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Abstract

Intel Optane Persistent Memory (PMem) is a recent non-volatile memory tech-

nology that provides higher integration density than current DRAM-based

memories. PMem oers traditional load/store semantics with byte address-

ability and may be used as additional main memory complementary to DDR4

modules. Access performance is, however, severely worse than with DDR4

memory to the point where CPU cores may become stalled for prolonged times

while waiting for memory operations to complete. Previous works have shown

that this behavior can negatively impact the runtime performance of unrelated

processes running concurrently on the same system.

Asynchronous copy ooading has been proposed as a mechanism to over-

come the performance implications of parallel accesses to PMem. However,

previous implementations based on Intel I/OAT have been unsuccessful as

I/OAT hardware is incapable of saturating Optane bandwidth.

In this thesis, we present the design of a FPGA-based PCIe accelerator

device for asynchronous copy ooading. To reduce the latency impact of

data transfers via the PCIe bus, we connect the PMem modules directly to the

FPGA instead of the CPU and design a custom MMU optimized specically

for typical PMem use cases. Based on SR-IOV, we implement a multiplexing

scheme that enables lock-free parallel command submission while maintaining

proper process isolation without requiring kernel mediation. We weave the

pieces together to oer userspace processes an interface that provides memcpy()

semantics with asynchronous completion.

We show that our design is capable of saturating PMem’s bandwidth while

signicantly reducing the CPU time spent for memory operations by up to

98.8 %. Regarding latency, we observe a slowdown by up to 100×.

Note: Thisworkmakes use of proprietary technology that was provided by Intel

Corporation under the terms of a non-disclosure agreement. The respective

passages are therefore censored in the public version of this document.
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Chapter 1

Introduction

The memory hierarchy of contemporary computers typically encompasses four

major components: registers, caches, main memory, and mass storage [17].

Caches and main memory are usually built using volatile SRAM and DRAM

cells, respectively, whereas hard disks (HDDs) and NAND ash-based solid

state drives (SSDs) are typically used for non-volatile mass storage. In recent

years, however, a lot of research has been done towards new memory cell

technologies and modied memory hierarchy designs. This research is not

only motivated by the every-increasing demands for performance and storage

space, but also by an issue known as the memory wall. Originally coined as a

term in 1995 by Wulf et al. [79], the memory wall describes the performance

implications that are to be expected when DRAM latency, bandwidth, and size

do not keep pace with the increase in processing power. Although the authors

feared that their “prediction of the memory wall is probably wrong,” they were

right in the sense that between 1980 and 2015, CPU performance has improved

by a factor of about 10,000, whereas DRAM latency has merely seen a 10×
improvement [17]. Similarly, regarding capacity, while DRAM-based memories

have achieved a 128× increase in the time from 1999 to 2017 [59], big data and
other current-era computing trends continue to cause an exponential increase

in the amount of data being processed [14]. Naturally, this creates a strong

demand for fast and large main memories.

Research has brought several ideas forward. For example, processing-in-
memory [15] and near-memory computing [74] have been proposed as novel

computing paradigms where processing hardware is placed either within mem-

ory modules or near to them to avoid having to move all data back and forth to

a central processing unit. Further, new non-volatile memory cell technologies

are currently being researched, e.g., STT-RAM, ReRAM, and PCRAM [19]. This

thesis revolves around a specic recent memory technology by Intel called

Optane. Despite Intel being secretive about the details of the 3D XPoint cell
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CHAPTER 1. INTRODUCTION

technology that powers Optane, it is commonly believed to be based upon

PCRAM [7]. In essence, PCRAM (Phase-Change Random Access Memory)

memory cells work by inducing heat into a material in order to make it switch

between amorphous and crystalline phases [69]. The electric resistance level of

the cell then changes depending on the phase. Multiple dierent crystallization

states are possible by adjusting the duration of heat exposure, and thereby,

a single PCRAM cell may store multiple bits of data. This property enables

one of the main benets of Optane: compared to current DRAM-based DDR4

memories, 3D XPoint features a 3.3× higher density [6].

Optane comes in two avors: Intel oers both SSDs based on Optane tech-

nology [35] as well as byte-addressable memory modules, known as DCPMMs

(Data Center Persistent Memory Modules) or simply PMem (Persistent Mem-

ory) [36]. We focus on the latter.

Looking at the memory hierarchy again, Optane PMem adds an interest-

ing twist: the mere existence of mass storage distinct from main memory is

currently necessitated by the fact that DRAM is volatile, and in addition, by

its comparably low integration density versus HDDs and SSDs. Novel byte-

addressable and non-volatile memory technologies such as Optane PMem have

the potential to bring fundamental change to the memory hierarchy that has

been mostly the same for several decades now. In its current form and given

the way it is used in practice, PMem may be looked at as an additional level

in the hierarchy: there is now both a volatile and a non-volatile main memory.

Naturally, a fundamental question arises from the perspective of operating

system designers and software engineers: how and when should we use this new
non-volatile main memory?

Currently, there is no simple answer. Intel’s marketing documents propose

using PMem for virtualization hosts or database systems together with DDR4

memory (to be used as a cache for PMem) and emphasize benets such as

potential cost savings and faster restart times [37]. Researchers have come

up with further ideas, e.g., specialized le systems such as NOVA [81], which

exploits the properties of hybrid main memory architectures to achieve both

high performance and strong consistency guarantees. However, a severely

limiting factor for the practical applicability of Optane PMem is its performance.

Yang et al. [82] have conducted an empirical study of PMem’s performance

characteristics and found that several of the assumptions that were used to

design non-volatile memory-based systems before PMem was commercially

available do not hold true for the nal product. First, severe write amplication

may occur for smaller writes as 3D XPoint uses a 256 B access granularity.

Second, write performance scales badlywithmulti-threading: bandwidth begins
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to drop as soon as more than two CPU cores perform parallel writes, even

when using only 256 B accesses to avoid write amplication.

Werling et al. [78] have shown the second issue to be of particular impor-

tance for le systems. If only a limited number of threads may concurrently

access the storage media in order to maintain performance, a le system would

need to make use of semaphores for write operations. However, as a large

amount of heterogeneous applications may use a le system at the same time,

high lock contention then arises as another problem that again hurts overall

performance.

They propose asynchronous copy ooading as a mechanism to solve the

performance drawbacks of parallel PMem access. The general idea is to store

all data that is to be persisted in fast DRAM rst, and to have another external

unit of hardware perform copies to PMem asynchronously. This approach is

suitable for le systems as they typically enforce consistency via other means

such as journaling [4] and do not necessarily require synchronous writes.

In this thesis, we aim to co-design specialized hardware and software (i.e.,

the operating system driver and user application interface) to implement an

FPGA-based PCI Express device for the task of asynchronous copy ooading

for PMem. We propose using our design as a platform for further research

regarding out-of-order processing, le system acceleration, and optimized cache

design for PMem.

In Chapter 2 we begin by introducing related work on the topic as well

as the technologies that form the foundation for our design. Afterwards, in

Chapter 3, we explore the design space and discuss possible options. Then, we

describe what choices we made and elaborate on our nal design. In Chapter 4,

we conduct an evaluation of our approach with extensive benchmarks and

discuss the results. Finally, we conclude our work in Chapter 5 with an outlook

towards further possibilities with future research on the topic.
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Chapter 2

Background

In this chapter, we want to take a deeper look at Optane PMem, the concept

of asynchronous copy ooading as well as previous implementations, and

the technologies we used for our design. Based on these fundamentals, we

then present our design of an FPGA-based accelerator for asynchronous copy

ooading in Chapter 3.

2.1 Optane Persistent Memory

Intel and Micron introduced their novel 3D XPoint memory cell technology

in 2015 [24] and Intel launched the rst SSDs based upon 3D XPoint in 2017

under the brand name Optane [27]. The Optane Persistent Memory (PMem) that

this thesis revolves around saw its general availability on the market about two

years later in 2019 [26]. So far, there are two generations of PMem and another

one to come, known as PMem 100, PMem 200, and PMem 300 [49]. Apart

from performance improvements and reduced power consumption, PMem 200

introduced a feature known as eADR, short for extended Asynchronous DRAM
Refresh [20]. PMem 100 already guarantees that all data that reaches the CPU’s

integrated memory controller will be persisted even in the event of a power

failure. With eADR, PMem 200 takes this a step further: it is guaranteed that all

data in the CPU’s caches will be persisted when an unexpected power failure

occurs. Platform hardware is required to provide enough residual charge to

the CPU to ensure that it can still ush data after the power source has failed.

The obvious implication is that application developers do not need to perform

explicit cache ushes anymore to ensure that data is persisted, which was

proven to be benecial for performance [70]. Other works have taken more

creative approaches to the possibilities enabled by eADR. For example, Zhang

et al. [84] have presented NBTree, a lock-free concurrent implementation of
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CHAPTER 2. BACKGROUND

B
+
trees that leverages eADR to ensure that all threads always read persistent

data without explicit synchronization. In July 2022, Intel announced that their

Optane business unit will be shut down due to high losses, however, they

claried that they still plan to release PMem 300 to the market [2]. We solely

used PMem 100 for this thesis.

PMem currently supports two dierent operating modes known asMemory
Mode and App Direct Mode [34]. In Memory Mode, the Optane memory is used

as the sole main memory and any DRAM-based DDR memory in the system

serves as an additional cache level. There are no strong persistence guarantees

in this mode, as newly written data may be held in the DRAM caches for

prolonged time and is then lost in case of a power failure. In App Direct Mode,

in contrast, PMem is exposed to the operating system as a separate memory

area distinct from all DRAM-based memory. Mixing both modes is also possible

in the sense that the memory modules can be partitioned to assign dierent

amounts of space to each mode.

Modern Linux versions feature the libnvdimm subsystem along with the

corresponding ndctl userspace tool to congure non-volatile memory modules

such as Optane PMem [64]. Via ndctl, it is possible to congure several names-

paces (i.e., partitions) that are then exposed as dierent device les in Linux’s

device le system. Two modes are available that behave as block devices with

traditional read()/write() semantics, known as raw and sector. For our pur-

poses, the DAX-based interfaces are more interesting: fsdax and devdax. Linux’s

DAX (direct access) infrastructure allows to bypass page caches when accessing

non-volatile memory [13]. The fsdax mode leverages this functionality to

allow processes to directly mmap() les in compatible le systems (e.g., ext4).

devdax provides a character device through which programs may directly read

and write raw data on the underlying device without a le system or other

intermediaries. The approach we implement in this thesis resembles devdax in

the sense that it also provides raw access to Optane memory. Implementations

of le systems and other use cases are out of scope for this thesis and remain

as future work. We use Optane PMem with a devdax namespace as comparison

baseline for the evaluation in Chapter 4.

Even before Optane PMem was commercially available, researchers have

put thought into possible applications and designs based on persistent memory

modules that were already looming on the horizon. They typically employed

software emulation [9] or treated DRAM as if it were persistent [60] to eval-

uate their ideas. However, actual tests using the nal product such as the

benchmarks conducted by Yang et al. [82] have found the real performance

characteristics of PMem “to be more complicated and nuanced” than what

was previously assumed. Using latency measurements and the hardware’s
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performance monitoring infrastructure, they have brought several unexpected

insights about Optane’s behavior to light.

First of all, they found that write latencies are typically about as long as

with DDR4 memory. Read accesses, however, are 2 to 3× slower than with

DDR4. Repeated writes to a small region eventually cause a latency spike up

to 50 µs which hints that there is likely an internal remapping mechanism at

play. Regarding bandwidth, a maximum of 6.6GB s
−1

may be achieved in the

case of reads with a single Dual Inline Memory Module (DIMM), whereas write

performance tops out at 2.3GB s
−1
. However, there is a caveat to the attainable

bandwidth in practical scenarios: accesses with a size below 256 B are slow

and may achieve only a fraction of the maximum bandwidth. This is caused

by PMem’s internal structure: although the DIMMs exhibit a byte-addressable

interface, the 3D XPoint cells are built in 256 B arrays and thus form a block

structure. Smaller write operations therefore cause write amplication: the
DIMM’s internal controller rst needs to read the rest of a 256 B block before

it writes it back again together with the new data. Finally, the achievable

bandwidth depends strongly on the number of threads that concurrently access

the Optane modules – higher concurrency generally results in smaller total

bandwidth. This very much contradicts the modern trend towards increased

parallelism with multi-core and many-core CPUs.

As Werling et al. [78] have shown, parallel accesses to PMem are in fact

hurtful to a system’s overall performance. Unlike with SSDs or HDDs, the

total CPU utilization rises about linearly with the number of concurrent writer

threads. The root cause for this issue is that the CPU’s pipelines begin to stall

when they have to wait for outstanding write operations to complete. In turn,

there is less CPU time available for other processes.

2.2 Asynchronous Copy Oloading
Based on the idea that not all memory operations are necessarily required to be

synchronous in some applications, Werling et al. [78] have proposed the concept

of asynchronous copy ooading to combat the CPU overhead induced by parallel

accesses to Optane Persistent Memory. They argue that the memory interface

based on load/store instructions “takes away control from the operating system”

in the sense that it cannot govern I/O scheduling anymore. In turn, threads

that are I/O-bound on PMem devices also become CPU-bound. Hence, I/O

stalls always lead to CPU stalls and reduce the practically usable CPU time.

Consequently, their approach fundamentally relies on taking back control over

I/O to allow the system to make progress even while operations on PMem

are pending. Their idea is to move the eort required to perform copies from
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CHAPTER 2. BACKGROUND

the CPU to periphery hardware that executes them asynchronously in the

background in order to lift the burden of stalling on memory instructions from

the cores. To this end, they propose to perform accounting to measure the

overall bandwidth consumption and automatically switch from synchronous

operations to asynchronous ones as soon as the available bandwidth is saturated

to proactively prevent stalls. Through this concept, they aim to preserve

minimal latencies as long as possible to combine the best of both worlds.

Several implementations of asynchronous copy ooading for PMem have

been created so far. For one, Werling et al. created a prototype that simply

isolates all copy operations on a single CPU core to show that the approach is

generally capable of reducing the overall CPU load. A rst implementation that

completely moved the copy tasks towards external hardware was built using

Intel’s I/O Acceleration Technology (I/OAT) [78]. Originally designed to reduce

the CPU overhead for processing network packets, I/OAT essentially provides

a mechanism to asynchronously copy data between the system memory and a

periphery device (e.g., a network interface controller) [21]. The implementation

simply leveraged I/OAT hardware to asynchronouslymove data betweenDRAM

and PMem. However, the approach was unsuccessful because I/OAT was

unable to saturate PMem’s bandwidth: write operations were capped at about

500MiB s
−1
. Given that more than half of the possible bandwidth is lost, I/OAT

was deemed unsuited as a driver for asynchronous copy ooading.

Maucher [58] presented GPU4FS, an implementation of asynchronous copy

ooading that employs graphics processors. They went a step further and

built a le system that runs on the GPU via compute shaders with the goal of

alleviating the overhead induced by le system operations in the operating sys-

tem kernel. In addition to simple memset() and memcpy() operations, GPU4FS

allows submitting le system commands through ring buers that are then

processed asynchronously on the GPU. Although they are able to saturate the

Optane memory’s bandwidth to about 80 % with an AMD Radeon RX 6600 XT

graphics processor connected via a PCIe 3.0 x8 link, latency is a severe issue

with their approach: they experience delays of >1ms for operations.

As we will discuss in Chapter 3, our FPGA-based implementation solely

supports asynchronous accesses. However, we also provide software-based

pseudo-synchronous access modes that rely on busy waiting. We leave proper

support for synchronous accesses that allows automatic switching between

synchronicity modes as described above as future work.
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2.3. PCI EXPRESS

CPU

Root 
Complex

Periphery 
Device

Endpoint

Physical Layer

Data Link Layer

Transaction Layer

Figure 2.1: Exemplary PCI Express link with two lanes and no bridges between

the root complex and the endpoint. Three layers make up the PCIe implemen-

tation stack: the Transaction Layer, the Data Link Layer, and the Physical Layer.

2.3 PCI Express

PCI Express (PCIe), short for Peripheral Component Interconnect Express, was
introduced in 2003 as a novel bus for periphery hardware to succeed previously

common interfaces such as PCI and AGP [63]. The latest version, PCIe 6.0, was

nalized in January 2022 [83]. PCIe was designed with the goal to provide low

cost, PCI compatibility on the software level, low latency, and high bandwidth

all while covering dierent market segments from small embedded devices up

to professional server systems [62, Section 1.1]. Today, it is commonly used for

all kinds of periphery devices in a computer system, e.g., graphics processors,

network adapters, SSDs, USB controllers, or FPGAs [17]. We introduce PCIe

here as the FPGA-based design we implement in Chapter 3 interfaces with the

base system via PCIe 3.0.

A single PCIe link between two PCIe components consists of one or more

lanes, where each lane contains two pairs of dierential signal wires for receiv-

ing and transmitting data [62, Chapter 1]. With the current PCIe 6.0 standard,

a single lane can transmit 64Gbit s
−1

in each direction [83], whereas the older

PCIe 3.0 that we use allows for 8Gbit s
−1

per lane and direction. In the simplest

form, a link is established directly between the root complex and an endpoint
device. The root complex interfaces with the CPU, and endpoints are the periph-
ery devices that are to be connected with the system. Additionally, one or more

bridges may exist on the path between the root complex and an endpoint. In

modern x86 systems, the root complex is typically embedded within the CPU.

An exemplary PCIe x2 link is depicted in Figure 2.1.

The PCIe interface is subdivided into three layers, namely the Physical
Layer (PHY), the Data Link Layer (DLL), and the Transaction Layer (TL) [62,
Section 1.5]. The PHY denes the electrical interface and performs conversion

between the parallel device-side and the serial bus-side interfaces. The DLL

is responsible for maintaining integrity and sequential ordering of data pack-
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CHAPTER 2. BACKGROUND

ets, and therefore provides error detection and correction as well as sequence

numbers and performs packet retransmission, if necessary. Hence, it fullls

a similar purpose as the Transmission Control Protocol (TCP) in computer net-

works. Finally, the TL is where application data is transmitted in the form of

Transaction Layer Packets (TLPs). TLPs can be divided into four categories [62,

Chapter 2]:

• Memory transactions – e.g., MWr and MRd to perform memory-mapped

writes and reads. These may either access system memory or an end-

point’s Base Address Register (BAR) space. BARs are, in essence, memory-

mapped areas that are provided by an endpoint.

• I/O transactions – e.g., IOWr and IORd to perform writes and reads in I/O

space. These exist primarily for backwards compatibility with the old

PCI standard.

• Conguration transactions – e.g., CfgWr0 and CfgRd0 to write and read

Type 0 Conguration Space.

• Message transactions – i.e., MsgD and Msg for messages with or without

data, respectively. In addition to vendor-specic messages, PCIe denes

a set of standard messages, e.g., for power management, error signaling,

or time measurement.

Some transactions, e.g., MWr, are posted, i.e., they do not require a subsequent

response or completion signaling. For non-posted transactions, the submitting

PCIe device expects a response via Cpl (completion without data) or CplD

(completion with data) TLPs.

Among PCIe’s features is Single Root I/O Virtualization (SR-IOV) [62, Chap-

ter 9], which enables multiplexing PCIe endpoint devices through multiple

functions. The device is then represented as a hierarchy with a physical function
at the top and one or more virtual functions (VFs). Each VF may provide its

own set of BARs and is distinctly addressable on the bus. SR-IOV therefore pro-

vides a bus-level isolation mechanism that allows to eciently virtualize PCIe

devices. A hypervisor may then allocate virtual functions to virtual machines,

thereby allowing them to make use of accelerator hardware without requiring

mediation from the hypervisor at runtime. As we show in Chapter 3, we make

use of SR-IOV to multiplex our design for process-level address space isolation.

Compute Express Link (CXL) has evolved in the recent years as a new

interconnect standard specically for professional use cases [10]. It reuses

PCIe’s PHY, but denes its own protocols in the upper layers, namely CXL.io

for PCIe-style device management and register access, CXL.cache for system

12
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memory access, and CXL.mem for device memory access. In contrast to PCIe,

CXL aims to provide lower latencies and full cache coherency specically for

memory operations in both directions. The rst CXL-capable x86 CPUs are

expected to arrive towards the end of 2022 with AMD’s Genoa generation [1].

Regarding endpoint devices, Samsung has announced a CXL-based memory

expander with DDR5 memory [73]. Intel Agilex FPGAs with CXL support

are already available [30]. Early research works by Jung [51] have further

demonstrated the design of an SSD with a CXL interface. We consider it an

interesting endeavour for the future to explore a CXL-based implementation of

our design.

2.4 Intel Avalon
The Avalon standard is a set of interface specications designed by Intel for

transporting data with single-ended digital signaling in Intel FPGAs [22]. We

introduce it here since all data buses in our design are based on Avalon as we

will show in Chapter 3.

Avalon denes a total of seven interfaces, most of which are rather trivial,

e.g., for clock signals. For data buses, there are two important ones: Avalon
Streaming (Avalon-ST) and Avalon Memory Mapped (Avalon-MM). Avalon-ST

is solely designed for unidirectional data ow, whereas Avalon-MM provides

memory-style semantics with bidirectional communication between a host and
one or more agents and addressing for read and write operations. As we only

used Avalon-MM, we give an overview of its most important signals here:

• address is set by a host to communicate an address. Avalon addresses

may either represent symbols (e.g., bytes) or words. The size of a word
equals the number of symbols transmitted in a single clock cycle. In case

multiple agents are connected to a single host, an address map is used

to assign address ranges to the dierent agents. The mapping is then

resolved by a router on the bus.

• read is asserted to request data from an agent.

• write is asserted to transmit data to an agent. Note that, as there is only

one address channel, only either a read or a write operation may be

signaled in a single clock cycle.

• writedata transmits the data for a write operation.

• readdata transmits the data returned by a read operation.

13
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• readdatavalid signals that the response of a read operation is ready and

signaled via readdata.

• byteenable contains a bit for each symbol in aword and is used to activate

the respective symbol lanes on the writedata channel or to request the

respective symbols in a read operation.

• waitrequest is asserted by an agent to signal that it is not ready to receive

requests. Wait requests generally aect both read and write operations –

Avalon-MM does not allow using dierent signals for these.

• burstcount is used to signal burst transfers. Avalon-MM primarily sup-

ports incremental bursts: the starting address is transmitted in the rst

cycle and the agent is expected to calculate the following addresses itself

in the next cycles. The burstcount signal denes the length of a burst in

clock cycles. Line-wrapped bursts are also available, albeit we did not

use them. These bursts start with an unaligned access within a line and

wrap back around to the line’s start address as soon as they reach the

next line’s border.

• response may be used by an agent to signal success or failure for an

operation.

Avalon-MM is a rather simple bus interface – it forces in-order responses, does

not feature bus-level power management capabilities, and only has a single

address channel. Other on-die buses, e.g., AXI4 [3], are much more capable,

however, Avalon-MM is enough for many purposes in the FPGA space.
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Chapter 3

Design

In this chapter, we get to the heart of this thesis: the FPGA-based design

we implemented for asynchronous copy ooading. We begin by discussing

the requirements that need to be fullled for the approach to be successful.

Afterwards, we explore the design space and take a look at the various options

we have for our implementation. Based on these ndings, we then present the

implementation in full detail.

3.1 Design Space Considerations
We identify three major goals that we consider mandatory for a successful

implementation of asynchronous copy ooading:

ick Submission The idea behind asynchronous copy ooading arises

from the overhead and wasted CPU time induced by wait cycles spent in the

cores while write operations are pending. If submitting asynchronous copy

commands takes equally long or even longer, nothing is gained. It is therefore

imperative to make the submission process as quick as possible to be able to

free up previously wasted CPU time for other purposes.

Low Latency Optane PMem is a non-volatilemain memory. Given that main

memory distinguishes itself from mass memory by the fact that it is actively

used by threads running on the CPU as runtime storage, it is necessary to

minimize access latencies asmuch as possible. This holds true nonetheless when

an asynchronous interface is oered: even if the requirement of data becoming

available immediately within the program ow is lifted, processes are still likely

to require asynchronously requested data soon (from their perspective). Further,

as described in Section 2.2, it may be worthwhile to allow mixing synchronous
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and asynchronous operations in the future. In this case, minimizing latencies is

an even more crucial goal in order to maintain CPU throughput. We therefore

aim to create an implementation that does not rely on the kernel at runtime,

but rather allows applications to directly interact with our hardware without

an intermediary.

Bandwidth Saturation Saturating PMem in terms of its write bandwidth is

dicult as we previously described in Section 2.1. On the one hand, a single

thread running on a single CPU core is not enough to achieve the maximum pos-

sible bandwidth. On the other hand, parallel workloads with more than three

threads quickly cause the total bandwidth to drop below the maximum. This

leaves a very narrow window of two or three cores that may concurrently ac-

cess PMem without hurting bandwidth in traditional setups with synchronous

access. In contrast, we aim to design our hardware with the goal of being able

to fully saturate PMem’s bandwidth in as many scenarios as possible, including

both single-threaded and highly multi-threaded workloads.

In the following we want to discuss certain aspects of the design that play a

central role for achieving the three goals listed above as well as a a few side

objectives.

3.1.1 Operations

First of all, it is important to decide onwhich operations, i.e., memory primitives,

our implementation shall provide to user applications. As our primary goal is to

implement asynchronous copy ooading, an obvious requirement is to have a

copy operation, e.g., memcpy(). Notably, an implementation of memcpy() would

be semantically dierent in our case from common memcpy() implementations

in the sense that it is asynchronous. Unlike traditional memcpy(), it would not

perform an actual copy operation, but submit a copy command to the FPGA

and return immediately without waiting for the copy to be completed. For

the scope of this thesis, an asynchronous memcpy() that implements copies

between system memory and PMem is sucient. However, there are a few

more operations that may be desirable to have for real-world use cases:

memmove() memmove() only subtly diers from memcpy() in the sense that it al-

lows copies within overlapping memory regions, which would otherwise result

in undened behavior when done with memcpy(). However, if our memcpy()

implementation only allows copies between PMem and system memory and
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not within PMem, there is no dierence: the address spaces are disjoint and

may not overlap in the rst place.

If we are to implement copy operations within PMem (i.e., both source and

destination are located in PMem), a correct, albeit inecient implementation

of memmove() could use two subsequent memcpy() operations that use system

memory as scratch space.
1
A more ecient design would, of course, require an

FPGA-side implementation of memmove().

memset() memset() overrides a memory area with a specied pattern. Similar

to memmove(), a software-side implementation is possible atop the memcpy()

primitive by performing the memset() using scratch space in system memory.

However, this similarly introduces signicant latency and bandwidth overheads

compared to an implementation with full hardware acceleration.

Synchronous Operations Despite asynchronous copy ooading being the

high-level idea behind this thesis, we cannot ignore the potential need for

synchronous variants of the operations we provide. After all, main memory is

generally used in a synchronous manner in software applications. A simple im-

plementation could be to wait until completion is signaled for an asynchronous

operation. This can easily be done via busy waiting (i.e., a loop that only

terminates when the completion signal is set by hardware).

Several optimizations are possible: rst, we may reduce the implications

that busy waiting brings along in terms of energy consumption by leveraging

the new UMWAIT instruction [29] that is currently implemented in Intel Tremont,
Alder Lake, and Sapphire Rapids CPUs [31]. UMWAIT is similar to the existing

MWAIT instruction with the main dierence that UMWAIT can be used by userspace

applications (i.e., program code executed in x86 ring 3). In combination with

UMONITOR, it is possible to congure an address that is subsequently monitored

for store operations. UMWAIT exits when the previously congured address

is written to or when a timeout deadline is reached. The processor core is

put into an energy-ecient sleep state until then. However, unlike its kernel

counterpart MWAIT, UMWAIT only allows shallow sleep states and therefore may

still cause comparably high energy consumption when used for prolonged

waits.

Depending on the latency of a single operation, it may make sense to

schedule another thread during the wait time. In the absence of a hybrid

threading model such as Go’s goroutines [76], context switches to other threads
are rather costly as they require switching to kernel mode rst. We can leverage

1
Note that the very same design could be used for a software-based memcpy() within PMem

without support from the hardware side: simply use system memory as scratch space.
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established techniques from the power management area [66] to make an online

decision for how long we should wait in userspace before moving to another

thread via the kernel: simply wait for half the time that a full context switch

(i.e., the time until execution is fully transferred to another thread) is estimated

to take, then perform the context switch. This approach has a competitive

ratio ≤ 2 versus an optimal (oine) algorithm that knows the completion

latency beforehand.
2
Note that a second context switch originates from the

fact that it would be necessary to switch back to the thread that has initiated

the synchronous operation. However, such an approach is only sensible if the

latency lies in a range where it is suciently likely to stay below the time for a

context switch.

Of course, instead of implementing synchronous operations atop asyn-

chronous ones, another possibility is to provide them directly via traditional

load and store instructions, e.g., mov. This, however, creates a requirement that

highly depends on the employed bus interface and other design aspects: the

PMem address space must be directly embedded into a process’s virtual address

space.

Finally, if synchronous operations can be executed with a reasonable latency,

it may be feasible to conduct a hybrid approach that automatically switches

between synchronous and asynchronous data movements depending on the

current overall bandwidth utilization. This follows Werling et al.’s [78] original

proposal for asynchronous copy ooading as we described in Section 2.2.

Atomics Atomic operations are a crucial tool to establish consistency and

avoid race conditions in parallel applications. While it is generally possible to

implement them in an asynchronous fashion as well, there is a strong case to

have synchronous atomics as program behavior is often immediately dependent

on the result of an atomic operation (e.g., in the case of a compare-and-swap
commonly used to implement spinlocks).

Further, unlike the operations in the previous paragraphs, it is not possible to

build atomics based on asynchronous copy primitives as that would not provide

the required atomicity. Atomics therefore absolutely require a hardware-based

implementation.

3.1.2 PMem Location
Implementing asynchronous copy ooading using FPGAs enables a new degree

of freedom regarding the placement of PMem in the system’s topology: we

may attach the memory modules directly to the FPGA and instantiate the

2
A more generalized form of this problem is also known as the Ski Rental Problem [57].
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head

tail

Figure 3.1: A ring buer with enough space for eight elements. The three

elements in the space between the head and tail pointers are currently occupied.

A new element would be inserted at the position denoted by the tail pointer.

corresponding DDR-T controller there. We consider this a major advantage

over previous approaches based on GPUs (as presented in Section 2.2). With

a GPU-based implementation, the PMem modules are necessarily connected

to the CPU’s memory controllers, thereby incurring a roundtrip for each copy

operation – data needs to be moved to the GPU after being read from DRAM

or PMem, and then again from the GPU to the destination memory. This is

obviously bad for latency as each byte of data needs to travel over the bus

twice. In our quest to minimize latency, we therefore strongly make the case

for having the Optane memory connected to the FPGA instead of the CPU. In

the following subsections we generally assume this as a foundational design

choice.

3.1.3 Command Submission

Asynchronous operations naturally require a mechanism to submit and queue

commands. There are several options when it comes to how this may be

implemented.

First of all, it is important to decide on the data structure that shall be

used to buer pending commands. Ring buers (also known as circular arrays)

are a common choice here [71]. Figure 3.1 shows an illustration of a small

ring buer with space for eight elements. In essence, a ring buer is an array

with a xed size that wraps around to the beginning when the last position

is reached, hence it forms a ring. Producers insert elements (i.e., commands

in our case) by writing to the position that is denoted by a tail pointer, i.e.,
the position of the last element in the buer. Consumers, on the other side,

can fetch elements starting at the current head pointer (that points to the rst
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element in the buer) up until the tail pointer is reached. The head and tail

pointers are increased when elements are removed and added, respectively.

When the tail pointer reaches the head pointer, the buer is full. Depending on

the implementation, present data may be overwritten or the producers need to

stall until space is available again. Due to its properties with𝑂 (1) insertion and

removal and a xed size, we deem ring buers an appropriate choice for our use

case. For correctness, we cannot allow pending operations in the ring buer to

be overwritten and therefore require that command submission is stalled as

soon as the buer is full. In turn, it is imperative that the ring buer is large

enough that stalls occur infrequently. An appropriate size may be determined

via benchmarks and remains as an implementation detail.

Regarding placement, there are essentially two options where command

buers may be located: either in main memory or in FPGA-side memory. In the

latter case, this would also imply that the FPGA has to manage the buers itself,

whereas software only needs a mechanism to send commands to the FPGA

(e.g., via memory-mapped I/O (MMIO)). However, this may prove advantageous

regarding latency – if buers are located in main memory, several steps are

required until hardware can start executing a command: rst, the command

descriptor needs to be stored in main memory. Then, hardware would need

to see the new command. Another design choice arises at this point: we may

either send explicit notications to a designated bell register (again, via MMIO),

or have the hardware continuously poll the system memory for new commands.

In any case, the command would nally need to be transmitted to the FPGA.

It seems obvious that storing command buers on the FPGA side is the most

ecient solution in terms of latency.

However, buer storage capacities at the FPGA side are limited: while

certain on-die memory in the form of SRAMs may exist, it may quickly run full

in high load situations. Depending on the amount of buers as well as their

size, it may become necessary to involve additional memory based on DRAM

or similar. This induces a certain amount of complexity for device-managed

command buers. Further, the overhead described above regarding latency

for host-managed ring buers can be hidden by having the FPGA prefetch

commands while others are still executing. It therefore seems doubtful whether

the latency advantages of managing command buers on the FPGA itself is

benecial enough to outweigh the implementation complexity. We may explore

a design with FPGA-side buers in the future. For now, we have chosen to

manager buers in system memory as we will show in Section 3.2.1.

The next question that arises is the amount of buers necessary. We may

have one buer per operation type, or alternatively, one buer for all operations.

This choice mainly depends on whether ordering is required with respect to
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operations with dierent types. If order of execution is important, there is no

point in having dierent buers belonging to the same execution thread: a num-

bering mechanism or similar would be required to establish the order between

the buers. We can look at two real-world examples for inspiration here: rst,

the NVMe protocol that is commonly used for communication with modern

PCIe-based SSDs uses multiple parallel command queues with no intertwined

ordering [61]. Second, in contrast, programs designed for common processors

are naturally sequential within a single execution thread. Although modern

processors often execute instructions out-of-order, semantic consistency is

still guaranteed: programs behave as if all instructions were executed in-order,

including memory instructions [17]. This is a rather fundamental decision

regarding the purpose of our design: we do not aim to build another SSD, but

rather something that fullls a similar use case as main memory, just with an

asynchronous interface. For this reason, we propose having a single ordered

buer for all kinds of operations. As we will show later in Section 3.2, however,

this does not reect the current implementation. Unied command buers

therefore remain as future work.

Nonetheless, there is a dierent reason to have multiple buers: concur-

rency among threads. There is inherently no order between memory operations

executed by threads running in parallel, except where explicitly enforced via

synchronization mechanisms. Similarly, no dependencies between threads

should exist in our model and synchronization-free concurrent command sub-

mission from parallel threads is desirable. We therefore argue that there should

be one command buer per thread that makes use of PMem.

3.1.4 Completion Signaling
In the previous subsection we discussed how commands may be submitted.

After an asynchronous command has completed, it is necessary to inform the

submitting thread. Notably, there may be multiple points in the execution

process where it makes sense to notify the software. In the case of a copy

operation that reads from PMem (i.e., writes to system memory), it is simple:

software may expect to be notied when data is available in system memory

to be used. However, when we swap source and destination (i.e., copy from

system memory to PMem), there are two points that may be interesting for a

user application: rst, when the data to copy has been fully read from system

memory, and second, when the data was successfully written to the PMem

device. Both are semantically relevant: while the former allows software to free

the buer in system memory, the latter is important to establish consistency

guarantees. Only the latter is strictly necessary.

The options for how completion signaling may be implemented depend
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strongly on where the buers are placed (as discussed in Section 3.1.3). If

buers are placed in system memory, signaling may simply be done by setting

a bit in the command descriptor or by advancing the ring buer’s head pointer

(in the case of one single completion signal per operation). Things are more

complicated if we let the FPGA manage all command buers, as there is no

predestined location in systemmemory belonging to each command. Interrupts

seem unsuited due to their large overhead, especially in situations with many

small operations. A simple solution would be to introduce a monotonic counter

that provides a unique identier for each operation. The FPGA may then

signal command completion by writing the last completed command’s ID to a

precongured location in system memory.

3.1.5 Bus Interface

In Chapter 2, we introduced the PCI Express bus. PCIe is the traditional choice

for periphery hardware of all kinds with high bandwidth demands, e.g., graphics

cards, solid state drives, or as in our case, FPGA-based accelerators.

For a PCIe-based implementation, there are several relevant variables within

the design space, which inuence achievable results regarding bandwidth,

latency, and others. In the following we will iterate over them and discuss

sensible choices.

SR-IOV As described in Section 2.3, SR-IOV is a PCIe feature that allows

multiplexing a single PCIe device (i.e., a single physical function) via multi-

ple virtual functions. Although originally designed for system virtualization

purposes, using SR-IOV is an interesting option for our use case, too. For

multi-threaded workloads that require isolation on the system level (e.g., due to

threads being located in dierent processes or virtual machines), it is necessary

to reect that isolation on the hardware side. While commercial PCIe hard-

ware such as graphics cards often provides multiplexing via concurrent virtual

address spaces, they usually do not employ SR-IOV to create an immediate

binding of address spaces at the bus level [52]. This has a negative implication

on the system side: as several distinct virtual address spaces share the very

same physical or virtual function, user applications may not be given direct

control over a function without breaking isolation. In turn, it becomes neces-

sary to involve a privileged instance (typically, the operating system kernel)

for runtime operations.

We therefore propose to go a step further by not only viewing SR-IOV as

a tool for ecient system virtualization, but also as a mechanism for process

isolation. By creating a 1:1 mapping between virtual functions and device-side
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virtual address spaces we can allow the operating system to safely hand over

direct control over a virtual function to the process that owns the corresponding

virtual address space. Given that PCIe allows a single physical function to have

up to 65535 virtual functions [62, Section 9.3.3], we believe that is enough to

satisfy the amount of concurrent threads running in a typical system, especially

given that only a minority of these threads is likely to make use of Optane

PMem.

Such an SR-IOV-based isolation mechanism may, however, only provide

the necessary security guarantees if an IOMMU is present in the system that

is capable of isolating I/O address spaces with per-VF granularity. Otherwise,

handing direct control over VFs to user processes leads to situations where

untrusted applications gain the power to read the memory of other applications

or even the entire physical memory.

BARs PCIe allows a single physical function that employs Type 0 Congura-
tion Space to have up to six 32 bit or up to three 64 bit base address registers

(BARs) [62, Section 7.5.1.2]. The same amounts of BARs can be separately

congured for virtual functions in the SR-IOV Extended Capability [62, Sec-

tion 9.3.3].
3

Some BAR space needs to be reserved for conguration purposes. All

conguration that requires elevated privileges (e.g., address space setup) may

be handled via a BAR on the physical function. Depending on how the command

submission process is implemented (i.e., whether command queues are stored

in system memory or handled at the device side) it may be necessary to reserve

a BAR in each virtual function in order to serve as bell register and possibly

for command queue conguration.

However, if buering commands in system memory is to be avoided (as

described as an option in Section 3.1.3), it is possible to use virtual function

BARs as command submission ports. The command descriptor may then be

encoded via the BAR address (e.g., it may contain a virtual address in the device-

side virtual address space), the data submitted when writing to the BAR, and

possibly also via the BAR number. Notably, as the MWr TLPs that PCIe employs

for writing to device BARs are posted [62, Section 2.4] (i.e., they do not require

subsequent completion signaling), it can be expected that no greater delays or

stalls are incurred on the CPU side than when writing to DRAM-based system

memory.

3
On a side note, the Resizable BAR feature in PCIe explicitly prohibits resizing a 32 bit BAR

to a 64 bit one [62, Section 7.8.6]. Otherwise, it would be possible to setup six 64 bit BARs this

way.
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TLP Size As we described in Section 2.3, the Transaction Layer is the upper-
most level in the PCIe protocol stack where application data is transmitted.

Depending on the endpoint’s as well as the root complex’s capabilities, a sin-

gle transaction layer packet (TLP) may transport a payload with a maximum

size between 128 B and 4096 B [62, Section 7.5.3.4]. According to the PCI-SIG,

common implementations support a maximum payload size of either 256 B or

512 B [12]. Due to the reduced overhead for header data, higher payload sizes

are generally favorable in terms of bandwidth. However, there is a tradeo:

larger payloads also incur higher latency, and depending on the use case, it

may be benecial to have partial transfers arrive early instead of optimizing the

overall turnaround time of a single transfer. This is especially true given that a

single PMem DIMM may achieve a read bandwidth of less than 7GB s
−1

[82],

whereas even the rather old PCIe 3.0 delivers a bandwidth of about 16GB s
−1

via a x16 link [11]. In turn, it is unnecessary for our goals to fully saturate

the possible PCIe link bandwidth. For a PCIe-based implementation, it may

therefore be worthwhile to conduct benchmarks using dierent TLP sizes.

Port Bifurcation A single PCI Express link consists of up to 32 lanes [62,

Section 1.2]. In general, the link width equals the port width. However, it is

possible to bifurcate a port into several smaller links, e.g., a x16 port may be

split into four x4 links with distinct physical functions on each link. Using

bifurcation, it may be possible to split the total available bandwidth across

applications in a coarse-grained but simple manner in order to achieve better

fairness (i.e., equal distribution of bandwidth across applications) or quality of

service (QoS) guarantees for specic applications. The need for a mechanism

that enables process isolation on a bandwidth level is underlined by the mere

existence of Intel’sMemory Bandwidth Allocation (MBA) [18] technology that is

part of a larger set of resource distribution strategies in their current processors

known as Resource Director Technology (RDT) [40]. Previous work by Xiang

et al. [80] has shown that clever use of MBA can be benecial for overall

system performance. We therefore deem it worthwhile to explore potential

performance isolation mechanisms such as bifurcation in the future.

3.1.6 Memory Management
Based on the design choice to connect the Optane memory directly to the FPGA

instead of the CPU (as described in Section 3.1.2), another new freedom opens

up in the design space: we are not bound to the CPU’s address translation

mechanisms anymore and may freely design a memory management unit

(MMU) specically tailored to our needs. Modern 64 bit x86 CPUs employ a

page table hierarchy with four stages for virtual address translation with a
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default page size of 4 KiB [29]. 2MiB and 1GiB huge pages with 3-level and

2-level translations, respectively, are available too.

Regarding Optane PMem, we make two observations that inuence our

proposed virtual memory architecture:

1. Optane DIMMs are sold in sizes between 128GiB and 512GiB [37]. In

contrast, DDR4 species DIMMs with a maximum size of 64GiB [67].

2. As explained in Section 2.1, one of the currently provided ways of inter-

acting with PMem is via a device le, through which applications can

explicitly request a share of the available Optane memory. With such

an interface, only few special applications in a system, e.g., databases,

typically make use of PMem.

We therefore argue that there is no strong benet to having ne-granular

pages as internal fragmentation is less of an issue with large memories and few

user applications. Instead, it seems favorable to prioritize address translation

latency over allocation granularity. For minimal latency it is desirable to have

a translation mechanism that is as simple as possible.

In consequence, we propose using single-level page tables. The translation

process is extremely simple in this case: the upper bits of a virtual address are

simply exchanged with the bits in the page table entry to calculate the physical

address. The corresponding entry can simply be determined by using the very

same bits from the virtual address as an index into the page table. In contrast,

even segmentation would involve more complexity as it requires an arithmetic

addition. Replacing the bits in the address, however, is very simple to realize in

digital circuitry via trivial wiring.

To further reduce latency, it is also desirable to have the page tables stored

in on-die memory on the FPGA. In consequence, an implementation should

use a page size that is large enough that a sensible amount of page tables (for

multiple virtual address spaces) can be held in on-die memory, but also as small

as possible.

3.1.7 Command Processing Order
Performing memory operations in an asynchronous fashion opens up the pos-

sibility to execute them out-of-order with a large leeway regarding latency. As

we described in Section 2.1, previous works have shown that the achievable

bandwidth of Optane PMem highly depends on the access patterns. Based

on a successful asynchronous memory implementation, we may explore the

design of out-of-order processing algorithms in future work. We hope that
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such a design can improve the average throughput of Optane memory modules

without compromising the proper functioning and performance of userspace

software when memory is accessed asynchronously. Out-of-order processing

further introduces an interesting challenge regarding the support of mixed syn-

chronous and asynchronous operations that we described as a future extension

in Section 3.1.1. Synchronous operations would certainly need to be prioritized

as they have stricter latency requirements. Ideally, we nd a way to perform op-

eration reordering that includes both synchronous and asynchronous accesses

and provides the necessary quality-of-service guarantees for synchronous ones.

However, we do not dive deeper into this topic in this thesis, but rather leave

the idea as an interesting option for future research.

3.2 Implementation
In the previous section we have discussed the possibilities that the design space

for FPGA-based asynchronous copy ooading has to oer and have established

several fundamental choices for an optimal design. We will now present our

actual implementation in full detail in a bottom-up approach: we start at the

hardware (i.e., FPGA) side and move further upwards via the kernel driver

towards userspace.

3.2.1 Hardware: DDR4 Variant
We based our design on an FPGA from the Intel Stratix 10 DX series [43], more

specically the 1SD280PT2F55E1VG variant that is found on Intel’s Stratix 10 DX

Development Kit [44]. The FPGA was primarily chosen for its Optane support.

In addition, one or more P-Tiles provide PCIe 4.0 hard IP with 16 lanes each

and support for SR-IOV.

The 1SD280PT2F55E1VG specically features four P-Tiles (i.e., a total of 64

PCIe lanes) and 2.8M logic elements [33] – more than enough for our needs.

It is further rated at the highest possible speed grade, allowing for a clock

tree speed of up to 1GHz [42]. The development kit is constructed as a PCIe

add-in card (AIC) where 16 lanes of a single P-Tile are exposed via the AIC’s

gold ngers, making it suitable for easy integration into o-the-shelf PC and

server systems. A secondary FPGA, namely an Intel MAX 10, is present on

the board that serves as board controller and may be used to control periphery

circuitry on the development kit such as the clock generators. Some of the

Stratix 10 FPGA’s memory I/O banks are wired to on-board DDR4 memory,

whereas the others are connected to two DIMM slots that may hold either

DDR4 or Optane PMem modules. This theoretically allows us to implement a
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Figure 3.2: Hardware design overview with all instantiated IP blocks and the

most important data signals, as well as clocks and reset signals. Core Logic
denotes our own IP.

dual-channel design, however, as we will explain later in this subsection, we

currently only support single-channel memory. Dual-channel operation with

memory interleaving remains as future work.

Regarding embedded memory, all Stratix 10 DX devices contain Memory
Logic Array Blocks (MLABs) as well as M20ks. MLABs repurpose the logic

elements to provide 640 bit storage capacity each, whereas M20ks are 20 kbit

SRAMs interleaved within the FPGA logic fabric. Some Stratix 10 DX variants

additionally feature one or more large 47.25Mbit eSRAM blocks or several

gigabytes of on-package HBM2 memory. However, neither of those are present

in the 1SD280PT2F55E1VG.

3.2.1.1 Overview

Figure 3.2 depicts a coarse overview over the design we built on the Stratix 10

FPGA. The design was created and compiled using Intel Quartus Prime Pro 22.2

and all included intellectual property (IP) blocks (except, of course, our own

logic) are provided by Intel as part of the Quartus tool suite. In the following

we will iterate over all IP and describe their purpose in the design, and where

important, their precise conguration. Note that we begin by describing a

DDR4-only variant. A version with support for DDR-T (i.e., Optane) with the

resulting dierences is shown later in Section 3.2.2.
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3.2.1.2 Multi-Channel DMA P-Tile Intel FPGA IP for PCI Express

The implementation is heavily inuenced by the DMA engine we are using,

namelyMulti-Channel DMA P-Tile Intel FPGA IP for PCI Express (MCDMA) [48].

In short, MCDMA provides software-controlled, parallel data movement be-

tween system memory and the FPGA in both directions. It fully encapsulates

the PCI Express P-Tile and handles all required bus conguration. In this regard,

all PCIe signals are congured to be routed towards the P-Tile via the MCDMA

IP. This includes the 100MHz PCIe reference clock signal that the development

kit board buers via a Renesas 9ZML1252EKILF clock buering IC as well as the

dierential I/O signals for each lane that are wired directly from the board’s

gold ngers to the FPGA [50]. We congured the P-Tile to operate in PCIe 3.0

mode with 16 lanes. We may upgrade to PCIe 4.0 in the future if performance

demands justify it. In PCIe 3.0 x16 mode, the IP uses a 512 bit-wide interface

with a 250MHz clock for all data signals. Notably, we use this clock signal to

drive our entire core logic. For device identication, we congured the PCIe

vendor ID to 0x3345 and the device IDs to 0x1 (PF) and 0x2 (VFs).

Regarding data transmission to user logic, MCDMA essentially provides

three buses based on the Avalon-MM interface standard that we described in

Section 2.4. The H2D (host-to-device) interface transmits data that was fetched

from system memory, whereas D2H (device-to-host) requests data from the user

logic for transfer into system memory. Both use 64 bit-wide addresses that are

built from the address provided by software as well as the identier of the VF

that was used to submit the transfer request. It is noteworthy that MCDMA

alternatively supports Avalon-ST interfaces for these buses, however, due to the

lack of a proper addressing mechanism in the Avalon-ST variant, we opted for

Avalon-MM. A third interface, PIO, is used to handle reads and writes to BAR2.

The IP allows conguring this BAR freely according to the designer’s demands.

As we will show in Section 3.2.1.8, we use this BAR for virtual address space

conguration.

Via BAR0, MCDMA exposes two registers: the Queue Control and Status
Register (QCSR) and the Global DMA Control and Status Register (GCSR). A visual

depiction of the registers is given in Figure 3.3.

The QCSR register space consists of a number of 256 B conguration ob-

jects corresponding to host-to-device as well as device-to-host copy command

queues. Each object describes the conguration of a single ring buer stored

in system memory, i.e., its start address, size, and head and tail pointers. No-

tably, the tail pointer forms the bell register we proposed for fast command

notication in Section 3.1.3. For quick access, the IP further allows writing the

address of the last fetched command descriptor to a location in system memory

(MCDMA names this feature writeback). This must be explicitly enabled both
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QCSR
Host-to-Device

Device-to-Host

GCSR
Version

Reset

Ring Buffer Address

Size

Head Pointer

Tail Pointer

Writeback Address

Reset

Figure 3.3: MCDMA’s Queue Control and Status and Global DMA Control and
Status registers. The QCSR is used to congure the command queues, whereas

the GCSR merely exposes version information and provides a mechanism to

reset the entire DMA engine.

for the entire ring buer as well as for each command individually. As we will

show in Section 3.2.4, we use this capability to stall command submission as

soon as a ring buer runs full. We would otherwise need to query the ring

buer’s current head pointer via a costly MMIO read to the QCSR.

In the GCSR register, MCDMAmerely exposes information such as its version

number and a mechanism for a software-triggered reset.

The command descriptors in the ring buers have a size of 32 B and contain

all necessary information, i.e., source and destination addresses, transfer size,

and a few control bits, e.g., to mark the descriptor as invalid or to enable

the writeback feature described above. Figure 3.4 visualizes the contents of a

command descriptor.

For our design, we enabled SR-IOV on the P-Tile with a total number of 511

virtual functions, i.e., the maximum that a P-Tile supports on a single physical

function and without bifurcation. We then congured MCDMA to provide one

pair of ring buers per each virtual function. This forms the foundation for

the SR-IOV-based isolation mechanism we described in Section 3.1.5. In this

conguration, each virtual function has its own QCSR that allows conguring

precisely the two ring buers of that virtual function. This allows our kernel

driver to let userspace congure and control the ring buers by itself without

breaking isolation as we will show later in Section 3.2.3.

For the sake of completeness, we would like to note that there are two

additional, optional interfaces oered by the MCDMA IP: BAM (Bursting Avalon
Master) and BAS (Bursting Avalon Slave). BAM allows software to perform MMIO

reads and writes on a BAR and forwards all requests towards user logic. BAS

enables user logic to perform arbitrary DMA requests to system memory.

Although BAMwould allow us to implement BAR-based synchronous operations
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Command Descriptor
ID

Source Address

Destination Address

Transfer Size

Valid Writeback

Figure 3.4: The contents of a command descriptor, as stored in the ring buers

that were previously congured via the QCSR. In the case of write (host-to-

device) commands, source address references an address in the system memory,

and destination address is handed to the FPGA-side user logic. The opposite is

true for read (device-to-host) commands.

(as described as a potential goal in Section 3.1.1) it cannot be enabled together

with the multi-channel DMA functionality. BAS does not have this limitation,

however, we do not see how it could be useful for our purposes as long as

asynchronous read and write commands are already entirely handled by the

multi-channel DMA feature. In any case, using BAM seems problematic at the

current time as Intel has documented several problems in their implementation

regarding performance and potential PCIe packet corruption.

Although we have opted to use MCDMA for our initial implementation,

we do not believe that it is the optimal choice for several reasons. First, we

observed several issues with the MCDMA IP:

1. The last command descriptor in a 4 KiB page must be a special link de-
scriptor that does not contain a command, but rather references the next

descriptor’s memory location, i.e., the position where the ring buer

continues. This is required even if the ring buer is fully continuous

across pages in the I/O virtual address space, and MCDMA halts oper-

ation on the respective command queue if software does not adhere to

this rule. We consider this an unnecessary limitation as it merely intro-

duces unnecessary latency overhead when the ring buer crosses page

boundaries.

2. A known bug that Intel mentions in their documentation is that MCDMA

may lose data on other queues when a single queue is being reset by

software. This may allow processes to disturb the correct execution of

other processes that concurrently use our accelerator. As this is merely
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an implementation issue that Intel may x in the future and not a design

aw, we chose to ignore this problem for now.

3. MCDMA supports burst transfers for all Avalon-MM transactions with a

burst length of up to eight clock cycles. However, it tends to create rather

odd burst sequences. For example, on the D2H interface, we observe 1024 B

transfers to be executed with three bursts: rst, a single clock cycle, then

eight cycles, and nally, seven cycles. Instead, it would be more ecient

to emit two bursts with an equal length of eight cycles. MCDMA’s

behavior may cause decreased performance regarding Optane’s 256 B

access granularity (as described in Section 2.1) as long as we execute all

commands in-order.

4. The H2D and D2H buses always idle for a single clock cycle between bursts,

even in high load situations. This introduces an unnecessary latency

overhead and reduces the achievable bandwidth.

Apart from these issues, there are several fundamental aspects that make

MCDMA a subpar choice for our purposes. First, we argued that unied com-

mand buers that contain commands of all types are desirable in Section 3.1.3.

This is inherently not possible with MCDMA. Further, the Avalon-MM inter-

faces make a potential implementation of out-of-order processing (as suggested

in Section 3.1.7) in the future dicult: Avalon, unlike other buses such as

AXI [3], does not support out-of-order responses to transactions. Therefore,

an implementation would need to perform complex and costly reordering of

responses, which may reduce or even nullify any performance gains achieved

by executing read and write operations out-of-order to optimize Optane access

patterns. Finally, although implementing other operations than asynchronous

copies may be possible via the PIO, BAM, and BAS interfaces, this seems like a

rather cumbersome approach with dicult-to-predict performance. In conclu-

sion, we therefore propose implementing a custom DMA engine specialized

for our needs in the future. This would also allow us to make the most of the

possibilities oered in the design space for a PCIe-based design as it alleviates

the constraints imposed by MCDMA.

3.2.1.3 External Memory Interfaces Intel Stratix 10 FPGA IP

The External Memory Interfaces Intel Stratix 10 FPGA IP (EMIF) is essential

for our needs as it provides the controller implementation for all memory

protocols supported by FPGAs from the Intel Stratix 10 series, including the

DDR4 interface that we use here [23]. As shown in Figure 3.5, the memory

interface blocks in Stratix 10 FPGAs are organized as a hierarchy of I/O columns,
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Figure 3.5: Coarse overview over the layout of an exemplary I/O column with

four I/O banks in a Stratix 10 FPGA. Up to twelve signals may be wired to a

single I/O lane, hence an I/O bank can drive up to 48 signals. Operating a DDR4

DIMM requires multiple I/O banks within a single I/O column.

I/O banks, and I/O lanes. The 1SD280PT2F55E1VG features two I/O columns, one

with ten I/O banks and the other one with nine I/O banks. Every I/O column

further contains one I/O subsystem manager with an Intel Nios II processor

core that is used to calibrate the data signals as well as important periphery

signals. Each EMIF instance is assigned to one or more I/O banks within a

single I/O column. Every I/O bank contains hard memory controllers for certain

memory standards (including DDR4), phase-locked loops (PLLs) to generate

I/O clock signals, and four I/O lanes. Each I/O lane, in turn, provides buering

and termination logic for twelve dierential signals. These signals then lead to

the external memory.

We congured our EMIF instance to support one Micron MTA9ASF1G72PZ-

2G9E1UG DDR4 single-rank RDIMMwith ECC. In this conguration, DDR4 uses

one strobe signal (DQS) for eight data signals (DQ) with a total of 72 DQs, i.e.,

a total of nine DQS groups. One I/O lane is required per x8 DQS group, and a

single I/O bank contains four I/O lanes, hence we need at least three I/O banks.

Including periphery DDR4 signals (e.g., for addressing and commands), the

setup requires a total of four I/O banks on the FPGA, leaving more than enough

resources for additional memory channels in the future. A secondary EMIF

instance would be required as a puzzle piece for a future dual-channel memory

implementation in addition to the necessary memory interleaving logic that

would need to be added to our core.

The development kit board features a Skyworks SI5332A-C-GM2 clock gen-

erator that has several of its outputs wired to the FPGA’s I/O banks [50]. We

congured the IC to emit a clock signal with 133.33MHz that drives the PLLs,
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which are in turn setup to generate a 1066.66MHz clock that is used to op-

erate the DIMM. Note that even though we operate the memory with only

2133MT s
−1
, the DIMM supports a speed of up to 2933MT s

−1
. We congured

the memory timings according to the values that DDR4 and Micron specify for

the 2933MT s
−1

speed bin.

When used in DDR4 mode, EMIF derives a clock signal for user logic from

the I/O PLLs that equals a quarter of the memory’s clock, i.e., 266.66MHz in

our case. We do not use this signal to drive any of our own logic. To interface

with user logic, EMIF exposes the ctrl_amm interface. ctrl_amm is an Avalon-

MM interface with 64 B-wide data signals and a maximum burst length of 128

cycles. EMIF’s controller provides buering capacity for up to 64 pending read

transactions.

3.2.1.4 Reset Release Intel FPGA IP

The Reset Release Intel FPGA IP is strictly required in all Stratix 10 designs [41].

Its purpose is to hold all logic in the FPGA fabric in reset state until the on-

die Secure Device Manager has nished conguring the FPGA with a design

bitstream provided by an external conguration host. To this end, it provides

a signal named nINIT_DONE that asserts low as soon as conguration is done.

We feed this signal to the Merlin Reset Controller that we describe in the next

subsection.

3.2.1.5 Merlin Reset Controller Intel FPGA IP

The Merlin Reset Controller Intel FPGA IP combines and synchronizes a set

of multiple reset inputs into a single reset output [39]. In our design, we

instantiate it to create a reset signal that keeps our core logic in reset state until

the FPGA and other essential IP blocks are initialized and the external memory

is calibrated. We therefore feed it with three dierent reset inputs from the

MCDMA IP, the EMIF IP, and the reset release IP.

3.2.1.6 SLD JTAG Bridge Agent Intel FPGA IP

While not strictly necessary for the functionality of our design, the SLD JTAG
Bridge Agent Intel FPGA IP served an important purpose for debugging our

implementation and we list it here for the sake of completeness. In combination

with the SLD JTAG Bridge Host Intel FPGA IP that is instantiated within our

core partition, it acts as a bridge on the development kit’s JTAG chain, i.e., it

allows debugging logic within our core to communicate with the host system.

In turn, it enabled us to debug our core logic’s signals and register states using

Intel’s Signal Tap logic analyzer [38].
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3.2.1.7 Avalon Memory Mapped Clock Crossing Bridge Intel FPGA IP

In Section 3.2.1.2 we already explained that we use the 250MHz clock signal

provided by MCDMA to drive our core logic. As EMIF uses a dierent clock

signal with 266.66MHz, we cannot exchange data between our core logic and

EMIF directly. Here the Avalon Memory Mapped Clock Crossing Bridge Intel
FPGA IP comes to play: it implements asynchronous FIFO buers and uses those

to connect two Avalon-MM interfaces with dierent clocks [39]. Note that even

if we operated the DDR4 DIMM with 1000MHz instead of 1066.66MHz, the

resulting 250MHz user interface clock would still have a dierent phase than

the one provided by MCDMA. It may be possible to operate both MCDMA’s

and EMIF’s PLLs with the same reference clocks to achieve phase-synchronous

clocks on both sides in order to eliminate the clock-crossing bridge, which

would potentially save us some latency. We have not veried though whether

this is achievable with the development kit board’s wiring. Such a design would

likely require a custom PCB.

3.2.1.8 Core Logic

In the previous subsections we have discussed the various third-party IP blocks

that we use. We will now present our own core logic. All digital logic for our

core was written in the Verilog hardware description language. As previously

noted in Section 3.2.1.2, we use the user clock signal provided by MCDMA to

drive our core logic with 250MHz.

One important aspect is the memory management unit (MMU) we im-

plemented that can translate addresses from 1 TiB virtual address spaces to

addresses in a 256GiB physical address space with a page size of 16GiB using

single-level page tables. This implements the memory management architec-

ture we proposed in Section 3.1.6. A total of 512 virtual address spaces may

be handled concurrently, i.e., one virtual address space corresponding to each

virtual function and one for the physical function. Each of these parameters

is customizable to allow future extensions, e.g., for larger physical memory

or other page sizes. Our MMU uses M20ks to store the page tables. While

Quartus’s compiler can automatically instantiate MLABs and M20ks from Ver-

ilog register descriptions, it cannot infer the conguration for complex use

cases. Therefore, we created an explicit instance via the RAM: 4-PORT Intel
FPGA IP [45]. As the name implies, the IP congures the M20ks in quad-port
mode, i.e., they provide two write and two read interface ports. We congured

the write inputs as well as the read address signals to be fully registered (this

is strictly required in Stratix 10 FPGAs), whereas we left the output signals

unregistered.
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A single page table entry (PTE) consists of two values: the physical frame

number (4 bit in the conguration described above) as well as a valid bit that

denotes whether the virtual page is mapped to a physical frame. As we have

2
6 = 64 virtual pages per address space and 5 bit per PTE, we need 64× 5 = 320

bit of memory for a single page table, and in turn, 320 × 512 = 163840 bit in

total for all 512 page tables. The page tables are stored consecutively in the

M20ks, starting with the page table for address space 0. Therefore, we can can

calculate a PTE’s address as

𝑝𝑡𝑒_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 𝑎𝑑𝑑𝑟𝑒𝑠𝑠_𝑠𝑝𝑎𝑐𝑒 × 2
6 + 𝑝𝑎𝑔𝑒_𝑛𝑢𝑚𝑏𝑒𝑟.

The MMU can handle two address translations in parallel. To this end, it

provides two sets of input interfaces, virt_in1 and virt_in2. Both interfaces

have three signals each: address, address_space, and valid. address transmits

the virtual address that is to be translated, address_space denotes the number of

the virtual address space in which the translation shall be performed, and valid

should be asserted high to request a translation. phys_out1 and phys_out2 are

the output interfaces corresponding to the two inputs. Again, they have three

signals: address, which contains the translation result, i.e., the physical address,

valid, which is asserted high as soon as the translation process is completed,

and error, which denotes whether the provided virtual address is invalid.

Finally, the program interface is provided to congure PTEs one at a time with

four signals: virt provides the virtual page number that is to be congured,

entry the PTE, address_space the address space’s number, and valid that is

to be asserted high when the other signals are ready and the new PTE shall be

programmed.

Programming is implemented in a very simple manner: the entry signal is

directly passed through to the memory and the address is calculated according

to the formula above. For address translation, the MMU extracts the page

number from the input address and calculates the PTE’s address according

to the same formula using asynchronous logic for both inputs and directly

wires the results to the memory’s read address signals (hence we use quad-port

SRAMs). We then calculate the physical addresses from the retrieved PTEs and

the page osets extracted from the virtual addresses, again via asynchronous

logic. The valid and error signals are then set accordingly.

The overall designwith single-level page tables, localM20k SRAMs, partially

asynchronous logic, and unregistered SRAM output ports allows us to perform

address translations within a single clock cycle, i.e., in 4 ns at a clock rate of

250MHz. This is one place where the strengths of a custom design, as the

one we created here, show: our specialized memory management architecture

allows address translations to be performed much faster than in a typical
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x86 CPU. It is, however, noteworthy that our single-cycle MMU design is

currently also the most limiting factor for the achievable clock speed in our

implementation. Quartus’s Timing Analyzer actually determines a maximum

guaranteed clock rate of 224MHz for our design under worst-case operating

conditions regarding chip quality and temperature (i.e., 100 °C). We have not

observed any issues in practice, though.

Several optimizations are possible in order to achieve higher clock rates

without compromising on the MMU’s performance. First, our current layout

regarding the placement of our logic in the FPGA fabric is not ideal: according

to the timing analysis, the clock signal incurs a delay of up to 1.186 ns before it

arrives at our core logic via the clock tree. This puts a strain on the setup times

and may be improved through optimized placement. Second, instead of using

quad-port SRAMs, we may switch to using two dual-port memories instead.

Intel’s specication rates dual-port M20ks on the Stratix 10 at higher speeds

than their quad-port counterparts [45]. However, this would come at the cost of

increased resource consumption: we would need the double amount of M20ks.

Our overall design currently uses 2051 out of the 11721 M20ks available in the

1SD280PT2F55E1VG. Although there are plenty of M20ks left, we should not use

them excessively as this would again increase the clock delay to M20ks that

are far away on the die.

When our core retrieves a read or write request from MCDMA via the D2H

or H2D interfaces, it takes the lower bits from the address provided by MCDMA

(those eectively stem from the address provided by software in the command

descriptor) and uses those as the virtual address to forward to the MMU. The

upper bits that represent the virtual function’s ID that emitted the request are

extracted to serve as the address space number. Every request is rst moved

into a local ring buer. Two buers with enough space for 64 requests are

implemented, one for read requests, the other one for write requests. When

there are pending requests in one of the buers at the start of a clock cycle,

we forward them to EMIF via the corresponding Avalon-MM interface. As

Avalon-MM only allows to send either a read or a write request in a single

clock cycle, we have chosen to prefer read over write requests simply for the

reason that a read request can be entirely transferred in a single clock cycle.

However, further testing in the future is required whether more sophisticated

strategies would be preferable to improve fairness. If the request was queued

in the previous clock cycle, we directly forward the address from the MMU.

Otherwise, the MMU’s output addresses are saved in the ring buers at their

corresponding request’s positions. As EMIF’s data bus has a width of 64 B,

we can transfer exactly 64 B in a clock cycle. At a clock rate of 250MHz, this

results in a maximum theoretical throughput of ≈14.9GiB s
−1
.
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Our current implementation does not actually use the valid signals pro-

vided by the MMU as part of the phys_out{1,2} interfaces, but rather relies on

the MMU to complete each translation within a single clock cycle as described

above. In case the MMU signals that a translation has failed via the error

signal, we currently simply drop the request. This may currently cause wrong

behavior on the D2H interface as, in the case of read requests, MCDMA waits

for a response that never arrives if we dropped the operation. While this opens

up the possibility for denial-of-service (DoS) attacks from malicious software

programs by deliberately providing invalid addresses, we do not consider this

a fundamental design aw as potential implementation xes for this issue are

conceivable. For example, we may send MCDMA empty data as a response

to satisfy the request. Using a custom DMA engine instead of MCDMA may

further alleviate the need to perform an actual DMA operation for every request.

We therefore leave a x as well as proper error handling with notications to

software, e.g., using interrupts, as future work.

To enable our kernel driver to send PTE conguration requests to the MMU,

we employ MCDMA’s PIO interface. As described in Section 3.2.1.2, the PIO

interface provides an Avalon-MM bus that forwards read and write operations

to PCIe BAR2. We use the provided address to identify the address space in which

the PTE shall be written. The data provided in the BAR2 access contains the PTE

as well as the virtual page number that is to be congured. As MCDMA exposes

the same BAR2 setup both on the physical function and on every virtual function,

we drop PIO writes that were performed on VFs. In turn, we can ensure that

only the privileged host system’s kernel is allowed to make alterations to the

page tables.

Note that, when EMIF has asserted the waitrequest signal on the interface,

we temporarily stop forwarding requests until waitrequest deasserts. Here

the buers come to play: if we were to stall MCDMA immediately when EMIF

is temporarily unavailable, it would take some time for MCDMA to retrieve the

data for further requests when EMIF is ready again. In this situation, we would

have unnecessary idle cycles. In order to sustain the overall bandwidth, we

have the buers that are lled as soon as EMIF is not ready to accept further

input. We only assert our own waitrequest signals towards MCDMA as soon

as our buers run full. This ensures smooth operation where we utilize as

many clock cycles as possible to make progress with minimal latency.

3.2.2 Hardware: DDR-T Variant

. .

.
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3.2.3 Kernel Driver

In the previous subsections we elaborated on the digital design that we im-

plemented on our FPGA. The hardware by itself would, however, be useless

without the corresponding software. Nonetheless, before we can make proper

use of the hardware’s capabilities in userspace, we need to implement the

required support from the operating system’s side. We therefore continue our

bottom-up approach in this subsection by presenting the kernel driver we built
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for our design. Our driver is implemented in the C programming language as

an out-of-tree module for Linux 5.17.5.

We composed the module of three dierent parts: the PCIe driver, the

character device driver, and the MMU driver. The PCIe driver is primarily re-

sponsible for probing both the hardware device itself, i.e., the physical function,

and all virtual functions provided by a device. Apart from the bus initializa-

tion sequence, it also provides a simple allocator for virtual functions. To

this end, the PCIe driver maintains a freelist in the form of a simple circu-

lar doubly linked list (using the implementation from Linux’s list.h [54])

that contains each currently unallocated virtual function. Two methods are

provided to the other components: dcpmm_fpga_pcie_alloc_vf(), which re-

moves the freelist’s rst element – if present – and returns it to the caller, and

dcpmm_fpga_pcie_free_vf(), which adds the passed VF structure back to the

freelist.

The MMU component manages page mappings and is responsible for con-

guring the device’s MMU accordingly. For its allocator, it uses a reference

counting mechanism based on Linux’s atomic refcount_t infrastructure [56]

that keeps track of how many address spaces currently reference each physical

frame. We have not implemented support for persistent allocations, however,

we believe that this can easily be done atop our current implementation. Five

methods are provided by the MMU component:

mmu_get_page_table_for_pid() takes a process identier (PID) and returns

a pointer to a page table structure. The rationale here is that we want to have

a single virtual address space (the Optane VAS) on the FPGA side per process,

however, the hardware is of course unaware of the concept of a Linux process.

All it knows are virtual functions, and therefore, address spaces are merely

bound to VFs on the hardware side, whereas a single process may have multiple

virtual functions allocated to it as we will describe later in this subsection.

Hence, this method returns the Optane VAS page table corresponding to the

given PID, and allocates a new one if necessary.

mmu_assign_page_table_to_vf() creates the connection between process-

oriented page tables and the FPGA-provided virtual functions. It takes a pointer

to a VF structure as well as a page table pointer and adds the VF to a list of VFs

that share this page table. It then proceeds to congure all of the page table’s

entries on the VF by performing the required MMIO writes to the physical

function’s BAR2.

mmu_disable_vf() is the counterpart to mmu_assign_page_table_to_vf(). It
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disconnects the passed VF from the page table it is currently assigned to and

overrides all PTEs on the VF to mark them invalid. If the page table has no

more associated VFs left, the table is deallocated. The reference counters for all

mapped pages are decreased accordingly.

mmu_alloc_page() looks for a free physical frame (i.e., one whose reference

count is zero), increments its reference count, and creates a mapping for that

frame in the passed page table structure. The mapping is then communicated

to the device by conguring the PTE on all VFs assigned to the page table. It

returns the mapping’s base address within the Optane VAS.

mmu_free_page() performs the opposite of mmu_alloc_page(): it removes

the mapping for the given address in the passed page table. The respective

physical frame’s reference count is decreased and the PTE is invalidated on all

VFs the page table belongs to.

Although not currently realized, the MMU component’s implementation with

full reference counting for physical frames can easily be extended to support

shared memory in the future. Ideally we would create an implementation

that integrates with the System V Shared Memory interface that is a part of

the POSIX standard and is therefore commonly implemented in UNIX-like

operating systems [77]. This is, however, most likely not possible without

modifying the Linux kernel itself.

It is further noteworthy that we have not yet implemented a mechanism to

scrub pages after they were freed. While this may pose a security issue, it is a

rather trivial feature to add in the future that should not inuence the runtime

performance that we evaluate in Chapter 4.

The character device component is where the interaction with userspace

happens: as the name implies, it provides a character device that application

processes can use to interact with the hardware. The device is exposed – as it is

commonly done in Linux – as a device le in the device le system (devfs), i.e.,

via the path /dev/dcpmm_fpgaN, where N is the device’s number in the unlikely

case that multiple devices are present in the system. Device les are created

with mode 0666 to eectively allow all users to use the device. The following

operations are implemented on the character device:

open() allocates one of the device’s virtual functions to the process via

dcpmm_fpga_pcie_alloc_vf() and associates it with the newly created le

descriptor. The VF is also associated with the calling process’s Optane page
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table by calling mmu_assign_page_table_to_vf(). If no free VF is available on

the device, ENOMEM is returned.

ioctl(MAP_FPGA_PAGE) allocates a page in the process’s Optane VAS via

mmu_alloc_page() and returns a pointer to the page’s start address to userspace.

ENOMEM is returned in case the MMU component fails to nd a free physical

frame on the device.

ioctl(UNMAP_FPGA_PAGE) frees a page from the process’s Optane VAS by call-

ing mmu_free_page(). EINVAL is returned if the passed address is not currently

mapped.

ioctl(DMA_PAGE) takes a user-provided 4 KiB page in the CPU-side virtual

address space and prepares it to be used in DMA operations conducted by

the virtual function. This allows the calling process to use the page for copy

operations to or from our hardware.

To implement its functionality, the ioctl() rst calls Linux’s

pin_user_pages() [55] which prevents the kernel from swapping the page

away into mass storage. Then, we call dma_map_page_attrs() [53] that eec-

tively creates a mapping in the I/O virtual address space that belongs to the

virtual function and congures the system’s IOMMU accordingly. EFAULT is

returned when the passed page is not mapped in the CPU-side VAS, and ENOMEM

if the IOMMU mapping could not be established.

ioctl(MMAP_SELECT) controls mmap()’s behavior on the le descriptor. Two

modes are available: MMAP_SELECT_BAR and MMAP_SELECT_DMA_MEMORY. Their

purposes are described in the next paragraph about our mmap() implementation.

If an invalid mode identier is passed, the call returns EINVAL.

mmap() does two dierent things depending on the mode previously selected

using ioctl(MMAP_SELECT).

In the MMAP_SELECT_BAR mode, we remap the virtual function’s BAR0 to the

calling process’s virtual address space. As described in Section 3.2.1.2, BAR0

contains the MCDMA IP’s QCSR and GCSR registers that allow to congure

the command submission queues. By mapping BAR0 into userspace, we allow

processes to take full control over their command buers without needing to

involve the kernel. We return EINVAL in case the requested mapping size is

too small to t BAR0, and further pass through any errors that occurred while

trying to establish the mapping.
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Through the MMAP_SELECT_DMA_MEMORY mode, the user process may ask to

allocate a new contiguous memory area that can be used for DMA from the

virtual function. We employ Linux’s dma_alloc_coherent() [53] here to create

the memory area with guaranteed cache coherency. Returning the allocation’s

start address in the I/O virtual address space is, however, not trivially possible

as the mmap() system call merely returns a pointer in the process virtual address

space. We therefore temporarily store the address in the I/O VAS internally and

allow the process to retrieve it later using the ioctl(LAST_DMA_ADDRESS) call

described in the next paragraph. ENOMEM is returned in case there is not enough

free space in the physical memory or in the I/O VAS to create the allocation.

Mapping errors are again passed through.

ioctl(LAST_DMA_ADDRESS) is meant to be used by user processes in conjunc-

tion with mmap() in MMAP_SELECT_DMA_MEMORY mode. It returns the last mmap()

allocation’s address in the virtual function’s I/O virtual address space.

Note that there is no implementation of read() or write() or other methods

that would allow direct access to data via the character device. It is further

important that the entire security guarantees of our implementation depend

on the presence of a capable IOMMU. If the system does not have an IOMMU,

processes may pass arbitrary addresses in the CPU’s physical address space

to our hardware, which would thereby allow full read and write access to the

entire system memory.

A downside to the current implementation is that userspace processes need

to explicitly acquire DMA-capable (i.e., I/O VAS) addresses for each page they

want to use as source or target for copy operations with our hardware. The

entailing overhead for system calls may reduce the achievable performance. A

simple, yet elegant solution emerges with future hardware. Version 3.0 of Intel’s

Virtualization Technology for Directed I/O (VT-d) [46, 65] introduces a novel

feature named Scalable I/O Virtualization (Scalable IOV) [28]. The Sapphire
Rapids CPU generation is going to be the rst to support VT-d 3.0 including

Scalable IOV [5]. Among the new capabilities oered by Scalable IOV is the

support for Shared Virtual Memory (SVM). Via SVM, it becomes possible to

share a process’s virtual address space with I/O hardware, i.e., they can use

the very same addresses to access system memory. To this end, PCI Express

TLPs are prexed with a Process Address Space ID (PASID) [62, Section 6.20].

The operating system may congure PASIDs in VT-d 3.0-capable IOMMUs to

be associated with the virtual address spaces (i.e., the page tables) of specic

processes. The IOMMU then performs address translations accordingly.

With such a design, it is however not guaranteed that the operating system
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does not swap out pages to mass memory. While pinning all pages of a process

would be a technically correct solution, the incurred downsides such as poten-

tially reduced overall system performance through increased thrashing of other

processes make this approach seem infeasible. Further, this would not work

anymore if the allocated memory of all processes that use our accelerator is

larger than the available space. Thankfully, modern PCI Express versions have

introduced the Page Request Interface (PRI) as a part of the Address Translation
Services (ATS) [62, Chapter 10]. ATS and PRI allow a PCI Express device to

request the operating system to make a page available in the system memory.

In turn, it is possible to leverage SVM without needing to pin the pages of

userspace processes. Overall, a SVM-based implementation would allow us to

let processes use their entire virtual address space for copy operations without

any system call overhead, without needing to translate between CPU virtual

addresses and I/O virtual addresses, and without pinning pages.

Although not implemented in this thesis, we would like to sketch how our

design could easily be extended to be used eciently in system virtualization

scenarios. The most important buildings blocks are already there: SR-IOV and

the ability to directly hand control over the virtual functions to userspace pro-

cesses without breaching security. We may similarly hand out virtual functions

to guest operating systems in virtual machines. This could be implemented via

corresponding hypercalls in the drivers within the hypervisor and the guest OS.

The guest driver may then, in turn, manage how virtual functions are given

out to processes.

3.2.4 Userspace Library
We have now iterated over our hardware design as well as our kernel driver.

This subsection addresses the last puzzle piece: our userspace library that

abstracts away the complexity of interacting with the hardware and the kernel.

In the end, programs are provided with a simple asynchronous memcpy()-style

interface. Like our kernel driver, the userspace library is implemented in the C

programming language.

The library is designed to provide one pair of read/write command buers

per thread. To this end, each thread is supposed to call dcpmm_fpga_init()

once before it may use the provided functionality. The initialization method

rst tries to open() the device le at /dev/dcpmm_fpga0 and thereby allocates

a virtual function that is then associated with the calling thread. Using the

MMAP_SELECT_BAR mode that we described in the previous subsection, we then

map the VF’s BAR0 into the process’s virtual memory. Finally, we proceed

to setup the two ring buers for read and write commands and congure

the QCSR in BAR0 accordingly (as described in Section 3.2.1.2). To achieve a
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contiguous mapping, we use the MMAP_SELECT_DMA_MEMORY mode of our kernel

driver’s mmap() implementation for the queues. Our implementation currently

hardcodes a queue size of 1MiB. With a command descriptor size of 32 B, this

provides enough space for 32768 descriptors. As MCDMA requires every 4 KiB

page to have one link descriptor, 256 descriptors are wasted, and in turn, a

total of 32512 commands may be stored. We deem this enough for practical

applications.

After initialization has completed, the calling thread may map and ac-

cess pages in the Optane virtual address space. To this end, we provide the

mmap_dcpmm() and munmap_dcpmm() calls that are essentially wrappers around

the MAP_FPGA_PAGE and UNMAP_FPGA_PAGE ioctl()s provided by the kernel

driver. Unlike the traditional POSIX mmap() [77] that allows mapping arbi-

trary amounts of pages, our mmap_dcpmm() unconditionally retrieves a single

16GiB page. Note that, as our kernel driver shares the device-side page tables

between virtual functions of a single process, threads may of course also access

pages that were mapped by other threads within the same process.

To access the device-side memory using asynchronous copies, our library
exposes the memcpy_from_dcpmm() and memcpy_to_dcpmm()methods. Their sig-

nature is the same as C’s memcpy(), however, the src argument in the from

variant and the dst argument in the to variant must be addresses from the

Optane VAS, respectively. The other arguments must be addresses in the sys-

tem virtual address space. Note that our hardware does not currently support

copies within the device-side memory. Our memcpy_{from,to}_dcpmm() im-

plementations rst translate all addresses in the process’s CPU-side VAS to

addresses in the virtual function’s I/O VAS via the driver’s ioctl(DMA_PAGE)

system call. However, as system calls cause a non-trivial overhead, it would

be vastly detrimental for the overall performance of our implementation if

every copy operation required kernel assistance. For this reason, we cache

the translations in userspace via a hash table using the uthash library [16]. To

perform a translation, we rst lookup the page in the hash table, and only if no

entry is found we execute the system call to have the kernel driver establish a

mapping in the I/O VAS. New mappings are, of course, added to the hash table.

After the I/O VAS address is known, the rest is easy: we ll the next free

command descriptor in the respective ring buer with the command data, i.e.,

source and destination addresses and copy size, and update the tail pointer in

the QCSR to notify our hardware. We then return immediately without waiting

for the command to complete, hence the operation is completed asynchronously.
Note that there is currently a 4 KiB limit for the data size that may be copied

in a single operation. This limit is not incurred by our hardware, but rather

by a driver limitation: to copy larger areas, we would need to ensure that
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consecutive pages in the CPU-side VAS are also contiguously mapped in the

I/O VAS. Our kernel driver does not currently oer such functionality, therefore

copy operations may not cross 4 KiB page boundaries. Again, this is another

issue that can very trivially be solved with an SVM-based implementation as

outlined in Section 3.2.3.

As mentioned in Section 3.2.1.2, we use MCDMA’s writeback feature to

determine whether the ring buer that we want to submit an operation to is

currently full. If that is the case, we busy-wait until there is space in the buer

again. This should not be harmful for performance in practice as long as the

buers are large enough.

Based on what we sketched in Section 3.1.1, we further oer simple pseudo-

synchronous variants named memcpy_{from,to}_dcpmm_wait(). These meth-

ods employ busy waiting to emulate synchronous behavior, i.e., they loop

until the hardware has signaled completion for the submitted command. More

sophisticated implementations of pseudo-synchronous or truly synchronous

operations according to the options we described in Section 3.1.1 remain as

future work.
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Evaluation

We have described our implementation in the previous chapter in full detail.

Now, we want to evaluate the success of our approach. We begin by introducing

the tool we have written to conduct benchmarks and a description of the system

we used for testing. Then, we present and discuss the results obtained with our

DDR4 and DDR-T designs, respectively.

4.1 Benchmark Tool

Our benchmark tool is, just like our kernel driver and our userspace library,

implemented in C. It aims to allow to compare several performance metrics

of our design versus having the memory attached to the CPU directly. To

this end, we implemented the individual benchmarks separately from several

dierent backends. The backends implement the actual memory accesses and

oer a backend-agnostic interface so that the very same benchmark code may

be executed on each backend without modications. We have implemented

three dierent backends: system, dax, and fpga. As their names imply, they

access system memory (i.e., DDR4) directly, via Linux’s DAX interface for

Optane (as we described in Section 2.1), and via our FPGA-based implemen-

tation, respectively. They provide the following set of methods to the bench-

marks: mmap(), munmap(), memcpy_from(), memcpy_to(), memcpy_from_wait(),

and memcpy_to_wait(). In the case of the fpga backend, they are implemented

as simple wrappers around the respective methods from our userspace library

as described in Section 3.2.4. When using the fpga backend, we ensure that all

CPU-side pages that are used in copy operations have corresponding mappings

in the I/O VAS before starting a benchmark run. Thereby, we avoid potential

runtime overhead for system calls as described in Section 3.2.4. The system and

dax backends have the calls described above implemented via the corresponding
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methods from the C standard library and the POSIX interface. _wait() variants

are realized using atomic memory fences and the x86 clflush instruction that

forces the CPU to writeback specic cachelines [29]. dax diers subtly as we

use AVX2 256 bit instructions for copying data from DRAM to PMem instead of

the C library’s memcpy(), i.e., vmovdqa for loads and vmovntdq for non-temporal

stores. Yang et al. [82] have found that Intel CPUs achieve higher bandwidths

when using non-temporal stores in PMem setups.

We implemented a total of ve benchmarks: two that measure read and

write-ush-read latencies, two that measure read and write bandwidths using

sequential accesses, and another one that gauges the time it takes to copy a

specic amount of data. Note that we do not benchmark the write latency

on its own as our hardware does not currently signal the point where the

write operation is completed on the attached memory, but rather only when

the data has been received by the MCDMA IP. We therefore measure the

combined latency for writing data and then reading it again. Together with the

read latency benchmark we can then generate an estimate of the actual write

latency. The latency benchmarks are entirely single-threaded and work by

measuring the time between the submission of the rst command or instruction

and the time the data becomes ready 100 times. Then, the average time taken

per operation over a total of 1000 iterations is calculated. The bandwidth

benchmarks run for precisely 16 s and submit as many read or write commands

of a specic size as possible during that time on one or multiple threads. After

the 16 s have passed we submit one last synchronous command that completes

after all the other commands are done. We then measure the total time taken

as well as the amount of transfers that were completed and thereby calculate

the bandwidth that each thread has achieved. We use Linux’s CLOCK_MONOTONIC

clock for all timing measurements [8].

As we show in the next section, we ran our benchmarks on a dual-socket

system with two CPUs. To avoid the possible inuence the NUMA layout has

on our numbers, we made our benchmark tool NUMA-aware via the libnuma

library [75]. More specically, we congure the NUMA policies so that all

threads are forced to run on a single, user-dened NUMA node and all memory

is allocated on the local node. Further, to alleviate scheduling eects, we

employ Linux’s SCHED_RR policy with maximum scheduling priority for all our

threads [72].

4.2 System Setup
We ran all benchmarks on the very same base system equipped with two

Intel Xeon Silver 4215 CPUs installed on a Supermicro X11DPi-N mainboard.
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The Xeon Silver 4215 is an SMT-capable octa-core 64 bit x86 processor from

Intel’s Cascade Lake generation [47]. We disabled SMT to avoid inuences from

diering core resource utilization due to scheduling variations. Both CPUs

each have 16GiB of single-channel DDR4 memory with a speed of 2133MT s
−1

and timings from the 2933MT s
−1

speed bin attached to them. This matches

the conguration of the DIMM we used for our DDR4 hardware variant as

shown in Section 3.2.1.3. Only one of the CPUs has a 128GiB Optane DIMM

from the PMem 100 generation connected to it. Our accelerator is attached via

a PCIe 3.0 x16 link.

On the software side, we used Ubuntu 20.04 with a custom-built Linux

5.17.5 kernel. The kernel and all of our own code were compiled with gcc 9.4.0

using the default -O2 optimization level.

4.3 Results: DDR4
In this section, we want to compare the performance of our design when used

with DDR4 memory versus when accessing DDR4 system memory directly

from the CPU via traditional load/store operations.

We begin by taking a look at the achievable read and write bandwidths.

We ran all benchmarks with two dierent access sizes: 64 B and 4096 B. Here,

access size denotes the size of the data transferred in a single copy operation.

The sizes were not chosen arbitrarily: 64 B is the size of a single cacheline in the

CPU and further equals the word length of DDR memories. 4096 B, i.e., 4 KiB,

on the other side is the maximum amount of data we can transfer to the FPGA

in a single operation as described in Section 3.2.4. Further, we executed all tests

with varying parallelism between one and eight threads running concurrently.

Figure 4.1 shows the results. First of all, it should be noted that the read and

write benchmarks are eectively the same in the system case: here, we simply

copy from one place in the system memory to another. Hence, the numbers are

nearly the same. We further nd that the access size does not really matter when

using system memory, however, small accesses gravely aect the achievable

bandwidth when reading and writing to the memory attached to our hardware:

with 64 B accesses, we achieve a read performance of up to 864MiB s
−1

with

eight threads, whereas the bandwidth tops out at 4651MiB s
−1

when 4 KiB

copies are used. This hints that further optimization of our design is needed

to improve performance for small accesses. Further, increased parallelism is

generally favorable with our design – single-threaded 64 B reads merely allow

for a bandwidth of 290MiB s
−1
. The opposite is true for accesses to system

memory: although two threads reach a higher copy performance than a single

one (4508MiB s
−1

versus 4163MiB s
−1
), the total bandwidth drops again with
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Figure 4.1: DDR4 bandwidth using our design (FPGA) versus system memory

directly accessed from the CPU (System) with dierent access sizes, namely

64 B and 4096 B.

more threads down to 4400MiB s
−1
. The most glaring result is, however, the

fact that our design achieves much lower bandwidth with read operations (up

to 4651MiB s
−1
) than it does for writes (up to 13 002MiB s

−1
). We are not sure

about the reasons that cause this deviation. A possible explanation could be

that the DMA engine (i.e., Intel MCDMA that we introduced in Section 3.2.1.2)

does not fetch commands fast enough to cope with the device-side latency of

read operations, thereby leaving time gaps where no commands are processed.

We have yet to verify this hypothesis, though. Improving read bandwidth is

therefore left as future work.

Next, we compare the access latencies. Here, we only used a single thread to

avoid variations induced by parallel loads. Instead, we took measurements for

dierent access sizes. The results are graphed in Figure 4.2. Naturally, latencies

are higher with our design than with direct accesses from the CPU. A 64 B read

takes about 34 ns with the CPU and 3215 ns with our accelerator, a slowdown

by about 100×. We can further observe a plateau regarding the latency with the

FPGA up until 2048 B accesses. Latency only starts to rise with 4 KiB accesses.

This eect can likely be attributed to the time overhead induced by the PCIe bus.

The processing overhead from our hardware’s side only starts to carry weight

for large transfers. We can further estimate the write latency by subtracting

the read latency from the write-ush-read latency. For 512 B accesses, we can

thereby deduce an estimated write latency of 7261 ns−3214 ns = 4047 ns for our

hardware. Note that this value still includes a certain time overhead induced
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Figure 4.2: DDR4 access latency using our design (FPGA) versus systemmemory

directly referenced from the CPU (System) with dierent access sizes ranging

from 64 B to 4096 B on a single thread.

by the fact that we wait until completion for the write command is signaled

before we submit the following read command.

The idea behind the approach in this thesis is to reduce CPU overhead

for copy operations. To measure the success of this goal, we compare the

CPU time it takes to perform copy operations using consecutive 4 KiB copies.

Figure 4.3 shows the results for dierent access sizes with one and eight parallel

threads. In the parallel scenarios, the total workload is split evenly between the

threads. We can see from the plots that the overall CPU time taken is always

lower with our accelerator, thereby proving that our approach is capable of

saving CPU time even with fast DDR4 memory. For example, in the single-

threaded 64MiB case, we achieve a 72 % reduction in the CPU time (4ms versus

14.22ms). The largest dierence can be observed in the scenario with eight

threads and a transfer size of 512MiB: here, our design requires 93 % less CPU

time (7.666ms versus 114.222ms). The plots show a superlinear uptick for our

FPGA-based design between 512MiB and 1024MiB. The explanation is simple:

as discussed in Section 3.2.4, our command buers currently have enough

space for 32512 command descriptors. With 4 KiB copies, we can therefore

buer copy commands for slightly less than 128MiB. As our implementation

busy-waits if the buer is full until space becomes free again, a larger fraction

of time is spent waiting when the transfer size becomes too large within a

certain timeframe.
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Figure 4.3: Visualization of the CPU time it takes to copy dierent amounts

of data using synchronous accesses to system memory (System) versus using

asynchronously submitted commands to our accelerator (FPGA).

4.4 Results: DDR-T

In the previous section, we evaluated the performance metrics of our design

when used with DDR4 memory. Now, we want to do the same with the memory

technology that this thesis is centered around: Optane PMem.

Again, we begin with the bandwidth results shown in Figure 4.4. Similar to

the DDR4-based results, we see that small copy operations using 64 B accesses

do not perform well. However, with 4096 B accesses, our implementation

shines: the plots show that we reach higher bandwidths than the CPU in all

cases and are less sensitive to parallelism. Where the CPU only achieves a

write bandwidth of 936MiB s
−1

with eight parallel threads, our accelerator still

reaches 1422MiB s
−1
, an improvement by about 52 %. Similarly, regarding the

read bandwidth, the CPU fails to saturate the memory’s theoretically achievable

bandwidth with a single thread and achieves a mere 3612MiB s
−1
, where our

accelerator allows for 4092MiB s
−1
.

Regarding latency, the numbers shown in Figure 4.5 are roughly the same

for our accelerator. Again, this underlines that the latency is primarily domi-

nated by the overhead induced by the data transfer via the PCI Express bus.

Similarly, there is no signicant deviation in the read latencies compared to

what we previously saw with DDR4. However, the write-ush-read latencies

show a surprising result: for large accesses with ≥ 2048 B, our implementation
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Figure 4.4: Optane bandwidth using our design (FPGA) versus when directly

accessed from the CPU (DAX ) with dierent access sizes, namely 64 B and

4096 B.
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Figure 4.5: Optane access latency using our design (FPGA) versus when directly

referenced from the CPU (DAX ) with dierent access sizes ranging from 64 B

to 4096 B on a single thread.
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Figure 4.6: Visualization of the CPU time it takes to copy dierent amounts of

data using synchronous accesses to Optane (DAX ) versus using asynchronously
submitted commands to our accelerator (FPGA).

is actually faster than when the same sequence of accesses is performed syn-

chronously using the CPU. With 4096 B copies, the CPU takes about 18 449 ns

on average, whereas our implementation gets the job done in a mere 8463 ns.

This equals a latency reduction by about 54 %.

Finally, we evaluate the CPU time used for copy operations in Figure 4.6. In

single-threaded scenarios, our accelerator’s curve looks similar to the CPU’s,

but stays up to 155ms lower. The same eect that we discussed in the previous

section with DDR4 plays a role here: as soon as the command buers run full,

our implementation waits until there is space again. In turn, the CPU time is

oset roughly by the time it takes to actually copy 128MiB. The largest relative

reduction can be observed with 512MiB copies with eight parallel threads:

using synchronous accesses, the CPU spends about 510ms. However, with

our design, only about 6ms are needed, resulting in a 98.8 % improvement.

This proves that our implementation is able to achieve the primary goal of

asynchronous copy ooading for PMem: reduced CPU overhead. Similar to

what we saw with DDR4, there is a sharp uptick with 1024MiB copies and

eight parallel threads. Again, this is explained by the command buers running

full.
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4.5 Discussion
The aim of this thesis was to implement asynchronous copy ooading for Intel

Optane Persistent Memory based on the goal that we can signicantly reduce

the CPU time spent for memory accesses, and in turn, increase the overall

system performance. Given the results in the previous sections, we believe that

we can safely consider our approach a success in this regard. We were able to

show that our implementation takes less CPU time compared to synchronous

copies in all evaluated scenarios with a reduction of up to 98.8 %. Although

we have not conducted benchmarks with other processes running in parallel,

we consider it safe to assume that the overall system performance in such a

scenario is also improved as the CPU time that we save is now available to be

used by other programs.

In Section 3.1, we dened a set of three goals that we consider important

for the practical viability of our approach: bandwidth saturation, low latency,
and quick submission.

Regarding bandwidth, Figure 4.4 has clearly shown that we are able to satu-

rate the bandwidth of a single PMem DIMM and even outperform the CPU’s

memory controller as long as the access granularity is large enough. DDR4

benchmarks, however, have shown that the read bandwidth that our design

achieves is not quite on par yet for memories that are faster than PMem. We

consider this a partial success nonetheless as the bandwidth is enough so far

for Optane. However, as we plan to implement a dual-channel design in the

future, it likely becomes necessary to work towards better read performance.

As previously described in Section 4.3, we suspect that the DMA engine we

employed in our hardware design is at fault here. We have already argued that

Intel MCDMA is not an ideal choice for our use case in previous chapters. For

example, the strictly separated command buers are not ideal – in Section 3.1.3

we established that unied buers are preferable to maintain sequential order-

ing between memory operations regardless of their direction. If we are able to

verify that the lacking read performance is an inherent issue with MCDMA,

we have an even stronger case for building a custom DMA engine.

Another reason for a custom DMA engine stems from the results we ob-

served for small access sizes, e.g., 64 B. Here, we are generally unable to keep

pace with the CPU in terms of bandwidth. This is, however, not surprising: as

described in Section 3.2.1.2, each command descriptor requires 32 B of space in

the command buer, resulting in a memory overhead of 50 % just for submit-

ting a command. In turn, the time spent for fetching commands plays a much

larger role. We therefore argue that we may improve the performance of small

accesses by optimizing both the size of a command descriptor as well as the

fetching mechanism by speculatively reading ahead in the command buer.
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Regarding the command descriptors, we may pack the information we need

into less than 32 B. A minimal command descriptor design would include a

valid bit, two addresses of up to 64 bit each, a command type identier with a

few bits, and the payload size (e.g., in 32 bit). Hence, it should be possible to

create command descriptors that are roughly 20 B in size, and in turn, we may

fetch more descriptors in a single memory access. Further, smaller descriptors

likely result in an even higher reduction in terms of CPU time and we could t

more commands in a buer without making it larger.

The latency of memory operations with our design is, unsurprisingly, gen-

erally worse than with synchronous accesses from the CPU as we have seen

in the previous sections. However, we suspect there is not a lot of room for

improvement given that large parts of the overhead most likely stem from the

PCIe bus. We want to conduct a deeper breakdown of the components that

contribute to the latency in the future to analyze possible optimizations. In this

matter, we further plan to switch to the CXL bus that we briey described in

Section 2.3. Using CXL may result in considerably better latencies for a design

such as ours compared to PCIe.

The successful achievement of the third of our goals, quick submission, is

already proven by the low CPU time required by our implementation. However,

command submission quickly causes rising CPU overhead when command

buers are full as we have seen in Figure 4.3. Apart from larger buers or

smaller command descriptors, we may consider alternative ways of dealing

with full buers. For example, we may return immediately with an error code

such as EAGAIN to signal that command submission is currently not possible to

the calling thread. Such behavior is already commonly established practice with

system calls such as read() when used with le descriptors that are congured

as non-blocking [68]. Another possibility would be to schedule other processes

or threads when a command cannot be submitted due to the buer being full

in order to have the system progress in the meantime until there is more space.

These options ultimately stem from the fact that we have solved the issue of

PMem accesses being I/O-bound and CPU-bound at the same time as Werling

et al. [78] have argued and as we have discussed in Section 2.2. Thereby, the

entire range of I/O handling and scheduling mechanisms found in operating

systems becomes viable again with Optane PMem thanks to asynchronous copy

ooading implementations such as the accelerator that we have presented in

this work.
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Conclusion

Novel memory cell technologies promise interesting new possibilities, but also

pose new challenges for operating system designers and software engineers.

This thesis revolved around Optane Persistent Memory, a recent main mem-

ory technology by Intel based upon their 3D XPoint cell technology. Unlike

traditional DRAM-based main memories, Optane oers persistence for the

data stored on it. However, the bandwidth depends strongly on the access

patterns as well as the degree of parallelism and is not nearly on par with what

can be achieved with DRAM. The low bandwidth further causes non-trivial

overhead regarding CPU time, which in turn can be signicantly detrimental

to the overall system performance.

Asynchronous copy ooading is an approach previously proposed by Wer-

ling et al. to combat the implications of Optane’s performance by moving the

load of performingmemory copies to external hardware. As previous implemen-

tations have been of limited success, we have aimed to design custom hardware

in the form of an FPGA-based PCI Express device in this work. Our design

oers asynchronous access to Optane memory without runtime overhead for

system calls and lock-free parallelism. With an initial implementation using

DDR4 memory, we were able to show that our accelerator generally achieves a

high enough bandwidth to potentially saturate Optane. Further, the CPU time

spent for memory operations is reduced by up to 93 %. In the next step, we

evaluated the performance achieved with actual Optane memory. As expected,

the bandwidth is high enough to saturate a single DIMM and the required CPU

time is far below what is needed with synchronous accesses. However, the

latency is about 100× higher than when accesses are performed synchronously.

Overall, we consider our implementation a success nonetheless. The pri-

mary goal of reducing CPU time is greatly achieved without drawbacks in

terms of bandwidth. Although the possibilities seem limited, we want to ex-

plore various options to reduce latency in the future.
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5.1 Future Work
We have already discussed several improvements and extensions regarding

the implementation in the previous chapters, e.g., a custom DMA engine or

. In

this section, we want to talk about a few ideas that may lead to new scientically

relevant insights.

5.1.1 Additional Operations
We already elaborated on what operations may be viable in addition to asyn-

chronous memcpy()s in Section 3.1.1. As we described in Section 2.2, the original

proposal for asynchronous copy ooading by Werling et al. [78] included hav-

ing an accounting-based switching mechanism that employs synchronous

accesses as long as bandwidth is not saturated to keep latencies low. We aim

to provide proper synchronous read and write operations in the future with

traditional load/store semantics in the future. More broadly speaking, the

possibilities of mixed-synchronicity interfaces may open up new use cases for

persistent memory technologies such as Optane. Currently, in the memory hi-

erarchy, each level is either synchronous (e.g., main memory) or asynchronous

(e.g., mass storage), however Optane PMem both exhibits characteristics that

are known from main memory as well as from SSDs. We believe that mixed-

synchronicity interfaces for memory are an underexplored area in previous

research.

5.1.2 Compute Express Link
In Section 2.3, we briey introduced the novel Compute Express Link (CXL) bus

standard that was designed to achieve high performance and low latency with

full cache coherency specically for memory and storage devices. Due to the

lack of CXL-capable hardware at the start of this work, we built our design upon

PCI Express. However, CXL seems naturally well-suited for our endeavour

given its protocols that are tailored specically for memory peripherals. CXL’s

full cache coherency further allows for interesting enhancements, e.g., the L4

cache design that we describe in Section 5.1.4. Hence, we plan to reimplement

our approach with CXL-capable FPGAs and CPUs in the future.

5.1.3 Out-of-Order Processing
As discussed in Section 3.1.7, asynchronously executed memory operations

enable the possibility to process them in an out-of-order fashion as it is not
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as crucial to keep latency to an absolute minimum as it is with synchronous

accesses. Given that PMem’s performance depends strongly on the access

patterns as shown by Yang et al. [82], we may leverage our asynchronous

design to reorder accesses to improve the achieved performance. We would

therefore like to explore suitable algorithm designs for out-of-order processing

in the future.

5.1.4 Optane L4 Cache
In Section 2.1, we described that the 3D XPoint cells in Optane memories are

constructed in a 256 B block structure despite Optane PMem oering a byte-

addressable interface. Consequently, small writes are prone to cause write

amplication. Given that modern CPUs typically use 64 B cachelines [17], there

is a high likelihood that writebacks end up as 64 B accesses. In order to reduce

write amplication, we suggest leveraging cache-coherent interconnects such as

CXL to create a device with an inclusive L4 cache specically for Optane PMem

with a cacheline size of 256 B. We believe that such a design has the potential

to signicantly evade write amplication in many typical read-modify-write

scenarios.
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