
VM/EPT: A Virtualisation-based
Isolation Backend for FlexOS

Master’s Thesis
submitted by

cand. inform. Sebastian Rauch
to the KIT Department of Informatics

Reviewer: Prof. Dr. Frank Bellosa
Second Reviewer: Jun.-Prof. Dr. Christian Wressnegger
Advisor: Dr.-Ing. Marc Rittinghaus

1. September 2021 – 28. February 2022

KIT – The Research University in the Helmholtz Association www.kit.edu

I hereby declare that the work presented in this thesis is entirely my own and
that I did not use any source or auxiliary means other than these referenced.
This thesis was carried out in accordance with the Rules for Safeguarding
Good Scientific Practice at Karlsruhe Institute of Technology (KIT).

Karlsruhe, February 28, 2022

iv

Abstract

Modern operating systems fix a set of protection and isolation mechanisms
at design time, making changes to those mechanisms costly in terms of en-
gineering effort. Flexible isolation, as pursued by the FlexOS project, seeks
to allow specialisation of operating systems in the dimension of security by
allowing users to flexibly define protection domains at the level of individ-
ual libraries while also giving users the choice over the mechanism by which
isolation between these domains is enforced.

This thesis explores the use of high-guarantee isolation mechanisms for
compartmentalisation at the granularity of individual libraries. For this pur-
pose, we perform a systematic analysis of existing isolation mechanisms, mo-
tivate for VM-based isolation, before designing, implementing, and evaluat-
ing a prototype in the FlexOS framework. We show that, while VM-based
isolation comes with significant performance overhead compared to light-
weight isolation mechanisms when considering raw domain crossing costs,
our prototype achieves reasonable slowdown with real-world workloads (for
SQLite roughly 50% compared to lightweight isolation and comparable to
Linux), making it a practicable mechanism when security is the primary
concern.

v

vi ABSTRACT

Acknowledgements

I would like to thank my supervisor, Dr. Marc Rittinghaus, for the fruit-
ful discussions we had and for his insightful and detailed feedback on early
versions of this thesis.

Furthermore, I would like to thank Hugo Lefeuvre for letting me partici-
pate in his research without which this thesis would not have been possible.
We had numerous discussions throughout all stages of this work and I learned
a lot from them. I would also like to express my sincere gratitude to him for
taking the time to review my work and provide extensive feedback that led
to countless improvements of this thesis.

vii

viii ACKNOWLEDGEMENTS

Contents

Abstract v

Acknowledgements vii

Contents 1

1 Introduction 5

2 Background 7
2.1 Virtualisation . 7

2.1.1 Virtual Machines: Concepts and Challenges 8
2.1.2 Virtualisation Techniques 10
2.1.3 Virtual Memory in the Context of VMs 11
2.1.4 Intel VT-x and EPT 12

2.2 Unikernels . 15
2.2.1 Comparison with Containers 16
2.2.2 Unikernel Use Cases and Examples 17

2.3 FlexOS: Specialisation Towards Security 18
2.3.1 Existing Compartmentalisation Approaches 20
2.3.2 FlexOS Architecture 22
2.3.3 Compartmentalisation 23
2.3.4 Porting of Applications 23
2.3.5 The Build Process . 25
2.3.6 The MPK Isolation Backend 26

3 Analysis 29
3.1 Threat Model . 29
3.2 Isolation Mechanisms . 30

3.2.1 Kernel-enforced Address Spaces 30
3.2.2 Capability-based Isolation 31
3.2.3 Protection Keys . 34

1

2 CONTENTS

3.2.4 VM-based Isolation . 36
3.3 Virtualisation-based Isolation 38

3.3.1 The Argument for VM-based Isolation 38
3.3.2 A Substrate for Protection Domains 40
3.3.3 Challenges of VM-based Isolation 40

3.4 Summary . 42

4 Design 43
4.1 Cross-Compartment Function Calls 43

4.1.1 Preserving the Function Call Semantics 44
4.1.2 Requirements for the RPC Mechanism 44
4.1.3 Control Flow between Compartments 45

4.2 The inter-VM IPC Mechanism 49
4.2.1 Sharing Data between Compartments 52

4.3 Summary of Components . 52
4.3.1 The RPC Server . 52
4.3.2 RPC Threads . 53
4.3.3 Private Communication Channels 53
4.3.4 VM/EPT Call Gates 54

4.4 Trusted Computing Base . 55
4.5 Addressing Race Conditions on Shared Memory 56

4.5.1 Automatic Copies on Cross-Compartment Calls 56
4.5.2 Selective Write-Protection of Shared Memory 57

4.6 Summary . 59

5 Implementation 61
5.1 The VM/EPT Call Gates . 61

5.1.1 Private Communication Channels 62
5.1.2 The Implementation of VM/EPT Gates 64

5.2 The RPC Server . 65
5.2.1 Sub-Components of the RPC Server 65
5.2.2 The Implementation of the RPC Server 66

5.3 The RPC Threads . 67
5.4 Optimisations . 68
5.5 Modifications to the FlexOS Toolchain 69

5.5.1 Generating Function IDs 70
5.6 Summary . 72

6 Evaluation 73
6.1 Methodology and Evaluation Setup 73
6.2 Microbenchmarks . 74

CONTENTS 3

6.2.1 Measurements with the TSC 74
6.2.2 Gate Latency Measurements 76
6.2.3 Possibility for Optimisation of VM/EPT Gates 78

6.3 Network Throughput (iPerf) 81
6.4 File System Intensive Workloads (SQLite) 82
6.5 Discussion of Security . 84

6.5.1 Private Communication between Compartments 84
6.5.2 Shared Memory Allocation 85
6.5.3 Addressing Race Conditions on Shared Memory 85

6.6 Summary . 85

7 Conclusion 87
7.1 Future Work . 87

A Reproducibility 89

Bibliography 91

4 CONTENTS

Chapter 1

Introduction

Modern operating systems build in a fixed set of protection and isolation
mechanisms at design time. Changes to those mechanisms require signifi-
cant engineering effort. The FlexOS [58] project explores the specialisation
of operating systems in the security dimension by allowing users to define
protection domains at the granularity of individual libraries as well as the
mechanism by which isolation between these domains is enforced.

The prototype implementation of FlexOS comes with an intra-address-
space isolation backend based on Intel’s memory protection keys (MPK)
[46, Vol. 3]. Unfortunately, this backend only covers a small part of the
design-space, focusing on high performance at the cost of weaker security
guarantees, suffering from the absence of execution protection, precluding
the enforcement of inter-compartment control-flow integrity (CFI), as well
as known weaknesses [29,42,84].

The objective of this thesis is to explore the use of high-guarantee isolation
mechanisms for compartmentalisation at the granularity of a library. For this
purpose, we perform a systematic analysis of existing isolation mechanisms,
motivate for isolation based on virtual machines (VMs), before designing,
implementing, and evaluating a prototype in the FlexOS framework.

We evaluate the runtime performance of our prototype implementation
under several benchmark scenarios. We measure the latency of function
calls across protection domains to determine the raw cost of crossing domain
boundaries. Furthermore, we isolate core components of several applications
to measure the overhead incurred by our isolation mechanism in real-world
scenarios. Specifically, we isolate the file system from an SQLite applica-
tion to evaluate the performance of our prototype on file system focused
workloads, and we isolate the network stack from an iPerf server to measure
network throughput.

Our contribution is the design, implementation, and evaluation of a novel

5

6 CHAPTER 1. INTRODUCTION

VM-based isolation mechanism. We place each protection domain in its own
VM to achieve strong isolation enforced at the hardware level by the vir-
tual machine monitor. To support cross-domain function calls we design and
implement a remote procedure call mechanism relying on inter-VM com-
munication. In the evaluation of our prototype implementation, we show
that, while the radical approach of VM-based isolation comes at the cost of
high latency for cross-domain function calls, adequate performance is still
obtained in several benchmark scenarios. We also show that the latency of
cross-domain function calls is less than double that of Linux system calls.

The rest of this thesis is organised as follows. In Chapter 2, we provide
background information about virtualisation, operating system specialisation
on the example of unikernels, and the FlexOS project in which our work
integrates. We motivate the choice of VM-based isolation in Chapter 3 after
reviewing multiple isolation and protection paradigms and assessing their
suitability for our goal of providing strong, flexible isolation at the level of
individual libraries. In Chapter 4, we describe the design of our VM-based
isolation mechanism before giving details of our prototype implementation
in Chapter 5. Next, in Chapter 6, we evaluate the runtime performance of
our prototype implementation before concluding with Chapter 7.

Chapter 2

Background

In this thesis, we explore the use of virtual machines (VMs) to enforce iso-
lation between different software components. Therefore, Section 2.1 first
introduces the notion of virtualisation. We motivate its use in modern cloud
computing environments and explain different concepts and techniques that
allow for the efficient virtualisation of modern hardware. Section 2.2 then
gives an introduction to the unikernel approach, its relation to virtualisation
and operating system (OS) specialisation. We explain how specialisation of
unikernels to individual use cases and applications can improve performance
and resource utilisation compared to general-purpose operating systems. We
also give an overview of previous research projects that explored the use of
unikernels in various contexts. Finally, in Section 2.3 we take a look at the
FlexOS project that explores the specialisation of OSes towards security. We
motivate the specialisation in the security dimension and give an overview
of the architecture of FlexOS. We explain key concepts employed by FlexOS
to achieve the goal of flexible isolation.

2.1 Virtualisation
Historically, hardware virtualisation has been used to divide the resources of
mainframe computers between multiple applications, often used by different
people [82, p. 17-18]. With the advent of multi-user operating systems the
need for virtualisation declined. However, in the context of cloud computing
it became increasingly relevant again. Providers of cloud-computing services
are faced with various challenges which are well-suited for VMs.

Customers may have vastly different needs, both in terms of required
resources and the desired OS. For example, one customer might want to run
a small web shop hosted on a Windows system while another would like to

7

8 CHAPTER 2. BACKGROUND

host a server capable of handling hundreds of requests per second on a Linux
system. VMs offer the flexibility required to account for a large range of use
cases as well as the opportunity to provide customers with different operating
systems and resource configurations.

Naturally, providers of cloud computing services are interested in opti-
mally utilising their physical hardware resources. Thus, it is often impractical
to rent out entire physical servers, usually powerful and expensive hardware,
to customers. Instead, one physical server can host multiple VMs, leading
to better hardware utilisation and lower cost. However, when running VMs
under the control of different, mutually distrusting customers on the same
physical hardware, isolation is of paramount importance. A VM rented out
to one customer must not affect other systems hosted on the same hard-
ware, independent of the behaviour of the software running inside the VM.
Therefore, the strong isolation between VMs enforced by the hypervisor is
necessary to enable the consolidation of multiple VMs on the same physical
hardware.

2.1.1 Virtual Machines: Concepts and Challenges
The term virtual machine refers to a virtual system environment provided by
virtualisation software, usually called hypervisor or virtual machine monitor
(VMM), in which an OS can execute [82, p. 11]. The VMM provides the
guest OS inside the VM with virtual resources such as a CPU, memory, and
optionally I/O-devices. Therefore, the VMM is conceptually placed at the
boundary between the instruction set architecture (ISA) of the real machine
hosting the VM and the guest OS which it provides with a virtual ISA [82,
p. 11]. This virtual ISA may match that of the real machine or it may
be a different one. In the former case, it is desirable to execute as many
instructions as possible of the virtualised environment directly on the native
hardware to lower the performance overhead incurred by virtualisation. In
the case of differing ISAs, instructions of the virtual ISA must be either
simulated by interpretation or translated to sequences of instructions of the
native ISA via binary translation [82, p. 14]. The virtual ISA presented
to the host OS consists of a user part and a system part, referred to as
user ISA and system ISA respectively. The user ISA encompasses all non-
privileged instructions that are directly available to application code. The
system ISA on the other hand comprises all privileged instructions. These
are only available in privileged mode and thus should only appear in the
kernel of a guest OS.

The VMM controls the access of the guest OS to the physical hardware
and is able to enforce restrictions concerning the use of those hardware re-

2.1. VIRTUALISATION 9

sources. There are two basic types of VMMs: native and hosted ones [39].
Native VMMs, also called bare metal or type-1 hypervisors, run directly on
the hardware of the real machine. This means that all device drivers need
to be installed directly on the VMM, potentially reducing the selection of
usable hardware devices. Some type-1 VMMs allow a special VM direct ac-
cess to the hardware in order to provide device drivers. An example of this
is the Dom0 domain in Xen [19] which can provide device drivers for other
domains [20]. Installing a native VMM on a machine replaces existing OSes,
which might not be suitable for every user. Examples for type-1 VMMs are
Xen [19], Microsoft Hyper-V [6], and VMWare ESXi [17].

Hosted VMMs, also referred to as type-2 hypervisors, run on top of an
OS. This comes with the advantage that the hosted VMM can make use of
the device drivers already available for the host OS, essentially providing the
same hardware compatibility as the latter. It also is a suitable solution for
users that want to run applications on their native OS in addition to others
on a different OS inside a VM. Some hosted VMM available for common
OSes include VMware Workstation Player [18], Oracle VM VirtualBox [9]
and QEMU [10]. Figure 2.1 illustrates the two VMM types as well as a
native system for comparison.

Hardware

OS

Application Programs

Hardware

VMM

Guest OS Guest OS

Application
Programs

Application
Programs

Hardware

Host OS

Hosted VMM

Guest OS

Application
Programs

Application
Programs

VM 1 VM 2

VM 1

(a) Native system (b) Native VMM (c) Hosted VMM

Figure 2.1: Conceptual representation of (a) a native system; (b) a type-
1 VMM hosting two VMs; and (c) a type-2 VMM hosting one VM while
running alongside other application programs on the host OS.

In order to be able to exercise control over the guest OS, the VMM needs
to be protected from it. Since the guest OS itself expects to run in privileged
mode, not all instructions can be directly executed on the real hardware,
even if the ISAs match. Instead, sensitive instructions, those that configure
system resources or whose behaviour depends on the configuration of system
resources, must be emulated [82, p. 386]. Therefore, the state of virtual

10 CHAPTER 2. BACKGROUND

system resources of the VM is kept separate from the actual state of the
real hardware and the guest OS only has direct control over this virtualised
state. For example, when the guest OS tries to write to the machine status
word (bits 0 through 15 of CR0) on a (virtual) x86 machine, it cannot be
allowed to directly change the corresponding register in the real processor as
this would allow it to take permanent control over the physical machine. The
execution of this instruction must therefore be intercepted by the VMMwhich
then can take appropriate action to emulate the effects of this instruction
on the virtualised state of the VM. This paradigm of intercepting sensitive
instructions in order to emulate their effect on the virtual environment in a
manner that is safe for the underlying native system is known as trap and
emulate [22]. It requires that all sensitive instructions trap when executed in
a lower privilege level. Problems arise when an ISA contains instructions that
are sensitive but not privileged, meaning that they do not trap when executed
in non-privileged mode. A well-known example is the POPF instruction of
the IA-32 architecture, which pops a word from the stack into the EFLAGS
register. When executed in privileged mode (CPL0), it also overwrites the
interrupt flag (IF). However, when the same instruction is executed in non-
privileged mode (and CPL is less than I/O privilege level), the interrupt flag
in the EFLAGS register is unaffected [46, Vol. 2B]. Since the execution of this
instruction does not trap in the latter case, a VMM simply relying on trap
and emulate would not be able to interfere in this situation. The resulting
behaviour would be unexpected for the guest OS.

2.1.2 Virtualisation Techniques
The example above shows that the ISA which is to be virtualised has an im-
pact on the complexity of the VMM. As early as 1974, Popek and Goldberg
investigated which properties an ISA must have in order to be virtualisable
in the classical sense, meaning only by use of trap and emulate. They showed
that an ISA in which all sensitive instructions are also privileged (they trap
when executed in non-privileged mode) can be virtualised purely through the
trap and emulate technique [76]. However, this does not mean that archi-
tectures which violate this criterion cannot be virtualised at all. An efficient
VMM can still be constructed by leveraging more advanced techniques such
as paravirtualisation or binary translation, or by relying on hardware support
for virtualisation.

With paravirtualisation, the guest OS is aware that it is running in a
virtualised environment. The source code of the guest OS is modified to
present an interface to the VMM that is easier to virtualise [90]. This has
the benefit of simplifying the implementation of the VMM and also has the

2.1. VIRTUALISATION 11

potential to improve performance [27]. On the other hand, it comes at the
cost of modifying the guest OS, which poses a problem in the case of a
proprietary OS where the source code is not available. This also implies
that only OSes that are modified accordingly are supported, which limits
compatibility. A popular example of a VMM that uses paravirtualisation is
Xen [27].

Binary translation refers to the technique of converting the instructions
from the source ISA to sequences of instructions of the target ISA [82, p. 49].
This is not only useful in the case that the source and target ISA are different,
but also to detect and resolve situations where the guest OS executes sensi-
tive instructions. Binary translation can be used to insert traps to transfer
control to the VMM that can then take appropriate action to emulate the
problematic instruction on the state of the VM. As opposed to paravirtuali-
sation where the source code of the guest OS is modified, binary translation
operates on the machine code level and is fully automated. This eliminates
the need for any manual modification of the guest and thus all OSes that are
available for the particular ISA provided by the VMM can be hosted. On
the other hand, binary translation can lead to many transitions to the VMM
when sensitive instructions are executed frequently and degrade performance
as a consequence.

Hardware-assisted virtualisation makes use of special features offered by
the hardware specifically designed to aid virtualisation [22]. For example,
the processor can provide an additional privilege level that is intended for
the VMM and that allows it to control a guest OS even when it is running
in privileged mode. This allows for the guest OS to remain at its original
privilege level without the risk of compromising the VMM. Sensitive instruc-
tions executed inside the VM must then either trap to the VMM or their
behaviour is changed to modify the state of the virtual environment, which
the hardware is now aware of, instead of the state of the underlying system.
This can reduce the overhead of virtualisation by decreasing the number of
traps to the VMM.

2.1.3 Virtual Memory in the Context of VMs
Each VM represents a full system environment and as such the guest OS
also has its own virtual and physical address space, the latter consisting
of the virtualised memory provided to it by the VMM. In fact, when the
guest is a traditional general-purpose OS, it provides each of its processes
with its own virtual address space. Addresses belonging to a virtual address
space of the guest are called guest-virtual and those belonging to its physical
address space are referred to as guest-physical addresses. Therefore, mem-

12 CHAPTER 2. BACKGROUND

ory accesses from inside the VM conceptually involve two mappings, first
from guest-virtual to guest-physical and then from guest-physical to host-
physical addresses. These are eventually used by the hardware to access the
physical memory. In order to reduce the performance overhead caused by
this additional indirection, the VMM sets up shadow page tables that map
guest-virtual addresses directly to host-physical ones [82, p. 399-402]. These
shadow page tables are used by the hardware to perform address translations,
which has the added benefit that any hardware-managed translation looka-
side buffer (TLB) automatically caches the correct host-physical addresses
needed for memory accesses. However, the guest OS is still allowed con-
trol over its own paging structures which reflect mappings of guest-virtual to
guest-physical addresses. The page table pointer of the VM is then virtualised
and points to the paging structures controlled by the guest OS. Attempts of
the guest to modify the page table pointer or its own page tables trap to the
VMM which then updates the shadow page tables to reflect these changes.
Figure 2.2 shows the relation between the page table maintained by the guest
and the shadow page table. While the use of shadow page tables reduces the
overhead for address translation, this comes at the cost of incurring traps to
the VMM whenever the guest modifies its paging structures.

2.1.4 Intel VT-x and EPT
Intel’s hardware support features for virtualisation of the IA-32 and Intel64
architectures are commonly known as Intel VT-x [71], also referred to as
virtual machine extension (VMX) [46, Vol. 3]. It provides two new forms
of CPU operation, called VMX root and VMX non-root, intended for the
VMM and the guest respectively. This split in the mode of operation of
the processor allows the guest OS to run at its intended privilege level while
still being controlled by the VMM. Transition from VMX root to VMX non-
root operation is achieved by a VM entry while the reverse transition is
referred to as VM exit. In VMX non-root operation many instructions and
events that may be relevant to a VMM when executed by a guest cause
VM exits. To reflect the processor state in the two new operation modes,
a so-called virtual machine control structure (VMCS) is introduced which
holds information corresponding to the host state (VMX root) and the guest
state (VMX non-root). The VMCS can be accessed via special VMREAD and
VMWRITE instructions. On VM entry the processor state is stored to the host
state part of the VMCS while the new processor state is loaded from the guest
state. Correspondingly, on VM exit the state of the processor is stored to the
guest state and the new processor state for root operation is restored from
the host state. In addition to the processor state, the VMCS also contains

2.1. VIRTUALISATION 13

guest-virtual guest-physical
1000 3000
2000 7000
5000 not mapped
6000 1000
8000 2000

....

guest-virtual host-physical
1000 7000
2000 not mapped
5000 not mapped
6000 8000
8000 3000

....

guest-physical host-physical
1000 8000
2000 3000
3000 7000
7000 not mapped

....

virtual physical
....

6000 8000
8000 3000

....

hardware page
table pointer

virtual page
table pointer

(a) Page table of guest (b) Shadow page table

(c) Mapping of VMM
(d) TLB

Figure 2.2: A simplified example of address translation via shadow page
tables. The virtual page table pointer of the guest points to its own page
table. The real page table pointer points to the shadow page table. (a) the
page table maintained by the guest; (b) the shadow page table maintained
by the VMM; (c) the mapping of guest-virtual to host-physical addresses
maintained by the VMM; (d) the TLB, currently only the entries for pages
6000 and 8000 are cached.

execution control fields that determine which instructions or events in non-
root operation cause VM exits. For example, there are control fields that
allow for the virtualisation of control register CR0 by specifying which bits
the guest may modify freely and for which a VM exit is triggered [71]. Access
to model specific registers (MSRs) can also be controlled in a similar manner
and interrupt virtualisation is supported by additional controls in the VMCS.

A source of significant overhead is the virtualisation of address transla-
tion [23]. The maintenance of shadow paging structures in purely software-
based virtualisation solutions can cause frequent VM exits depending on the
workload. Intel’s extended page tables (EPT) mechanism provides hardware
support for the translation of guest-virtual addresses, in the following also
referred to as linear addresses, to host-physical addresses without the need
for the VMM to keep shadow page tables. The guest OS is allowed full con-
trol over the translation of linear addresses to guest-physical ones. However,
when a linear address is used to access memory, the EPT mechanism in con-
junction with the guest paging structures is used to automatically translate

14 CHAPTER 2. BACKGROUND

them to host-physical addresses. For this purpose, the VMCS contains an
EPT pointer (EPTP) field that points to the base of the extended page table
that is then used for the address translation. One translation step involving
EPT is analogous to the multi-level address translation used for hardware-
walked page tables on native machines of the IA-32 and Intel64 architecture.
However, the translation of one linear address to the corresponding host-
physical address involves multiple translations via the extended page table.
The full translation steps, when both the host and guest use four levels for
their paging structures, are as follows: The CR3 control register contains
the linear address of the level 4 page map (PML4) which is translated to
the corresponding host-physical address using the EPT mechanism. Then
an entry from the PML4 is selected by bits [47:39] of the original linear ad-
dress which in turn contains the guest-physical address of the page directory
pointer table (PDP). This address is again translated by the EPT mecha-
nism to obtain its host-physical counterpart. Bits [38:30] select an entry from
the PDP which is the guest-physical address of the page directory (PD) and
must again be translated via EPT. This results in the guest-physical address
of the PD from which an entry is selected by bits [29:21] of the original linear
address. This entry is the guest-physical address of the page table and thus
must again be translated with the help of the extended page table to find
the corresponding host-physical address. Bits [20:12] of the original linear
address select an entry in the page table which must finally be translated to
the host-physical page number. Together with the offset (bits [11:0]) of the
original linear address this yields the host-physical address corresponding to
the given linear address. Figure 2.3 gives a graphical representation of the
address translation process with EPT.

In order to avoid excessive memory accesses, a TLB is used to cache
translation results just as with normal address translation without virtualisa-
tion [23]. Since the use of EPT for address translation significantly increases
the number of memory accesses in case of a TLB miss, a high hit-rate is
crucial to achieve good performance. This is aggravated by the fact that
the TLB is flushed on every VM exit or VM entry. To alleviate the effect
of transitions between VMX root and VMX non-root operation, virtual pro-
cessor identifiers (VPIDs) are used to tag each TLB entry with the virtual
processor it corresponds to. A TLB entry is then only considered a match
when the VPID also agrees with the one assigned to the (virtual) processor.
This eliminates the need to flush the TLB on a VM exit or entry. Additional
microarchitectural improvements such as caching the physical addresses of
all levels of the paging structures (PML4, PDP, PD and PT) on the proces-
sor, can further reduce the cost of address translation even in cases of TLB
misses [23].

2.2. UNIKERNELS 15

PML4

PDP

EPTP EPT PML4 EPT PDP EPT PDE EPT PTE

CR3

EPTP EPT PML4 EPT PDP EPT PDE EPT PTE

PDE

EPTP EPT PML4 EPT PDP EPT PDE EPT PTE

PTE

EPTP EPT PML4 EPT PDP EPT PDE EPT PTE

EPTP EPT PML4 EPT PDP EPT PDE EPT PTE

physical address

linear address

EPT translation

guest
paging

structure

Figure 2.3: Address translation via the EPT mechanism. The paging struc-
tures of the guest are shown in the green area. The part of the translation
that involves EPT is shown in the area highlighted in blue. Based on [23].

2.2 Unikernels
General-purpose OSes provide a rich system environment suitable for a wide
variety of applications running concurrently on the system. Therefore, they
implement abstractions and protection mechanisms to prevent different ap-
plications from interfering with each other. For example, the process abstrac-
tion provides each application program with its own virtual address space and
the illusion of ownership of the central processing unit (CPU). In addition,
the kernel usually provides a broad system call (syscall) application pro-
gramming interface (API) with support for process and thread management,
network communication, file system access, and inter-process communication
(IPC) [69]. The OS is responsible for mapping the different address spaces
to physical memory as well as multiplexing the CPU and other resources
between the processes. When considering the more specialised use case of
single purpose appliances hosted in the cloud, where each VM only executes
one application, many of these abstractions and protection mechanisms are
redundant. For example, there is no need to separate the address space of the

16 CHAPTER 2. BACKGROUND

kernel and the application for protection as there are no mutually distrusting
applications to protect from each other. Consequently, there is no need to
protect the OS from the application in a virtual environment since isolation
between the VMs hosted on the same physical machine is enforced by the
VMM at a lower level. The observation that general-purpose OSes as guests
duplicate parts of the functionality of the VMM leads to the question of how
a guest OS should be designed to provide better efficiency for such use cases.

Unikernels take a different approach compared to general-purpose OSes.
Instead of providing an extensive system environment that is suitable for a
wide variety of use cases, they employ specialisation to trade universality
for performance. By sharing the same address space and privilege level be-
tween the kernel, libraries, and applications, the overhead associated with
address space transitions incurred by syscalls of monolithic kernels is re-
moved. As early as 1995, the Exokernel [34] project showed that allowing
applications the freedom to choose which OS-level abstractions they want
to use and how to implement them can lead to significant improvements in
performance. Unikernels take the library OS (libOS) approach of compiling
system libraries, language runtimes, and applications into a single bootable
image [67]. This allows for compile-time specialisations such as including
only libraries that are actually used by the application and in turn enables
significant reduction in boot times and memory consumption of the result-
ing VM [55]. Unikernels also benefit from being hosted in a VM because
this removes the need to provide device drivers for a large range of hardware
devices. Those are provided by the VMM which presents the guest with
simpler interfaces to the virtualised devices. The ability to provide OS func-
tionality by libraries that can be included and configured at compile-time
also offers applications the flexibility to choose the implementations that fit
their requirements best [55]. For example, an application with needs for
only modest network throughput could utilise a simple socket interface for
ease of implementation while another application that requires much higher
throughput can make use of a specialised high-performance network library.
This can be achieved by including the suitable library at compile-time and
programming the application against its interface.

2.2.1 Comparison with Containers
Containers provide virtualisation at the OS level. They use kernel facilities
such as Linux namespaces and control groups to provide isolation between
container instances. A namespace [48] is an abstraction of a system resource
that gives a process or group of processes the illusion of having their own
isolated instance of that resource. Changes to this resource are only visible

2.2. UNIKERNELS 17

to members of that namespace. Control groups [47] allow monitoring and
limiting the usage of resources such as CPU time and memory. Contain-
ers are lightweight compared to classical full system virtualisation solutions
exhibiting faster boot times and lower memory footprints [69]. This makes
them attractive for providers of cloud services because it allows for higher
degrees of server consolidation than traditional heavyweight VMs. On the
other hand, containers have been shown to provide weaker resource isola-
tion compared to full system virtualisation [80]. They are also plagued by
vulnerabilities allowing malicious applications to break their isolation and
threaten the security of the hosting systems and consequently other con-
tainers supported by it [63]. This is in part due to the large and complex
syscall API provided by modern general-purpose OSes. For example, Linux
has over 400 syscalls [52], many with multiple parameters and overlapping
functionality [69]. Furthermore, since containers rely on the OS for isola-
tion, the entire kernel is part of the trusted computing base (TCB) which is
typically much larger compared to VMMs, thus offering a broader attack sur-
face. Unikernels can provide similar benefits to containers while enjoying the
strong isolation guarantees of a VMM making them a suitable alternative,
especially in scenarios where isolation is of paramount importance.

2.2.2 Unikernel Use Cases and Examples
In the following, some of the unikernel concepts explored by various research
projects are presented along with their respective goals and core findings.

Madhavapeddy et al. [67] explore the unikernel approach with their Mi-
rage compiler that compiles and links OCaml code into bootable Xen VM
images. The use of the type-safe OCaml language reduces the risk of vulner-
abilities and thus increases security. VM images built by Mirage additionally
have the ability to be sealed via a special hypercall to Xen which prevents the
injection of code at runtime. They show that the unikernel approach signifi-
cantly reduces the size of VM images compared to applications built on top
of Linux while outperforming them by as much as 45% for network-focused
applications.

Subsequent work optimises the Xen tool-stack to further reduce boot
times and resource overhead in order to launch unikernels in response to
network requests with low latency [66]. As guest they use MirageOS [7],
a library OS built according to the unikernel approach. Together with the
support of Xen for hardware-assisted virtualisation of ARM devices, this
enables the deployment of cloud services on embedded systems near users
which often provide a favourable trade-off between price, performance, and
energy consumption. The resulting system, dubbed Jitsu, achieves boot

18 CHAPTER 2. BACKGROUND

latencies of around 350ms on ARM and around 30ms on x86 and thus is
suitable for VMs instantiation in response to network requests.

HermiTux [74] addresses the issue of porting existing applications to
unikernels. For many applications this poses a major problem because of
missing kernel functionality or libraries not being available for the target
platform. This hinders the adoption of unikernels in real-world scenarios
despite their potential benefits. HermiTux is a unikernel based on Hermit-
Core [56] that provides binary compatibility with the Linux application bi-
nary interface (ABI) while still retaining the benefits of high performance,
low memory footprint and fast boot times. This is achieved by emulation of
OS interfaces according to the Linux ABI and binary rewriting to transform
system calls into ordinary function calls. The result is a binary compatible
unikernel with significantly reduced syscall latency and negligible to accept-
able runtime overhead compared to native Linux across several benchmark
applications.

Unikraft [55] is a highly modular micro-library OS that allows to build
high-performance unikernels specialised to the needs of an application. OS
primitives such as schedulers, memory allocators, and network stacks are
provided by micro-libraries that can be composed and configured at compile-
time to fit the requirements of the application. APIs are also provided by
micro-libraries which allows to easily add or remove functionality as needed.
A syscall shim layer micro-library is used to transform system calls, required
by some libraries such as the C standard library implementation musl, to
function calls. The Unikraft build system provides a Kconfig-based menu to
select and configure the libraries included in the final unikernel image. Eval-
uation on applications such as Redis [11] and Nginx [8] show that Unikraft
achieves 30%–80% higher throughput compared to Docker containers and
even 10%–60% increased throughput over native Linux with memory foot-
prints smaller or equal to that of a corresponding Docker container.

2.3 FlexOS: Specialisation Towards Security
Contemporary OSes fix a set of protection mechanisms at design-time and
integrate them into the kernel. Changes to protection mechanisms require
significant engineering effort and are therefore rare. This is problematic in
several ways. First, if a mechanism built in at design-time fails, e.g. the
address space separation with Meltdown [64], it breaks the security of the
whole system without an easy way to repair the vulnerability. Either the
underlying mechanism has to be repaired or, should this not be possible,
the entire system has to be redesigned around a suitable mechanism. When

2.3. FLEXOS: SPECIALISATION TOWARDS SECURITY 19

there are multiple protection mechanisms available that can be exchanged
simply by reconfiguration and rebuilding, this process is much simpler and
quicker. Second, applications have different performance and security re-
quirements. Generally, protection mechanisms incur some performance over-
head as demonstrated by the traditional privilege and address space separa-
tion [83] as well as various research projects that explore different concepts
like type-safe languages [68], formal verification [54], or novel hardware mech-
anisms [78]. Therefore, there is a trade-off between the security achieved by
a set of protection mechanisms and the resulting performance overhead.

Fixing protection mechanisms at design-time prevents applications from
choosing the optimal configuration for their requirements. Also, an applica-
tion may use untrusted libraries and therefore require fine-grained isolation
to protect itself from those untrusted components. For example, an applica-
tion designed for confidential communication may want to isolate itself and
the cryptography library from an untrusted network stack. In case of a bug
in the network library, the functionality of the application may be compro-
mised, but no confidential information is disclosed because of the employed
isolation. This is an example of a use case that is not easily supported by
classical, coarse-grained protection mechanisms commonly used in general-
purpose OSes but is well-suited for novel approaches such as intra-address
space isolation via memory protection keys (MPK) [78]. Furthermore, dif-
ferent protection mechanisms can be employed to achieve the same security
guarantees. For example, formal verification of software components can
eliminate the need to isolate them via hardware mechanisms. This leads to
the question of which set of protection mechanisms satisfies an application’s
security requirements with the least performance overhead. It is therefore de-
sirable to leave this choice to the application instead of fixing it for a whole
system at design-time. Finally, hardware is becoming increasingly heteroge-
neous, providing a wide variety of protection and isolation mechanisms such
as Intel’s Software Guard Extension (SGX) [70], MPK [46, Vol. 3], ARM
TrustZone [25], or CHERI [88]. Allowing for the flexible employment of
those mechanisms is thus important to enable the optimal use of the avail-
able hardware to build secure systems without sacrificing performance.

FlexOS [58] is a libOS designed to enable the specialisation of OSes to-
wards security. It allows the flexible, fine-grained isolation of software com-
ponents without committing to a specific mechanism to enforce it. This
allows for the easy exploration of novel hardware and software-based protec-
tion and isolation mechanisms while providing applications the flexibility to
choose the ones that suit their needs best. Postponing the choice of protec-
tion mechanisms to build-time also enables the exploration of the vast design
space spanned by the dimensions of performance and security.

20 CHAPTER 2. BACKGROUND

2.3.1 Existing Compartmentalisation Approaches

An early example of an attempt to modularise OSes is the Flux OSKit [37]
project. Its goal is to provide OS primitives as libraries to make them
reusable for the development of new OSes. Existing code such as device
drivers and network stacks taken from different OSes, e.g. Linux and BSD,
is also wrapped in libraries for simpler reusability. The separation into in-
dividual libraries with well-defined interfaces results in a highly modular
framework with minimal interdependencies. Flux OSKit enabled various re-
search projects, for example on programming languages that require tight
integration with OS primitives, without the need to build a custom OS from
scratch. On the other hand, it also demonstrates that gluing together exist-
ing code from different donor OSes with the component object model (COM)
abstraction for compatibility generally results in suboptimal performance.

Microkernels reduce the functionality provided directly by the kernel to
a minimum. Instead, device drivers and OS functionality is provided by
userspace processes, sometimes called servers, that communicate via IPC.
The SawMill [38] multiserver approach essentially re-examines a form of mi-
crokernel architecture for the isolation of OS components. An OS is decom-
posed into isolated servers that implement OS functionality such as resource
management, networking, or file system access. Function calls crossing server
boundaries are realised by IPC which inherently incurs some overhead be-
cause of the necessary context switch, marshalling and unmarshalling of pa-
rameters, and copying of data. Therefore, an efficient IPC mechanism that
keeps the IPC frequency as well as overhead per IPC operation to a min-
imum is a key requirement for good performance. The SawMill prototype
implements user-level servers on top of the L4 [62] microkernel. Benchmarks
show that the SawMill prototype achieves better throughput for file system
operations than L4Linux [41] but still lacks behind the monolithic Linux,
confirming that system decomposition without hampering performance is
extremely difficult.

LibrettOS [73] explores a hybrid approach between microkernels and
libOSes. It can act as a microkernel providing applications with servers
for interaction with hardware devices such as network interface controllers
(NICs) or non-volatile memory (NVM). This allows for better isolation be-
tween device drivers and the kernel which in turn increases security through
reduction of the TCB. At the same time, this enables the recovery from fail-
ures of individual components without the need to reboot the whole system.
For applications with high performance needs LibrettOS can act similarly to
a libOS, granting them direct access to virtual hardware resources. Further-
more, it allows applications to dynamically switch between the two modes at

2.3. FLEXOS: SPECIALISATION TOWARDS SECURITY 21

runtime to enable adaptation to the workload over time.
While microkernels allow for a natural decomposition of an OS into dif-

ferent components, they lack the support for fine-grained isolation and have
historically suffered from lower performance compared to monolithic ker-
nels [38]. In the past, there have been several attempts to provide fine-grained
isolation based on protection mechanisms that rely on hardware extensions.

Mondrian memory protection (MMP) [92] associates protection domains
with permission tables that specify the access rights for each address in the
address space. Several alternative representations such as segments denoted
by start address and size or multi-level permission tables indexed by the
address of the target memory location are examined. On memory access
the hardware performs checks against this permission table to determine the
validity of the access. The hardware is extended by a permission lookaside
buffer that caches entries from the memory resident protection table in a
similar manner to a TLB for traditional address translation. Subsequent work
uses MMP to enforce isolation between Linux kernel modules. Since no actual
hardware architecture with the postulated properties exists, the resulting
Mondrix [93] prototype could only be evaluated on machine simulators.

The code-centric memory domains (CODOMs) [85] approach explores the
idea of using the instruction pointer as capability to control memory access.
Each memory page is associated with a tag, all pages sharing the same tag
form a protection domain. Code pages are additionally associated with access
protection lists (APLs) that govern the access to protection domains. Again,
the processor hardware is extended to allow for the representations of APLs
and automated checks against the access rights specified by them. MMP and
CODOMs both suffer from the fact that they rely on hypothetical hardware
extensions that eventually were not adopted.

CubicleOS [78] also employs hardware extensions to allow for fine-grained
isolation of components. In contrast to the ones presented above, the archi-
tectural extension relied upon by CubicleOS, i.e. Intel’s MPK feature, is
fully implemented in some commercially available Intel CPUs. Isolation is
enforced at the granularity of dynamic libraries which are segregated into so-
called cubicles. Each cubicle is associated with a protection key tag. Cross-
cubicle function calls require switching of the current cubicle which amounts
to manipulation of the protection-key rights for user space (PKRU) register.
The toolchain automatically generates the code that performs this cubicle
switch for each function of a libraries interface. For temporary sharing of
data between cubicles the concept of windows is introduced. A window es-
sentially modifies the protection key associated with the corresponding mem-
ory pages to allow the sharing of data with other cubicles, for example for
the duration of a cross-cubicle call.

22 CHAPTER 2. BACKGROUND

2.3.2 FlexOS Architecture

FlexOS is based on the Unikraft [55] unikernel framework and thus is highly
modular. The basic architecture of FlexOS matches that of Unikraft from
which it is descended, therefore the following description of the architecture
also applies to both.

OS primitives are provided by libraries that can be individually included
and configured at build-time. There are two basic types of libraries: core li-
braries and external libraries [14]. The former provide OS functionality such
as memory allocation and scheduling. To increase flexibility, core libraries
generally separate their interfaces from the implementation. For example,
the alloc library defines the interface for memory allocators. At build-time a
suitable implementation, such as the buddy allocator (allocbuddy), can then
be chosen depending on the expected allocation pattern of the application.
External libraries provide functionality not directly related to the OS, such
as a C standard library. Besides those that implement general function-
ality, there are two special classes of libraries. Platform libraries provide
support for the corresponding platform such as Linux Kernel-based Virtual
Machine (KVM) or Xen. Architecture libraries implement architecture spe-
cific formats and operations like paging structures, cache line size, or access
to specific registers. The flexos-core library defines and implements the iso-
lation mechanisms offered by FlexOS. Figure 2.4 gives an overview of the
organisation of internal libraries.

Unikraft

plat

kvm

xen

x86_64

arm

arch lib

flexos-core

sched

schedcoop

boot

alloc

allocbuddy

Figure 2.4: Organisation of FlexOS/Unikraft core libraries into platform
libraries (plat), architecture libraries (arch), and others (lib). The flexos-core
library is specific to FlexOS.

2.3. FLEXOS: SPECIALISATION TOWARDS SECURITY 23

2.3.3 Compartmentalisation
Compartmentalisation decomposes software into isolated, collaborating com-
ponents to restrict the impact of potential vulnerabilities [40]. In FlexOS iso-
lation is enforced between compartments which are defined at the granularity
of libraries with each compartment representing a protection domain. This
has the advantage that existing library interfaces can be used as natural in-
terfaces between compartments [58]. The process of compartmentalising an
application amounts to replacing cross-library function calls with abstract
call gates and annotating shared data accordingly. The required modifica-
tions to the source code are made by the developer during the process of
porting an application to FlexOS and are facilitated by the assistance of
tools (see Section 2.3.4).

Note that compartmentalisation does not impose a fixed assignment of
libraries to compartments. Rather, it refers to the separation of individual li-
braries via call gates to allow arbitrary compartmentalisation configurations,
the assignment of libraries to compartments, at build-time. The call gates
represent the interface between compartments. They provide the necessary
information for the toolchain to instantiate different compartmentalisation
configurations according to a configuration file during the build process. For
example, a call gate denotes the library to which the target function belongs
in order to enable the toolchain, at build-time, to identify cross-compartment
calls. Figure 2.5 gives a simplified example of how abstract call gates can be
used to obtain different compartmentalisation configurations. Similarly, the
annotations for shared data allow the toolchain to allocate the corresponding
variables in the correct memory regions so that they can be accessed by all
the compartments that use them.

Isolation backends implement the mechanism that enforces the segrega-
tion of compartments and can employ various software and hardware tech-
niques such as protection keys [61, 84] or trusted execution environments
(TEEs) [25, 30]. Once an application is compartmentalised, any available
isolation backend can be utilised without further need for manual code mod-
ifications. The toolchain automatically replaces the abstract call gates with
the appropriate implementations during the build process. As of now, the
only supported isolation backend is based on Intel’s MPK extension.

2.3.4 Porting of Applications
Since FlexOS is descended from Unikraft, porting an application or library to
it first requires porting to Unikraft. Unikraft already supports a wide range
of applications such as Nginx [8], Redis [11], and SQLite [12] in addition

24 CHAPTER 2. BACKGROUND

nginx

gates gates

lwip others

ga
te

s

nginx

mpk-gates

lwip
others

m
pk

-g
at

es

nginx

lwip others

a) Generic gates before
instantiation

b) Two compartment
configuration using
the MPK backend

c) Single compartment
configuration

Figure 2.5: Simplified example of different compartmentalisation configura-
tions. a) Generic call gates between all libraries allow arbitrary assignment
of libraries to compartments. b) Configuration with two compartments. The
nginx application and lwip network stack occupy one compartment while all
other libraries (summarised by others) are assigned to a different one. The
remaining gates are implemented by the MPK isolation backend. c) The
nginx application and all libraries are placed in the same compartment. All
call gates are replaced with function calls.

to various programming languages and runtime environments [55]. Port-
ing an application to Unikraft requires the creation of a Unikraft makefile
(Makefile.uk) that is used to compile the source code [13]. For example, the
Makefile.uk specifies include paths for header files and the source files to be
compiled. A Config.uk file is used to define the dependencies of the applica-
tion as well as possible configuration options [13]. Generally, the application
needs to be modified to use the API provided by Unikraft. The porting ef-
fort is reduced by the fact that Unikraft offers partial POSIX support [55].
Therefore, applications relying on supported parts of the POSIX interface,
for example for memory allocation or network sockets, do not need to be
adapted.

Porting an application to FlexOS additionally requires the replacement
of cross-library function calls with call gates and the annotation of shared
data [58]. To facilitate this process, FlexOS comes with a tool that can
perform these replacements automatically. This tool makes use of Cscope [2]
to identify functions that are defined in other libraries. This information is
then used to generate replacement rules used by Coccinelle [1] to make the
appropriate replacements. Some cases like indirect function calls via pointers
might not be handled correctly by the tool. The function instrumentation [16]
feature of GCC can be used to locate such instances. Data that is shared
between libraries has to be annotated so that the toolchain can place it in
the appropriate memory regions.

2.3. FLEXOS: SPECIALISATION TOWARDS SECURITY 25

2.3.5 The Build Process

Since FlexOS is based on Unikraft, their build processes are similar. Only
the parts of the build process that are concerned with the instantiation of
a particular compartmentalisation configuration are specific to FlexOS. The
following description of the FlexOS build process reflects this by being split
into two parts. The first one outlines the part that overlaps with the Unikraft
build process while the second one focuses on details specific to FlexOS. Note
that the description of the Unikraft build process is simplified for the sake
of brevity.

Each library or application provides a Unikraft makefile (Makefile.uk) and
a configuration file (Config.uk) [13]. The former specifies include paths and the
sources to build and registers the library with the build system. The Config.uk
file defines the configuration options offered by the library in a similar manner
to the Kconfig system used by Linux. These files are used to populate a
graphical configuration menu that can be displayed via make menuconfig. This
allows the user to select and configure libraries. For example, the user can
specify the desired platform (e.g. kvm), architecture, system libraries such as
allocators and a scheduler as well as other libraries like a C standard library
implementation. Compiler options such as the optimisation level can also
be specified here. The configuration choices are loaded from and stored to a
.config file. Each configuration setting is used to define a macro that can be
accessed in the source code.

FlexOS uses a modified version of the kraft [4] build tool. Therefore,
the application additionally provides a kraft.yaml file. This is used to specify
Unikraft related information such as the Unikraft version and dependencies.
This file is then used by kraft to download the source code of the dependen-
cies and to configure and build the unikernel image. For FlexOS this file is
extended to also specify the isolation backend as well as to define the com-
partments and assign the libraries to them. Figure 2.6 shows a simplified
example of a kraft.yaml file as well as the resulting compartmentalisation con-
figuration. It is also possible to declare a compartment as default which has
the effect that all libraries not explicitly assigned to any compartment will
automatically be part of this default one. The toolchain then uses the descrip-
tion of the compartmentalisation configuration provided by the kraft.yaml file
to instantiate the call gates accordingly. This is done by replacing the ab-
stract call gates that are inserted as part of the porting process to FlexOS
in one of two ways. Gates between libraries in the same compartment are
replaced with function calls since no compartment switch is necessary. Gates
that cross compartment boundaries are replaced with code that implements
a compartment switch according to the isolation mechanism utilised by the

26 CHAPTER 2. BACKGROUND

the chosen backend. The necessary code transformations are performed with
the help of the Coccinelle [1] source-to-source transformation tool for C.
Therefore, Coccinelle replacement rules are generated by the toolchain and
subsequently used by Coccinelle to replace the abstract call gates with their
appropriate implementations.

name: nginx
compartments:

- name: comp1
mechanism: intel-pku
default: true

- name: comp2
mechanism: intel-pku

libraries:
lwip:

compartment: comp2
nginx:

compartment: comp1
pthread-embedded:

compartment: comp1
[...]

(a) Configuration file (kraft.yaml)

nginx,
pthread-embedded,

...

mpk-gates

lwip

(b) Resulting compartmentalisation
configuration

Figure 2.6: A simplified example of (a) a configuration file and (b) the re-
sulting compartmentalisation configuration. Two compartments, comp1 and
comp2, are defined. The lwip network library is placed into comp2 while all
other libraries, including the nginx application, are placed in the first com-
partment. The isolation backend is MPK (named intel-pku in the kraft.yaml),
cross-compartment calls are implemented by it.

2.3.6 The MPK Isolation Backend
Intel’s memory protection keys [46, Vol. 3], also known as protection keys
for userspace (PKU), offer a mechanism for intra-address space isolation.
They use four previously reserved bits in a page table entry to associate
memory pages with one of 16 protection keys. These reside in the 32 bit wide
PKRU register which holds two bits per key. The write disable (WD) bit
controls write access to the page. If set, write access to pages associated with
this key is disabled, resulting in page faults when attempted. Similarly, the

2.3. FLEXOS: SPECIALISATION TOWARDS SECURITY 27

access disable (AD) bit prevents read and write access to corresponding pages
when set. MPK does not provide a way to prevent instruction fetch, a form
of execute disable is not supported by this mechanism. Checks against the
access rights set in the page table and TLB entries are performed independent
of MPK, thus protection keys cannot allow accesses that are forbidden by
page table entries. Special instruction (RDPKRU and WRPKRU) are provided
to access the PKRU register.

The MPK isolation backend uses the protection keys after which it is
named to isolate compartments. Each compartment is assigned a protection
domain by associating it with its own protection key. The PKRU register is
set up to disable access to pages tagged with protection keys of other com-
partments. On a cross-compartment call via an MPK-gate, the protection
domain is switched to that of the target compartment. This involves saving
the current domain’s registers, clearing them, and loading arguments of the
called function. Then the PKRU register is loaded with the protection rights
for the target compartment before the stack pointer is switched to that of the
thread in the target compartment and the call instruction is executed [58].

Since any code can directly modify the PKRU register, unauthorised
writes to it must be prevented. This is achieved by scanning binaries for
the WRPKRU instruction to ensure that it only appears in the code imple-
menting MPK-gates. Should the WRPKRU instruction occur elsewhere, either
intended by the programmer or unintentionally as part of another instruction
or across the bounds of multiple instructions, additional measures have to
be taken. For example, hardware watchpoints can be used to monitor and
prevent the execution of these instructions [42].

28 CHAPTER 2. BACKGROUND

Chapter 3

Analysis

In the previous chapter, we introduced the concept of flexible isolation and
discussed its use cases. The goal of this work is to design and implement a
novel isolation mechanism that is suitable for the flexible, fine-grained iso-
lation of software components and that is able to provide strong isolation
between protection domains. Therefore, we first define the threat model our
isolation mechanism should be able to protect against in Section 3.1. Next,
in Section 3.2, we examine different mechanisms that can be leveraged to
provide isolation. We assess their practicability in the context of a frame-
work that allows for easy exchangeability of isolation mechanisms and their
ability to provide fine-grained isolation. Finally, we motivate the choice of
a virtualisation-based approach over other options and discuss challenges
inherent to it in Section 3.3.

3.1 Threat Model
Our goal is to provide strong isolation between protection domains. We
assume that an attacker succeeds in corrupting a subset of the protection
domains. These corrupted domains are then considered to be fully controlled
by the attacker to the extent that arbitrary instructions may be executed.
Even in the presence of a subset of potentially colluding adversarial protection
domains, the attacker should only gain access to information that (1) is
accessible via memory that is shared with at least one corrupted domain or
(2) is accessible via interfaces exposed to the union of all corrupted domains.
However, we assume that corruption of a domain may only happen after
correct initialisation.

Note that we are only concerned with disclosure of private information
of uncorrupted domains and not with system availability. This is because

29

30 CHAPTER 3. ANALYSIS

generally any domain can be assumed to be essential to the functioning of
the overall system as otherwise this domain would be redundant and could
be trivially removed. Therefore, a corrupted protection domain must be
assumed to disrupt the functionality of the whole system.

3.2 Isolation Mechanisms
There exist many mechanisms to enforce isolation between software compo-
nents. In the following, we want to consider the most common mechanisms
and assess their adequacy in the context of flexible, fine-grained isolation.

3.2.1 Kernel-enforced Address Spaces
The most common form of isolation of software components is the separation
of address spaces usually found in the process abstraction of general-purpose
OSes. Each process is given its own address space consisting of a contiguous
range of virtual addresses. The memory management unit (MMU) maps vir-
tual addresses to the single physical address space according to paging struc-
tures set up by the kernel [81, p. 353-355]. Thus, processes are conceptually
prevented from even naming addresses outside of their own address space.
Privilege separation between the kernel and user processes protects the kernel
from unauthorised access to its address space or direct manipulation of the
hardware. This form of isolation has the advantage of being very flexible in
the general scenario of running multiple distrusting applications concurrently
on the same system. It is therefore not surprising that most general-purpose
OSes adopt this mechanism. However, when considering fine-grained isola-
tion at the library level and the coexistence and exchangeability with other
isolation mechanism, this approach comes with some drawbacks.

Since the kernel must enforce separate address spaces, it needs to be pro-
tected from applications. Most commonly this is implemented by leveraging
privilege rings1 and the MMU provided by modern hardware. A context
switch is required whenever control is transferred from one process to an-
other which incurs significant overhead for the mode switch, the switching of
paging structures, and the storing and restoring of the processor state. This
incurs significant overhead [57] which is particularly relevant when consid-
ering that frequent context switches may be required by protection domain
transitions.

1While there are approaches to achieving separation of the kernel without resorting
to privilege rings [32], these require special design of the kernel and a form of MMU
virtualisation.

3.2. ISOLATION MECHANISMS 31

Therefore, strict separation of the kernel hinders specialisation to a spe-
cific application including direct access to (virtualised) hardware. Main-
taining separate address spaces also requires the kernel to keep track of the
mapping of multiple virtual address spaces to a single physical one. In the
scenario of a single application running in a virtual environment this dupli-
cates the functionality of the VMM which already provides the guest with
virtualised memory.

In the light of flexible, fine-grained isolation, kernel-enforced address
spaces pose the additional challenge of requiring significant changes to the
kernel. When considering the coexistence with intra-address space isolation
mechanisms such as protection keys [78], this further complicates the ker-
nel. Therefore, exchanging the isolation mechanism would essentially require
multiple different kernel designs. This further adds to the TCB and broadens
the potential attack surface, a problem that is further exacerbated by hard-
ware specific vulnerabilities [64] that require the kernel to implement equally
specific mitigations.

3.2.2 Capability-based Isolation
Conceptually, a capability is a token that gives its holder permission to ac-
cess the referenced object in the way encoded by the capability [60, p. 3].
Therefore, a capability contains two logically distinct parts, a unique identi-
fier of the referenced object, such as a pointer in case of memory references,
and the access rights that are granted by the capability. The unification of
reference and access rights has the advantage that sharing of resources is as
easy as passing the corresponding capabilities. Consider, for example, the
case that an object consisting of several memory pages needs to be shared
between two processes. The owner of the object can simply pass a capability
with the appropriate access rights to the other process which subsequently
uses the obtained capability to access the object. The second process can
further delegate the obtained capability as needed.

To allow control over the type of access permitted by a capability, usually
a mechanism is provided that allows to derive more restrictive capabilities
from ones with broader access rights. This enables the delegation of capabil-
ities according to the principle of least privilege [77], which states that each
component should be granted the minimum access privileges that are neces-
sary for it to function correctly. For example, the owner of an object may
hold a capability that allows full access, including the ability to destroy it in
order to free the system resources associated with this object. If this object is
to be shared with another process, access should be restricted to the required
minimum. In case that the other process only needs to read from the shared

32 CHAPTER 3. ANALYSIS

object, this requires a capability with read-only access. Therefore, the owner
of the object can derive from its capability with full access a capability that
permits only read operations. This capability can then simply be passed to
the other process to allow it the desired read access to the object without
granting any additional access rights.

Capabilities allow for more flexible definition of protection domains than
the traditional process abstraction. A protection domain can simply be de-
fined as a context of execution together with a set of capabilities that re-
strict the access to specific resources. The context of execution can be a
process [79], thread [28], or procedure [43] and does not necessarily come
with the notion of a private address space.

In order for capabilities to be useful for protection, a system must (1)
ensure that capabilities cannot be forged; and (2) provide a mechanism to
enforce the access rights associated with any capability. There are two broad
types of capability systems, those that are implemented purely in software
and do not require any specialised hardware, and those that rely on hardware
architectural support.

Software Capability Systems

Purely software-based capability systems such as EROS [79], Mungi [43],
and Opal [28] rely on the kernel to protect and enforce the access rights
conveyed by capabilities. For protection from unauthorised manipulation
of capabilities several mechanisms can be employed. In software capability
systems two approaches are prevalent: (1) segregation of capabilities from
data and (2) password capabilities [24].

The first method separates capabilities from data by keeping them in
special memory pages that are only directly accessible to the kernel. Thus,
capabilities are protected from being freely manipulated as data. Capabilities
are referred to by handles from user processes analogous to Unix file descrip-
tors. Operations to derive new capabilities from extant ones are privileged
and thus also involve intervention from the kernel.

The second method are password capabilities [24] which provide security
only in a probabilistic sense. A password capability conceptually consists of
a reference part and a password that associates certain access rights with
the reference. The password is usually chosen at random by the system
when a capability is created, thus there is no systematic relationship between
the password and the encoded access rights. This has the advantage that
capabilities are simple values that can be treated as data. The security
achieved by this approach is only probabilistic because in theory it is possible
to guess a correct password for a given reference, thus obtaining access to an

3.2. ISOLATION MECHANISMS 33

object that was never intended. However, with sufficiently long passwords,
this is unlikely.

In order to enforce the access rights defined by capabilities, privilege sep-
aration between kernel and user processes or threads (or other abstractions
of program execution) is employed. To enable efficient checking of memory
accesses, the kernel translates the access rights specified by capabilities to
the available hardware mechanisms such as page-based protection [79].

Hardware-supported Capability Systems

Historically, some hardware has been designed specifically to support the
use of capabilities [33, 91]. This comes with the advantage that hardware
facilities are used to enforce the protection of capabilities as well as the access
rights conveyed by them. Such systems provide capability registers that are
able to store capabilities and use them for access to the referenced object.
Capabilities are protected by either storing them in separate memory regions
or by extending memory cells by tags that indicate whether a capability
or ordinary data is stored [35]. Special instructions are provided to store
capabilities to memory and load them into capability registers. Instructions
for loading data from or storing data to memory operate on capabilities
instead of plain addresses as for traditional hardware.

More recently, hybrid approaches have been explored that permit the
use of standard page-based protection and additionally offer capability-based
protection for intra-address space isolation. This provides an opportunity
for fine-grained isolation within an address space and thus is a particularly
interesting concept for compartmentalisation.

The CODOMs [85] approach uses capabilities to facilitate the sharing of
data between protection domains. It relies on a hypothetical extension of the
hardware architecture, for example, the introduction of capability registers
and augmentation of page tables with tags indicating whether pages store
capabilities or ordinary data.

Capability Hardware Enhanced RISC Instructions (CHERI) [87] is an ISA
extension that allows the use of capabilities for intra-address space isolation.
Similar to CODOMs, CHERI follows a hybrid approach by only extending
existing ISAs with support for capabilities; traditional page-based protection
mechanisms are still supported. To allow the secure storage of capabilities,
each capability-aligned memory location is associated with a tag. When a
valid capability is stored to such an aligned memory location via special in-
structions, the tag indicates that a valid capability is present. When any
memory overlapping with the location storing a valid capability is written
to via normal data operations, the tag is cleared and a valid capability is

34 CHAPTER 3. ANALYSIS

no longer stored there. This prevents the manipulation of capabilities via
data-level operations. Special instructions are provided for controlled ma-
nipulation of capabilities.

Capabilities for Compartmentalisation

Generally, capabilities are well suited for providing isolation, both within
a single address space as well as in the presence of private address spaces.
Therefore, they are a good candidate for a mechanism to implement fine-
grained compartmentalisation. However, purely software-based capability
systems rely heavily on specially designed kernels for enforcement of protec-
tion. As already discussed in Section 3.2.1, this is problematic when consid-
ering the goal of making isolation mechanisms interchangeable as it requires
special kernel design and thus significant modification to a kernel that also
provides other mechanisms.

Hardware-supported capability extensions, specifically CHERI [87], are
a promising candidate for the implementation of an isolation mechanism
because the employed hardware extensions significantly reduce the reliance
on a kernel to enforce protection of capabilities. Unfortunately, this comes
at the expense of generality since architectural extensions are required that
are not (yet) widely available in commodity hardware.

3.2.3 Protection Keys
Memory protection keys [26, 44–46] extend paging structures by a tag that
associates each page with a protection key. All pages with the same tag form
a group for which the access rights can be specified in a central location such
as a special register. This allows for the easy modification of access rights
to a whole page group without the need to modify the corresponding page
table entries. Protection domains can then be associated with page groups
and domain switches only require the modification of the access rights in the
central location where they are stored. While protection keys are often not
designed as a security feature capable of protection against malicious access
but rather to reduce the chance of accidental invalid memory accesses [29],
they have been used to build isolation mechanisms [42,78,84].

Implementations of protection keys vary in the specific access rights that
they allow to enforce and whether they restrict their modification to privi-
leged mode. User-mode accessibility of instructions to modify access rights,
e.g. with Intel’s memory protection keys (MPK) [46, Vol. 3] extension, usu-
ally comes with the benefit of low overhead for domain switches which is
desirable for fine-grained isolation. Generally, additional measures [42, 84]

3.2. ISOLATION MECHANISMS 35

to prevent unauthorised manipulation of access rights are required. In the
following, we give a brief overview of some protection key implementations
in commercially available hardware.

The PA-RISC [44] architecture developed by Hewlett-Packard defines pro-
tection identifiers (PIDs) that are (at least) 15 bits wide, allowing for a large
number of protection domains. However, at any given moment only four PIDs
can be loaded into the four corresponding control registers, which are only
accessible in privileged mode. The large number of PIDs makes it infeasible
to specify the access rights associated with each PID in a single register as
this would require (at least) 215 bits. Therefore, one write disable (WD) bit
is attached to each PID which allows or denies write access to pages tagged
with this PID. On each write access, the PID tag of the corresponding page
table entry is compared with the four control registers and only if a matching
PID with cleared WD bit is present, the write access is allowed.

The ARM 32-bit architecture supports a form of protection keys called
memory domains [26]. Translation table entries include a four bit tag that
designates a protection domain, allowing up to 16 domains. The domain
access control register (DACR) contains two bits per key that control ac-
cess protection which is only accessible in privileged mode (PL1 or higher).
Depending on the values encoded in these two bits, access is either denied,
allowed according to the access permissions recorded in the page table entry
(PTE), or allowed regardless of the access rights specified by the correspond-
ing PTE. Therefore, protection domains cannot only be used to restrict access
rights set in the address translation structures but also to circumvent them.
Memory domains are not available in 64-bit ARM architectures.

The IBM Power ISA [45] provides 32 protection keys, called virtual page
class keys, with which memory pages can be tagged. The authority mask
register (AMR) and instruction authority mask register (IAMR) specify the
access rights for each page group and are accessible in privileged mode. The
AMR holds two bits for each key to allow or deny read and write access
whereas the IAMR specifies whether instruction fetch is permitted. Access
rights specified by those keys apply in addition to those set in page table
entries (and by other protection mechanisms such as secure memory).

Intel’s MPK architectural extension associates each page with one of 16
protection keys. The protection keys index a special PKRU register which
contains two bits per key. This allows to either disable write access or all
data access to the corresponding page group. MPK does not provide a way to
prevent instruction fetch from a page. Instructions to modify the PKRU reg-
ister are accessible in user mode. For a more detailed explanation, including
how they can be used to build protection domains, see Section 2.3.6.

While protection keys are a promising mechanism for intra-address space

36 CHAPTER 3. ANALYSIS

isolation, they also come with some problems. Most obviously, the use of
protection keys is specific to the hardware, restricting the portability across
platforms. This is not necessarily a problem when multiple isolation mech-
anisms are available in the context of flexible isolation. It is conceivable to
provide different implementations for different architectures. However, this
does not provide a solution for architectures that do not support any form of
protection keys. Therefore, a universal solution that is usable across a wide
range of platforms is desirable.

Furthermore, the protection provided by mechanisms relying on protec-
tion keys such as CubicleOS [78] or the MPK backend of FlexOS [58] is
relatively weak. Should an adversary gain access to instructions that allow
the manipulation of access rights for page groups (or that allow to outright
circumvent this mechanism via access to control registers), isolation breaks
down entirely. The access rights specifiable by some implementations such
as Intel’s MPK are also lacking the option for restricting instruction fetch,
thus only data can be protected but not code.

Connor et al. [29] demonstrated that it is challenging to build a secure
isolation mechanism on the basis of Intel’s MPK extension. This can partly
be attributed to the fact that this feature was not designed to protect against
malicious software components.

3.2.4 VM-based Isolation
One rather radical approach to isolation is to house each protection domain
in its own VM. This enforces strong isolation between domains, similar to
the private address spaces of the process abstraction. However, in contrast to
kernel-enforced address spaces, here the VMM is responsible for guaranteeing
isolation between the VMs. This allows for a simpler kernel design because
it no longer needs to protect itself from user software in order to be able to
uphold isolation.

With the VM-based approach inter-domain calls are implemented via
inter-VM IPC mechanisms. Domains only need to share memory where it
is explicitly required (shared variables) or to implement the IPC mecha-
nism. This allows for strong enforcement of inter-domain control-flow in-
tegrity (CFI)2 since each domain provides a set of well-defined entry points
only accessible via the IPC mechanism.

While this approach might seem prohibitively expensive at first, the use
of lightweight unikernels makes it a viable option worth exploring. The mini-

2CFI refers to the concept that the execution of code must follow a control-flow graph
that is determined at build-time [21].

3.2. ISOLATION MECHANISMS 37

malistic nature of unikernels drastically reduces the memory footprint of each
VM which is critical for the viability of the VM-based isolation approach. For
example, Unikraft [55] allows for VMs requiring as little as 2MB of RAM.

Hardware

VMM

Domain1 Domain2

Domain3 domain
switch

domain
switch

domain
switch

VM

Hardware

VMM

Domain1

VM1 VM2

Domain2 Domain3

VM3
IPC IPC

IPC

(a) Isolation within a single
(virtual) machine (b) VM-based isolation

Figure 3.1: Comparison of VM-based isolation to other approaches. In the
case of isolation within a single (virtual) machine (a), the isolation mecha-
nism is not further specified. Protection domains can be established via pro-
cesses, capabilities, or intra-address space mechanisms and domain switches
are implemented appropriately. In the case of VM-based isolation (b), pro-
tection domains are implemented by individual VMs with inter-VM IPC for
cross-domain calls.

Previous research has successfully used virtualisation to solve related
problems. LeVasseur et al. [59] use virtualisation to reuse device drivers
across different OSes. Device drivers are executed in their expected host OS
inside of a VM and a virtual device interface is exported to the client OS.
The result is not only reusability of device driver code but also increased
dependability and stability due to the isolation introduced between drivers
in different virtualised environments.

VirtuOS [72] explores the use of virtualisation for decomposition of the
kernel into vertical slices. The main motivation is again the isolation of
drivers from the rest of the kernel to increase system stability. The VirtuOS
project demonstrates the feasibility of distributing protection domains to
different VMs while also showing that the overhead entailed by frequent
domain crossings is a major challenge to this approach.

Kylinx [94] re-introduces the process abstraction in the context of uniker-
nels to provide compatibility with legacy software expecting to execute in
a general-purpose OS environment. Instead of burdening a unikernel with
the implementation of processes, the concept of process-like VMs (pVMs) is

38 CHAPTER 3. ANALYSIS

used. Each process executes in its own VM, supported by a minimal uniker-
nel. They show that the use of specialised unikernels as the basis for pVMs
is highly effective in reducing the memory footprint, bringing it down even
below that of Docker containers.

3.3 Virtualisation-based Isolation
Previously, we discussed different mechanisms that can be employed to achieve
fine-grained isolation. In the following, we want to motivate the choice of
the VM-based approach over any of the other mechanisms. We also discuss
challenges inherent to this approach and examine the Unikraft unikernel
framework as a potential substrate for the implementation of a VM-based
isolation mechanism.

3.3.1 The Argument for VM-based Isolation
Specifically when considering flexible, fine-grained isolation, the VM-based
approach offers some unique advantages over the other mechanisms discussed
previously. Kernel-enforced address spaces and capability-based mechanisms
require a separation of the kernel from user software, since the kernel is
responsible for providing isolation. Clearly, kernel-enforced address spaces
require the kernel to be protected from user code in order to prevent acci-
dental or malicious changes to the data structures used to map virtual to
physical pages. Software capability mechanisms that do not rely on spe-
cialised hardware also depend on the kernel to prevent the manipulation of
capabilities stored in memory as well as the access rights specified by capa-
bilities. Architectural extensions such as CHERI [87] can reduce the reliance
on the kernel to enforce capability-based isolation, but they are confined to
specific hardware and thus limit compatibility. While the separation of the
kernel is standard in general-purpose OSes it has some disadvantages in the
context of flexible isolation.

When considering flexible isolation with the option of multiple inter-
changeable mechanisms, requiring separation of the kernel is an additional
challenge, at least when coexistence with intra-address space isolation mech-
anisms is desired. This is because a switch of the isolation mechanism would
then come with drastic changes to core kernel components. With separation
of the kernel a system call mechanism must be provided to access privileged
functionality, an abstraction for the execution of code (e.g. a process) has to
be implemented, and the protection of different virtual address spaces must
be enforced. This is complicated even further by the fact that hardware

3.3. VIRTUALISATION-BASED ISOLATION 39

specific vulnerabilities [64] must then be accounted for by the kernel. When
switching to an intra-address space isolation mechanism such as protection
keys, system calls and mode switches are no longer required and private
virtual address spaces are abandoned. This makes approaches requiring sep-
aration of the kernel more difficult to coexist with those that do without
it.

The VM-based approach on the other hand relies on the VMM to enforce
isolation at the level of the (virtual) hardware. Therefore, no special pre-
cautions have to be taken to protect the kernel from untrusted code in the
same domain. This keeps the required changes to the kernel to a minimum
and thus only minimally increases the total TCB across all available isolation
mechanisms when regarding them as interchangeable.

Furthermore, the VM-based approach is able to provide strong isolation,
albeit at a higher performance overhead. This allows for the exploration of
a vastly different point in the kernel design space that is spanned by the di-
mensions of security and performance. With the VM-based approach the pri-
mary focus is on security and strong isolation as opposed to low performance
overhead prioritised by lightweight intra-address space isolation explored by
previous research [42,58,78,84].

Compared to other mechanisms, with VM-based isolation an attacker
could be allowed unrestricted arbitrary code execution in one protection do-
main and still only be able to access other domains via their public inter-
faces. This is not the case with protection key based isolation since it must
be ensured that instructions that allow the manipulation of access rights to
protection domains are not accessible by untrusted code [42, 84]. Also, with
VM-based isolation, a stronger form of inter-domain CFI can be enforced
than with existing protection key based isolation mechanisms [58,78], because
inter-domain calls are translated to inter-VM IPC operations. While kernel-
enforced address spaces can ensure protection when an attacker achieves
arbitrary code execution in user mode, the complexity of the system call
interface increases the chance of vulnerabilities [69].

Another factor to consider is the availability of hardware support when
relying on architectural extensions. Intel’s MPK extension is only available to
Intel Xeon Scalable server processors and 10th or later generation Intel Core
processors [46, Vol. 1], restricting compatibility with other hardware. Hard-
ware support for capabilities [87] is planned for some ARM processors [86],
but not yet widely available. On the other hand, the VM-based approach
offers a universal isolation mechanism since hardware support for virtualisa-
tion is common on modern hardware. This also makes it a good candidate
as a default mechanism to fall back to if more hardware specific solutions are
not available.

40 CHAPTER 3. ANALYSIS

3.3.2 A Substrate for Protection Domains
Since protection domains are implemented by individual VMs, each of them
needs a basic execution environment. This includes boot code to initialise
the domain, scheduling in multithreaded scenarios, and the implementation
of inter-VM IPC channels. To reduce the additional memory footprint that
results from the duplication of this basic execution environment per domain,
a minimal kernel is desirable. As already discussed in Section 3.3, unikernels
exhibit these properties. They can be specialised to only provide the needed
functionality to minimise the resource overhead.

The Unikraft [55] unikernel framework is highly modular and can be eas-
ily specialised to the requirements of VM-based isolation. The ability to
build VM images containing a selected set of libraries facilitates the com-
partmentalisation. Libraries can be assigned to protection domains and sub-
sequently distributed between the corresponding VM images via the Unikraft
toolchain. Also, multiple compartmentalisation frameworks [58, 78] utilising
protection key based isolation mechanisms have been successfully built on
top of Unikraft.

3.3.3 Challenges of VM-based Isolation
Implementing protection domains as individual VMs comes with some chal-
lenges. Since each protection domain is placed in its own VM, cross-domain
function calls have to be implemented by some form of IPC between the in-
volved VMs. This requires making the parameters accessible to the domain
of the callee as well as passing any potential return value back to the caller
domain on return. While a call is being executed in the callee domain, the
thread that initiated the call cannot make progress and must be paused until
control flow for this thread returns to the calling domain. This can happen
either because of a return from the function or because the called function
leads to another function being called in the first protection domain, result-
ing in a nested call inside the first domain. Note that a nested call need not
originate from the domain that was originally called, as it can in turn make
calls to other domains. This essentially results in the call stack that would
be observed in a single execution environment being distributed over all the
involved domains.

In order to enforce CFI for inter-domain calls the translation of those
calls to inter-VM IPC must ensure that control is only transferred to valid
entry points. These entry points are the starting addresses of all functions
that are part of the public interface exposed by a protection domain. This
restricts the access gained by an attacker in case of corruption of a domain

3.3. VIRTUALISATION-BASED ISOLATION 41

to the public interfaces of and memory shared with other domains.
The implementation of the inter-VM IPC channel between two VMs has

to be guarded against access from any domains other than the two com-
munication partners. Failure to secure these communication channels would
allow attackers that successfully corrupted one domain to observe or even
manipulate the communication between other domains, including parame-
ters and return values from function calls. This opens up further possibilities
to corrupt other domains or disclose information private to them and vio-
lates our notion of security (see Section 3.1). Therefore, securing private
communication is essential to providing strong isolation between protection
domains.

To allow for the sharing of data across protection domains, a mechanism
must be provided to allocate memory in a way such that it can be accessed
by all domains that need to access the shared data. It must be ensured that
pointers to this shared data remain valid when they are passed as arguments
to inter-domain function calls.

Race Conditions on Shared Memory

One problem inherent to the VM-based isolation approach relates to the fact
that the resulting system is inherently distributed. Since protection domains
are implemented as separate VMs, even a single thread is split into activities
in different execution environments. This may have unexpected consequences
for libraries operating on memory shared between different protection do-
mains. When a library expects to execute in a single-threaded context, it
does not need to consider the possibility that a region of shared memory
might be manipulated concurrently by different activities. In fact, even code
that is used in multi-threaded environments frequently does not consider this
problem sufficiently [89]. The resulting race conditions often lead to security
relevant bugs that are hard to detect.

When considering the compartmentalisation of a system to increase secu-
rity, such race conditions could potentially enable an attacker that success-
fully corrupted one protection domain to gain control over further domains,
significantly weakening the isolation gained by compartmentalisation. There-
fore, the possibility of race conditions on shared memory should be taken into
account when decomposing a system into multiple protection domains. Es-
pecially for inherently distributed mechanisms such as VM-based isolation,
mitigations should be provided to reduce the reliance on individual software
components to explicitly address the issue of possible race conditions. The
inter-VM IPC mechanism used to implement cross-domain calls must be de-
signed to be resistant against potential race conditions on shared memory.

42 CHAPTER 3. ANALYSIS

3.4 Summary
In this chapter, we defined the notion of security we want to achieve and the
thread model that we want to protect against with our isolation mechanism.
We also discussed different protection mechanisms in the context of flexible,
fine-grained isolation. We argued that the VM-based approach has several
advantages over the other options and allows for exploration of an isolation
mechanism with strong guarantees at the cost of higher overhead for domain
transitions. Finally, we discussed challenges to this approach, including the
necessity for secure inter-VM IPC and the problem of race conditions on
shared memory inherent to a distributed system.

Chapter 4

Design

In the previous chapter, we defined our threat model and motivated the ex-
ploration of a VM-based isolation mechanism. In this chapter, we present the
design of a VM-based isolation mechanism that supports our threat model
previously defined in Section 3.1. In Section 4.1, we begin by explaining
how control is transferred between compartments as the result of cross-com-
partment function calls. Next, in Section 4.2, we explain the design of the
inter-VM inter-process communication (IPC) mechanism on top of which
cross-compartment function calls are implemented. In Section 4.3, we give
an overview over all the components introduced over the course of the previ-
ous sections. Next, in Section 4.4, we complement the threat model defined
in Section 3.1 with a description of the trusted computing base. Finally,
in Section 4.5, we address the problem of race conditions on shared mem-
ory which we previously identified in Section 3.3.3 before summarising in
Section 4.6.

4.1 Cross-Compartment Function Calls

Cross-compartment function calls are at the heart of our VM-based isola-
tion mechanism. Therefore, we focus much of our effort on the design of
an efficient remote procedure call (RPC) mechanism. Note that we distin-
guish the RPC mechanism from the underlying inter-VM IPC mechanism.
The former is responsible for implementing cross-compartment function calls,
whereas the latter only provides primitives for communication between indi-
vidual VMs. Therefore, the inter-VM IPC mechanism is much simpler and
can be understood as the substrate on top of which the more complex RPC
mechanism is implemented.

43

44 CHAPTER 4. DESIGN

4.1.1 Preserving the Function Call Semantics
Since we are concerned with flexible isolation, we need to make sure that
we can support arbitrary compartmentalisation configurations. This implies
that cross-library function calls are either direct function calls in the case
that both libraries are placed in the same compartment or cross-compartment
function calls otherwise. Therefore, cross-compartment function calls must
preserve the function call semantics to ensure compatibility between the case
of a call within the local compartment and the case where a compartment
boundary is crossed.

This includes the transfer of the active control flow to the target compart-
ment on cross-compartment function calls and the correct handling of nested
calls. We also have to ensure that cross-compartment function calls behave
according to the calling convention of the underlying system. Our design is
oblivious to the employed calling convention although our implementation is
specific to the System V AMD64 ABI calling convention (see Section 5.1).

4.1.2 Requirements for the RPC Mechanism
Before going into the details of our design, we first list the requirements that
our RPC mechanism must meet in order to provide an adequate mechanism
for cross-compartment function calls. The following functionality is required:
(F1) Signal control flow between compartments. When a cross-compartment

function call is executed, control flow must be transferred between the
compartments of the caller and the callee. Therefore, the IPC mech-
anism must be able to signal events that transfer the active control
flow between compartments. These events are either of type CALL to
indicate that control flow is transferred from the caller to the callee, or
of type RETURN to signal control flow in the opposite direction.

(F2) Identify thread of execution. We have to allow any thread in any com-
partment to issue cross-compartment calls. Therefore, the IPC mech-
anism must be able to signal from which thread a cross-compartment
call originates. The callee compartment then uses this information
to execute the requested function in the context of the corresponding
handling thread.

(F3) Transmit required information. In order to complete a cross-compart-
ment function call, the caller must indicate which function to call and
provide the arguments to the callee compartment. On return from a
cross-compartment call any potential return value must be handed back
to the caller compartment.

4.1. CROSS-COMPARTMENT FUNCTION CALLS 45

(F4) Preserve function call semantics. As discussed in Section 4.1.1, cross-
compartment, function calls must preserve the semantics of function
calls as defined by the calling convention. Our design is not specific to
any calling convention and the implementation is responsible for ensur-
ing that cross-compartment function calls follow the calling convention
of the underlying system.

In addition to the functional requirements listed above, our RPC mecha-
nism must meet the following non-functional requirements to ensure security
and efficiency.

(S1) Private communication channels. As discussed in Section 3.3.3, pri-
vate communication channels between compartments must be provided.
This is necessary in order to protect the communication between two
compartments from being intercepted or manipulated by any compart-
ment other than the two communication partners.

(S2) Inter-compartment control-flow integrity. We must ensure that code
execution initiated by cross-compartment function calls can only be-
gin at well-defined entry points. These entry points are the starting
addresses of all functions that are part of a compartment’s public in-
terface, which in turn is the set of all functions that make up the public
interfaces of all libraries placed in that compartment.

(SC) Scalability. We must ensure that the RPC mechanism does not perform
any complex and time-consuming operations and that performance
does not degrade with increasing levels of concurrency. Therefore, we
have to design all data structures in a way such that operations on them
that occur with every cross-compartment call have constant runtime,
regardless of the number of threads concurrently issuing calls.

4.1.3 Control Flow between Compartments
Cross-compartment function calls conceptually transfer the active control
flow from a thread in the compartment of the caller to a thread in the callee
compartment. In order to manage this control flow between compartments,
we introduce a special thread, the so-called RPC server, in each compart-
ment. The RPC server of a compartment is responsible for handling incoming
requests for cross-compartment function calls. For this purpose, the inter-
VM IPC mechanism must be able to signal two types of events: CALLs and
RETURNs. An event of type CALL indicates that a function is requested to be
called in the compartment to which the event is signalled. On the other hand,

46 CHAPTER 4. DESIGN

an event of type RETURN indicates that a function completed execution and
is signalled to the compartment that originally requested the execution of
that function.

Distributing Call Stacks between Compartments

To understand how cross-compartment function calls are handled, we first
compare a sequence of local function calls to one that contains cross-compart-
ment calls. Consider, for example, the case of three libraries lib-f, lib-g, and
lib-h shown in Figure 4.1 together with the corresponding call graph. When
all libraries are placed in the same compartment, the call stack of a thread ex-
ecuting f1 at the point where f3 is called is depicted in Figure 4.1b (note that
we depict call-stacks as growing downwards in line with the behaviour on x86
architectures). However, when each library is placed in its own compartment,
some of the function calls must cross compartment boundaries. This essen-
tially results in the same call stack being distributed between three threads,
one in each compartment involved in the call sequence. The resulting state
of the distributed call stack is shown in Figure 4.1c. The unmarked grey
frames inserted between cross-compartment calls represent additional logic
needed to correctly route the control flow and is part of the RPC server.

We can see that, in order to handle cross-compartment calls initiated
from a thread in compartment 0, we need one handler thread per other com-
partment that is involved in the call sequence. Furthermore, we observe that
we need to define a strategy to assign handling threads to incoming requests
in a way that correctly handles nested calls. When the cross-compartment
call to compartment 1 is made to request the execution of g1, a thread is
first assigned to handle that request. Later, when compartment 2 requests
to call g2 as part of the same call sequence, instead of assigning a new thread
to handle the request, the function must be executed in the context of the
thread that is already handling the request for g1. This is necessary in order
to maintain information about active function calls, local as well as across
compartments, in an efficient manner. Therefore, we get essentially the same
call stack as in the case without isolation, with stack frames in the same
order, but distributed between the individual compartments. The top of this
distributed stack can be found by following the stack frames downwards for
local function calls and along the arrows shown in Figure 4.1 on cross-com-
partment calls (whenever one of the unmarked grey blocks is encountered).
Similarly, the bottom of the distributed call stack can be found by tracing
calls back in the reverse direction.

4.1. CROSS-COMPARTMENT FUNCTION CALLS 47

f1

f2

g1

g2

h1

f1

f2

f3

g1

g2

h1

f1

f2

g1

g2

f3

h1

f1

f2

f3

g1

g2

h1

lib-f lib-g lib-h

(a) Libraries and corresponding call graph (b) Call stack without
isolation

(c) Distributed call stack with isolation into three compartments

Compartment 0 Compartment 1 Compartment 2

Figure 4.1: Comparison between local function calls and cross-compartment
calls. (a) shows the three libraries, the functions they provide and the corre-
sponding call graph (starting at function f1). (b) depicts the call stack that
is resulting from a call to f1 at the point just after f3 is called. (c) shows
the corresponding call stack in the case that each library is placed in a sepa-
rate compartment. The arrows indicate control flow between compartments
in response to cross-compartment function calls. The grey blocks indicate
additional information related to cross-compartment function calls stored on
the stack.

Assignment of Threads Handling RPC Requests

In order to explain how cross-compartment function calls are handled, we
make a distinction between the threads that exclusively handle RPC requests
and those that perform general tasks. In the following, we refer to threads

48 CHAPTER 4. DESIGN

that exclusively handle RPC request as RPC threads whereas all others are
referred to as regular threads.

To ensure that cross-compartment function calls are handled by the cor-
rect RPC thread, we first need a way to uniquely identify the origin of each
cross-compartment call. Consider, for example, the distributed call stack
depicted in Figure 4.1c. The first cross-compartment call in the sequence of
active function calls comes from the thread in compartment 0. Therefore, the
origin of this cross-compartment call as well as any one that appears after it
in the active call sequence is the thread in compartment 0 that contains the
stack frame of function f2.

Formally, we define the origin of a cross-compartment call as the thread
that initiated the first cross-compartment call in the sequence of active func-
tion calls. Note that the origin is a property of the sequence of currently
active function calls and therefore is identical for all cross-compartment calls
within that sequence. Conceptually, this thread can be identified by tracing
the distributed call stack back to the very first stack frame. The call stack of
this thread must also contain the first active cross-compartment call (if there
is an active cross-compartment call, otherwise the distributed call stack is
identical to the local call stack).

Since the thread IDs (TIDs) across compartments are not unique, we
define the origin of any cross-compartment function call as the pair (cid,tid)
where tid is the TID of the originating thread and cid the ID of the compart-
ment to which it belongs. Note that the origin of any cross-compartment
call is necessarily a regular thread since RPC threads only become active in
response to cross-compartment calls and therefore can never contain the first
stack frame on the distributed call stack. In practice, the origin is passed as
a hidden argument to any cross-compartment call and the individual com-
partments need not keep track of the state of the call stacks of threads in
other compartments.

Now that we know how to associate each cross-compartment call with
a unique origin, we can define how RPC threads are assigned to handle in-
coming requests. The RPC server of each compartment keeps a mapping
from origins to so-called RPC entries. An RPC entry indicates the handling
thread assigned to requests from a specific origin. Additionally, an RPC
entry contains an activation counter to keep track of the number of active
function calls (stack frames) in the context of the RPC thread. Initially, each
origin is mapped to an empty entry indicating no RPC thread is assigned
to it and the activation counter is zero. When the RPC server receives a
request for a cross-compartment function call, it first finds the RPC entry
corresponding to the origin of the call. In the case that the RPC entry indi-
cates that an RPC thread is already assigned to that origin, the activation

4.2. THE INTER-VM IPC MECHANISM 49

counter is incremented and the RPC thread is dispatched to handle the re-
quest. However, in the case that the RPC entry indicates no assigned RPC
thread to handle the request, the RPC server assigns one from the pool of
idle RPC threads it manages. Then it proceeds, analogous to the previous
case, by incrementing the activation counter (which previously was zero) and
dispatching the newly assigned RPC thread to handle the request.

On return from a cross-compartment call we need to revert the steps
outlined above. This means that the activation counter of the corresponding
RPC entry is decremented and in the case that it reaches zero, the RPC
thread is deassigned and returned to the pool of idle RPC threads. The steps
necessary to manage the assignment of RPC threads to incoming requests is
illustrated by Figure 4.2.

retrieve RPC entry
for origin

has
RPC thread
assigned?

assign idle RPC
thread

increment
activation counter

dispatch RPC thread

Yes

No

retrieve RPC entry
for origin

decrement
activation counter

is activation
counter zero?

return from call

deassign RPC
thread

(a) Actions taken by the RPC server when
receiving an incoming cross-domain call

(b) Actions taken on return from a
cross-domain call

No

Yes

Figure 4.2: Actions taken when (a) a cross-compartment call is received by
the RPC server and (b) a cross-compartment call returns.

4.2 The inter-VM IPC Mechanism
The inter-VM IPC mechanism is responsible for communication between the
VMs which house the individual compartments. Our RPC mechanism we
described earlier is responsible for implementing cross-compartment function
calls and is built on top of the much simpler inter-VM IPC which consists of
two parts.

50 CHAPTER 4. DESIGN

First, each compartment has a message queue which is used to signal
control flow between compartments and to identify the origin of a cross-com-
partment call. This message queue is accessible to all other compartments
which can signal events to a compartment by posting messages to the cor-
responding message queue. The RPC server of each compartment retrieves
messages from this message queue and dispatches RPC threads in response
to requests for cross-compartment function calls.

Second, private communication channels, as required by (S1), are estab-
lished by sections of memory that are shared between each pair of compart-
ments. The maximum number of regular threads allowed per compartment
is fixed (but configurable), therefore the number of possible origins of a cross-
compartment call is also fixed (we remember that an origin is a pair (cid,tid)
consisting of the TID of the originating thread and the ID of the compart-
ment to which this thread belongs, see Section 4.1.3). For each possible
origin, a slot in this shared memory section is reserved. This slot is called
call control block (CCB) of the corresponding origin and is used to convey
information needed to execute the function call in the target compartment.
Note that a CCB is re-used for nested calls of the same origin between two
compartments, e.g. in the example shown in Figure 4.1 the call from h1 to
g2 re-uses the same CCB previously used for the call from g1 to h1. The
information conveyed in a CCB includes an identifier of the function to call
as well as the arguments and return values. By identifying functions with
abstract IDs we satisfy requirement (S2). This requires the RPC servers to
translate the function IDs to the correct addresses before dispatching RPC
threads. Figure 4.3 gives an overview of the components involved in the im-
plementation of cross-compartment function calls and their interaction with
each other.

The split between the shared message queues and the private communi-
cation channels has several benefits when considering the runtime overhead
of a cross-compartment function call and addresses the scalability require-
ment (SC). By sharing the message queues between all compartments, each
RPC server is only required to observe one queue, regardless of the number
of compartments. Furthermore, by statically assigning each possible origin a
CCB in the private communication channel, this removes the need for any dy-
namic allocation when a cross-compartment function call is issued. Instead,
the origin, which is known to RPC threads at any time, is used to index the
corresponding CCB in the private communication channel. The RPC threads
can freely write to the CCBs without the need for synchronisation because
they are dispatched by the RPC server of the corresponding compartment.
This happens only in response to messages posted to the message queue of
a compartment. Therefore, the only part of this system that requires syn-

4.2. THE INTER-VM IPC MECHANISM 51

RPC server RPC server

RPC server

RPC
threads

RPC
threads

RPC
threads

Compartment 0 Compartment 1

Compartment 2

CCBs{0,1}

CCBs{1,2}CCBs{0,2}

message
queues

Figure 4.3: Overview of the inter-VM IPC mechanism and the components
involved in the implementation of cross-compartment function calls. The
RPC servers communicate via shared message queues. The dashed lines
indicate the private communication channels between each pair of compart-
ments. They contain the CCBs that are used by the RPC threads to convey
the information needed for cross-compartment function calls. The memory
regions for the private communication channels are only accessible by the
two compartments that share a particular channel.

52 CHAPTER 4. DESIGN

chronisation are the message queues that follow the multiple producer single
consumer pattern. The RPC server of a compartment consumes messages
from its message queue while all other RPC servers can post messages to it.
Note that this requires careful implementation, specifically the introduction
and careful use of a state variable in the CCBs, in order to prevent malicious
compartments to spoof cross-compartment function calls between two other
compartments (see Sections 5.1.2 and 5.3).

A drawback of the static allocation of CCBs is the high memory demand
which is proportional to the product of the number of compartments and
the maximum number of supported (regular) threads. In most scenarios it
is plausible that only a small subset of all threads will engage in cross-com-
partment function calls, thus leading to most CCBs being unused. However,
this problem is alleviated by the fact that the maximum number of threads
can be easily configured to the needs of the application.

4.2.1 Sharing Data between Compartments
To allow the sharing of data between compartments, each compartment main-
tains a shared allocator that allows it to allocate memory that is shared be-
tween all compartments. Pointers to this shared memory can then be passed
as arguments in cross-compartment function calls. Without any further pre-
caution the potentially security-relevant problem of race conditions on shared
memory already described in Section 3.3.3 arises. We address this problem
later in Section 4.5.

4.3 Summary of Components
In the previous sections, we outlined our mechanism for implementing cross-
compartment function calls and the inter-VM IPCmechanism on top of which
this is implemented. We now want to give a brief summary of all the com-
ponents as well as the requirements we have to consider when implementing
them.

4.3.1 The RPC Server
One RPC server per compartment coordinates control flow between its com-
partment and others. It communicates with other RPC servers through a
set of shared message queues and dispatches RPC threads in response to
messages retrieved from its own message queue. It is also responsible for
identifying the RPC thread in the context of which a requested function

4.3. SUMMARY OF COMPONENTS 53

should be executed. Therefore, the RPC server provides the functionality
(F1) and (F2) as required by Section 4.1.2. The RPC server requires sev-
eral sub-components which are listed in the following. Figure 4.4 gives an
overview of the interaction of the RPC server and its sub-components.

Message Queue

Each compartment’s RPC server has its own message queue from which it
retrieves messages. All RPC servers have access to all message queues since
they need to send messages to the RPC servers of other compartments. This
leads to the messages queues being accessed according to the multiple pro-
ducer single consumer pattern.

RPC Entry Map

The RPC entry map is used to map the origin of any cross-compartment
function call, which is indicated with each message received via the mes-
sage queue, to an RPC entry. The RPC entry indicates the handling RPC
thread assigned to an origin and the activation counter. Since the RPC entry
map is consulted frequently by the RPC server, determining the RPC entry
corresponding to a given origin must be fast (runtime O(1)).

RPC Thread Pool

The RPC thread pool holds all idle RPC threads that are eligible to being
assigned to handling an incoming cross-compartment function call. When
empty, the RPC thread pool must be expanded by creating additional RPC
threads to guarantee that there are RPC threads available to handle cross-
compartment calls. Since RPC threads are frequently added and removed
from the RPC thread pool, these operations must be fast (runtime O(1)).

4.3.2 RPC Threads
RPC threads are assigned and dispatched by the RPC server in response to
messages received via its message queue. Idle RPC threads are managed by
the RPC thread pool.

4.3.3 Private Communication Channels
Private communication channels between each pair of compartments enable
the secure exchange of information required for cross-compartment function

54 CHAPTER 4. DESIGN

calls. This information includes an identifier for the function to call, argu-
ments, and potential return values and is organised into individual CCBs.

4.3.4 VM/EPT Call Gates
As discussed in Section 4.1.1, call gates implement cross-compartment func-
tion calls. They are responsible for transmitting the information required
to perform a cross-compartment function call via the private communication
channels while ensuring that the semantics of a function call are preserved.
Therefore, they provide the functionality (F3) and (F4) as required by Sec-
tion 4.1.2. Note that call gates should not be viewed as a separate component
but rather a piece of code that is inlined at the call-site of any cross-com-
partment function call to initiate the necessary actions by communication
with the RPC server.

RPC thread pool

RPC server

origin (cid, tid) RPC entry

(0, 0) activation=1

RPC thread 0

(1, 3) activation=4 RPC thread 2

RPC thread 1

RPC thread 3

RPC entry map
1 stack frame

4 stack frames

message
queues

Figure 4.4: Interaction between the RPC server of a compartment and its
sub-components. In the depicted scenario there are two active cross-com-
partment calls handled by separate RPC threads.

4.4. TRUSTED COMPUTING BASE 55

4.4 Trusted Computing Base
In Section 3.1, we defined the notion of security that our isolation mechanism
should provide as well as the kind of adversary it should protect against. We
recognise that some components are so deeply involved with the system that
the defined notion of security cannot be achieved without considering these
components trusted. Therefore, in the following, we want to complement the
definition of our threat model by describing which components of the system
must be included in the trusted computing base (TCB).

Clearly, the VMM must be trusted because it provides each VM it is
hosting with virtual hardware resources and thus has unrestricted access to
those resources. Therefore, the VMM is trusted to provide each compartment
with a virtual execution environment that conforms to the respective ISA.

Furthermore, core system components must be considered trusted as they
provide essential functionality that allows subverting the whole system when
considered under adversarial control. We must assume the correctness of
these components as clearly such a malicious core component replicated
across all compartments results in the corruption of all individual compart-
ments and therefore the system as a whole. Since these components are
replicated in each compartment, including them in the TCB does not imply
that they need to be specially protected in each compartment, since their cor-
ruption only affects the integrity of this compartment. Should an attacker
gain control over a compartment this also includes the parts of the TCB of
that particular compartment. The components we consider part of the TCB
are:

1. Early boot code that must be trusted to ensure correct system initial-
isation.

2. The memory manager that is trusted to correctly maintain memory
mappings.

3. The scheduler that is trusted to correctly initialise and restore threads
when they are dispatched.

4. The first-level interrupt handler’s context switch primitives are trusted
to correctly transfer control to ISRs and restore the original state of
the executing thread on return.

5. The implementation of the isolation mechanism must be trusted to en-
force CFI between compartments and not disclose private data other
than what is explicitly passed via cross-compartment calls. This in-
cludes all components listed in Section 4.3.

56 CHAPTER 4. DESIGN

4.5 Addressing Race Conditions on Shared
Memory

In Section 3.3.3 we introduced the problem of race conditions on memory that
is shared between two or more compartments. In the following, we address
this problem in two ways. We first present a simple solution that relies on
automatic copies but is limited to scenarios where the program semantic
allows the substitution of private copies for shared data. Next, we present
a general solution that leverages the VMM to prevent the manipulation of
shared data that is pointed to by arguments of cross-compartment function
calls.

4.5.1 Automatic Copies on Cross-Compartment Calls
A simple way to eliminate race conditions on shared memory is to copy the
data to a private memory region before performing operations on it that re-
quire it to be consistent. It could be argued that any library that is aware
of the possibility of concurrent activities manipulating shared data is re-
sponsible for ensuring consistency in any case where this is relevant to the
security of the system. Unfortunately, this is often neglected resulting in a
wide range of vulnerabilities [89]. Furthermore, this problem is exacerbated
by the distributed nature of our VM-based isolation mechanism.

Therefore, we suggest the introduction of simple code annotations that
allow the toolchain to detect such situations and to emit code that automat-
ically performs a copy of the shared data in question. These annotations
are attached to the definition of the functions that take as arguments one
or more pointers to memory shared with other libraries. The toolchain then
uses these annotations to emit code (in the compartment to which the an-
notated function belongs) that copies the shared data to a private memory
region and substitutes a pointer to that private copy for the original pointer
to the shared data. On return from a cross-compartment function call that
used this automatic copy mechanic, all memory allocated as part of the copy
process must be freed.

Listing 4.1 gives multiple examples of such annotations. In the case of
the function foo, a flat copy suffices. Therefore, it is enough to attach an
annotation that indicates that the data pointed to by the argument has to
be copied on cross-compartment calls. For more complex data structures a
deep copy may be required. In this case, code to make a suitable copy can
be provided. Furthermore, code to perform cleanup after the return of the
function can be provided which is necessary to free any memory allocated

4.5. ADDRESSING RACE CONDITIONS ON SHARED MEMORY 57

as part of the custom copy process. An example of this is shown for the
function bar in Listing 4.1.

1 @vmept_copy (x)
2 @vmept_copy (s)
3 void foo(int *x, struct simple_struct *s) { ... }
4
5 @vmept_copy (s,
6 { /* code to perform custom copy */ },
7 { /* code to perform cleanup */ })
8 void bar(struct complex_struct *s) { ... }

Listing 4.1: Examples of annotations used to make automatic copies of shared
data on cross-compartment function calls.

Limitations to the Automatic Copy Approach

While the automated copy approach is simple, its use is limited to scenarios
where copies can be substituted for shared data without altering the program
semantics. This excludes cases where shared data is used for bi-directional
communication. In such cases a more general approach must be taken that
is explained in the following. Note that simply copying back the data to
shared memory before returning is not necessarily sufficient in cases where
there are nested calls (e.g. back to the compartment that initiated the cross-
compartment call).

4.5.2 Selective Write-Protection of Shared Memory
A more general approach to solve the problem of race conditions on shared
memory involves an extension of the VMM. The basic idea is to provide a
custom hypercall that grants exclusive write access to pages holding shared
data to the callee compartment for the duration of a cross-compartment
function call. In the following, we formalise this concept and show how the
VMM can be extended to support this mechanism.

Ownership of Shared Memory Pages

Each compartment maintains a shared allocator that makes allocations from
a memory region that is shared between all compartments. The memory
regions from which shared allocators of different compartments make their
allocations are must not overlap, therefore each shared memory page can
be uniquely associated with an allocator. At any given time at most one
compartment is the owner of a shared memory page. Initially, this is the

58 CHAPTER 4. DESIGN

compartment to which the allocator belongs that contains the page. Owner-
ship of a page gives a compartment full (read and write) access to it while
all other compartments only have permission to read the page. The VMM is
responsible for enforcing the access permissions.

Transferring Ownership on Cross-Compartment Calls
When a cross-compartment function call is issued with a pointer to shared
memory as an argument, the allocator is consulted to find the page numbers
over which the shared data extends. The calling compartment then signals to
the VMM, via hypercall, that it is willing to transfer ownership of these pages
to the callee compartment. In response to that hypercall the VMM makes
the appropriate changes to the memory mapping such that the compartment
that issued the call no longer has ownership of (and therefore no write access
to) the specified pages1. The VMM also needs to verify that the pointer
indeed points to the beginning of the memory region consisting of the pages
indicated by the caller compartment. Therefore, the pointer must also be
passed in the hypercall and the VMM needs to have access to the shared
allocators to verify that the allocation unit corresponding to the pointer is
within the given pages. When the callee handles a cross-compartment call
involving a pointer (that necessarily points to the shared memory region), it
issues a hypercall to request ownership of the shared data pointed to. The
VMM records the pointer and corresponding pages from the initial hypercall
made by the caller compartment and therefore only needs to make sure that
the pointer presented by the callee matches that indicated by the caller. At
this point the transfer of ownership from the compartment of the caller to
the callee compartment is considered complete. On return from a cross-
compartment function call, ownership of the pages is transferred back to the
caller compartment.

Note that this protocol of the caller authorising transfer of ownership
and the callee explicitly requesting ownership is necessary to protect from
misuse of this mechanism by malicious compartments. If the callee would
not explicitly request ownership of the pages containing the shared data, a
malicious caller could simply omit the transfer of ownership. Similarly, we
cannot allow the callee to simply take ownership without prior authorisation
by the caller as otherwise it could illegitimately take ownership of arbitrary
pages.

1When EPT is used for address translation, the VMM must work with guest-physical
page numbers as the guest fully controls the mapping of guest-virtual to guest-physical
addresses.

4.6. SUMMARY 59

Modifications to the Shared Allocator
Since ownership, and thus write access, is defined at the granularity of pages,
the shared allocator must provide the option to make allocations from distinct
pages. Otherwise, shared data that happens to be allocated on the same page
could not be used independently. Therefore, the allocator is extended such
that any allocation request can optionally include a tag. A tag is simply
an integer and allocation requests with different tags are guaranteed to be
satisfied from non-overlapping page ranges. This guarantees that allocation
units corresponding to different tags can be used independently.

4.6 Summary
In this chapter, we designed a VM-based isolation mechanism that supports
the threat model previously introduced in Section 3.1. We described how
VM/EPT call gates implement cross-compartment function calls on top of
an inter-VM IPC mechanism. We outlined all components necessary for im-
plementing cross-compartment function calls, most notably the RPC server,
RPC threads, and private communication channels between each pair of com-
partments. Finally, we complemented the thread model defined in Section 3.1
by a detailed description of the TCB and addressed the problem of race con-
ditions on shared memory.

60 CHAPTER 4. DESIGN

Chapter 5

Implementation

In the previous chapter, we presented the design of our VM/EPT isolation
mechanism. In this chapter, we give details on our prototype implementa-
tion and its integration into the FlexOS [58] framework. We note that, while
our design is oblivious to the underlying hardware architecture, our proto-
type implementation is specific to the x86-64 architecture. We start with
explaining the implementation of VM/EPT call gates and the private com-
munication channels between compartments in Section 5.1. Next, we give
details about the RPC server in Section 5.2 and the RPC threads in Sec-
tion 5.3. In Section 5.4, we explain optimisations we implemented and how
those impact our original design. Finally, we describe the most important
modifications to the FlexOS toolchain that were required to instantiate com-
partmentalisation configurations based on the VM/EPT mechanism before
summarising in Section 5.6.

5.1 The VM/EPT Call Gates
Call gates allow FlexOS the flexible instantiation of compartmentalisation
configurations by replacing them with the appropriate code, at build-time,
according to the compartmentalisation configuration and chosen isolation
backend. This entails replacing gates between libraries in the same com-
partment with simple function calls while implementing cross-compartment
function calls according to the selected isolation mechanism. This source-to-
source transformation is performed by the FlexOS toolchain with the help
of the Coccinelle [1] tool. Listing 5.1 shows the general form of FlexOS call
gates before replacement with backend-specific gates for cross-compartment
calls by the toolchain. The lib_to parameter indicates the name of the library
in which the target function func is located. In the second form the return
value is assigned to the variable ret passed to the gate macro.

61

62 CHAPTER 5. IMPLEMENTATION

flexos_gate (lib_to , func , ...);
flexos_gate_r (lib_to , ret , func , ...);

Listing 5.1: Generic FlexOS call gates before instantiation.

For the VM/EPT isolation backend cross-compartment function calls
are implemented by the two macros shown in Listing 5.2. The parameters
comp_from and comp_to indicate the IDs of the caller and callee compartment
respectively which are automatically inserted by the toolchain. The func_id
parameter indicates the ID of the function to be called which is automatically
derived during the build process.

flexos_vmept_gate (comp_from , comp_to , func_id , ...);
flexos_vmept_gate_r (comp_from , comp_to , ret , func_id , ...);

Listing 5.2: VM/EPT call gates after gate instantiation. Note that
comp_from and comp_to are integer constants for any concrete instantiation.

The call gates take a variable number of arguments which are passed on to
the function to be called. The prototype implementations of both the MPK
isolation backend as well as our VM/EPT isolation backend only support
up to six arguments of type INTEGER as defined by the System V AMD64
ABI [65] and a single optional return value of type INTEGER. This means
that more complex types such as structs or floating point types cannot be
passed or returned by value. Varidadic functions are only supported to the
extent that they meet these restrictions. Integer types, including pointers,
are cast to the uint64_t type by VM/EPT gates.

5.1.1 Private Communication Channels
As outlined in Section 4.2, private communication channels between each pair
of compartments are central to our implementation of cross-compartment
function calls. These communication channels are simply a region of memory
that is shared between each pair of compartments. Figure 5.1 shows the
memory layout used in the compartment with ID i when there is a total of
N compartments and a maximum of T (regular) threads per compartment
(note that compartment IDs and TIDs start at zero).

The channel CCBs{j,i} is used by compartment i for communication with
compartment j. CCBs{i,i} is allocated to facilitate address calculations but
unused since a compartment never performs cross-compartment function calls

5.1. THE VM/EPT CALL GATES 63

CCBs{0,i}

CCBs{1,i}

CCBs{N-1,i}

CCB(0,0)
CCB(0,1)

CCB(0,T-1)

CCB(N-1,0)
CCB(N-1,1)

CCB(N-1,T-1)

CCBs{2,i}

struct rpc_ctrl {
 uint64_t extended_state;
 uint64_t func;
 uint64_t f_info;
 uint64_t parameters[6];
 uint64_t ret;
};

Figure 5.1: Memory layout used to implement private communication chan-
nels in the compartment with ID i. The total number of compartments is
given by N while T indicates the maximum number of (regular) threads per
compartment.

to itself. Each communication channel is organised into individual call con-
trol blocks (CCBs) which represent a struct containing all the information
necessary for a cross-compartment function call.

The extended_state indicates the state of the CCB in bits [31:0], the ID of
the calling compartment in bits [39:32], and the ID of the called compartment
in bits [47:40]. The possible states are IDLE, indicating the CCB is inactive,
CALLED, and RETURNED. The CALLED state indicates that the CCB holds
valid information to request a function call whereas a state of RETURNED
indicates that a call was completed. In both cases the calling and called
compartments are indicated in bits [47:32]. These states are carefully set
(see Sections 5.1.2 and 5.3) and subsequently checked by handling threads
to ensure that partially setup CCBs cannot be used for cross-compartment
function calls. This is necessary to guarantee security as otherwise spoofed
messages sent by corrupted compartments could lead to the execution of
cross-compartment function calls with CCBs in inconsistent states (e.g. only
partially setup parameters). The func field is the unique ID of the function
to be called and the f_info field indicates the number of parameters passed
and whether a return value is expected. Up to six parameters are passed in
the parameters fields and a return value can be passed back to the caller via
the ret field.

64 CHAPTER 5. IMPLEMENTATION

5.1.2 The Implementation of VM/EPT Gates
VM/EPT call gates implement cross-compartment function calls according to
the VM/EPT isolation mechanism. They are directly responsible for copying
the arguments to the correct CCB before sending a message to the message
queue of the receiving compartment’s RPC server and performing a context
switch to the RPC server of their own compartment. This is necessary to
allow the RPC server to react to events signalled to it including a return from
the cross-compartment call, nested calls back to the calling compartment, or
unrelated cross-compartment calls from any other compartment.

In Section 4.1.3, we defined the abstract notion of the origin of a cross-
compartment function call. Since this notion of origin, also referred to as
rpc_index in our implementation, is important for the implementation of
VM/EPT gates because it identifies the thread in the context of which a
function is executed, we now show it is determined. For any regular thread, its
rpc_index is computed as (current_comp � MAX_THREAD_SHIFT) | tid where
current_comp indicates the ID of the current compartment and tid is the TID
of the thread executing the gate. The rpc_index is subsequently stored as
part of the uk_thread struct, which contains general information required by
a thread, such as its TID, a pointer to its stack, and an area where register
values are stored on a context switch. The macro MAX_THREADS_SHIFT,
taking values between 1 and 8 (default), is defined by the toolchain to make
the maximum number of supported (regular) threads configurable. For any
RPC thread the rpc_index is set by the RPC server before it is dispatched
(see Section 5.2.2).

The implementation of VM/EPT gates consists of the following simple
steps:

1. Retrieve the rpc_index of the current thread.

2. Locate the correct CCB. The rpc_index indicates the location of that
CCB in the data structure representing the private communication
channel CCBs{comp_to, current_comp} where comp_to is the ID of the
callee compartment and current_comp is the current compartment’s ID.
Note that this is the same CCB as indicated by CCB(current_comp, tid)
in Figure 5.1 with the same tid used to compute the rpc_index.

3. Set the state of the CCB to IDLE. This is necessary to prevent spoofed
messages from a malicious compartment from triggering the execution
of a function with arguments only partially set up by the caller.

4. Set the ID of the target function and copy the arguments to the parameters
array in the CCB.

5.2. THE RPC SERVER 65

5. Set the state of the CCB to CALLED.
6. Post a message to the message queue of the callee compartment.
7. Perform a context switch to the RPC server thread 1. The RPC server

guarantees that a thread waiting for a cross-compartment call to fin-
ish is only resumed when an appropriate event is signalled by another
compartment. Such an event is either a RETURN signalling the com-
pletion of the call or a nested CALL back to the original compartment
that needs to be handled in the context of that thread.

5.2 The RPC Server
As outlined in Section 4.1.3, the RPC server is responsible for the commu-
nication between compartments and dispatches RPC threads in response to
events signalled by other compartments. In Section 4.3, we identified three
simple sub-components that are central to the functioning of the RPC server.

5.2.1 Sub-Components of the RPC Server
In the following, we describe the implementation of the three sub-components
on which the RPC server relies, the RPC thread pool, the RPC entry map,
and the message queue.

The RPC Thread Pool

The RPC thread pool is essentially a LIFO-queue of pointers to uk_thread
structs representing the idle RPC threads. Whenever an RPC thread needs
to be assigned to handle a request, the thread at the front of this queue is
removed. Should the queue be empty, a new RPC thread is first created
before being assigned to handle the request. Similarly, returning an RPC
thread that became idle after completing a request for a cross-compartment
function call is as simple as appending a pointer to this thread to the front of
the queue of idle RPC threads. Therefore, RPC threads are never destroyed
but idle RPC threads are recycled via the RPC thread pool.

The RPC Entry Map

The RPC entry map is a simple array, indexed by the rpc_index, mapping
each possible rpc_index to an instance of a rpc_entry struct which is shown in

1In the course of optimising the RPC mechanism this was revised in order to save the
overhead associated with context switches to and from the RPC server, see Section 5.4.

66 CHAPTER 5. IMPLEMENTATION

Listing 5.3. In the case that the rpc_index was already assigned a handling
RPC thread, this is indicated by the thread pointer, otherwise the thread
pointer is NULL. The activations counter indicates the number of active calls
on the stack of that thread.

struct vmept_rpc_entry {
struct uk_thread * thread ;
int activations ;

};

Listing 5.3: An entry of the RPC entry map. The thread pointer indicates
the assigned RPC thread and the activations counter keeps track of the active
function calls in the context of this RPC thread.

The Message Queue

The message queue associated with each compartment’s RPC server is a sim-
ple ring buffer which can hold a fixed number of messages. Each message
consists of two bytes and contains the rpc_index corresponding to the origin
of the cross-compartment function call the message refers to as well as the
ID of the compartment from which the message was sent. The implementa-
tion of the ring buffer allows the RPC server to consume messages from its
message queue without the need for synchronisation with the RPC servers of
other compartments filling the queue. However, multiple RPC servers post-
ing messages to the same message queue must synchronise their access to it
by means of obtaining a write lock before inserting the message into the ring
buffer and advancing the write pointer.

5.2.2 The Implementation of the RPC Server
With all the sub-components implemented, the RPC server can be described
in terms of simple operations on those components. The RPC server thread
continuously polls for the arrival of new messages in its message queue. If
there are no messages to retrieve from its message queue, the RPC server
thread calls uk_sched_yield to allow other regular threads in this compart-
ment to be scheduled. Note that regular threads that are waiting for cross-
compartment calls to finish are temporarily given the status of an RPC thread
and are not considered for scheduling as they cannot make progress. When
the RPC server retrieves a new message from its message queue, it extracts
the rpc_index from that message and looks up the corresponding rpc_entry in
the RPC entry map. In the case that this RPC entry indicates that no han-
dling RPC thread is assigned, it removes an idle RPC thread from the RPC

5.3. THE RPC THREADS 67

thread pool and assigns it to this RPC entry. In both cases the activations
counter of the RPC entry is incremented and the rpc_index and the ID of the
compartment that sent the message are saved to fields which were added to
the uk_thread struct specifically for the purpose of conveying this information
to the handling RPC thread. Finally, a context switch to the RPC thread is
performed which handles the event at hand, either of type CALL or RETURN,
depending on the extended_state set in the corresponding CCB.

5.3 The RPC Threads

As described in the previous section, a compartment’s RPC server is respon-
sible for assigning and dispatching RPC threads in response to incoming
messages. It is then the responsibility of the RPC thread to execute the re-
quested action. Therefore, the RPC thread uses the information relayed to it
by the RPC server, specifically the ID of the compartment that sent the mes-
sage to the RPC server and the rpc_index, to obtain the relevant CCB. The
compartment ID can be understood as selecting the communication channel
(CCBs{comp_id, i} in Figure 5.1) and the rpc_index subsequently selects the
CCB within that channel. It must first be verified that the state of the CCB
is CALLED in order to prevent spoofed messages from a malicious compart-
ment to trigger the execution of a function with arguments only partially
set up by the caller. The function ID is then extracted form that CCB and
translated to the address of the corresponding function via a lookup table
constructed during the build process (see Section 5.5.1). The arguments are
then copied to the registers as required by the System V AMD64 ABI [65]
calling convention before the function is called. After a return from that
function, the return value, if available, is copied back to the corresponding
field in the CCB before the state is set to RETURNED and a corresponding
message is sent back to the compartment that requested the call. Finally,
the activations counter in the RPC entry to which this thread is assigned is
decremented, returning the RPC thread back to the pool of idle RPC threads
should it reach zero, before a context switch back to the RPC server thread
is performed.

In the following, we want to detail the step of calling the function with the
arguments retrieved from the corresponding CCB. For that purpose we first
introduce the relevant parts of the System V AMD64 ABI calling convention.

68 CHAPTER 5. IMPLEMENTATION

The System V AMD64 ABI Calling Convention

A calling convention defines how arguments are passed to functions. We
follow a restricted version of the System V AMD64 ABI calling convention.
We restrict parameters and return values to the INTEGER class of arguments
which is defined as any integral type that fits into a single general-purpose
register [65]. In terms of C types this means that parameters and return
values must be integers comprised of at most eight bytes. The first six argu-
ments of that type are passed to the callee via the general-purpose registers
rdi, rsi, rdx, rcx, r8, and r9 while a potential return value of type INTEGER is
passed back to the caller in rax.

Executing the Function Call

In order to call the requested function with the provided arguments we use
the inline assembly feature [15] of the GCC compiler. This allows us to copy
the given parameters into the registers as required by the System V AMD64
ABI calling convention as well as copying back the return value afterwards.
Listing 5.4 shows an excerpt from the code that initiates the call to the
requested function after translating the function ID indicated by the func
field of the CCB (pointed to by ctrl) to the address of the corresponding
function in the callee compartment.

5.4 Optimisations
In the previous sections, we described our prototype implementation of the
design of the VM/EPT isolation mechanism as presented in Chapter 4. Early
experiments showed that the strict separation of the RPC server in a ded-
icated thread, requiring a context switch to this thread whenever the RPC
server needs to become active, is a source of significant overhead. To alleviate
this we integrated the functionality of the RPC server into each RPC thread
in order to eliminate the need for excessive context switches. This lead to
a reduction of cross-compartment call latency upwards of 50% compared to
the initial implementation.

Another optimisation is concerned with the dynamic assignment of RPC
threads to handle incoming requests. Instead of returning idle RPC threads
to the RPC thread pool we keep them assigned to their respective rpc_index.
This effectively assigns each rpc_index, or origin in the more abstract termi-
nology used to describe our initial design (see Section 4.1.3), a dedicated

5.5. MODIFICATIONS TO THE FLEXOS TOOLCHAIN 69

1 register uint64_t ret asm("rax") =
2 (uint64_t) translate_func (ctrl ->func);
3 switch (argc) {
4 case 0: /* left out for brevity */
5 case 1: /* left out for brevity */
6 case 2:
7 asm volatile (
8 "movq 0(%[args]), %% rdi \n\t"
9 "movq 8(%[args]), %% rsi \n\t"

10 "call *%[ret] \n\t"
11 : /* outputs */
12 [ret] "+&r" (ret)
13 : /* inputs */
14 [args] "r" (ctrl -> parameters)
15 : /* clobbers */
16 "rdi", "rsi", "rdx", "rcx", "r8", "r9",
17 "r10", "r11", " memory "
18);
19 break;
20 case 3: /* left out for brevity */
21 case 4: /* left out for brevity */
22 case 5: /* left out for brevity */
23 case 6: /* left out for brevity */
24 default : UK_CRASH (" Invalid number of arguments \n");
25 }

Listing 5.4: Excerpt of the inline assembly code used to call the requested
function. Note that the variable ret, placed in the rax register, holds the
address of the function before it is called and also holds the potential return
value after the call completes.

RPC thread. In early experiments we experienced a reduction in cross-
compartment call latency of roughly 10% due to this optimisation.

5.5 Modifications to the FlexOS Toolchain
In order to integrate our VM/EPT isolation mechanism into the FlexOS
framework we need to enable the toolchain to instantiate compartmentalisa-
tion configurations based on this isolation mechanism. The most significant
difference between the VM/EPT isolation mechanism and the existing MPK
backend is the separation of address spaces. While the MPK isolation back-
end provides intra-address space isolation, the VM/EPT separates compart-
ments into different VMs. Therefore, we need to build one VM image per
compartment.

70 CHAPTER 5. IMPLEMENTATION

Furthermore, we identify functions requested via cross-compartment calls
by IDs in order to provide a form of inter-compartment CFI. This requires
the toolchain to keep track of all functions that are called via gates, to
automatically generate IDs for these functions, and to substitute these IDs
for the function names in the VM/EPT gates.

5.5.1 Generating Function IDs
The FlexOS toolchain uses the Coccinelle [1] tool to replace generic call gates
with call gates specific to the employed isolation mechanism (see Section 5.1).
We use this tool to automatically generate IDs to identify functions in cross-
compartment calls and substitute these IDs for the function names in the
VM/EPT gates. For this purpose, we modified the rules responsible for the
replacements of call gates to incorporate this additional functionality.

1 @gatereplacer_return@
2 identifier func;
3 expression list EL;
4 expression ret , lname;
5 fresh identifier func_id = " _RPC_ID_ " ## func;
6 @@
7 - flexos_gate_r ({{ lib_dest_name }}, ret , func , EL);
8 + flexos_vmept_gate_r ({{ comp_cur }}, {{ comp_dest }},

ret , func_id , EL);
9

10 @script : python@
11 func_name << gatereplacer_return .func;
12 @@
13 add_func (func_name , {{ comp_dest }})

Listing 5.5: Example of a rule template for gate replacements according to
VM/EPT isolation mechanism.

Listing 5.5 shows a (simplified) example of a rule template used to per-
form replacements according to the VM/EPT isolation backend. Placehold-
ers of the form {{ var }} are replaced with the appropriate values before the
rule is applied by the Coccinelle tool. Specifically, the name of the destina-
tion library is substituted for {{ lib_dest_name }} and the IDs of the current
compartment and the destination compartment are substituted for the place-
holders {{ comp_cur }} and {{ comp_dest }} respectively. The identifier func
is matched by Coccinelle to the name of the function called via the gate.
From that identifier we create a name that is later defined as a macro to hold
the integer representing the function ID. We do this by adding the prefix

5.5. MODIFICATIONS TO THE FLEXOS TOOLCHAIN 71

1 #ifndef VMEPT_RPC_ID_H
2 #define VMEPT_RPC_ID_H
3 #define _RPC_ID_write 0
4 #define _RPC_ID_close 1
5 #define _RPC_ID_fchown 2
6 #define _RPC_ID_fcntl 3
7 /* [...] */
8 #define VMEPT_ID_CNT 47
9 #endif VMEPT_RPC_ID_H

Listing 5.6: Automatically
generated function IDs.

1 #ifndef VMEPT_ADDR_TABLE_H
2 #define VMEPT_ADDR_TABLE_H
3 static const void*
4 vmept_addr_table [] = {
5 0x11df90 , /* write */
6 0x11d5e0 , /* close */
7 0x120c10 , /* fchown */
8 0x11f760 , /* fcntl */
9 /* [...] */

10 };
11 #endif VMEPT_ADDR_TABLE_H

Listing 5.7: Automatically generated
address table.

_RPC_ID_ to the function name as show in line 5 of Listing 5.5. When-
ever this rule is applied by Coccinelle, the Python script indicated by the
@script:python@ tag in line 10 is executed. The variable func_name receives
the name of the function used in the gate to which the replacement rule is
applied which is subsequently added to the list of all functions called via
VM/EPT gate as shown in line 13. From this list of function names we auto-
matically generate a C header file that defines the IDs for all these functions.
Simultaneously, we generate another header file that defines an array indexed
by these function IDs which is later used by the target compartment to map
a function ID to the address of the corresponding function. Simplified exam-
ples of these automatically generated header files are shown in Listings 5.6
and 5.7.

When first building the address table during the rewriting of the gates, we
cannot determine the addresses of these functions. Therefore, we initialise the
address table shown in Listing 5.7 with NULL pointers during the rewriting
phase. After compilation we extract the real addresses from the binaries via
the readelf [49] tool and insert the correct addresses into the address table
before recompiling and relinking the VM images.

These address tables specific to each compartment are then used to trans-
late function IDs to the corresponding addresses by the translate_func (inline)
function shown in line 2 of Listing 5.4 before executing the function call.

72 CHAPTER 5. IMPLEMENTATION

5.6 Summary
In this chapter, we gave details about the implementation of the VM/EPT
isolation mechanism. We explained how VM/EPT gates implement cross-
compartment function calls on top of private communication channels be-
tween compartments. We gave implementation details of the RPC server
and RPC threads that are responsible for handling cross-compartment func-
tion calls and explained how these components are used by VM/EPT gates
to perform cross-compartment function calls. Next, we explained where we
deviated from our original design for optimisation purposes, most notably
by integrating the RPC server into RPC threads to reduce the number of
context switches. Finally, we described the modifications to the toolchain
that were required to integrate the VM/EPT isolation mechanism into the
FlexOS framework, including the automatic generation of function IDs and
the corresponding table used to translate these IDs back to addresses.

Chapter 6

Evaluation

In the following chapter, we evaluate the VM/EPT isolation backend. We
start by explaining the evaluation methodology and evaluation setup in Sec-
tion 6.1. Then we proceed with microbenchmarks, measuring the latency of
cross-compartment calls in Section 6.2 and compare the results with the cross-
compartment call latencies of the MPK backend as well as Linux system call
latencies. Following this, we proceed with macrobenchmarks. In Section 6.3,
we measure network throughput performance in a scenario where the appli-
cation is isolated from the network stack. Next, we evaluate the performance
of the VM/EPT backend on file system intensive workloads with SQLite in
Section 6.4. Finally, in Section 6.5, we discuss security limitations of the
current implementation of the VM/EPT isolation backend. We show that
these limitations are not fundamental but due to the prototype nature of
the VM/EPT implementation as well as the FlexOS framework as a whole
and discuss how these limitations can be overcome before summarising the
results of the evaluation in Section 6.6.

6.1 Methodology and Evaluation Setup
We evaluate the runtime performance of FlexOS with the VM/EPT isolation
backend and compare the performance overhead with that of the much more
lightweight MPK isolation backend as well as Unikraft without any isola-
tion. We show that, while the strong isolation provided by the VM/EPT
backend comes at the price of high latency for cross-compartment calls, rea-
sonable performance is still achieved, especially when the frequency of cross-
compartment calls is moderate.

All measurements are taken on a Debian 10 (Buster) system (kernel ver-
sion 4.19.0-8) equipped with an Intel Xeon Silver 4110 CPU with a base

73

74 CHAPTER 6. EVALUATION

frequency of 2.1GHz, hyperthreading disabled, and 32GB of RAM. The ex-
periments are run inside of Docker containers to allow for easy reproducibility
(see Appendix A). To minimise the overhead introduced by Docker, we run
all containers with seccomp [50] disabled. We use the isolcpus [5] kernel com-
mand line parameter to isolate three cores from the kernel scheduler. The
taskset [53] command is used to pin the QEMU guest processes to the isolated
cores to minimise the disturbance of our measurements. The current FlexOS
version is based on Unikraft 0.5. The Unikraft version used for comparison
of results is also 0.5.

6.2 Microbenchmarks
To measure gate latency, regardless of the backend, we build an instance
of FlexOS with two compartments. The first compartment contains the
benchmarking code that repeatedly calls an empty function in the second
one. In each case, including function calls and Linux system calls, we measure
the elapsed CPU cycles with the time-stamp counter (TSC). Therefore, we
first give an introduction to time measurements with the TSC and describe
the exact methodology we use to obtain precise measurements.

microbenchmark-
application

microbenchmark-
library

Compartment 1 Compartment 2

Figure 6.1: Compartmentalisation configuration for the microbenchmarks.
The microbenchmark-library contains the function that is called. The measure-
ments are performed in the microbenchmark-application.

6.2.1 Measurements with the TSC
The Intel64 and IA-32 architectures, starting with Pentium processors, pro-
vide a TSC [46, Vol. 3] that allows for high precision measurements of elapsed
time. The read time-stamp counter (RDTSC) instruction can be used to ob-
tain the current value of the TSC. However, this instruction is not serialis-
ing [46, Vol. 3], which means that it does not guarantee that modifications
to flags, registers, or memory by previous instructions are completed before

6.2. MICROBENCHMARKS 75

1 static inline uint64_t bench_start ()
2 __attribute__ ((always_inline)) {
3 uint32_t tsc_low , tsc_high ;
4 asm volatile (
5 "CPUID \n\t" // serialise
6 "RDTSC \n\t" // read TSC
7 "MOV %%edx , %0\n\t"
8 "MOV %%eax , %1\n\t"
9 : "=r" (tsc_high), "=r" (tsc_low) // outputs

10 : : "%rax", "%rbx", "%rcx", "%rdx"); // clobbers
11 return ((uint64_t) tsc_high << 32) | tsc_low ;
12 }

Listing 6.1: Code to read the TSC before executing the code under
measurement.

the TSC is read. In order to prevent overlapping execution of instructions
of the code under measurement and previous instructions, we insert the seri-
alising CPU identification (CPUID) instruction immediately before obtaining
the initial TSC value in each iteration of the benchmark loop. The resulting
code is shown in Listing 6.1.

1 static inline uint64_t bench_end ()
2 __attribute__ ((always_inline)) {
3 uint32_t tsc_low , tsc_high ;
4 asm volatile (
5 " RDTSCP \n\t" // read TSC
6 "MOV %%edx , %0\n\t"
7 "MOV %%eax , %1\n\t"
8 "CPUID \n\t" // serialise
9 : "=r" (tsc_high), "=r" (tsc_low) // outputs

10 : : "%rax", "%rbx", "%rcx", "%rdx"); // clobbers
11 return ((uint64_t) tsc_high << 32) | tsc_low ;
12 }

Listing 6.2: Code to read the TSC after executing the code under
measurement.

While this allows us to obtain precise measurements of the TSC before
executing the code to benchmark, it is recommended [75] to use a different
method for reading the TSC after the code under measurement completes
execution in order to reduce the impact of the serialising CPUID instruction on
the measurements. For that purpose, we use the read time-stamp counter and
processor ID (RDTSCP) instruction. While this instruction is not serialising,

76 CHAPTER 6. EVALUATION

it waits until all previous instructions have executed and all previous loads
are globally visible [46, Vol. 2B]. We then execute the CPUID instruction for
serialisation after the RDTSCP instruction to prevent overlapping execution
of any subsequent instructions with parts of instructions of the code under
measurement. The resulting code is shown in Listing 6.2.

6.2.2 Gate Latency Measurements
Figure 6.2 shows the latencies of MPK and VM/EPT gates, Linux system
calls, and a simple function call. The measurements are taken according to
the methodology discussed previously. The results shown in Figure 6.2 are
median values taken over 100.000 measurements. The functions called via
MPK and VM/EPT gates as well as via direct function calls do not perform
any computation and are of type void func(void) 1. For the Linux system
call the syscall [51] function was used with an invalid system call number to
measure only the base overhead of the system call mechanism.

In Figure 6.2 we can see that the VM/EPT gates have about 8.3 times in-
creased latency compared to the much more lightweight MPK gates, while the
overhead of a Linux system call is about 56% of that of an cross-compartment
call with VM/EPT.

The high overhead incurred by VM/EPT gates comes from two sources.
First, the inter-VM IPC mechanism requires additional logic to ensure cor-
rect control flow between compartments. Incoming calls must be dispatched
to the appropriate handler thread and nested calls must be handled cor-
rectly. Second, communication between compartments is implemented via
shared memory. This includes the message queues in each compartment as
well as the individual CCB for each thread. On a call, arguments must be
copied to the CCB of the corresponding thread, the function identifier must
be set, and the state must be updated. The receiving compartment then
retrieves the message from its message queue before dispatching the handler
thread. Then the function identifier is checked and translated to the address
of the corresponding function and the arguments are copied from the CCB
to the correct registers (as required by the System V AMD64 ABI calling
convention), before the call is executed. Finally, after the call completes,
potential return values are copied back to the CCB, the return from the call
is indicated by setting the state of the CCB appropriately, and a message is
posted to the message queue of the calling compartment.

The access to these shared memory locations contributes a large part
1In the case of VM/EPT gates, measurements with different numbers of arguments were

performed but are not shown because no statistically relevant impact could be observed.

6.2. MICROBENCHMARKS 77

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Function call

Linux syscall

M
PK gate

VM
/EPT gate

La
te

nc
y

(C
P

U
 c

yc
le

s)

shared memory RTT

4

494

106

878

Figure 6.2: Latency measurements of function calls, Linux system calls,
FlexOS MPK gates, and FlexOS VM/EPT gates. VM/EPT gates incur
about 8.3 times increased latency compared to MPK gates and roughly 1.8
times increased latency compared to Linux system calls. At least 51% of
the VM/EPT gate latency stems from frequent communication via shared
memory.

of the overhead associated with VM/EPT. To determine the base overhead
that is incurred only from setting the state part of the CCB, we measured the
execution time of code that sets a shared integer variable in one compartment
from an IDLE state (0) to CALLED (1) and waits for the second compartment
to set it to RETURNED (2). The second compartment checks the value of
the shared state variable in a loop and sets it to RETURNED as soon as it
observes that it has the value of CALLED. The code measured to determine
the minimum overhead is shown in Listing 6.3 and executed in the first
compartment. The state variable is reset to IDLE after each iteration of
the measurement loop (not shown in Listing 6.3). The second compartment
executes the code shown in Listing 6.4.

78 CHAPTER 6. EVALUATION

The results of these measurements are indicated by the shared memory
round-trip time (RTT) value in Figure 6.2. From these measurements we
can conclude that the shared memory accesses contribute at least 51% of
the total overhead of VM/EPT gates. Note that this is only a lower bound
for the time spent on shared memory accesses because over the course of an
VM/EPT gate call there are more accesses to shared memory. For example,
the state part of the CCB is set multiple times during the execution of a
single VM/EPT cross-compartment call (see Sections 5.1.2, 5.2.2 and 5.3).

1 *state = CALLED ;
2 while (* state != RETURNED) {
3 asm volatile ("pause" ::: " memory ");
4 }

Listing 6.3: The code executed and measured in the first compartment
to determine the minimum overhead due to accesses to shared memory
locations. The pause [46, Vol. 2B] instruction is a hint to the processor that
this is a spin-wait loop and allows for more efficient execution.

1 while (1) {
2 while (* state != CALLED) {
3 asm volatile ("pause" ::: " memory ");
4 }
5 *state = RETURNED ;
6 }

Listing 6.4: The code executed in the second compartment. This simulates
the access pattern to the state part of the CCB during the execution of a
VM/EPT gate call.

6.2.3 Possibility for Optimisation of VM/EPT Gates
Since we identified the frequent writes to the state part of a CCB as a source
of significant overhead, we should consider optimising this aspect of the im-
plementation of VM/EPT gates. Therefore, we first take a closer look at
the MESI cache coherence protocol to understand why frequent writes from
different compartments to the same memory location degrade performance.
Then we see how security considerations hamper the optimisation of this
particular memory access pattern.

6.2. MICROBENCHMARKS 79

The MESI Cache Coherence Protocol

Processors implementing the Intel64 architecture use the MESI cache coher-
ence protocol to maintain consistency between the caches that are exclusive
to individual cores [46, Vol. 3A]. The MESI protocol associates each cache
line with one of four states: modified (M), exclusive (E), shared (S), or in-
valid (I) [31, p. 299-301]. The invalid state indicates that the cache line does
not hold consistent data, resulting in a cache miss on access. A cache line
in the exclusive state is only present in the cache of one core. The shared
state indicates that the same cache line is replicated across multiple caches
and all copies are clean, guaranteeing that they hold the same value. Finally,
the modified state indicates that a cache line is valid but dirty, meaning that
copies in other caches must be invalidated on transition to this state. The
state transitions according to the MESI protocol are depicted in Figure 6.3.
Transitions in response to processor read (PrRd) or write (PrWr) accesses are
shown in blue. The transitions shown in red happen in response to observed
bus activity (accesses of other processors to their caches), BusRd indicates a
read access, and BusRdX a write access.

Cache Behaviour of VM/EPT Gates

Now we can trace what happens to the cache line of the state part of the CCB
over the course of a VM/EPT gate call. For the sake of simplicity we assume
that the two interacting compartments execute on different processor cores,
subsequently called P1 and P2. We also assume that initially the cache line
in P1’s cache is present in the modified state and invalidated in the cache
of P2. When the VM/EPT gate call is issued from compartment one, it
sets the state twice, first to IDLE and then to CALLED after the CCB is set
up correctly, thus obtaining exclusive ownership of the cache line which is
now in the modified state. After the message to initiate the call is posted
to the message queue of compartment two, the handling thread first checks
the state in the CCB and then sets it to IDLE. Therefore, the cache line is
invalidated in P1’s cache and now is present in the modified state in the
cache of P2. When the function requested by the gate call returns, the state
is updated to RETURNED by P2 and a message is posted to the message
queue of compartment one. When the handling thread in compartment one
resumes execution, it first checks the state (to determine whether a return
or a nested call is at hand) and then sets the state back to IDLE. Thus,
the cache line is invalidated in P2’s cache (after briefly transitioning to the
shared state) and present in the modified state in P1’s cache, which is the
initial state of the caches we assumed earlier. Therefore, we observe that the

80 CHAPTER 6. EVALUATION

invalid (I)

modified (M) exclusive (E)

shared (S)

PrWr / -

PrRd / -
BusR

d / -

BusR
dX / F

lush

PrR
d /

 -

PrW
r /

-

BusR
dX / FlushPr

W
r /

 B
us

R
dx

PrRd / B
usR

d(¬S)

PrRd / BusRd(S)

PrRd / -

BusRdX / Flush

PrWr / BusRdX

BusRd / Flush

Figure 6.3: State transitions according to the MESI cache coherence protocol.

cache line containing the state part of the CCB is invalidated and refilled
frequently, which degrades performance and explains the overhead incurred
by shared memory accesses.

Performance vs. Security Considerations
The observation that the memory access pattern of VM/EPT gates has ad-
verse effects on performance leads to the question of whether this can be
optimised. Unfortunately, security considerations make obvious optimisa-
tions, such as including the state in the messages sent to message queues,
impossible. This is because we have to ensure that VM/EPT gate calls
can only be processed when the communication partner has fully set up the
CCB. Otherwise, since the message queues are shared between all compart-
ments, a malicious third compartment could post spoofed messages in order
to cause a cross-compartment call with the CCB in an inconsistent state (see

6.3. NETWORK THROUGHPUT (IPERF) 81

Section 5.1.2). Note that the CCBs are only shared between each pair of
compartments thus forming private communication channels. By carefully
setting the state part of the CCB we can prevent this kind of attack, although
at the cost of higher overhead as discussed above.

6.3 Network Throughput (iPerf)
In order to test the network throughput, we build FlexOS in a configuration
where the application receiving data over the network is isolated from the rest
of the system, including the network stack. This configuration is used both
for the VM/EPT and MPK backend. For comparison we built the same
application with Unikraft without any isolation. All images are compiled
with optimisation enabled (-O2). The LwIP network stack is configured with
a TCP window size of 64KB and window scaling is disabled. We use the
iPerf [3] network performance measurement tool in client mode to connect
to the server application and measure the TCP throughput.

iperf-application
lwip,
newlib

Compartment 1 Compartment 2

Figure 6.4: Compartmentalisation configuration for the iPerf benchmark.
The iperf-application which receives data over the network is isolated from the
rest of the system, including the network stack (lwip).

The results of the measurements, averaged over five measurement periods
of ten seconds for each receive buffer size, are shown in Figure 6.5. We can
see that the overhead for cross-compartment calls degrades the performance
in both cases where isolation is employed. Since VM/EPT gates introduce
significantly more overhead than MPK gates, the throughput for small buffer
sizes is correspondingly lower. For buffer sizes between 16 and 64 bytes, the
TCP throughput with the VM/EPT isolation backend is about 3.6 times
lower than with the MPK backend and about 4.7 times lower compared to
Unikraft. Also, the peak throughput of 2.95Gb/s is reached later with the
VM/EPT isolation backend because of the higher gate latency, but is close to
the peak throughput of 3.1Gb/s achieved by the MPK backend and Unikraft.

82 CHAPTER 6. EVALUATION

 0.125

 0.25

 0.5

 1

 2

 4

24 26 28 210 212 214

iP
er

f T
hr

ou
gh

pu
t (

G
b/

s)

Receive Buffer Size (Bytes)

Unikraft

FlexOS MPK

FlexOS VM/EPT

Figure 6.5: Network throughput measurements for Unikraft, FlexOS with the
MPK backend, and FlexOS with the VM/EPT backend with different sizes
of the receive buffer. For buffer sizes between 16 and 64 bytes throughput
with the VM/EPT backend is about 3.6 times lower compared to the MPK
backend and 4.7 times lower compared to Unikraft without isolation. For
larger buffer sizes the throughput with the VM/EPT backend converges to
a similar maximum.

6.4 File System IntensiveWorkloads (SQLite)

In order to evaluate the performance of the VM/EPT isolation backend on
file system intensive workloads, we isolate the file system from an application
that performs operations on an SQLite [12] database. All images are built
with compiler optimisation enabled (-O2). All systems use a RAM-based
file system and the SQLite version 3.30.1. We measure the time it takes to
complete 5000 INSERT operations.

Figure 6.7 shows the results of the measurement, averaged over ten mea-
surement runs each. We can see that Unikraft, providing no isolation, per-
forms by far the best with approximately half the runtime of FlexOS with
the MPK isolation backend. FlexOS with the VM/EPT backend requires
almost three times the runtime compared to Unikraft and roughly 1.5 times
the runtime measured with the MPK backend.

The performance of FlexOS with the VM/EPT backend is similar to

6.4. FILE SYSTEM INTENSIVE WORKLOADS (SQLITE) 83

vfscore,
ramfs

sqlite,
newlib,

pthread-embedded

Compartment 1 Compartment 2

Figure 6.6: Compartmentalisation configuration for the SQLite benchmark.
The sqlite application is isolated from the file system.

 0

 50

 100

 150

 200

 250

 300

 350

 400

Unikraft

FlexOS M
PK

FlexOS VM
/EPT

Linux
Genode (seL4)

T
im

e
to

 c
om

pl
et

e
50

00
 IN

S
E

R
T

 o
pe

ra
tio

ns
 (

m
s)

53

107

159
172

330

Figure 6.7: Time to complete 5000 INSERT operations into an SQLite
database on Unikraft, FlexOS with the MPK backend, FlexOS with the
VM/EPT backend, Linux, and Genode with the seL4 microkernel. FlexOS
with the VM/EPT backend is about 3 times slower than Unikraft and about
50% slower than FlexOS with the MPK backend. The performance achieved
by the VM/EPT backend is comparable to that of native Linux and about
twice that of Genode with the seL4 microkernel.

84 CHAPTER 6. EVALUATION

that of a native Linux system, even comparing slightly favourable in our
measurements. Compared to Genode [36] with the seL4 [54] microkernel,
the runtime required with VM/EPT isolation is less than 50%. Therefore,
we can conclude that in this measurement the VM/EPT isolation mechanism
provides similar or better performance as systems relying on page table based
isolation, i.e. Linux and Genode with the seL4 microkernel.

6.5 Discussion of Security
After evaluating the performance of the VM/EPT isolation backend, we now
want to discuss various security aspects, address shortcomings of the imple-
mentation, and show that they are not fundamental in nature.

6.5.1 Private Communication between Compartments
As described in Section 4.2, the information required for cross-compartment
calls is stored in a section of memory that is shared between each pair of
compartments. Therefore, a corrupted compartment cannot manipulate this
information for calls in which it is not involved. However, to enforce this
pairwise sharing, our current prototype implementation sets up the memory
mapping in each compartment accordingly via the uk_page_map function
provided by Unikraft. This means that a corrupted compartment can easily
revert this protection by changing the mapping to gain access to the memory
regions shared between other compartments. However, this is not a funda-
mental limitation since techniques similar to the sealing of unikernels [67]
can be employed. After initialisation, a hypercall is issued that instructs the
VMM to prevent further page table modifications. This approach of drop-
ping the privilege to modify the memory mapping after initialisation follows
the same idea as the seccomp2 system call in Linux, applied to the page table
instead of the system call interface.

While this can be implemented when shadow page tables are used for
translation of guest-virtual to host-physical addresses, a different solution is
needed when the extended page tables (EPT) mechanism is used for address
translation. This is because with EPT the guest has full control over the
mapping from guest-virtual to guest-physical addresses. However, the map-
ping from guest-physical to host-physical addresses is still controlled by the
VMM. Therefore, we only have to ensure that the extended page table does

2When executed, the seccomp [50] system call prevents the process from executing any
further system calls with the exception of read or write on open file descriptors, exit, or
sigreturn (in the most restrictive configuration).

6.6. SUMMARY 85

not provide a valid mapping to pages that must not be accessible to the guest
after system initialisation.

6.5.2 Shared Memory Allocation
The VM/EPT isolation backend uses one shared allocator per compartment,
each of which allocates memory from a different part of a memory section
that is shared between all compartments. Currently, the ukallocbuddy buddy
allocator of Unikraft is used for the shared allocators. With this allocator
metadata is stored in the same memory region from which allocations are
made which means that this metadata is also accessible to all compartments.
Therefore, a malicious compartment could corrupt the shared allocator of
another compartment.

A solution to this problem is to use a special allocator implementation
that segregates metadata from the memory region from which allocations are
made. The metadata must then be kept on memory pages that are private
to the respective compartment.

6.5.3 Addressing Race Conditions on Shared Memory
In Section 4.5.2, we outlined a general solution to the problem of race con-
ditions on shared memory. Our prototype implementation of the VM/EPT
isolation mechanism did not address this problem since we first wanted to
demonstrate the feasibility of VM-based isolation before committing to the
significant engineering effort associated with the proposed solution. We ex-
pect that implementing the solution we proposed comes at a significant run-
time overhead for shared data involved in cross-compartment function calls.
Unfortunately, we could not investigate the suitability of the proposed solu-
tion to the problem of race conditions on shared memory in terms of addi-
tional runtime overhead and therefore have to leave this to future work.

6.6 Summary
In this chapter we saw that, although the VM/EPT isolation mechanism in-
troduces high overhead on cross-compartment calls compared to more light-
weight MPK isolation, it still performs similar or better to page table based
isolation for file system intensive workloads. The network throughput bench-
mark confirmed that the higher overhead for cross-compartment calls leads
to a degradation of performance roughly proportional to the frequency of

86 CHAPTER 6. EVALUATION

compartment crossings. We also discussed practical limitations of the cur-
rent prototype implementation of the VM/EPT isolation backend and how
these can be overcome.

Chapter 7

Conclusion

In this thesis, we explored the use of high-guarantee isolation mechanisms for
compartmentalisation at the granularity of a library. For this purpose, we
performed a systematic analysis of existing isolation mechanisms, motivated
for VM-based isolation, before designing, implementing, and evaluating a
prototype in the FlexOS framework.

The evaluation of our prototype implementation showed that, while the
radical approach of VM-based isolation comes at the cost of high latency for
cross-compartment function calls, adequate performance is still obtained in
scenarios where the frequency of cross-compartment function calls is moder-
ate. We can therefore conclude that the cost of VM-based isolation is high
but not prohibitive in scenarios where security is the primary concern.

7.1 Future Work
Our prototype implementation of the VM/EPT isolation suffers from several
practical limitations. The RPC servers that are at the heart of the RPC
mechanism responsible for the implementation of cross-compartment func-
tion calls rely on polling for receiving messages from their respective message
queues. This choice was made purely for ease of implementation and is not
practical in real-world scenarios. Not only is this inefficient from the per-
spective of power consumption but it also precludes resource consolidation
as the virtual CPUs of all VMs are kept busy at any time.

Furthermore, there are several security concerns that are not addressed
by our prototype implementation. This includes the fact that the private
communication channels that are an integral part of our RPC mechanism
are only secured by the memory mapping set up by each individual compart-
ment. There is no mechanism in place to prevent malicious compartments

87

88 CHAPTER 7. CONCLUSION

from changing this mapping to get access to the private communication chan-
nels shared between other compartments. Fixing this problem requires an
extension of the VMM to enable a form of sealing the memory mapping as
outlined in Section 6.5.1. Also the shared allocators used by the VM/EPT
compartments presents an attack surface. This is because they rely on the
ukallocbuddy allocator implementation which allocates the metadata in the
same memory region from which allocations are made, in this case the mem-
ory region shared between all compartments. Therefore, this metadata is
accessible by any malicious compartments and presents an obvious attack
surface. The solution to this problem is, as already outlined in Section 6.5.2,
to use shared allocators that segregate metadata from the memory pool from
which allocation requests are satisfied. All the problems mentioned above
are not fundamental limitations and should be solvable with moderate engi-
neering effort.

The part of our design of the VM/EPT isolation mechanism that ad-
dresses the problem of race conditions on shared memory was not imple-
mented. This is because we first wanted to demonstrate the the feasibility of
VM-based isolation before committing to the considerable effort we estimate
it takes to implement the solution proposed in Section 6.5.2. The time-frame
of this work did unfortunately not allow us to implement this part of the de-
sign after establishing the fundamental feasibility of VM-based isolation and
we have to leave the implementation of a practical solution to this problem
to future work.

An interesting topic for potential future research is the hybrid use of isola-
tion mechanisms, particularly the use of intra-address space isolation within
individual VM/EPT compartments. This would allow enforcing strong iso-
lation via the VM/EPT mechanism at a coarser level while enforcing isola-
tion between several sub-compartments via a lightweight intra-address space
mechanism, further increasing the flexibility of the user to define a com-
partmentalisation configuration that strikes the optimal trade-off between
performance and security.

Appendix A

Reproducibility

The experiments conducted in Chapter 6, specifically the microbenchmarks
(Section 6.2), iPerf benchmarks (Section 6.3), and SQLite benchmarks (Sec-
tion 6.4) are documented in this GitHub repository:
https://github.com/SebastianRauch/evaluation.

Docker images are provided which can be used to reproduce the results
of the experiments.

89

https://github.com/SebastianRauch/evaluation

90 APPENDIX A. REPRODUCIBILITY

Bibliography

[1] Coccinelle. https://coccinelle.gitlabpages.inria.fr/website.

[2] Cscope. http://cscope.sourceforge.net.

[3] iperf2. https://sourceforge.net/projects/iperf2.

[4] kraft. https://github.com/unikraft/kraft.

[5] The linux kernel. The kernel’s command-line parameters. https://www.
kernel.org/doc/html/v4.19/admin-guide/kernel-parameters.html. accessed 14
February 2022.

[6] Microsoft Hyper-V. https://docs.microsoft.com/en-us/virtualization/
hyper-v-on-windows/about.

[7] MirageOS. https://mirage.io/.

[8] nginx. http://nginx.org.

[9] Oracle VM VirtualBox. https://www.virtualbox.org.

[10] QEMU. https://www.qemu.org.

[11] Redis. https://redis.io.

[12] Sqlite. https://sqlite.org/index.html.

[13] Unikraft 0.5.0 Tethys documentation. Application development and
porting. http://docs.unikraft.org/developers-app.html. accessed 10 January
2022.

[14] Unikraft 0.5.0 Tethys documentation. Unikraft libraries. http://docs.
unikraft.org/intro.html#unikraft-libraries. accessed 10 January 2022.

[15] Using the gnu compiler collection (GCC). Extended asm. https://gcc.gnu.
org/onlinedocs/gcc/Extended-Asm.html#Extended-Asm. accessed 22 Febru-
ary 2022.

91

https://coccinelle.gitlabpages.inria.fr/website
http://cscope.sourceforge.net
https://sourceforge.net/projects/iperf2
https://github.com/unikraft/kraft
https://www.kernel.org/doc/html/v4.19/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/v4.19/admin-guide/kernel-parameters.html
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about
https://mirage.io/
http://nginx.org
https://www.virtualbox.org
https://www.qemu.org
https://redis.io
https://sqlite.org/index.html
http://docs.unikraft.org/developers-app.html
http://docs.unikraft.org/intro.html#unikraft-libraries
http://docs.unikraft.org/intro.html#unikraft-libraries
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html#Extended-Asm
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html#Extended-Asm

92 BIBLIOGRAPHY

[16] Using the gnu compiler collection (GCC). Program instrumentation op-
tions. https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html. ac-
cessed 10 Januarary 2022.

[17] VMWare ESXi. https://www.vmware.com/products/esxi-and-esx.html.

[18] VMware Workstation Player. https://www.vmware.com/products/
workstation-player/workstation-player-evaluation.html.

[19] Xen project. https://xenproject.org.

[20] Xen project wiki. Dom0. https://wiki.xenproject.org/wiki/Dom0. accessed
02 February 2022.

[21] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-
flow integrity. In Proceedings of the 12th ACM Conference on Computer
and Communications Security (CCS), pages 340–353. Association for
Computing Machinery, 2005.

[22] Keith Adams and Ole Agesen. A comparison of software and hardware
techniques for x86 virtualization. In Proceedings of the 12th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 2–13. Association for Com-
puting Machinery, 2006.

[23] Bill Alexander, Andy Anderson, Barry Huntley, Gil Neiger, Dion
Rodgers, and Larry Smith. Intel R© architected for performance - virtual-
ization support on nehalem and westmere processors. Intel R© Technology
Journal, Volume 14(3):84–102, January 2010.

[24] M. Anderson, R. D. Pose, and C. S. Wallace. A password-capability
system. The Computer Journal, 29(1):1–8, January 1986.

[25] ARM Ltd. Building a Secure System using TrustZone Technology. https:
//developer.arm.com/documentation/PRD29-GENC-009492/c, 2009. Online;
accessed 09 January 2022.

[26] ARM R©. ARM Architecture Reference Manual ARMv7-A and ARMv7-
R edition, 2021. https://developer.arm.com/documentation/ddi0406/cd, ac-
cessed 20 January 2022.

[27] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, and Neugebauer Neugebauer. Xen and the art of virtualization.
In Proceedings of the nineteenth ACM Symposium on Operating systems
principles (SOSP), pages 164–177. ACM Press, October 2003.

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
https://xenproject.org
https://wiki.xenproject.org/wiki/Dom0
https://developer.arm.com/documentation/PRD29-GENC-009492/c
https://developer.arm.com/documentation/PRD29-GENC-009492/c
https://developer.arm.com/documentation/ddi0406/cd

BIBLIOGRAPHY 93

[28] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D.
Lazowska. Sharing and protection in a single-address-space operating
system. ACM Trans. Comput. Syst., 12(4):271–307, November 1994.

[29] R. Joseph Connor, Tyler McDaniel, Jared M. Smith, and Max
Schuchard. PKU pitfalls: Attacks on PKU-based memory isolation sys-
tems. In 29th USENIX Security Symposium (USENIX Security 20),
pages 1409–1426. USENIX Association, August 2020.

[30] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryp-
tology ePrint Archive, 2016.

[31] David Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel Com-
puter Architecture: A Hardware/Software Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1998.

[32] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell,
and Vikram Adve. Nested kernel: An operating system architecture for
intra-kernel privilege separation. In Proceedings of the Twentieth In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 191–206. Association
for Computing Machinery, 2015.

[33] D. M. England. Capability concept, mechanisms and structure in sys-
tem 250. In Proceedings of the Intrnational Workshop on Protection in
Operating Systems, pages 68–82, 1974.

[34] Dawson R. Engler, M. Frans Kaashoek, and J. O’Toole. Exokernel:
An operating system architecture for application-level resource manage-
ment. In Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles (SOSP), pages 251–266. Association for Computing
Machinery, 1995.

[35] Robert S. Fabry. Capability-based addressing. Commun. ACM,
17(7):403–412, July 1974.

[36] Norman Feske. Genode Foundations. 2021.

[37] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin, and
Olin Shivers. The Flux OSKit: A substrate for kernel and language
research. In Proceedings of the Sixteenth ACM Symposium on Operating
Systems Principles (SOSP), pages 38–51. Association for Computing
Machinery, 1997.

94 BIBLIOGRAPHY

[38] Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin J.
Elphinstone, Volkmar Uhlig, Jonathon E. Tidswell, Luke Deller, and
Lars Reuther. The SawMill multiserver approach. In Proceedings of the
9th Workshop on ACM SIGOPS European Workshop: Beyond the PC:
New Challenges for the Operating System, pages 109–114. Association
for Computing Machinery, 2000.

[39] Robert P. Goldberg. Architectural Principles for Virtual Computer Sys-
tems. PhD thesis, Harvard University, 1973.

[40] Khilan Gudka, Robert N.M. Watson, Jonathan Anderson, David Chis-
nall, Brooks Davis, Ben Laurie, Ilias Marinos, Peter G. Neumann, and
Alex Richardson. Clean application compartmentalization with SOAAP.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CSS), pages 1016–1031. Association for Com-
puting Machinery, 2015.

[41] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Sebastian Schön-
berg, and Jean Wolter. The performance of μ-kernel-based systems.
In Proceedings of the Sixteenth ACM Symposium on Operating Systems
Principles (SOSP), pages 66–77. Association for Computing Machinery,
1997.

[42] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John
Criswell, Michael L. Scott, Kai Shen, and Mike Marty. Hodor: Intra-
Process isolation for High-Throughput data plane libraries. In 2019
USENIX Annual Technical Conference (USENIX ATC 19), pages 489–
504. USENIX Association, 2019.

[43] Germont Heiser, Kevin Elphinstone, Jerry Vochteloo, Stephen Russell,
and Jochen Liedtke. The Mungi single-address-space operating system.
Softw. Pract. Exper., 28(9):901–928, July 1998.

[44] Hewlett Packard. PA-RISC 1.1 Architecture and Instruction Set Refer-
ence Manual, 1994. Third Edition.

[45] IBM Corporation. Power ISATM, Version 3.1, 2020.

[46] Intel Corp. Intel R© 64 and IA-32 Architectures Software Developer’s
Manual, June 2021.

[47] Michael Kerrisk. cgroups(7). Linux man-pages project, Release 5.13
https://man7.org/linux/man-pages/man7/cgroups.7.html, 2021. online, ac-
cessed 08 Januarary 2022.

https://man7.org/linux/man-pages/man7/cgroups.7.html

BIBLIOGRAPHY 95

[48] Michael Kerrisk. namespaces(7). Linux man-pages project, Release 5.13
https://man7.org/linux/man-pages/man7/namespaces.7.html, 2021. online,
accessed 08 Januarary 2022.

[49] Michael Kerrisk. readelf(1). Linux man-pages project, Release 5.13 https:
//man7.org/linux/man-pages/man1/readelf.1.html, 2021. online, accessed 23
February 2022.

[50] Michael Kerrisk. seccomp(2). Linux man-pages project, Release 5.13
https://man7.org/linux/man-pages/man2/seccomp.2.html, 2021. online, ac-
cessed 16 February 2022.

[51] Michael Kerrisk. syscall(2). Linux man-pages project, Release 5.13 https:
//man7.org/linux/man-pages/man2/syscall.2.html, 2021. online, accessed 13
February 2022.

[52] Michael Kerrisk. syscalls(2). Linux man-pages project, Release 5.13
https://man7.org/linux/man-pages/man2/syscalls.2.html, 2021. online, ac-
cessed 08 Januarary 2022.

[53] Michael Kerrisk. taskset(1). Linux man-pages project, Release 5.13 https:
//man7.org/linux/man-pages/man1/taskset.1.html, 2021. online, accessed 15
February 2022.

[54] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. Sel4: Formal verification of an os kernel. In Proceedings of
the ACM SIGOPS 22nd Symposium on Operating Systems Principles
(SOSP), pages 207–220. Association for Computing Machinery, 2009.

[55] Simon Kuenzer, Vlad-Andrei Bădoiu, Hugo Lefeuvre, Sharan San-
thanam, Alexander Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu,
Ştefan Teodorescu, Costi Răducanu, Cristian Banu, Laurent Mathy,
Răzvan Deaconescu, Costin Raiciu, and Felipe Huici. Unikraft: Fast,
specialized unikernels the easy way. In Proceedings of the Sixteenth Eu-
ropean Conference on Computer Systems (EuroSys), pages 376–394. As-
sociation for Computing Machinery, 2021.

[56] Stefan Lankes, Simon Pickartz, and Jens Breitbart. HermitCore: A
unikernel for extreme scale computing. In Proceedings of the 6th Inter-
national Workshop on Runtime and Operating Systems for Supercom-
puters. Association for Computing Machinery, 2016.

https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man1/readelf.1.html
https://man7.org/linux/man-pages/man1/readelf.1.html
https://man7.org/linux/man-pages/man2/seccomp.2.html
https://man7.org/linux/man-pages/man2/syscall.2.html
https://man7.org/linux/man-pages/man2/syscall.2.html
https://man7.org/linux/man-pages/man2/syscalls.2.html
https://man7.org/linux/man-pages/man1/taskset.1.html
https://man7.org/linux/man-pages/man1/taskset.1.html

96 BIBLIOGRAPHY

[57] Hugo Lefeuvre. Toward specialization of memory management in uniker-
nels. Bachelor’s thesis, Karlsruhe Institute of Technology, 2020.

[58] Hugo Lefeuvre, Vlad-Andrei Bădoiu, Alexander Jung, Stefan Teodor-
escu, Sebastian Rauch, Felipe Huici, Costin Raiciu, and Pierre Olivier.
FlexOS: Towards flexible OS isolation. In Proceedings of the 27th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). Association for
Computing Machinery, 2022.

[59] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz. Unmod-
ified device driver reuse and improved system dependability via virtual
machines. In Proceedings of the sixth USENIX Symposium on Operat-
ing systems design and implementation (OSDI). USENIX Association,
December 2004.

[60] Henry M. Levy. Capability-Based Computer Systems. Digital Press,
1984. https://homes.cs.washington.edu/~levy/capabook.

[61] Guanyu Li, Dong Du, and Yubin Xia. Iso-UniK: lightweight multi-
process unikernel through memory protection keys. Cybersecurity,
3(11):1–14, 2020.

[62] J. Liedtke. On micro-kernel construction. In Proceedings of the Fifteenth
ACM Symposium on Operating Systems Principles Principles (SOSP),
pages 237–250. Association for Computing Machinery, 1995.

[63] Xin Lin, Lingguang Lei, Yuewu Wang, Jiwu Jing, Kun Sun, and Quan
Zhou. A measurement study on linux container security: Attacks and
countermeasures. In Proceedings of the 34th Annual Computer Security
Applications Conference, pages 418–429. Association for Computing Ma-
chinery, 2018.

[64] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading ker-
nel memory from user space. In 27th USENIX Security Symposium
(USENIX Security 18), pages 973–990, 2018.

[65] H. J. Lu, Michael Matz, Milind Girkar, Jan Hubicka, Jaeger Andreas,
and Mark Mitchell. System V Application Binary Interface. AMD64
Architecture Processor Supplement, 2018.

https://homes.cs.washington.edu/~levy/capabook

BIBLIOGRAPHY 97

[66] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas
Gazagnaire, David Sheets, Dave Scott, Richard Mortier, Amir
Chaudhry, Balraj Singh, Jon Ludlam, Jon Crowcroft, and Ian Leslie.
Jitsu: Just-in-time summoning of unikernels. In Proceedings of the 12th
USENIX Conference on Networked Systems Design and Implementation,
pages 559–573. USENIX Association, 2015.

[67] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. Unikernels: Library operating systems for the cloud.
In Proceedings of the fifth international conference on Architectural sup-
port for programming languages and operating systems (ASPLOS), pages
461–472. Association for Computing Machinery, 2013.

[68] Toshiyuki Maeda and Akinori Yonezawa. Kernel mode linux: Toward an
operating system protected by a type theory. In Proceedings of the 8th
Asian Computing Science Conference (ASIAN), pages 3–17. Springer,
2003.

[69] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-
zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. My
VM is lighter (and safer) than your container. In Proceedings of the
26th Symposium on Operating Systems Principles (SOSP), pages 218–
233. Association for Computing Machinery, 2017.

[70] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innova-
tive instructions and software model for isolated execution. In Proceed-
ings of the 2nd International Workshop on Hardware and Architectural
Support for Security and Privacy. Association for Computing Machinery,
2013.

[71] Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig.
Intel R© virtualization technology: Hardware support for efficient proces-
sor virtualization. Intel R© Technology Journal, Volume 10(3):167–177,
August 2006.

[72] Ruslan Nikolaev and Godmar Back. VirtuOS: An operating system
with kernel virtualization. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (SOSP), pages 116–132.
Association for Computing Machinery, 2013.

98 BIBLIOGRAPHY

[73] Ruslan Nikolaev, Mincheol Sung, and Binoy Ravindran. LibrettOS: A
dynamically adaptable multiserver-library os. In Proceedings of the 16th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execu-
tion Environments (VEE), pages 114–128. Association for Computing
Machinery, 2020.

[74] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Bi-
noy Ravindran. A binary-compatible unikernel. In Proceedings of the
15th ACM SIGPLAN/SIGOPS International Conference on Virtual Ex-
ecution Environments (VEE), pages 59–73. Association for Computing
Machinery, 2019.

[75] Gabriele Paoloni. How to benchmark code execution times on Intel R©

IA-32 and IA-64 instruction set architectures. September 2010.

[76] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtu-
alizable third generation architectures. Commun. ACM, 17(7):412–421,
July 1974.

[77] Jerome H. Saltzer and Michael D. Schroeder. The protection of infor-
mation in computer systems. Proceedings of the IEEE, 63(9):1278–1308,
September 1975.

[78] Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch. CubicleOS: A
library OS with software componentisation for practical isolation. In
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
pages 546–558. Association for Computing Machinery, 2021.

[79] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS:
A fast capability system. In Proceedings of the Seventeenth ACM Sym-
posium on Operating Systems Principles (SOSP), pages 170–185. Asso-
ciation for Computing Machinery, 1999.

[80] Prateek Sharma, Lucas Chaufournier, Prashant Shenoy, and Y. C. Tay.
Containers and virtual machines at scale: A comparative study. In Pro-
ceedings of the 17th International Middleware Conference. Association
for Computing Machinery, 2016.

[81] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating
System Concepts Essentials. Wiley Publishing, 10th edition, 2018.

BIBLIOGRAPHY 99

[82] Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for
Systems and Processes. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2005.

[83] Livio Soares and Michael Stumm. FlexSC: Flexible system call schedul-
ing with exception-less system calls. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation (OSDI),
pages 33–46. USENIX Association, 2010.

[84] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael
Sammler, Peter Druschel, and Deepak Garg. ERIM: Secure, efficient
in-process isolation with protection keys (MPK). In 28th USENIX Se-
curity Symposium (USENIX Security 19), pages 1221–1238. USENIX
Association, 2019.

[85] Lluïs Vilanova, Muli Ben-Yehuda, Nacho Navarro, Yoav Etsion, and
Mateo Valero. CODOMs: Protecting software with code-centric memory
domains. In Proceeding of the 41st Annual International Symposium on
Computer Architecuture (ISCA), pages 469–480. IEEE Press, 2014.

[86] Robert Watson. The Arm morello board. University of Cambridge.
Department of Computer Science and Technology. https://www.cl.cam.
ac.uk/research/security/ctsrd/cheri/cheri-morello.html. accessed 24 January
2022.

[87] Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff,
Jonathan Anderson, David Chisnall, Brooks Davis, Ben Laurie, Si-
mon W. Moore, Steven J. Murdoch, and Michael Roe. Capability hard-
ware enhanced RISC instructions: CHERI instruction-set architecture.
Technical Report UCAM-CL-TR-864, University of Cambridge, Com-
puter Laboratory, December 2014. https://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-864.pdf.

[88] Robert N. M. Watson, Jonathan Woodruff, Peter G. Neumann, Si-
mon W. Moore, Jonathan Anderson, David Chisnall, Nirav Dave,
Brooks Davis, Khilan Gudka, Ben Laurie, Steven J. Murdoch, Robert
Norton, Michael Roe, Stacey Son, and Munraj Vadera. CHERI: A hy-
brid capability-system architecture for scalable software compartmen-
talization. In Proceedings of the 2015 IEEE Symposium on Security and
Privacy (SP), pages 20–37. IEEE Computer Society, 2015.

[89] Jinpeng Wei and Calton Pu. TOCTTOU vulnerabilities in UNIX-style
file systems: An anatomical study. In Proceedings of the 4th Confer-

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-morello.html
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-morello.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-864.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-864.pdf

100 BIBLIOGRAPHY

ence on USENIX Conference on File and Storage Technologies (FAST)
- Volume 4. USENIX Association, 2005.

[90] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Scale and
performance in the Denali isolation kernel. SIGOPS Oper. Syst. Rev.,
36(SI):195–209, December 2003.

[91] M. V Wilkes. The Cambridge CAP Computer and Its Operating System
(Operating and Programming Systems Series). North-Holland Publish-
ing Co., New York, 1979.

[92] Emmett Witchel, Josh Cates, and Krste Asanović. Mondrian memory
protection. In Proceedings of the 10th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 304–316. Association for Computing Machinery, 2002.

[93] Emmett Witchel, Junghwan Rhee, and Krste Asanović. Mondrix: Mem-
ory isolation for Linux using mondrian memory protection. In Proceed-
ings of the Twentieth ACM Symposium on Operating Systems Principles
(SOSP), pages 31–44. Association for Computing Machinery, 2005.

[94] Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfei Zhang, Huiba Li,
Yaozheng Wang, Kai Yu, Yongqiang Xiong, and Guihai Chen. Kylinx:
A dynamic library operating system for simplified and efficient cloud
virtualization. In Proceedings of the 2018 USENIX Conference on Usenix
Annual Technical Conference (USENIX ATC), pages 173–185. USENIX
Association, 2018.

	Abstract
	Acknowledgements
	Contents
	Introduction
	Background
	Virtualisation
	Virtual Machines: Concepts and Challenges
	Virtualisation Techniques
	Virtual Memory in the Context of VMs
	Intel VT-x and EPT

	Unikernels
	Comparison with Containers
	Ukernel Use Cases and Examples

	FlexOS: Specialisation Towards Security
	Existing Compartmentalisation Approaches
	FlexOS Architecture
	Compartmentalisation
	Porting of Applications
	The Build Process
	The MPK Isolation Backend

	Analysis
	Threat Model
	Isolation Mechanisms
	Kernel-enforced Address Spaces
	Capability-based Isolation
	Protection Keys
	VM-based Isolation

	Virtualisation-based Isolation
	The Argument for VM-based Isolation
	A Substrate for Protection Domains
	Challenges of VM-based Isolation

	Summary

	Design
	Cross-Compartment Function Calls
	Preserving the Function Call Semantics
	Requirements for the RPC Mechanism
	Control Flow between Compartments

	The inter-VM IPC Mechanism
	Sharing Data between Compartments

	Summary of Components
	The RPC Server
	RPC Threads
	Private Communication Channels
	VM/EPT Call Gates

	Trusted Computing Base
	Addressing Race Conditions on Shared Memory
	Automatic Copies on Cross-Compartment Calls
	Selective Write-Protection of Shared Memory

	Summary

	Implementation
	The VM/EPT Call Gates
	Private Communication Channels
	The Implementation of VM/EPT Gates

	The RPC Server
	Sub-Components of the RPC Server
	The Implementation of the RPC Server

	The RPC Threads
	Optimisations
	Modifications to the FlexOS Toolchain
	Generating Function IDs

	Summary

	Evaluation
	Methodology and Evaluation Setup
	Microbenchmarks
	Measurements with the TSC
	Gate Latency Measurements
	Possibility for Optimisation of VM/EPT Gates

	Network Throughput (iPerf)
	File System Intensive Workloads (SQLite)
	Discussion of Security
	Private Communication between Compartments
	Shared Memory Allocation
	Addressing Race Conditions on Shared Memory

	Summary

	Conclusion
	Future Work

	Reproducibility
	Bibliography

