes contained in k files, to four partitions in a
RAID-5 configuration.

We first discuss the results on Optane (Figure 6.13a). The maximum achieved bandwidth
is around 2 GB/s four files. That the peak is reached for four files is not surprising, as we
previously optimized the invocation count for four files. Considering that we achieved a
maximum bandwidth of 2.4 GB/s for RAID-0, we lose around 400 MB/s for calculating and
writing the parity stripe. The maximum bandwidth for six, eight and ten files is around 1.8 GB/s
which is 3

4
of RAID-0 2.4 GB/s. 1.8 GB/s is the expected bandwidth, considering that for

every three data stripe, we need to write one parity stripe for RAID-5. Because the maximum
achieved bandwidth is 2 GB/s, we know that we lose less than 1

4
of RAID-0’s bandwidth. We

can conclude that the actual parity calculation does not add much overhead, and the bandwidth
is decreased because we need to write the parity stripe.

Again, we observe lower bandwidth for the file amount 1 and 3 than for multiples of the
number of workgroups analog to RAID-0 and RAID-1 because one workgroup has to idle.

Next, we write with the same input parameters and workgroup configuration to DRAM
(Figure 6.13a). The highest bandwidth is achieved for 10 files with 2 GB/s, which closely
matches the trend of four files on Optane. For three files, the curve on DRAM and Optane
overlap. For one file, the bandwidth on Optane is around 200 MB/s higher than on DRAM. For
more than one file, the curves for the same amount of files are closer together on Optane and
DRAM.

To prove that neither the GPU nor our shader code bottlenecks the bandwidth, we dispatch
10 workgroups, each of the maximum workgroup size of 1024 invocations, to write to DRAM
(Figure 6.13b). For DRAM (Figure 6.13b) the bandwidth also decreased to around 3

4
of RAID-

0’s bandwidth. This supports the assumption that the GPU is mainly busy writing and the
parallel parity calculation has little influence on the runtime. The peak bandwidth is achieved
for four files at 3.5 GB/s.
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For RAID-5, we can conclude that we are able to sustain more than 3
4

of RAID-0 write
bandwidth. This means we lose less than 1

4
of the bandwidth because we need to write the parity

stripe. Additionally, we can conclude that the parity calculation does not add any significant
overhead.

6.6.3 Comparison to CPU RAID Implementations
Next, we compare GPU4FS’s achieved bandwidth and CPU usage to BTRFS, the EXT4
file system on MD RAID and ZFS also running the same two Optane DIMMs in RAID-5
configuration. For each of the software RAID systems we choose the default configuration and
did not optimize any parameters ourselves.

Bandwidth Analog to RAID-0 and RAID-1 6.4.3, to evaluate and compare the bandwidth,
we use the file write benchmark 6.2.2 to write one to ten files to each RAID system. For
GPU4FS, we use the previous results from the file write benchmark on Optane 6.13a. We
present a plot for the achieved bandwidth for one file and ten files (Figure 6.14). The highest
achieved bandwidth for each file system can be found in Table 6.3.
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Figure 6.14: Bandwidth for writing 1 and 10 files to a RAID-5 disk array for different software
RAID systems.

MD RAID only achieves around 300 MB/s regardless of the amount of files. MD RAID
achieved around 2 GB/s on RAID-0 and 700 MB/s on RAID-1, thus the bandwidth of RAID-5
should be between the two unless the parity calculation is the bottleneck. BTRFS achieves
the highest bandwidth with 1.94 GB/s for ten file, which proves that the CPU has enough
compute power to calculate the parity. For ten files, GPU4FS maximum bandwidth is lower
than BTRFS’s bandwidth, but overall GPU4FS achieves the highest bandwidth of 1.96 GB/s.
ZFS achieves nearly the same bandwidth as on RAID-0, which suggests that the writes are
more balanced across the two Optane DIMMs for RAID-5.
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To reiterate, these software RAID systems were designed for block devices, and they are
not optimized for byte addressable Optane in FSDAX. Nevertheless, by this comparison and by
reaching around 3.5 GB/s on DRAM, we can conclude that GPU4FS is competitive in terms of
write bandwidth and even outperforms its competitors on Optane in a RAID-5 configuration.

BTRFS GPU4FS MD RAID + EXT4 ZFS
Max Bandwidth (GB/s) 1.93705 1.96069 0.29007 1.45145
Files 10 4 10 10
File Size (MB) 24 240 224 24

Table 6.3: Maximum achieved bandwidth for different software RAID systems, given the best
set of parameters, respectively. Higher is better.

CPU Usage Analog to RAID-0 and RAID-1 6.4.3, to compare the CPU usage we wrote 20
60 MB files on BTRFS, the EXT4 file system on MD RAID, ZFS and GPU4FS in a RAID-1
configuration. To make the observation period long enough, we again repeat the benchmark
20 times back to back and record the global CPU utilization. The global CPU utilization
encompasses the utilization of every core of both CPUs (both NUMA nodes), where 100 %
means all cores of both CPUs are fully utilized. Again, we display only an extract in Figure 6.15
because of the highly periodic utilization of the 20 repetitions.
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Figure 6.15: Global CPU utilization for writing 20 files to RAID-5. 50 % means all cores of
one CPU are fully utilized, and 100 % means all cores of both CPUs are fully
utilized.

We can see that the CPU usage of GPU4FS follows the same course as for RAID-0 and
RAID-1. Again, for the first 5 seconds, GPU4FS utilizes half a single core to set up and has
close to zero CPU utilization while the shader is running. On average, GPU4FS has a global
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CPU utilization of 2 %. The utilization is very similar to RAID-0 and RAID-1 since the CPU
does not perform any RAID management tasks.

For all the CPU based RAID system, we can clearly see the plateaus in the utilization where
the fsync syscall are handled. For MD RAID, one iteration takes around 7 seconds.

The average of 8 % for MD RAID is reached during the fsync plateaus, which makes sense
as MD RAID spends most of its time in the kernel, presumably to calculate the parity. Contrary
to RAID-0 and RAID-1 we can also see the kernel time for BTRFS at around 25 % utilization.
The average global CPU utilization of BTRFS is 26 %.

For ZFS, we assume that we get the high peaks for writing the files to the file system cache
and assume the lower plateaus are the utilization for the fsync calls. We can also see that the
utilization drops between benchmark runs. For ZFS, the average CPU utilization is 32 %.

Compared to the CPU based RAID systems, GPU4FS decreases the global average CPU
utilization 4 times compared to the competitor with the lowest CPU utilization (MD RAID).
However, MD RAID cannot compete with GPU4FS in terms of bandwidth, but BTRFS can.
Therefore, it is reasonable to compare the global CPU utilization of GPU4FS to BTRFS instead
of MD RAID. Compared to BTRFS, GPU4FS decreases the average CPU utilization by a factor
of x13.

6.6.4 Rebuild

Next, we evaluate how long a rebuild of a RAID-5 disk array takes. We run the rebuild
benchmark 6.2.3, that performs a file write, zeros one disk and records the time taken to rebuild
the disk array. We plot the total amount of repaired bytes against the elapsed repair time. We
use the same workgroup configuration as for writing.
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Figure 6.16: Time to repair x RAID-5 bytes in k files. Two workgroups with 256 invocation
each were dispatched.
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The synchronization problem that occurred on DRAM for the RAID-1 repair persist for
RAID-5. Therefore, we only present results on Optane (Figure 6.16).

Analog to the RAID-0 rebuild, the time to rebuild linear depends on the number of bytes.
The curves correlate for the different numbers of files. Thus, we can conclude that time to
rebuild mostly depends on the amount of bytes to rebuild. The fact that we observed this
correlation independently for RAID-1 and RAID-5 strengthens our thesis that the rebuilding
of meta information such as chunk tree and logical chunk descriptors hardly affects the repair
time.

Although we achieved higher write bandwidth on RAID-5 than on RAID-1, the rebuild time
increased. Compared to RAID-1 rebuild, we need to read in 1.5 times more words, but only
need to write 0.5 of the words written during a RAID-1 rebuild. We can rule out the XOR
operation to be responsible for that slow down, as the file write benchmark suggests that it does
not have a huge impact. The slowdown could be due to the fact that the RAID-1 rebuild logic
offers higher locality and sequentiality, therefore benefitting from caching effects. But without
profiling, we have no means to find out where the bottleneck is.

We can use the time to repair and the amount of rebuilt bytes to calculate the rebuild
bandwidth. The resulting maximum rebuild bandwidth is 500 MB/s. We can conclude that on
Optane we need close to two seconds to recover one gigabyte of data of the lost partition on
RAID-5.

6.7 Latency

Besides bandwidth, latency is the other relevant metric for a file and RAID system. The shader
setup, the queuing of files and finally the writing requires writing through different buses which
takes time. Determining the latency is important to know the limiting factors of the bandwidth.

To analyze the latency, we plot the total written file bytes against the runtime of the file write
for each RAID level, both on Optane and DRAM for the same input parameters. The plot 6.17
shows the runtime when writing ten files.

For both Optane and DRAM, we see that RAID-1 is the slowest and as expected, doubles
the runtime when compared to RAID-0. The runtime for RAID-5 lies between them, but is
closer to RAID-0. On DRAM, we observe a higher base latency.

First, we analyze the latency on Optane. For all RAID levels, the base latency is around 35
ms, which is significantly higher than the 1.5 ms measured by Maucher [23].

Next, we want to determine the cross-over point for each RAID level. The cross-over point
specifies the minimum number of bytes that must be written for the bandwidth to no longer
be dominated by the base latency. In the case of RAID-1, the cross-over point is reached at
approximately 8 MB. Meanwhile, for RAID-5, this threshold is doubled, to 16 MB. Lastly, for
RAID-0, the cross-over point is at around 28 MB.

Interestingly enough, for DRAM the base latency increases to 48 ms. This is interesting as
Optane has a higher latency than DRAM [20], so the effect should be the other way around.
Considering that the rebuild did not work on DRAM, there seems to be an underlying issue
when accessing DRAM from the GPU on our test configuration. The cross-over points on
DRAM shifts to 18 MB for RAID-2, 50 MB for RAID-5 and 56 MB for RAID-5.
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Figure 6.17: Runtime when writting x bytes split into 10 files to logical chunks of different
RAID levels.

Either our system adds a lot of latency for the chunk allocation, acquiring the exclusive
lock and insertion into the chunk tree, or the additional latency is introduced by the changed
hardware. The comparison between Optane and DRAM shows that the hardware configuration
has an impact on the latency. Our focus was on bandwidth maximization, and we consider
latency minimization as future work.

6.8 Discussion

In this section, we discuss our evaluation and conclude whether we achieved our goal of
designing a GPU based RAID system that can compete in terms of write bandwidth with CPU
based RAID systems while simultaneously decreasing CPU utilization.

6.8.1 Performance Limitations

Due to the limited write performance (1.4 GB/s instead of 2 GB/s) from the GPU to Optane, it
is difficult to properly generalize the benchmark results. We believe that the deviating behavior
to Maucher’s benchmarks [23] is due to the combination of a different GPU and a doubled
PCIe lane count, leading to bundled write requests that overwhelm the Optane DIMM in our
configuration. Therefore, it is necessary to benchmark the performance again on a different
hardware configuration that can reach the maximum bandwidth on Optane from the GPU.

Even the CPU-based software RAID could not achieve the maximum performance on the
two Optane DIMMs. Theoretically, the CPU RAID systems should be able to achieve 4 GB/s
in a RAID-0 array on two DIMMs, because we were able to achieve 2 GB/s per Optane DIMM
in a CPU-based memcopy benchmark. The CPU based memcopy results prove that neither the
CPU nor the DIMMs are the cause of the limited performance. Instead, the limited performance
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on the CPU could be due to the software RAID systems writing with too many kernel threads
and thus overload the Optane DIMMs. Therefore, one could try to tune the software RAID
systems manually by configuration adjustments to lower the thread count instead of using the
default configurations optimized for block devices.

Despite our efforts, we cannot be sure that all processes involved in the write process of
the CPU RAID systems are actually pinned to the CPU to which the target Optane DIMMs
is attached. That pinning does not work reliably can be seen in the example of ZFS. ZFS
reaches global CPU utilization rates well above 50 % and thus definitely uses both CPUs
(both NUMA nodes). Write accesses from the remote CPU to the target DIMM can also be
a reason for the limited performance from the CPU. Therefore, it can also be worthwhile to
benchmark the CPU RAID systems on a machine with only one CPU. Generally, we never
used the second CPU for our benchmarks, and we did not use the remote Optane DIMMs due
to inconsistent performance. Since the setup with two CPUs only causes complexity and hard
to track hardware behavior, our recommendation for future evaluations is to switch to a system
with only one CPU.

However, the comparison between performance of GPU4FS and CPU based RAID system
on Optane will always be unfair, since the CPU RAID systems were designed and optimized
for block devices and GPU4FS for Optane. Additionally, the fsdax mode required for the
CPU RAID systems causes additional overhead. In order to be able to fairly compare the
performance and to get any adoption, GPU4FS must support other storage media such as
SSDs, especially considering that Optane has been discontinued [27]. In addition, GPU4FS
should implement the POSIX file system API [2] to be able to conduct standardized file system
benchmarks.

6.8.2 Unexpected Behavior
Due to synchronization problems on DRAM, the rebuild did not work reliably. However, the
shader code responsible for the rebuild worked without any problems on Optane. Unfortu-
nately, at present, we lack a clear explanation for this unexpected behavior. Nonetheless, an
investigation of the root cause is essential to understand and address this issue, ensuring that
similar synchronization problems can be reliably avoided in future implementations.

While optimizing the invocation count, for each RAID level the shader is timed out between
invocations counts between 512 and 832 per workgroup for both two and four workgroups. Our
first guess is that the Optane DIMM is overloaded with write requests, but this cannot be true
because the shader does not time out for invocation counts above 832. We have no explanation
for this behavior either. We suspect that there is a problem in the graphics card drivers or that a
hardware bug occurs for this workgroup configuration. In general, it would be recommended to
switch from GLSL to a shader language that is designed for general purpose computing on the
GPU and not originally designed for graphics processing. Changing the shader language could
be the solution to many of the synchronization problems.

Comparing the file write bandwidth between Optane and DRAM on the same input pa-
rameters workgroup configuration shows a diverging behavior. In Maucher’s evaluation, the
bandwidth curves for both storage media overlap for writing one file, and DRAM is clearly
faster for more files [23]. In our case, however, the bandwidth curves almost never overlap
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and inexplicably the file write sometimes finishes faster on Optane and sometimes on DRAM.
Due to this inconsistency and the limited bandwidth (1.4 GB/s) on an Optane DIMM, we can
conclude that the different GPU produces different performance behavior, for example due to
varying caching effects.

6.8.3 Latency
We have focused only on bandwidth maximization and have been able to achieve satisfactory
bandwidths considering the mentioned limitations. However, the performance of the RAID
system is not yet optimal, especially in terms of latency. Low latency ensures that data stored
in the RAID array can be accessed and retrieved quickly. This is crucial for applications and
systems that require fast access to data. A low latency is especially important for small files,
because the base latency cannot be amortized over the transfer of many bytes. Setting up the
shader, queuing the files and finally writing through the different buses takes significant time.
Compared to the CPU based RAID system, the latency of GPU4FS is too high, with a minimum
latency at around 35ms. In order for GPU4FS to provide acceptable performance for small
files, the latency needs to be minimized.

Another interesting effect is that the base latency we measured on DRAM is higher than
on Optane. This is interesting as Optane has a higher access latency than DRAM [20], so the
effect should be the other way around. Considering that the rebuild did not work on DRAM
and the other effects explained in the previous section, there seems to be an underlying issue
when accessing DRAM from the GPU on our test configuration.

6.8.4 Evaluation of our Goal
For RAID-0, we achieve a write bandwidth of 2.4 GB/s on two Optane DIMMs. We showed
that, compared to a memcopy to a single DIMM, we can nearly double the bandwidth by using
two Optane DIMMs in a RAID-0 configuration. The comparison to CPU-based RAID systems
shows that, for RAID-0 on Optane, GPU4FS is at least 100 MB/s faster than the next best
competitor. GPU4FS lowers the average global CPU utilization by a factor of x18 compared to
its competitors on RAID-0.

For RAID-1, GPU4FS also outperforms its competitors by more than 100 MB/s and reduces
global CPU utilization by a factor of x21.5. We showed that RAID-1 only looses 100 MB/s over
RAID-0 while introducing redundancy. With a maximum bandwidth of 1.3 GB/s on RAID-1
we are close to the maximum write bandwidth to one Optane DIMM (1.4 GB/s). Compared to
RAID-0 and RAID-5, we demonstrated the need to halve the invocation count to maintain an
acceptable bandwidth because every write is duplicated.

For RAID-5, GPU4FS also has the highest bandwidth with 1.96 GB/s but is closely followed
by one competitor (BTRFS). GPU4FS also reduces the average global CPU utilization by
a factor of x13 for RAID-5. Our evaluation of RAID-5 showed that the parity calculation
does not add significant computational overhead. This is an important finding because it lets
us conclude that efficient RAID-6 Reed-Solomon coding is also a feasible with our parallel
distributed parity calculation approach. We showed that lose less than 1

4
of RAID-0’s the

maximum bandwidth on RAID-5, because we need to write the parity stripe.
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Two more noteworthy findings are: The time to rebuild linearly depends on total bytes
and repair, being independent of the number of files regardless of the RAID level. The file
write bandwidth, mostly depends on the total file bytes and the number of files does not have
a significant impact, as long as the number of files is a multiple of number of dispatched
workgroups. That the number of files has no significant effect on the bandwidth implies that
the overhead for allocating chunks and acquiring the exclusive chunk lock is neglectable.

Regardless of the RAID level, GPU4FS never utilizes more than half of a CPU core. In the
CPU usage analysis, we could see that GPU4FS needs around 5 seconds, to set up Vulkan and
to compile the shader. GPU4FS has close to zero CPU utilization while the shader is running.
On average, GPU4FS has a global CPU utilization of 2 %.

GPU4FS can outperform its competitors in terms of bandwidth on Optane, but the com-
parison is limited to our test configuration due to the decreased performance, as explained
above. Nevertheless, we showed that we can easily reach 4.1 GB/s on DRAM in the RAID-0
configuration. That means the GPU would have enough performance to fully utilize both
Optane DIMMs if the full bandwidth of 2 GB/s per DIMM was achievable from the GPU. We
conclude that, at least on Optane, GPU4FS is competitive in terms of bandwidth, if not better
than the benchmarked CPU RAID systems. At the same time, GPU4FS lowers the average
global CPU utilization by a factor of x13 to x21 depending on the RAID level. Therefore, we
can conclude that, on Optane at least, we have achieved our goal of designing a GPU-based
RAID system that competes with CPU-based systems in terms of bandwidth while significantly
reducing CPU utilization.
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7 Future Work

In this chapter, we present topics that are candidates for follow-up work in the field of a
GPU-accelerated file system with RAID capabilities.

7.1 RAID-6

In our work, we introduced a design approach for allowing invocations to independently encode
RAID-6 parity and proved the efficiency of this approach for RAID-5 6.6.2. The evaluation of
this encoding scheme for RAID-6 is still open. Furthermore, exploring how the workgroup’s
invocations can work together to efficiently solve a linear equation system on Galois Fields
for data recovery is still an open topic. Therefore, we consider research into GPU-accelerated
RAID-6 a worthwhile research topic.

7.2 Latency Optimization

The evaluation has shown that by offloading RAID management tasks to the GPU, we can
achieve competitive bandwidths 6.8. However, it is important for a file/RAID system to
have a short base latency to handle requests as fast as possible. As we have shown in the
latency evaluation 6.7, the base latency of the current demonstrator is quite high at around
35ms. Therefore, we consider latency minimization to be an important issue and recommend
conducting research in this area.

7.3 Checksums

As highlighted in the background section 2.2.2 and explored in related work 3, checksums
are a crucial addition to any RAID system. Data corruption can occur at the bit level, making
checksums an essential tool for detecting such corruption efficiently. The parallel nature of
GPUs makes them well-suited for accelerating checksum calculations. In the event of data
corruption detection, the redundancy information encoded into the full-stripe can be employed
for data recovery. Therefore, researching GPU-accelerated checksums and their integration
into our RAID subsystem appears to be an appealing research direction.
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CHAPTER 7. FUTURE WORK

7.4 Crash Consistency

At present, GPU4FS lacks crash consistency, a fundamental requirement for any reliable
file system. Achieving crash consistency is particularly challenging, especially in scenarios
involving multiple disks where atomic updates are not possible. Implementing a copy-on-
write approach for updating data stripes and utilizing logging for committing these updates to
multiple disks could be a strategy to explore. Thus, we consider the pursuit for effective crash
consistency mechanisms on the GPU an essential research topic.

7.5 TLB

As the file system runs for some time, certain chunks may be frequently accessed. To minimize
slow disk accesses, their logical chunk descriptors and some nodes of the chunk tree could be
cached in VRAM. Such a TLB structure could accelerate translation from logical pointers to
physical offsets. Designing an efficient GPU cache structure that allows parallel access appears
to be a promising avenue for further research.

7.6 Dynamic Parallel Allocation & Deallocation

One significant limitation currently is the absence of a functional block allocator in GPU4FS
that supports parallel allocation and deallocation. Presently, the only way to achieve page-
aligned allocations is by rounding up allocations to page boundaries, resulting in space wastage
with no means of freeing memory. This limitation severely hampers the adoption of dynamic
data structures. Therefore, we consider research into efficient parallel memory allocation and
deallocation on the GPU a critical research area.

7.7 Rebalancing & Defragmentation

After the introduction of deallocation capabilities, disk fragmentation can become an issue.
Implementing an online algorithm capable of merging existing chunks and relocating pages
within the file system to reduce fragmentation would be a valuable research topic. The
abstraction provided by the logical address space can be effectively utilized to move underlying
physical chunks while updating the mapping, eliminating the need to modify logical pointers.
Additionally, disk rebalancing becomes necessary when new disks are added to the array or
existing disks need to be removed to maintain balanced disk utilization. Thus, we consider
finding solutions for these two challenges as engaging research opportunities.

7.8 SDD Support and POSIX Compliance

As Optane is discontinued [27], GPU4FS needs to support other storage media. To gain user
adoption and enable comparison to file systems implemented for block devices, GPU4FS
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7.8. SDD SUPPORT AND POSIX COMPLIANCE

should support SSDs. GPU4FS strives to be a POSIX-compliant file system [2] and already
incorporates necessary metadata in its data structures [23]. However, as of now, there is no
implementation for the POSIX file system APIs available for GPU4FS. Such an implemen-
tation is necessary for wide adoption and would facilitate the use of standardized file system
benchmarks for future evaluations, enabling fair and standardized comparison to other file
systems. Therefore, we recommend implementing the required APIs.
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8 Conclusion

In this thesis, we proposed and implemented a flexible RAID system, capable of managing
RAID configurations at a granular file level that seamlessly integrates into GPU4FS-a novel
GPU accelerated file system.

Historically, RAID systems have played a crucial role in enhancing both data performance
and integrity. While hardware-based RAID solutions were popular for their performance
benefits, they lacked the flexibility and portability of software-based alternatives. As CPUs
evolved and gained processing power, software-based RAID systems emerged as viable options.
However, tasks involving complex parity coding, essential for ensuring data redundancy, placed
a significant computational burden on CPUs, particularly in configurations with double and
triple parity. To confront this challenge, we proposed the integration of a GPU-based RAID
system into GPU4FS, building upon the work by Maucher [23].

Our core design concept revolves around a logical address space managed by the GPU4FS
file system, which allows for dynamic allocation of files and pages with specific RAID configu-
rations. This approach provides the flexibility to tailor performance and redundancy settings to
individual files and processes.

Central to our design was the exploitation of GPU’s parallel processing capabilities to
calculate parity information and handle write and read requests efficiently. Our goal was
to create a GPU-based RAID system that can compete in terms of write bandwidth with its
CPU-based counterparts while significantly reducing CPU utilization.

Across RAID-0, RAID-1, and RAID-5, our integrated system consistently achieved higher
write bandwidths than the best CPU-based RAID solutions on Optane while simultaneously
reducing the average CPU utilization by a factor of x13 to x21 depending on the RAID
level. Our tests showed that GPU4FS’s parity calculations introduced minimal computational
overhead, reaffirming the efficiency of our GPU-centric approach.

In conclusion, our work showcases the potential of a flexible GPU based RAID system
managed by a file system to meet the evolving demands of storage tasks. By harnessing the
computational power of GPUs, we have successfully designed an innovative alternative to
CPU-based RAID systems that can compete in terms of bandwidth while significantly reducing
the CPU usage.
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