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Abstract

Unikernels promise to enable building specialized combinations of an application
and a kernel. Because they are usually built with a specific use-case, they can
remove large parts which would be integral part of a classical operating system.
While they only support running a single application, they still have to support a
wide variety of potential applications to remain useful. There has been a focus in
recent years on improving the specialization aspect by allowing the developer to
configure included functionality within the unikernel. However, the applications
ported to run as part of a unikernel often still rely on configuration text files parsed
during startup at runtime.

Because this configuration is not known to compiler, optimizations such as
constant propagation or dead code elimination cannot specialize the application
itself for the desired use case. We propose a mechanism to determine the effective
configuration at runtime and inject the configuration values at compile-time as
constants. This allows the compiler to take the actual values into consideration
during optimization.
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Chapter 1

Introduction

Unikernels have gained popularity in recent years, because they allow building
highly specialized appliances. Compared to classical operating systems they take a
more minimalist approach by only supporting running a single application. This
allows them to offer performance, size and security benefits.

Unikraft [12] improves upon other unikernels by splitting the code-base into
micro-libraries. The developer can add, remove or replace libraries depending on
the use case and achieve a highly specialized unikernel for the desired application.

However, a remaining problem is to specialize the application itself to the
actual use case. Most applications are built in a way to cover many possible
use cases and allow a detailed configuration using text files. These text files are
parsed during the application startup and the resulting values are stored in structure
accessible from the rest of the application. For applications running in unikernels
these files are often bundled as part of the image. This also means that the whole
image is usually rebuilt as soon as the use scenario changes and therefore the
configuration is updated. Effectively, the compiler could view the values in the
configuration structures as constants. This would allow optimizations such as
constant propagation and dead code removal to apply on more code.

The goal of this work is to determine the constants based on the runtime
behavior of a unikernel. Then we want to insert the discovered constants into the
compilation process to allow the compiler to aggressively optimize the resulting
unikernel for the used configuration.

Chapter 2 gives an overview over involved concepts. We continue with an
analysis of our objective in Chapter 3. With the gained insights we describe the
design of our optimization in Chapter 4. Chapter 5 describes our implementation
for Unikraft and Clang. After evaluating our implementation in Chapter 6, we
conclude this work with a short summary in Chapter 7.
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Chapter 2

Background

We give an overview of unikernels, which are the base of this work, in Section 2.1.
For our analysis we have to first gather data about a unikernel’s execution. This was
done using full system simulation with memory tracing, which we will introduce
in Section 2.4. We use debugging information to interpret the raw tracing data.
Section 2.3 introduces the general concept of debugging information and presents
DWARF, the format we used for our work. To implement our approach we have to
modify a compiler and introduce the relevant concepts in Section 2.2.

2.1 Unikernels

Traditional operating systems offer a broad set of functionality such as process
isolation and hardware abstraction. This is necessary for multiprocess workloads
usually found on desktops or bare-metal servers. Today many server workloads in
cloud environments consist of a single application such as a database server running
in a virtual machine. These bundles of operating system and a few applications are
often reused and redeployed across multiple hosts. For these scenarios the huge
breath of functionality provided by modern operating systems such as Linux is
less important. The application usually only use a small portion of the provided
operating-system libraries and kernel features. The components taking care of
abstracting the underlying hardware are also less necessary. The hypervisor already
exposes a uniform and simplified interface of common resources such as storage
and network. The remaining multiprocess functionality in classical operating
systems is necessary because most uncritical and optional functionality is offloaded
into system processes. This includes basic features such as establishing network
connectivity or handling device hot-plug events.

These dormant features still caused trade-offs in the design of operating systems
even if they are not used or are not important anymore. For example, UNIX-like
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6 CHAPTER 2. BACKGROUND

operating systems have the concept of users with associated permissions and
this has to be considered in most components such as the virtual file system or
networking.

Parts of the resulting operating system binaries can be attributed to these
features. Removing them would result in smaller images, which would require less
disk space and reduce the boot time [15]. Furthermore, including code and features
that are not strictly necessary can increase attack surface. A well known example
was a vulnerability in OpenSSL’s implementation of the heartbeat extension. The
offending piece of code was rarely used in normal practice but was remotely
exploitable and had a large impact on the internet [6]. Furthermore, features such
as privilege separation and the implied system call mechanism can also impose a
performance overhead [12, 13].

In recent years, the function-as-a-service model has gained popularity. The
cloud providers provide a managed execution environment for programs instead
of normal virtual machines. From the customers point-of-view any deployed
programs run on-demand for an incoming request. The benefit for customers is
that he has to only pay for the actual usage and the application can automatically
scale to the incoming requests. In the background these services are implemented
on classical operating systems and virtual machines [27]. To achieve low latency
the providers keep created instances around and only the first request that creates
the instance suffers from a higher latency. These idle virtual machines still take up
memory resources which could be used for active instances.

Library operating systems attempt to address these issues by creating a special-
ized combination of kernel and application. Instead of providing a platform for
applications to run on, they are designed as a library to be linked into the target
application resulting in a unikernel. The output is an image that contains both
the application and kernel portion in a single address space. This allows some
optimizations compared to a classical kernel with an application running on top
of it. For example, all code runs in the same privilege level and therefore there
is no need to execute costly switches between levels. Instead of having to rely
on a system call mechanism to communicate with the kernel, the application can
directly call the corresponding functions. Depending on the compiler configuration
this can also allow optimization across these function calls, which are normally not
possible across the system call boundary. Because there is only a single address
space, a unikernel does not have to manage multiple address spaces. While having
separate processes with different address spaces is a typical feature of classical
operating systems, modern applications rely less on this feature nowadays and
prefer threads.

Some unikernels such as MirageOS [14], HalVM [9], runtime.js [23], in-
cludeOS [10] are designed for running applications written a specific programming
language on top of a hypervisor. They usually provide a custom API and there-
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fore porting existing applications written in the fitting programming language
can require a significant effort. Software written in an unsupported programming
language cannot run on these unikernels at all.

Some unikernels target more specialized use-cases. For example, ClickOS [16]
implements a programmable appliance for network middleware elements. Instead
of running Click on a standard memory-heavy Linux system with long boot times,
Martins et al. built Click on top of Xen’s MiniOS and newlibc. Redoing this for
every application is time-consuming and requires expertise across the full stack.

In between classical kernels and highly specialized appliance unikernels, are
general-purpose unikernels such as Hermitux [18], Drawbridge [19], Graphene [26],
and rumprun [22]. They provide a more-general set of features and focus on
running unmodified applications. Hermitux, Drawbridge, Graphene are also ABI
compatible to a classical operating system, allowing them to run existing binaries
without recompilation. While the executed applications can profit from fast boot
times, a small memory footprint and a well-isolated environment, they are still
limited by the usually rather high-level APIs of the original operating system.
These unikernels are built in a monolithic way that all supported applications
can be used with the same core build or are based of existing general-purpose
operating systems. The individual components of these unikernels not replaceable
or removable. For example, it is not possible to replace parts of the booting process
or remove support for threads.

Unikraft [12] attempts to further improve the modularity of unikernels. Most
of the functionality is encapsulated into micro-libraries, which users can mix and
match depending on their requirements. For example, they might choose a low-level
block based storage interface for more fine-grained control and higher throughput,
but use a standard POSIX-compatible libc to be able to easily port the application.
Some base-functionality and abstraction micro-libraries are included in the core
repository, but it is easy to replace and add external libraries into the build process.
Unikraft uses the Linux’s Kconfig system to allow customization of the unikernel.
Each micro-library includes a specification in the Kconfig language about the
configurable options and their dependencies to potential other configuration options.
The application itself is also represented as a micro-library, that can expose options
itself. If specified correctly, these options will automatically enable dependent
options.

2.2 Compilers
Compilers take a piece of source code and translate it into a usually more low-level
language such as machine code. A simple C compiler might simply take each
statement in the source program, decompose it into multiple basic operations and
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output a sequence of machine code instructions for each of them. Usually doing so
would rather inefficient code for various reasons. Firstly, the code that developers
write are usually not optimized for performance but rather for readability, and
extensibility. For example, some sub-expression in an equation might be duplicated
for readability reasons. Secondly, the source code lines in high-level languages do
not map directly to machine code instructions. One line of code often has to be
represented by multiple machine code instructions. In some cases it is possible
that a single machine instruction can describe a complex operation (e.g., the x86
popcnt instruction, which counts the number of set bits in the register). While
some of these instructions can be provided as intrinsics in system programming
languages, the result is often non-portable and less readable code. An important
feature of high-level languages is that the developer can keep an arbitrary count
of variables around. But there are only a limited amount of hardware registers
available and therefore not all variables can be kept in registers at the same time.
The previously proposed C compiler would have to write the results back to memory
for each operation and would not be able to pass the operands around efficiently
via registers.

To solve these issues compilers integrate a large variety of optimizations.
Modern compilers are roughly separated into three blocks: front end, middle
end, back end. The front end parses the source code and transforms it into an
intermediate representation. This representation is then optimized using a set of
passes. Finally, the back end generates machine code for the target architecture.
The back end phase usually also contains some machine specific optimizations.
The exact organization can vary by compiler and often compilers subdivide each
of these phases into smaller steps. For example, some compilers there are multiple
different intermediate languages involved [8].

Sometimes, there are expressions in the program that always evaluate to the
same value. This can happen because all operands are constants or the compiler can
prove that the input does not matter. In this case, the compiler can apply constant
folding and evaluate the operation at compile-time, resulting in another constant.
Constant propagation is a related optimization that allows replacing the usage
of constants in other expressions with the constant. These two optimizations are
applied until no further constants can be propagated or expressions folded.

Developers often split program logic across multiple smaller and easier to
understand functions. In some cases, they may also decide to abstract the concrete
function behind an indirect function call. In this case the callee can vary at runtime
and the compiler does not know the target. Furthermore, the compiler would not be
able to apply for example constant propagation and folding optimizations across
these call boundaries.

In some cases the parameters of a function call are known to be constant at the
call site. When the compiler optimizes the function itself it only sees a variable.
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Therefore, for instance the constant propagation optimization cannot do anything.
For these situations, the compiler can inline the body of functions at the call-site.
The compiler uses a heuristic to decide what functions to inline. In practice, these
heuristics have to find a compromise between the benefits of inlining and the
increased code size [4].

The possible interactions between these optimizations mean that applying
one optimization can also have an impact on other optimizations. For example,
after taking the call site arguments into account when propagating constants, the
compiler might be able to eliminate dead code rendering the function small enough
to allow inlining the function.

Object-oriented program heavily rely on inheritance and virtual function calls
to realize abstractions. In the general case, there can be multiple concrete callees
and only during runtime the actual target is known. There are analysis algorithms
such as RTA or XTA [25] that can determine a set of potential callees based on
inheritance hierarchies. In case only a single candidate exists, the compiler insert
a direct call to the determined function. In the C programming language this
paradigm is often replicated using function pointers and indirect function calls.
Because the previously mentioned algorithms need an inheritance hierarchy they
are not used in C compilers.

The processor has only a limited amount of cache for code and the cache is
usually organized in larger blocks. When a block of code is fetched, the block might
contain both frequently and rarely executed instructions. Therefore, it is possible
to make more efficient use of the cache by reducing the amount of cold code next
to hot code. However, the compiler often does not know how frequent a branch is
taken as it usually depends on external input. In these cases, the developer could
provide explicit hints to mark a branch as less or more likely. This manual process
is tedious and as the software evolves these annotations can be outdated resulting
in less efficient code than a non-annotated version. Profile-guided optimizations
attempt to automate the annotation process by observing the program at runtime.
Classically, this involves instrumenting the considered program with counters how
often a branch is taken. The program is then executed with “realistic” input data.
But in practice, developers run test suites and unit tests, which are often close
enough to real-world scenarios to gain meaningful improvements. In a second
step, the program is recompiled with the profile data as an additional input. The
compiler can then extract the likelihood of a branch being taken from the profile
data. Optimizations based on profile data, do not change the semantics and cannot
remove code [21, 5].

Some compilers are able to insert value probes [2, 11], which can also keep
track of specific values. These are currently only emitted for virtual function calls,
switch statements, and the size parameters of mem{cpy,move,set}. Other
generic variables or indirect function calls are not instrumented with this method.
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Bird [1], working in the embedded area, has experimented with various sized-
focused optimizations on the Linux kernel. He chose to remove the user identifier
variables in various kernel structures and replace their usages with zeros, the only
possible value if no other users are created. However, the size reduction was not
significant, and the run-time performance impact was not measured in the chosen
example.

Source code AST

LLVM IR LLVM IR Machine code

clang
(frontend)

LLVM
(backend)

Parser

IR Codegen

Optimizations Code generator

Figure 2.1: The clang compiler only parses and generate LLVM IR, while all
important optimizations are done in the LLVM back-end.

We will modify the clang, which is a popular compiler for C family languages.
The compiler uses the LLVM compiler infrastructure to generate and optimize
code. The overall architecture is shown in Figure 2.1. Clang itself follows a library-
oriented design and the parser is usable as a library without having to use the code
generation component. The output from the parser and semantic analysis library is
an AST of the input file. This allows IDEs to use clang for auto-completion and
indexing features.

The generated AST attempts to represent the original source code as close as
possible. For example, the parser does not fold simple constant expressions such
as 1 + 1 and instead keeps them intact. This makes it easier to build refactoring
tools on top of the clang library.

Listing 2.1 shows a simple C file, that defines a global variable and a getter func-
tion. The clang compiler can be instructed to output a pretty-printed representation
of the AST. The result for shown C file is shown in Listing 2.2.
struct SomeType {
int x;
int y;

};
extern struct SomeType gv;

int do_something() {
return gv.y;

}

Listing 2.1: Example C file that accesses a field in a global variable.
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The contains all explicitly appearing constructs of the original source code.
For instance, the structure with a list of all contained fields. In some cases clang
inserts additional AST nodes such as implicit casts. The shown example contains
a lvalue to rvalue cast, which is required for semantic reasons in C and C++.
DeclRefExpr nodes allow referring to declaration and in our example it refers
to the previously defined global variable. Accessing a specific member is repre-
sented using a MemberExpr node. In both cases the expression also has their
corresponding types associated.

TranslationUnitDecl
| [...]
|-RecordDecl struct SomeType definition
| |-FieldDecl x ’int’
| ‘-FieldDecl referenced y ’int’
|-VarDecl used gv ’struct SomeType’ extern
‘-FunctionDecl do_something ’int ()’
‘-CompoundStmt
‘-ReturnStmt
‘-ImplicitCastExpr ’int’ <LValueToRValue>
‘-MemberExpr ’int’ lvalue .y
‘-DeclRefExpr ’struct SomeType’ lvalue Var ’gv’

Listing 2.2: The (abbreviated) AST generated by clang for a function that accesses
a field in a global variable.

The code generation library traverses the AST to generate LLVM IR. LLVM IR
is a machine independent intermediate language that is used by LLVM to represent
the code during the compilation. In addition to the in-memory structure, there is
also a human-readable form which can be used to inspect the various stages in
the compiler. Compared to the underlying processor architectures, the LLVM IR
can keep track of the types of values. This allows optimizations to take the actual
type in consideration without additional analysis steps. Front-ends such as clang
must respect the type system when generating IR. For example, passing a constant
integer to a pointer argument in C, would require an explicit inttoptr cast in
the generated IR.

After the IR has been generated, LLVM can be instructed to run an optimization
pipeline on it and generate machine code from the optimized IR. Depending on
the optimization level and other flags, it includes optimization such as constant
folding, inlining or profile-guided optimizations.

Listing 2.3 shows the LLVM IR for the previous memory load example. While
the structure type is still present in the intermediate representation, the represen-
tation only contains information about the memory layout. Compared to AST
shown in Listing 2.2, the structure type does not contain the name of the fields but
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only their types. The read from the global variable is represented using a load
instruction. The address is generated by a getelementptr instruction which is
used to calculate pointers to elements in aggregate structures. In our example, it
calculates the address of the second field in the global variable. The parameters at
the tail of the instruction describe the indices to dereference. Because the global
variable is of a pointer type, the instruction first dereferences it and then selects
the second field. The values are assigned identifiers and local identifiers have a %
prefix.

%struct.SomeType = type { i32, i32 }

@gv = external dso_local global %struct.SomeType, align 4

define dso_local i32 @do_something() {
%2 = getelementptr inbounds (

%struct.SomeType, %struct.SomeType* @gv,
i64 0, i32 1)

%1 = load i32, i32* %2, align 4
ret i32 %1

}

Listing 2.3: The IR of our simple example is fairly high-level and contains infor-
mation about the types.

2.3 Debugging Information

High-level programming languages provide many tools for structuring code and
data. For example, common structures across programming languages are func-
tions, primitives data types, and simple record-like structure types. When compiling
source code to machine code, much of the information about these structures is
thrown away. For example, the field names of a structure does not matter for the
processor and is therefore unnecessary to keep around. Another scenario where
information loss occurs in the translation, is when functions are inlined into other
functions. Some parts of the resulting code piece would belong semantically to the
caller, but others would belong to the callee.

This circumstance does not pose a problem if the user uses a program and does
not care about how the program carries out its work. However, developers may
want to know what a program does for debugging or profiling it. Doing so on the
machine code itself or even disassembled code would be inconvenient and difficult.
The developer would have to first understand what the compiler generated out of
the source code and how it maps back.
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To encounter this problem, most compilers are able to emit additional debug-
ging data. This includes information about the structures and entities in the original
source code. Additionally, it also defines a mapping of entities to machine code or
memory representation. Tools such as debuggers or profilers can use the debugging
information construct a view of the runtime data that matches the original source
code perspective. Commonly used debugging information format are DWARF [7]
and PDB (Program Database) [17]. In the following we will give a short overview
of the DWARF format.

DWARF is the currently used format for Linux-based systems and toolchains.
The central structure of DWARF is a tree of nodes that describes all entities in the
program. There are a few other structures such as line number tables for mapping
source lines to machine code or abbreviation tables that allows a more compact
encoding of the central tree structure.

A node in the main tree structure is called a Debugging Information Entry
(DIE) and the type of is described by its tag. An entry can have a set of attributes
describing the node in more detail. An attribute has a name and value, which
can have a variety of types depending on the attribute’s name and DIE tag. At
the top-level there is a DIE for each compilation unit in the program and below
that DIEs for top-level definitions. These are separate from each other and do not
share types or names for entities. This also means that a type is repeated for each
compilation unit it occurs in.

The DWARF standard uses base types to represent primitive types in pro-
gramming languages. In addition to the base types there are also modifier entries
for modifiers commonly found in many programming languages such as const,
volatile, and pointers. These entries refer to the wrapped type and represent the
type with the modifier added around it. For the const int* type of the C pro-
gramming language the compiler would emit a base type DIE similar to Listing 2.4.
The base type DIE describes the encoding as signed and the size of the int type.
To describe that the value is const, an DIE with the DW_TAG_const_type
is used that refers to the previously defined int base type. Finally, the const
int* pointer is represented by referring to the previously defined const int
type with a DW_TAG_pointer_type DIE.

0x00000192: DW_TAG_base_type
DW_AT_byte_size (0x04)
DW_AT_encoding (DW_ATE_signed)
DW_AT_name ("int")

0x00000150: DW_TAG_const_type
DW_AT_type (0x00000192 "int")

0x0000018d: DW_TAG_pointer_type
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DW_AT_byte_size (8)
DW_AT_type (0x00000150 "const int")

Listing 2.4: Description of an const int* type in DWARF. The final type is
composed using modifiers.

Furthermore, there are tags for describing enumeration, unions, structure and
array types. For structures and unions, DWARF includes a list of all fields as
children of the structure or union DIE.

Variables are also represented using a DIE and an example for a global variable
is shown in Listing 2.5. The DIE contains some source code related information
such as filename, line and column number, which is useful for determining where
the definition originated from. There is also a specification where the variable’s
data is stored. For our simple example, it is a single address, but DWARF allows
specifying more complex expression to determine the actual location. It also refers
to the integer pointer type defined in the previous example, which makes it possible
to interpret the data at the storage location.

0x000002d0: DW_TAG_variable
DW_AT_name ("int_ptr")
DW_AT_decl_file ("/src/code.c")
DW_AT_decl_line (40)
DW_AT_decl_column (1)
DW_AT_type (0x0000018d "const int*")
DW_AT_external (true)
DW_AT_location (DW_OP_addr 0xaed0d0)

Listing 2.5: DWARF describing an global variable containing a pointer to an
integer.

The DIEs of subroutines contain information such as the location of variables,
inlined subroutines and subroutine calls. Compared to the global variables, the
location descriptions for local variables are usually more complicated. Listing 2.6
shows a variable that has a different location depending on the current instruc-
tion pointer. To describe locations in flexible way, DWARF uses a stack-based
expression language. In the shown example this is used to describe the value in the
first location range as a constant. The first instruction pushes a literal zero on the
stack and the second instruction specifies that the value on the top of the stack is
the actual value of the variable. If a variable’s value is found in a register, as it is
the case for the last two ranges, the expression consists of a single DW_OP_reg
instruction.

0x000003b1: DW_TAG_variable
DW_AT_name ("x")
DW_AT_type (0x0000018d "int*")
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DW_AT_location (
[0x17535f, 0x17536b): DW_OP_lit0, DW_OP_stack_value
[0x17536b, 0x175377): DW_OP_reg0 RAX
[0x17537b, 0x1753a0): DW_OP_reg12 R12)

Listing 2.6: A variable may be in a different locations depending on the current
instruction pointer.

2.4 Memory Tracing
For our work we need to understand what happens in a virtual machine while
running a unikernel. Full-system simulation is a tool that allows us to peek into the
execution of a guest. Compared to a hardware-based virtualization, the full target
system is simulated in software. This also means that the complete processor is
simulated in software, which allows tracing every functional detail of the simulation.
For example, a memory access by an executed instruction causes the simulator to
load a value from the virtual memory. Instead of simply loading the value, the
emulator can be extended to log some information about the memory access before
continuing the simulation.

Tracing every memory access of a guest operating system comes with its own
challenges. The limited available space in registers makes an additional stack
structure in the memory necessary. Larger amounts of data are usually stored on
the heap region of the main memory. While accessing memory is slower than a
register, it is still an operation considered relatively cheap. On most systems there
are also cache hierarchies which decrease the latency of such accesses. These
factors mean that programs access the main memory very frequently. Tracing such
a high-frequency event requires special consideration as it can generate multiple
gigabytes per second as raw data. Burtscher et al. have developed VPC4, an
algorithm to improve the compression of execution traces [3] The basic idea of
the algorithm is based around having a set of predictors. Each time a value has to
be processed, every predictor outputs a set of predictions of the value. The index
of the first matching prediction is then output instead of the value itself. If no
prediction was correct, then the value itself is output. In both cases, the predictors
are updated with the actual value and the algorithm is ready for the next iteration.

The output can be then compressed with a general-purpose algorithm such as
zstd or LZMA. This setup takes advantage of the greatly reduced entropy in the
VPC4 output. Often this allows compressing traces at a much higher compression
ratio at the same throughput.

Simutrace uses an implementation of VPC4 to store memory traces in a very
compact way [20]. Additionally, it processes the incoming data in parallel to make
use of multicore systems.
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Chapter 3

Analysis

Unikernels attempt to improve upon appliances based on traditional operating
systems by specializing on a single application. For example, they remove any
functionality necessary for running multiple applications on the system. Projects
such as Unikraft [12] attempt to allow an even more fine-grained specialization.
One option is to remove unnecessary components to create a smaller image and
another is to replace individual components with more specialized ones to improve
the overall performance. Section 2.1 contains a more detailed overview over
unikernels. This still requires integrating explicit options which can be enabled or
disabled by the developer. In practice, there are two ways to implement this kind
of options in C. The first is to use pre-processor #ifdefs, which allow inserting
code conditionally depending on a condition evaluated during compile-time. The
second one is to include all behavior and decide at run-time what behavior should
be used. It is usually implemented using conditionals or function pointers in C.
Conditionals are usually used for a bounded set of options. A very simple example
is a configuration option that enables or disables verbose logging. An example
for function pointers can be found at the virtual file system (VFS) of Unikraft or
Unix-like systems. Each file system implementation registers a set of operations
for FS nodes. This is realized using a structure with function pointers to the actual
file system implementation.

Figure 3.1 outlines a simplified version of the open function. For file system
specific functionality, the function calls the vop_open function pointer in the
structure provided by the file system implementation. Instead of inserting a call
instruction to a fixed address, the compiler inserts an indirect function call. Indirect
function calls are usually less efficient, because modern processors with speculative
execution has to correctly predict the target to fill the pipeline. They also represent
an optimization boundary for the compiler. For instance, for vop_fallocate
shown in Figure 3.1 both file systems refer to the same no-op implementation. Even
when the function is very short and simple, but the compiler cannot inline it as there
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might be other call targets. This leads to a worse cache usage as the processor cache
is usually organized in larger cache lines and the processor has to fetch the whole
cache line. Depending on the concrete function that calls vop_fallocate, there
might be a considerable amount of dead-code code in case all file systems only use
a no-op implementation.

vop_open
vop_fallocate
vop_read
...

ext2_vnops:

vop_open
vop_fallocate
vop_read
...

fatfs_vnops:

vfscore_vop_nullop

int fatfs_open(...)

int fatfs_read(...)

int ext2_open(...)

int ext2_read(...)
int open(...) {
 [...]
 fs = node->fs->ops;
 fs->vop_open(...);
 [...]

}

Figure 3.1: Using function pointers is a common abstraction implementation
technique. However, the optimizer of the compiler usually cannot assume anything
about the values of function pointers.

At some point there has to be a decision what configuration should be active. In
case of options that can be configured at run-time, software often reads the desired
state from configuration files. These files have a human-readable format and are
parsed at the startup of the program. The parser transforms the content of the
configuration file to a machine-readable form in memory. Usually, this means that
they are stored in structures in global variables or somewhere in a heap allocation.
The remaining components of the program can then use these structures to decide
on the behavior.

Configuration files in the context of unikernels are often bundled with the
appliance itself and do not change after building the image. When the configuration
needs to be changed because the requirements change, the image is rebuilt with the
new configuration. The resulting new image is then deployed on virtual-machines
and the old virtual-machines are stopped. This is in contrast to the classical
procedure of changing the configuration file on the file system and then restarting
the application process.

The current optimizations in compilers cannot optimize these patterns because
there the configuration data is not known at compile-time. In theory, one could
replace the configuration file input with a constant string, but the compilers do
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not evaluate programs far enough to execute whole configuration parsers. Profile-
guided optimizations are built in a way that they always preserve correct behavior
and are safe even when profiling coverage was not exhaustive. They can move
code blocks around or select instructions that are faster in the frequent case, but
they cannot remove assume that only specific values occur. In some cases it is
possible that variables are known to be constant in a different compilation unit.
But the compiler considers each compilation unit as separate from each other by
default. Features such as Link-time-optimizations fix this problem by running
optimizations across all translation units at the linking phase. This also shares the
same limitations of constant expression evaluation that exists classically within a
single translation unit.

Our goal is to identify these in-memory configuration structures and collect
a list of known-constant values. This list is then converted to a form usable for
the compiler. We could create a single dump of the memory state and search
for these structures, but would not be able to tell which values change. Creating
multiple dumps would suffer from a high storage effort and depending on the dump
frequency a low coverage. Instead, we can create a trace of all individual memory
accesses which allows us to watch for changes and reconstruct the memory image
if necessary. For the identification we need determine some robust properties to
classify memory locations. In the following we will assume that we can create a
trace of the unikernel that is complete in the sense that all code-paths are exercised.
We can observe that the values of these configurations do not change after the
initialization phase of the unikernel. This is not enough information for retrieving
the actual values as it is not clear when the initialization ends. If we instrument
the unikernel to indicate the end of the initialization phase, then we could copy the
configuration data at that point. The downside is that the developer is responsi-
ble for identifying the configuration structures and would have to instrument all
applications.

Another way is to look at all written values to a memory location. If only a
single value is observed during the lifetime of the unikernel, then the compiler
could have assumed that the value was actually a constant. One problem with this
approach is that it would break if for example the structures are zero-initialized
using the memset function. When looking at the written values there would be
two values: the desired value and a zero.

We can fix this problem by looking at read accesses instead of writes. These
represent the values that are actually observed by the program. Concrete values
that were written but never read were never observed and cannot have an effect on
the execution. However, there will be still cases where multiple different values are
observed during the initialization phase. For example, the configuration structures
might have a size field that increases as more of the configuration file is parsed.
With our approach this field will have multiple values associated with it, because
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increasing the value also incurs a memory read.
We decided to track all data at byte-granularity and not at base-type-granularity.

The latter is strictly more descriptive than the former but is more complex to
implement. For example, when tracking a four-byte integer at base-type level we
could distinguish two values 0x00000000 and 0xFFFFFFFF. In the case of
byte-level tracking there would be two values for each byte resulting in 24 = 16
indistinguishable combinations. For our work we only care about unique values
and the value is already considered non-constant when there are at least two unique
observed values. Implementing the more detailed base-type-granularity would not
have any benefit for our work.

Further, we decided to track the values based on the address or correspondingly
to heap-allocations the offset within the encompassing type. One could also do this
analysis for each memory access instruction separately. While it could potentially
provide a more fine-grained result, it would also increase the risk an insufficient
value-coverage. This is the case because every value also has to additionally be
observed at every read location instead of only at one location. But it could have
benefits in situations where multiple values are observed during the initialization
phase and only a single during the remaining execution.

We chose to implement the memory tracing from the outside in the full system
simulator. Implementing the memory tracing by instrumenting unikernel itself
would have several downsides. In theory, it would be possible to modify the
compiler to include a functional call for every memory access in the code. However,
this would considerably increase the code size and substantially changing the code
layout compared to a non-instrumented build. Another problem would be that our
approach depends on having all memory accesses. A common optimization is to
use hand-crafted assembly implementations for frequently used functions such
as memcpy. These implementations would not be instrumented with a compiler
modification and would need to be instrumented by hand. Finally, the resulting
data has to be transported outside the virtual machine and stored on the host. The
transport mechanism would have to be excluded and also be efficient enough to
slow down the execution to unusable performance. In comparison, implementing
this in full system simulator is rather simple. A full system simulator has to
translate memory access of the guest code to some equivalent for the host. At the
point where this happens we can insert an additional function call that traces the
address and value of the operand. The implementation can also benefit from the
virtual memory management of the host and directly process the resulting data.

One limitation of our approach is that we rely on seeing all values in the
profiling run, that will also show up in real-world conditions. In many cases it is
hard or impossible to ensure this in the general case as having a witness of a value
does not prove that other values are not possible. In the optimal case a developer
might try to record a unikernel in real-world conditions. However, they still would
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have to decide when enough data was recorded for useful dataset and stop the
recording. This is not unlike a central problem in software testing as described
by the famous quote of Edsger W. Dijkstra: “Testing shows the presence, not the
absence of bugs”. In practice, the developer can add additional guidance to the
tooling to restrict it to known safe structures. For example, they can provide a
list of configuration structures which are known to be constant after the program
initialization. If there are other constants that were detected, they can be output for
further analysis.

We decided to store the resulting trace data instead of processing it directly.
A benefit of this is that we can incrementally develop the analysis program and
refine the functionality repeatedly on the same data. Because the data is well
compressible as described in Section 2.4, the storage overhead is manageable.
Processing it synchronously would also slow down the simulation substantially and
impact the interaction with tools such as HTTP clients outside the virtual machines
because of timeouts.

For the analysis we need to know the virtual memory layout within the guest
at each point in time. The unikernel file already contains information about the
basic memory layout including code and data segments. But notably this does
not include any information about the heap, which is managed completely at run-
time. We want to keep the amount of necessary modifications to the unikernel to a
minimum. While we could parse the heap allocator structures to find out the exact
contents of the heap, this makes in dependent on the specific allocator. We decided
to instrument the allocator interface to create a trace of allocation, because it is
independent of the used allocators and less error-prone because we do not have to
re-implement parts of the allocator.

After the analysis we want a list of all detected constants in a machine-readable
form. Currently, compilers have no mechanisms to inject values at specified loca-
tions. Therefore, we need to implement such a mechanism on our own. Specifically,
we want to replace references to fields within structures with constants. But other
possible actions would be to remove unused fields from structures.
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Chapter 4

Design

Based on the findings in the previous chapter, we want to design an approach to
recognize run-time constants in a unikernel and inject them into the compilation
phase. Section 4.1 describes how we want to gather the desired constants based on
the run-time behavior of the unikernel. In Section 4.2 we describe how we plan to
integrate the constants into the compilation process.

4.1 Data Interpretation

As described in Section 3 we want to find out configuration options and variables
stay constant during the execution of the program. To find out how the data is
structured at run-time we want to make use of debugging information. We described
in Section 2.3 how the DWARF debugging format allows external programs to
inspect the state of a program. Most importantly, they include a description of the
variables in a program and their types. These debugging information formats are
mostly designed with debuggers and profilers in mind. Debuggers allow the user
to inspect the program state from the viewpoint of the original high-level language.
A common task in this scenario is for example to print the value of local variable.
In that case, the debugger can retrieve the current location of the variable from the
debug information.

We need to figure out what type is used to access the data within a heap
allocation. In the C programming language the allocator interfaces do not handle
any type information. The program only passes them a requested size and if
necessary a minimum alignment requirement. The resulting pointer is then cast
to the desired type and accessed via that type. In some applications the system
allocator is abstracted away through potentially many abstraction layers and at a
much later point in the execution. This makes it much harder analyze the debugging
information statically and determine a type reliably.

23
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Therefore, we collect the instruction pointers of the memory access instructions.
We can then analyze the instructions to find out the variable that was used to store
the pointer. Depending on how the memory was addressed we try to figure out
which variable was used to store the original pointer to a structure. We want to do
this using the debugging information emitted by the compiler. By traversing this
debugging information we can try to figure out what variable is likely used to store
the pointer used for the memory access. For global variables we can also figure out
the exact type with the help of the debugging information. They store the exact
address of the variable in the binary and its type.

For each memory address we can store the observed values and group them
into the respective base types. With the resulting information we can determine
which parts of a type are always constant.

4.2 Compiler
We described the organization of a modern compiler in Section 2.2. Compilers are
roughly separated into a front and back-end. The clang compiler is considered a
front-end for C programming languages and uses the LLVM compiler infrastructure
its back-end. Based on the arguments outlined in Section 3, we decided to modify
the front-end to carry out our optimization. The LLVM IR does not carry enough
information to reliably select the correct constant injection points. Therefore, we
implement our modification in the clang front-end.

While parsing a source code file, clang builds an AST representation in-memory.
The compiler then walks through this tree by function and generates LLVM IR
for each one. We want to replace member accesses using a memory load with a
constant value. There are multiple possible points to accomplish this goal. We
could add an optimization in the back-end as an LLVM optimization pass. This
would allow easier reuse of our optimization across other programming language
with compilers which use LLVM as their back-end. While there is some level of
type information available in the LLVM IR form, some high-level concepts such as
field names are not part of the representation. Another possibility is to implement
the optimization as a source-to-source transformation. In theory, such program
would read the unikernel source-code and replace all references to the desired
variable with constant literals. A simple search and replace approach would be very
fragile as it would difficult to cover all usages. For example, for the expression
v->x it is not clear what type v has without parsing the context. In the ideal
case, such source-to-source transformation tools would have access to the parsed
AST and semantic information such as types about the code. The clang compiler
is organized in a way that makes writing such tools possible without having to
implement a complete compiler front-end. Additionally, clang provides various



4.2. COMPILER 25

utilities to simplify writing tools such as LibASTMatchers. The clang AST
provides source code location information which can be used to replace existing
text. For example memberExpr(member(hasName("uid"))) would allow
matching against all member expression where the field name is uid. In our case we
could match against memberExpr() to match against all member expressions
and match them against the list of detected constants. We could replace all desired
expressions with constants using the source code location information and write
the resulting contents to disk.

However, the normal clang compiler driver also uses a similar pattern: it parses
the source code and then traverses the AST to generate the code for each function.
Instead of having an intermediate stage as in the source-to-source transformation,
we can directly apply our adjustments to the LLVM IR generation step. This results
in a cleaner integration into the existing build system and allows enabling the
optimization by passing an additional compiler flag. Therefore, we decided to
modify the compiler itself to carry out the optimization.

A conceptual limit is that pointers to fields are not covered by this approach.
For example, a structure might contain an integer, and some function might create
a pointer to the field. Any access via this pointer could not be associated to the
structure field. Therefore, we cannot replace such loads with constants.

As discussed previously, a risk of our approach is that there is no safe criteria
when all possible values are covered. In some applications, this could cause the
unikernel to misbehave or even create security issues. A possible solution would be
to integrate an optional verification mode. For every replaced load this mode could
insert an assertion that ensures the value in memory matches the expected constant.
If the value does not match, the program would abort instead of continuing with
incorrect behavior.

There are also fields are never read during the unikernel execution. For example,
there may be fields that are only used by optional features which were not enabled.
This can happen for both features that were disabled at compile-time and features
that were never used due to run-time behavior. In the first case, there are no field
accesses at all, and in the latter case the compiler might still emit loads which
were not executed during run-time. The fields may also be never read because our
optimizations removed all reads. In these cases, the field still takes up space in
memory, but is never really used anymore. A possible optimization could remove
the unused field altogether and reduce the size of the affected structures. To handle
any remaining loads that are expected to be dead-code, we can replace them with
undefined or poison values. Replacing them with undefined values would increase
the freedom of the compiler to optimize or even remove the code after the affected
load. The verification mode could instead insert an abort function call, which stops
further execution.

Removing stores to detected constant fields requires more consideration. Our
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current approach only replaces direct references to fields in structures. Listing 4.1
shows a case where our approach relies on having the (constant) value in memory.
The code creates a pointer to the integer field x in extract and accesses the
field via this pointer in extract_field. The compiler only sees a derefer-
ence operation of an integer pointer without knowing where this integer is stored.
If we still emit all stores, the value is still stored in memory and the load in
extract_field still returns the correct value. In C there is no way to find out
the enclosing type given a pointer to a field. Therefore, we have to emit stores to
fields which are potentially referred by a pointer. We can create a list all fields that
are used in an address of operator or offsetof macro. Stores to fields in this list
should be still emitted, but known reads can still be replaced.

struct st {
int x;

}
int extract_field(int *ptr) {

return *ptr;
}
int extract(struct st *s) {

return extract_field(&s->x);
}

Listing 4.1: C allows creating addresses to fields and code using those pointers
does not know the surrounding type.

In Chapter 3, we identified function pointers as a possible optimization barrier.
Because the compiler does not know what set of functions could be called, it
does not have the option to inline the function bodies of the called function. This
prevents further optimizations such as constant propagation or folding. The analysis
approach described, also works for function pointers as indirect calls also cause a
memory read. The values collected this way describe pointers to the code section
instead of plain values. The concrete values depend on the location where a
function is stored in memory. All functions in a binary are laid out sequentially,
which means that changing the code size of a function also moves all functions
afterwards around. The expected effect of our optimization is that we reduce the
code size, and therefore we cannot directly use the raw pointer values. Instead, we
would have to insert a symbol reference and rely on the linker to insert the correct
addresses. Many functions used for filling function pointers in implementation
abstraction structures as described in Chapter 3 have internal linkage. This means
that the symbol of the target function is only visible within the compilation unit and
not in other compilation units. In some build system setups such as the one used
by Unikraft, there is a step that changes the linkage to internal after all compilation
units within a component have been linked together. For symbols intended to
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be used by other components there is a list exported symbols, which retain their
external linkage.

The first problem of being unable to reference internally linked symbols, could
be solved by introducing an additional unique symbol that points to the same
address as the normal symbol. Choosing unique names is important because the
symbols component-internal functions normally do not conflict with any other
symbol and therefore do not need to be unique across all source files. With this
approach any non-unique symbols would cause a conflict if the externally-visible
names only depend on the old identifiers. The second problem could be fixed by
modifying the build system to not touch these special symbols.
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Chapter 5

Implementation

Based on the design outlined in Section 4, we describe our implementation in
the following. We first describe how we gather the raw data about the execution
of a unikernel in Section 5.1. Section 5.2 explains how we process this raw
data and reconstruct data structures from it. Finally, Section 5.3 describes the
implementation of our optimization in the compiler itself.

5.1 Data Acquirement

The hypercall necessary for collecting information about the heap is implemented
by reading from an unused model-specific-register on x86 platforms. The necessary
code for the QEMU and guest is generated by the scripts part of Simutrace [20].
Only slight modifications were necessary because the guest code was written with
the Linux kernel in mind. To cross-check the gathered data and analysis results we
also implemented the collection of a stack-trace. This allows us to check the code
which triggered the allocation and verify that we figured out the correct type.

The QEMU modifications also include a trace point for memory access by the
guest. The generated event includes the virtual address, memory value, access size,
and instruction pointer value. It also includes the current value of the cycle counter,
but we did not use it for our work.

All events are packed into separate packets which are then compressed. For
the memory events, the individual fields are processed using the VPC4 algorithm
and then compressed using zstd. The remaining allocation tracing events are
compressed using zstd.
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5.2 Analysis Tool
The next step is to analyze the traces generated by QEMU and output the constants
for the compiler optimization. We wrote the analysis tool in the Rust programming
language as it provides a modern environment to implement the analysis tool. We
chose Rust because there are mature libraries for the ELF and DWARF formats,
which allow working with them in a mostly type-safe way. Because of the involved
amounts of raw data choosing a compiled language was essential for us.

The basic operation of our tool is to open the traces and iterate over all events
in the contained data streams. Simutrace takes care of decompressing the streams
packet-by-packet and applying VPC4 in reverse for the memory events. The result
of this operation is the reconstructed data of the packet. We can then directly access
the individual events in the packet by accessing it using a struct matching the
structure of the C code.

We use the allocation events to keep track of the heap state. For every allocation
event we store an entry in a B-tree map with the allocation base address as the
key. The value of the map entry consists of the allocation size and the call-stack
of the allocation call. When the unikernel deallocated some memory, we can find
the correct heap entry via the base-address. The B-tree map allows us to quickly
search for the correct allocation that contains a given address.

A small but important data structure is the ValueList, which represents a
single byte in memory. The structure tracks up to five different observed values
instead of up to the 256 theoretical possible values. While we only need to know
whether there was a single unique value for the final compiler guide, we track
multiple values for informative purposes. The structure also tracks all instruction
pointers that accesses the memory location. This list will be used to determine
the type of the heap allocation. To quantify the importance of a structure the
ValueList includes the read and write access count.

As previously described, we track all instruction pointer that access a memory
address. The instruction pointer allows us to retrieve the instruction that caused the
memory access. We can then disassemble the instruction and inspect it. We then
look at the operands of these instructions and check which segment was accessed.
In case a non-data segment such as the stack was accessed we ignore the instruction
and continue with the next one. For data segment accesses we check whether there
is a base register for the address calculation. In most cases the compiler emits a
field read in a structure with a base and displacement addressing mode. The base
is usually the start address of the structure and the displacement is the offset within
the structure to the desired field. As previously described, the debug information
for a function also includes the location of a variable. We can scan through function
that contains the considered instruction and look for a variable that is stored in the
base register. If there is a variable that satisfies this condition, we can use the type
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specified for the variable. For some instruction pointers the resulting type is not
useful as the function uses a generic type to access the memory. An example for
this is when a function zeros the structure using memset because it usually uses
the char type to write zeros to the memory range. Based on the symbol table
of the unikernel we generate ranges of blacklisted functions and if an instruction
pointer falls within such range we ignore that instruction pointer.

The next step is to merge all instances of a type together and create a summary
of the different values across all instances. Because of the compilation model of
the C programming language is centered around translation units, the compiler
generates the debug information for each one separately. In case of functions this is
a sensible model because each function is unique. But for types which are usually
defined in headers this means that a type appears in the debugging information of
multiple translation units. When we figure out the type by looking at the debugging
info of a function, the variable DIE points to a type within the compilation unit.
If a function in another compilation unit exists that accesses the same allocation,
the variable DIE refers to a different place. This means that a simple identity
comparison is not enough to merge the instances of an individual type. Instead,
we have to use a structural comparison operation to decide whether a type is the
same. Because we store all types in a hash map indexed by the type itself, the same
applies for the hash function.

To implement the comparison and hashing operations, we use a recursive
strategy. Two DWARF base types are equivalent iff the bit size and their encoding
are the same. For structures we consider them equivalent iff the members excluding
member names are equivalent. The type modifiers such as const, volatile,
pointer are equivalent iff the modifier is the same and the inner type is equivalent.
A similar pattern is used for the hashing implementation. Instead of comparing the
specific property with another type’s property, the value is added to the hash. The
recursion adds the inner type to the hash, resulting in a hash over the whole type.

A problem with a naive implementation of this approach is that C types can
have cycles in their structure. Linked lists are a well-known example of this pattern
and Listing 5.1 shows a simple linked list structure.

struct list_node {
struct list_node *next;
int value;

};

Listing 5.1: Linked lists are a popular data structure in C and the type contains a
cyclic reference to itself.

Each linked list node refers to the next node and usually the next pointer of the
last node is set to the NULL pointer. The type of the next member refers to the
type that is going to be defined. A comparison implementation not considering this



32 CHAPTER 5. IMPLEMENTATION

fact, would endlessly traverse into the type itself. To fix this, our implementation
keeps track of the types that are compared along the recursion. When we recurse
down, we add the current comparison to the list of active comparisons. After
finishing a comparison-step of a type we remove the comparison again. Every time
the algorithm traverses down it also checks whether there is the same comparison at
a lower recursion level by checking this list. If there is such an active comparison,
then we consider the types as equivalent on that level. The only way such a recursive
type is non-equivalent is that there is at least one non-matching comparison outside
these explicit break-points.

Another problem stems from the fact that C has the concept of incomplete
structure types. They do not have a list of members associated, but it is already
usable as a pointee. This is sometimes used to hide the structure members in the
public interface of a library. In that case the actual structure is only defined in the
actual implementation source file and all interfaces only pass around pointers to
the structure. For client source files that include the public interface header these
structures show up as declaration-only types in the debugging information. This
makes them impossible to compare them structurally across multiple translation
units. For structures affected by this we instead rely on the structure name and
assume that naming conflicts are unlikely to exist.

In some cases the analysis can end up with multiple types for the same alloca-
tion. This situation can arise if there is a pointer to a sub-structure in the allocation.
If some code accesses the memory of the allocation with such a pointer, then this
type will also be a valid type for a portion of the allocated memory. The tracing
data does not contain enough information to figure out the precise location of
these sub-structures in all cases, because x86 supports addressing modes such as
Base + (Index ∗ Scale) + Displacement. In the case of the mentioned addressing
mode, both the base and index are registers. The other variables are constants
encoded in the instruction itself. Because only the final address is known and there
are two unknown variables in this equation, we cannot determine the value of base
in the general case. For simpler addressing modes with only a single variable,
we could calculate the base address and puzzle together the overall type of the
allocation. However, we decided to implement an algorithm based on a simple
observation: when structures are composed of other types, then the encompassing
type must be at least as large as the inner type. Therefore, the algorithm can choose
the largest detected type for the allocation.

For memory accesses that do not fall into an allocation but instead into the data
segment of the unikernel, we accumulate them until of the trace end. After we
iterated through all events, we associate all accessed addresses to global variables.
We can find a description of global variables in the DWARF debugging information.
They are represented as variable DIEs directly below the compilation unit DIE and
contain the address range where they are stored. By comparing the ranges in the
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debugging information and the actual addresses we can merge the values into the
previously described type-value mapping.

The accumulated data is then output as an HTML report or YAML report for
the compiler. The HTML report contains all detected types and a summary of the
observed types. This report includes a detailed dump broken down to the bytes on
a base type level. For each byte, the report shows whether there were no values, a
few different values, or too many observed. For all types it also includes the read
and write count to give a rough importance indicator.

The YAML report for the compiler contains a similar set of information. But
compared to the HTML report we filter out fields with more than one value.

5.3 Compiler
As discussed in Section 4.2, we decided to implement our optimization directly
in the compiler front-end itself. After the compiler has parsed the source code, it
iterates through all functions in the source code and generate LLVM IR. On
a statement and expression level this happens using a visitor pattern for the
AST nodes. For our optimization, we are interested in the member expres-
sion nodes that are translated to memory load instructions. This happens in the
ScalarExprEmitter::VisitMemberExpr method. This method first at-
tempts to evaluate the referenced field as a constant. For example, the structure
might be stored in a local const variable and therefore the compiler can figure
out the value. If this is not possible, a memory load from the address of the field is
emitted.

We inserted a check between these two cases that compares the path of the
member expression with the paths specified in the YAML file from the analysis
tool. This check also considers nested MemberExpr nodes in case of nested
structures. When the YAML file contains the considered field, we construct a value
with the content specified in the file. LLVM uses arbitrary precision integers for
representing the values, and we start by constructing such value. The memory and
value representation does not always match. For example, a boolean is represented
by a single byte in memory, but are represented as a single bit type in the LLVM
IR. Therefore, the next step is to convert the memory representation to the correct
type in the LLVM IR. We return the resulting constant instead of the IR value or
the memory load.



34 CHAPTER 5. IMPLEMENTATION



Chapter 6

Evaluation

In the previous chapters, we described the design and implementation of an op-
timization that allows injecting constants into a unikernel. The constants are
determined based on a memory trace of the unikernel itself. In this chapter, we
want to evaluate the effect of applying the optimization and find out whether it
improves the performance or size of unikernels.

6.1 Methodology

To evaluate the effect of the implemented optimization, we want to measure how
our optimization affects the size of the built unikernels. For this we take a look
at the size of the ELF sections and compare them between unikernels built with
and without our constant propagation optimization. In particular, we want to focus
on the .text and .data sections in the image. The .text section contains
the machine code and our optimization should result in less code as outlined in
Section 3. The .data section can shrink when references to contained variables
are replaced by constants. We also check whether the resulting unikernel still
works correctly.

Figure 6.1 shows an overview of our evaluation process. To gather the necessary
information for our analysis tool, we build each unikernel with debugging symbols.
We disable any optimizations to prevent the compiler from removing memory
accesses which our tool needs to determine constants. The resulting unikernel is
then run within the modified QEMU with memory tracing support. In case of server
applications, we apply external inputs such as HTTP requests to the running server.
The memory trace is then analyzed by our tool, which outputs an HTML report and
a YAML file. In some cases, we have to filter out some detected constants, because
the values depend on the specific compiler output. We build the final unikernel
with optimizations enabled and enable our optimization by passing the YAML file
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to the compiler.

Normal
Build

QEMU Trace
Unoptimized

Binary
YAMLAnalysis +

Filter Tool
Build with

modified CC

Comparison

Debugging Information

Optimized binary
Optimized binary

+ constants

Figure 6.1: We compare the binaries produced by a normal build with those
produced by our optimization pipeline.

The hardware and software configuration, which was used for our measure-
ments, is shown in Table 6.1. We used GCC instead of clang for binaries with
debugging information, because GCC tended to produce more reliable results.

Component Specifications

Processor AMD Ryzen 7 PRO 5850U
Main Memory 32GiB

Storage Samsung PM981a, 1TiB
Guest Main Memory 500MiB

Software Version

Host Kernel Linux 5.18.10
Guest Unikraft 0.6 (Dione), including modifications for PHP

Compiler GCC 12.1.0 (debuginfo binaries), LLVM/clang 15.0.0-
f69328049e9e with modifications (constant injection)

QEMU 2.6.50, modified for Simutrace
Simutrace 4.0

Table 6.1: The hardware and software used to evaluate our implementation.
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6.2 Microbenchmarks
Our first micro-benchmark represents a minimal unikernel to test how detecting
run-time constants can further eliminate dead code. The full unikernel is shown in
Listing 6.1. It takes a parameter from the command line and outputs a message if
the parameter was not 12. Internally, it converts the parameter into an integer and
stores the value into a configuration structure. This structure resembles a typical
way of holding configuration parameters. For this unikernel, there is one other
function that reads the configuration from the structure and outputs a message
depending on the value.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 struct {
5 int arg;
6 } config;
7
8 void __attribute__ ((noinline)) print_argument(void) {
9 if (config.arg != 12)

10 printf("hello world: argument is %d\n",
11 config.arg);
12 }
13
14 int main(int argc, char **argv) {
15 if (argc != 2)
16 UK_CRASH("invalid number of arguments");
17 config.arg = atoi(argv[1]);
18 print_argument();
19 return 0;
20 }

Listing 6.1: The simple demonstration unikernel parses the parameters and outputs
some text depending on the value. The exact run-time behavior is not known at
compile-time and depends on the aforementioned parameter.

Suppose the parameter is always set to “12” and therefore the configuration
value is also always the same. This is comparable to programs that parse configura-
tion files from immutable disk images at startup. Because the value is only known
at run-time, the compiler cannot remove the conditional in print_argument().
The resulting machine code for the function is shown in Listing 6.2 and confirms
that the compiler inserted a check for the current value of the argument at line 8.

1 000000000010a430 <print_argument>:
2 ;; Function preamble
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3 10a430: push rbp
4 10a431: mov rbp,rsp
5 ;; Load config.arg
6 10a434: mov esi,DWORD PTR [rip+0x1c82e]
7 ;; Compare with constant 12
8 10a43a: cmp esi,0xc
9 10a43d: jne 10a441 <print_argument+0x11>

10 ;; False branch
11 10a43f: pop rbp
12 10a440: ret
13 ;; True branch
14 10a441: lea rdi,[rip+0x144d1]
15 10a448: xor eax,eax
16 ;; Tail-call to printf
17 10a44a: pop rbp
18 10a44b: jmp 10b790 <printf>

Listing 6.2: The compiler has to emit a memory load for the configuration variable
and has to include code for all possible values of the configuration parameter.

We generated a memory trace as described in previous chapters and analyzed
it with our tool. The memory trace for this unikernel is 156MiB of raw data
describing 1.145.910 memory accesses, which ends up compressed as 1.2MiB.
The analysis tool detected nine constants, which are shown in Table 6.2. Most of
the accesses to detected constants can be attributed to the console components of
Unikraft. These constants only make up a very small portion of the data read from
memory.

We then passed these constants to the modified compiler and rebuilt the uniker-
nel. The resulting assembly code for the print_argument function is shown
in Listing 6.3. Because all reads from the config.arg field were replaced by a
constant “12”, the condition is trivially false. This allows the dead-code analysis to
remove the complete if-clause resulting in an empty function.

1 000000000010a180 <print_argument>:
2 10a180: push rbp
3 10a181: mov rbp,rsp
4 10a184: pop rbp
5 10a185: ret

Listing 6.3: The injection of the constant enabled the compiler to evaluate the
if-condition and remove it completely.

The text section of the unikernel without our optimization is 127051 bytes.
With the cleaned up version of the constant list the binaries text section shrunk to
126091 bytes. Therefore, applying our optimization results in a 960 bytes smaller
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Type Path Reads Description

variable plat_allocator 1 Allocator used by platform
code

variable virtio_drvs.tqh_first 1 List of virtio devices
type virtio_driver_list.tqh_first 1 List of virtio devices
variable config.arg 1 Configuration parameter
type <unnamed>.arg 1 Configuration parameter
variable tsc_mult 2 Multiplier for x86 TSC ticks to

nanoseconds
variable terminal_color 239 Default terminal color
variable dreg 492 VGA data register
variable areg 984 VGA address register

Total 1722

Table 6.2: The list of detected constants contains our configuration variable among
other platform related constants.

text section.
In many cases the configuration is not placed in a global variable but stored

in a heap allocation. We modified our simple unikernel to replicate this pattern
and Listing 6.4 shows the source code. The configuration structure is allocated
in the main function, filled with the parsed value and then passed as an argu-
ment to the print_argument function. The print_argument accesses the
configuration via this pointer argument.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 struct config {
5 int arg;
6 };
7
8 void __attribute__ ((noinline)) print_argument(
9 struct config *cfg

10 )
11 {
12 if (cfg->arg != 12)
13 printf("hello world: argument is %d\n",
14 cfg->arg);
15 }
16
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17 int main(int argc, char **argv)
18 {
19 if (argc != 2)
20 UK_CRASH("invalid number of arguments");
21 struct config *cfg = malloc(sizeof(struct config));
22 cfg->arg = atoi(argv[1]);
23 print_argument(cfg);
24 return 0;
25 }

Listing 6.4: We modified the unikernel to store the configuration on the heap
instead of a global variable.

We traced this unikernel in the same fashion as the variant with global variables.
The analysis results match the ones described previously and also correctly identify
the constant in the configuration structure. The same applies for the results after
injecting the constants into the compilation process and the compiler is able to
remove the complete if-condition.

6.2.1 Discussion
Part of the detected constants is also a structure describing the memory layout of
the virtual machine. The tool correctly detected that these values did not change for
the considered unikernel and (same) virtual machine memory allocation. Changing
the contents of the unikernel binary by removing code will also slightly change
the memory layout. In this case, there will be more room for the heap, because
there is less code after we apply our optimization. This causes the start addresses
and lengths of the segments to change. On x86 the structure is used to store the
regions of the boot stack, initial-ram-disk, and heap. In this example, there is no
initial-ram-disk and there only a few allocations in the heap. This increases the
likelihood that the unikernel is functional even if the regions are incorrect. The
previous unikernel confirms that this is the case and still works from a functional
point-of-view. We excluded the structure for our evaluation because it breaks
completely once an initial-ram-disk is loaded and there is an unnecessary risk of
introducing subtle errors even if the unikernel works at first sight.

6.3 Macrobenchmarks
To evaluate the impact of our optimization on a larger application, we used a web
server unikernel. This appliance is based on the nginx 1.21.4 web server and
includes PHP 8.1.0 for server-side scripting. The combination is widely deployed
across the internet and represents an interesting opportunity for this optimization as
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the configurations only rarely changes once deployed. The configuration files are
stored on an initial-ram-disk and the files served are stored on an ext2 disk image.
For .php files nginx forwards the requests to the PHP interpreter which runs the
requested script and returns the output to be sent back to the client. As part of the
tracing phase, we sent two requests to each of three endpoints: a simple HTML
file, the classical phpinfo() script, and minixed [24], which is a simple PHP
directory browser application. The tracing phase generated 5.2GiB of raw data
(102MiB compressed) containing about 59 million memory reads and 35 million
memory writes.

For this workload, the analysis tool was able to generate a list of 1623 values
that it determined to be constant. Starting the unikernel with all constants does
not work because of the aforementioned memory layout variables. While the
unikernel boots after removing these constants, it is not able to respond to any
HTTP requests. Upon closer inspection the network stack was stuck assigning a
unique index for the external network interface. This happened because the analysis
script determined that the index field of network interfaces would always be zero.
The loop that repeatedly incremented the network interface number until does not
match one of an existing interface would therefore never terminate. Removing the
constant did allow the network stack proceed normally but the unikernel did still
not answer to HTTP requests. However, the network stack can respond to ICMP
ping packets, which suggests that a constant on the application layer breaks the
unikernel. To determine which constants result in a non-working unikernel, we
wrote a script that recompiled the unikernel with each type-based constant injected
individually. For each compiled unikernel the script checked whether it was able
to respond to an HTTP request. Table 6.3 lists all constants that had an impact on
the binary size and whether the unikernel booted with the constant injected. After
determining which constants cause a breakage, we generated a list of all working
constants and compiled the unikernel with this list. The resulting unikernel crashed
on the first request to an PHP file. On closer inspection, the constant for fd field
in the ngx_open_file_s structure causes nginx to erroneously write into a
epoll file descriptor. Removing this constant from the set fixes the problem and
the unikernel is able to respond to all requests.

In addition to the type-based constants, we also verified that only including
constants detected in global variables results in a working unikernel. Including
those also reduced the code size by almost 5KiB. Finally, we combined the set of
global variable constants and type-based constants, which reduced the code size by
about 12KiB.
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Target .text size ∆ .text Works?

(Reference without optimization) 15208839 0 ✓

(All detected constants) 15181191 -27648 ✗

(All variable constants and pass-
ing type-based constants except
ngx_open_file_s.fd)

15196103 -12736 ✓

vnode.v_type 15196295 -12544 ✗

(All passing type-based constants) 15201095 -7744 ✗

(All variable constants) 15203847 -4992 ✓

_zend_object_handlers.do_operation 15206919 -1920 ✓

_zend_array.pDestructor 15207367 -1472 ✓

_zend_module_entry.type 15207687 -1152 ✓

vnode.v_refcnt 15207943 -896 ✓

_cwd_state.cwd_length 15208071 -768 ✗

netif.num 15208391 -448 ✗

vfscore_file.f_vfs_flags 15208519 -320 ✗

_reent._atexit 15208583 -256 ✓

netif.next 15208583 -256 ✓

vfscore_file.f_flags 15208583 -256 ✓

_zend_llist.persistent 15208647 -192 ✓

netif_ext_callback.next 15208647 -192 ✓

_zend_module_entry.zend_api 15208647 -192 ✓

driver.devsz 15208711 -128 ✓

_zend_array.nInternalPointer 15208711 -128 ✓

_zend_module_entry.module_started 15208711 -128 ✓

vfscore_file.f_offset 15208711 -128 ✗

posix_socket_ops.init 15208775 -64 ✓

_xmlSAXHandlerV1.initialized 15208775 -64 ✓

posix_socket_driver._list.tqe_next 15208775 -64 ✓

netif.status_callback 15208775 -64 ✗

_zend_internal_function.fn_flags 15208775 -64 ✓

pthread_attr_t_.inheritsched 15208775 -64 ✓

curl_version_info_data.age 15208775 -64 ✓

curl_version_info_data.libssh_version 15208775 -64 ✓

_zend_module_entry.handle 15208775 -64 ✓

Table 6.3: Only a few constants have an impact on the binary size and some of
them also result in a broken unikernel.
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6.3.1 Discussion
We described in the previous chapters how we to reconstruct the types of an
individual heap allocation. When taking a closer look at the failures in the nginx
appliance, we can observe that the constant detection for global variables works
reliably. However, some constants detected in heap allocations break the unikernel.
The analysis tool outputs a list of heap allocations where it was unable to associate
a type to. This includes the list of instruction pointers where the memory in
the allocation was accessed. Listing 6.5 shows the disassembly of one of these
locations. The code is part of a generic reference counter utility in Unikraft and is
responsible for initializing the reference count. The memory access to the heap
allocation is in line 5 and the instruction uses the address stored in the rax register.
This address was read from the stack two instructions earlier in line 3. In this case
the analysis tool looks for the DIE of the uk_refcount_init function and
searches for a variable that is stored in the rax register.

1 0000000000182be8 <uk_refcount_init>:
2 ...
3 ; ukarch_store_n(&ref->counter, value);
4 182c85: mov rax,QWORD PTR [rbp-0x18]
5 182c89: mov edx,DWORD PTR [rbp-0x1c]
6 182c8c: xchg DWORD PTR [rax],edx
7 ...

Listing 6.5: The compiler loads the necessary address from the stack right before it
is used instead of keeping it around in a register.

Listing 6.6 shows the debugging information for the function, which notably
does not include any variable in a register. Instead, all variables and parameters are
stored on the stack. By analyzing the assembly code we know that the address to
the heap allocation was loaded in line 3 and was stored on the stack with an offset
24 from the base pointer. This corresponds to the DIE at line 20 which describes
that the variable _r is stored at that location. The correct conclusion would be that
a part of the allocation is of the type __regs.

1 0x0000fb7a: DW_TAG_subprogram
2 DW_AT_name ("uk_refcount_init")
3 DW_AT_low_pc (0x182a96)
4 DW_AT_high_pc (0x182b3f)
5
6 0x0000fb98: DW_TAG_formal_parameter
7 DW_AT_name ("ref")
8 DW_AT_type (0xfbd7 "__atomic *")
9 DW_AT_location (DW_OP_fbreg -40)

10
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11 0x0000fba7: DW_TAG_formal_parameter
12 DW_AT_name ("value")
13 DW_AT_type (0xc251 "__u32")
14 DW_AT_location (DW_OP_fbreg -44)
15
16 0x0000fbb6: DW_TAG_lexical_block
17 DW_AT_low_pc (0x182ab5)
18 DW_AT_high_pc (0x182b33)
19
20 0x0000fbc7: DW_TAG_variable
21 DW_AT_name ("_r")
22 DW_AT_type (0xe024 "__regs *")
23 DW_AT_location (DW_OP_fbreg -24)

Listing 6.6: The DWARF debugging information does not contain any information
about the values stored in registers during the execution of the function.

However, this would require knowledge about the data flow within the assembly
code. The tool would have to figure out the surrounding type by following the
data-flow in reverse until it finds a register or memory location with an associated
DIE. Then it would have to follow the data-flow back to the original memory access
operation. As part of this it would be necessary to map the semantics of low-level
operations back to the high-level semantics on the C type level. For instance, an
indirect memory load would represent a pointer dereference. Alternatively, more
precise debug information from the compiler could also solve this problem. These
would have to include information about every intermediate register value in the
program.

The same applies for the other samples we investigated closer, and the problem
is responsible for the most of the failures to recognize types of heap allocations.
Not being able to recognize the type of some heap allocations increases the risk of
false-positive constant detections. We observed this happening in the file system
code where all vnodes were falsely detected as being of the same type. Injecting
the constant caused the unikernel to being unable to read any files from the file
system.

We previously discussed the importance of having a high coverage during the
tracing phase. During our investigation of the problems of some constants in the
nginx benchmark, discovered that the combination of all individually working
constants does not work. Debugging the unikernel revealed that nginx attempted to
write text to the standard error as shown in Listing ??. The concrete file descriptor
is abstracted away using the ngx_open_file_s type, which stores the file
descriptor in the fd field. While tracing only a single value was observed for this
field. Therefore, it was determined to be a constant as seen in Listing 6.8. This
value corresponds to an epoll file descriptor during run-time.
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1 n = ngx_write_fd(log->file->fd, errstr, p - errstr);

Listing 6.7: Nginx uses a common structure to store information about open files
such as log files and event notification file descriptors.

1 - type: type
2 target: ngx_open_file_s
3 path: ["fd"]
4 value: [3, 0, 0, 0]

Listing 6.8: Our analysis tool only saw a single value for the file descriptor part of
this open-file structure.

The result is that the write system call is called on this file descriptor. This
erroneous usage causes a crash of the unikernel. While a more extensive test setup
during the tracing phase could prevent this kind of error, it is hard to assess when
the test setup is sufficient to cover all cases. Instead, a more reasonable approach
would be to specifically white-list known configuration structures. This case shows
that there are structures where the fields only change their values at very specific
circumstances. This is in contrast to the normal configuration structures where the
values stay the same across the runtime of a program.

6.4 Conclusion
Overall, the detection of constants in global variables worked well except for
the memory layout description variable. We attribute this to the precise debug
information about global variables that allows us to accurately track values in them.
The binary size reduction by injecting the detected constants was rather small
compared to the total size of the unikernel.

The constants that were detected on a type-level were more problematic but
also had more potential for space savings. We think that a more robust detection
of types in heap allocation would also translate in a more robust detection of
constants in them. This in turn should also improve the detection of constants on a
type-level. The current implementation for the type detection of heap allocations
is not enough for real-world applications as a considerable effort is necessary to
verify the binaries.
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Chapter 7

Conclusion

Unikernels have shown a considerable benefit over traditional appliances based
on full classical operating systems by allowing extensive specialization. Instead
of having to support a broad set of possible applications, they can omit features
unnecessary for the targeted workload. This allows them to reduce the overhead
from an image size, run-time memory usage, and attack surface point-of-view.

A common pattern is to port an existing application such as a web server to
unikernels. These applications are often built to satisfy many usage scenarios and
often use configuration files to allow the user to specify the desired behavior. The
program usually parses the configuration file at startup and then uses the resulting
values during runtime. In unikernels this configuration is often bundled within the
final image and never changes during deployment. Even modern compilers with
link-time optimizations cannot utilize that these values are effectively constant and
remove unnecessary code for disabled features.

Our approach is to use a memory trace to find out the final (constant) values
in the structure used to store the parsed configuration. To accomplish this we use
the debugging information emitted by compiler to reconstruct the structures used
by the program during runtime. In the reconstructed structures we can observe
changes to the values by working through the memory trace and note what fields in
structure stay constant across the execution.

The resulting list of constants can be then passed to a modified compiler which
replaces any read to those with the constant itself. This allows the compiler to
effectively do constant propagation from configuration files into the program code.
We showed that this approach can fundamentally work and has a positive impact
on the binary size.

47
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7.1 Future Work
Our current approach is not able to replace function pointers, because the concrete
pointer values changes when the function moves around in the binary. This already
happens when the size of a function shrinks because of our optimization and all
following functions move to lower addresses. Instead, the optimization would
have to instruct the linker to insert the correct value. A possible implementation
would be to introduce special globally visible alias-symbols that allow referring
to internal-linkage symbols. Because some build systems aggressively hide all
non-whitelisted symbols, this would also require an integration into those affected
build systems.

A limitation of our current analysis tool is that it currently cannot do any
data-flow analysis to figure out more types of heap-allocations as discussed in
Section 6.3.1. This limitation is also responsible for some incorrectly detected
constants and limits the usefulness of our tool in practice.
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