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Abstract

Persistent Memory (PMEM) is a new non-volatile byte-addressable storage tech-
nology. While slower than DRAM, it offers significantly higher bandwidth and
lower latencies when compared to SSDs. These characteristics make it a good
option for improving I/O and in particular synchronous write performance. There
have already been many projects working in different layers of the I/O stack aim-
ing to achieve that goal. Most of them, however, fail to utilize the full hardware
potential, require non-trivial changes to the kernel or replace existing file systems,
thus resulting in increased complexity and feature duplication.

In this thesis, we present DPWC, a Device Mapper module for the Linux
kernel which uses PMEM as a write cache for a regular SSD device. In con-
trast to many other works in the field, DPWC easily integrates with unmodi-
fied existing file systems. We use a fast on-PMEM caching structure inspired by
ZIL-PMEM [40] and optimize it specifically for Intel Optane hardware. DPWC
achieves significant speed-ups (1.5-2.05x) in most multi-threaded write workloads
compared to the standard write cache implementation (dm-writecache) included
in the Linux kernel. Unfortunately, these gains are made at the expense of perfor-
mance in mixed read and write scenarios, but further optimizations for these cases
may be possible.
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Chapter 1

Introduction

Persistent data storage is one of the major tasks of an operating system [29]. The
implementation of this functionality is often complicated as one needs to consider
two mutually exclusive requirements - speed and reliability. Traditional storage
devices like HDDs and SSDs are orders of magnitude slower than the processor
and main memory. This necessitates the usage of volatile caches, for example the
page cache in Linux [2]. There are also internal non-persistent caches in the disk
devices themselves [13].

However, some applications like databases have need to safely persist their
data even in cases like power outages. In these cases, storing the data only in a
volatile cache is not enough. This problem is typically solved by using APIs like
Linux’ fsync(). When using fsync(), the calling thread is blocked until all
written data has been flushed from the caches and stored on a non-volatile storage
medium [44]. Unfortunately, frequent calls of fsync() mean an increase in
write latencies and therefore a lower throughput.

Persistent memory (PMEM) is a promising new technology which can help
in cases like these [32]. In the moment, a commonly available implementa-
tion - Intel Optane - provides non-volatile storage with speeds close to those of
RAM [54]. These devices also require special access patterns to achieve the best
performance [54], which makes device-specific software optimizations necessary.

To this date, there have been multiple projects focused on providing better
support for persistent memory devices. One direction of research are new file
systems like NOVA [53] and Strata [21], which are developed to maximize the
performance of systems with PMEM modules. This approach is, however, not
without its drawbacks. The development of new file systems for new hardware
comes with a high implementation cost. In addition, Optane’s capacity is currently
limited to 512 GB per module [18]. PMEM is also more costly than comparable
Optane SSDs [35, 36], which makes it less suitable for storage of larger data
volumes.
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4 CHAPTER 1. INTRODUCTION

Another approach is to use PMEM as a cache for larger and slower storage
devices (typically SSDs). In Linux, this is achievable for example via the De-
vice Mapper framework. It allows the creation of virtual block devices which
can redirect read and write operations to any device. dm-writecache [50] is a De-
vice Mapper module included with the Linux kernel, which can use PMEM as a
write cache for a second, slower block device. A rather similar project is ZIL-
PMEM [40]. However, it implements the caching on the file system level and
manages to achieve better performance than dm-writecache. Unfortunately, its in-
tegration in ZFS makes it impossible to reuse ZIL-PMEM for other file systems.

In this bachelor thesis, we propose DPWC, a Device Mapper module which
implements a write cache for traditional file systems like Ext4. Our primary mo-
tivation are the findings of ZIL-PMEM’s author that dm-writecache is suboptimal
for many write-dominated workloads [40]. We developed a caching mechanism
similar to the one used in ZIL-PMEM and extended it so that it is applicable in
the Device Mapper context. In the process we optimized DPWC specifically for
Intel Optane hardware and multi-threaded write-dominated workloads. We also
designed DPWC so that it is able to recover cached data in the case of a system
crash.

Benchmark results show that our module achieves an 1.5-2.0x speedup com-
pared to dm-writecache in multi-threaded write benchmarks. It is, however, able
to utilize the full hardware potential only in some cases, as we found out that De-
vice Mapper subsystem incurs significant overhead when working with fast stor-
age devices. DPWC also performs up to 43% better than dm-writecache for some
database benchmarks, but also 5-30% slower in others. Our tests also showed
that while DPWC performs worse in most workloads with mixed read and write
requests, there are ways to improve it.

The next few chapters describe our project in detail. After discussing relevant
background information and related work in Chapter 2, we give a detailed descrip-
tion of DPWC’s design and the motivation for it in Chapter 3. In Chapter 4 we
go into several important implementation details of the module. Finally, in Chap-
ter 5 we present the benchmark results of our module and finish in a conclusion in
Chapter 6.



Chapter 2

Background and Related Work

In this chapter, we will briefly describe the Linux kernel I/O stack and iden-
tify characteristics which are important for the design and the implementation
of DPWC. Previous evaluations of Intel Optane will be presented as a motivation
for the design of our on-PMEM data structure. We will also take a look at previ-
ous works in the field of persistent memory, in order to understand how DPWC
compares to them.

2.1 Linux Kernel I/O Architecture

The Linux I/O stack loosely follows a layered architecture [22]. When an ap-
plication makes a system call for disk I/O, this request is then passed through
and potentially transformed by the various layers. An overview of the important
storage I/O subsystems in the kernel can be seen in Figure 2.1.

2.1.1 Applications and File Systems

Applications usually work with files via system calls like read() and write().
The former operation typically blocks the application until the data is available.
In contrast, write() and similar system calls often do not block until the data is
persisted on non-volatile storage. Instead, the data first lands into the page cache
in RAM and is written back to the storage devices at a later point in time [2]. If
this is not desirable, applications can use the fsync() system call, or open the
file with the O_SYNC flag. The application will block during fsync() (or during
write() if O_SYNC is used) until the data has reached persistent storage [44,
28]. This brings performance disadvantages, since device access is usually orders
of magnitude slower than RAM access in the page cache.
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data

Figure 2.1: Overview of the Linux I/O stack with some example filesystems and
devices. Optional components are rendered dashed.

When the application makes any of the aforementioned system calls, the re-
quest first reaches the Virtual File System (VFS). The VFS exposes different file
systems (FS) to the userspace and allows multiple FS to coexist [30]. The VFS
determines the correct FS for the requested file operation(s) and forwards them to
the actual FS implementation.

The file system is the abstraction which provides files, directories and opera-
tions on them [30]. The FS keeps track of the layout of files and directories on
the disk. When a file operation (read, write, create, etc.) comes from the VFS
layer, the FS uses this information to transform it into read or write requests for
the individual blocks of the underlying storage device and forwards these requests
to the lower I/O layers. File systems also manage the page cache, where data is
cached after it was read from the disk, or before it is written to it [2]. The FS needs
to handle fsync() calls and synchronous write requests, too. In these cases, the
FS needs to wait (and therefore block the application) until the lower I/O layers
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notify that the operations are complete [13, 43].

2.1.2 Lower I/O Layers

Lower I/O layers receive only bio requests from the file system layer. A bio re-
quest, or just a bio, typically has information about a range of blocks (also called
sectors) of the storage device [3] which are to be accessed. It also contains a buffer
where data should be read or which should be written to the device. There are also
other types of control requests, which are not relevant for our project.

Bios may first land in the Device Mapper (DM) subsystem, which is an op-
tional subsystem of the Linux kernel. It makes it possible to implement mapped
block devices (MBDs), which have the same interface as regular block devices [4].
This way, MBDs are transparent to the file system layers, and thus any combina-
tion of a FS and an MBD is possible. Upon receiving a bio request, the MBDs can
remap it to another block device (which can be an MBD as well) or handle them
in a specialized way. Typical examples of Device Mapper devices are:

dm-raid: software implementation of Redundant Array of Independent Disks [11]

dm-zero: a block device which acts exactly like /dev/zero - the whole disk is
filled with zeroes, writes are silently ignored [12].

dm-writecache: a wrapper around a block device, which is the primary storage
medium. A second device, typically a fast SSD or a PMEM module, is used
as a persistent cache for write requests [50].

After bio requests have gotten their target device assigned, they are forwarded
to the Block I/O scheduler, if present. The block I/O scheduler may delay, reorder
and/or merge requests, so that they may be executed more efficiently [19]. Lastly,
bios are passed on to the device drivers. Once the storage device has carried out
the request, that information is propagated back to the higher layers via a special
callback in the bio request. This kind of notification is called an endio notification.

There may be multiple software and hardware submission queues at the lower
I/O layers and on the storage device itself. For example, NVMe SSDs support up
to 64 K queues, each of which may hold up to 64 K requests [27]. There is no
ordering defined for the requests submitted to these queues [14]. As a result, these
lower I/O layers cannot give any guarantees about the order in which overlapping
bios are processed. File Systems and Device Mapper devices need to wait for
an endio notification before submitting further requests, if they need to ensure
sequentiality.
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2.2 Intel Optane
Our project, DPWC, targets Intel Optane memory modules as cache devices. Intel
Optane is built on 3D Xpoint technology and provides fast byte-addressable non-
volatile memory. Multiple authors have discovered several important limitations
when working with Optane devices. We will briefly summarize these findings, as
they have a direct influence on the design of DPWC.

Intel Optane devices may be byte-addressable, however, internally they work
with blocks blocks of size 256 bytes [54]. As a result, we can only achieve the
maximum possible data write bandwidth if our requests are aligned to 256 bytes.
In addition, using non-temporal store instructions and store fences is more effi-
cient than using regular store instructions and cache flushes [47]. Another im-
portant limitation of Intel Optane devices is multithreaded scalability. It has been
shown that while a moderate degree of parallelism increases the total write band-
width, increasing the number of threads writing in parallel even further is detri-
mental to performance [40, 51, 54].

2.3 Similar projects
There have already been multiple attempts to utilize PMEM in order to speed up
file system operations. In the following sections we will present a few of them
and take a look at their design, in order to be able to compare DPWC to them and
understand what differentiates DPWC from each of them.

2.3.1 dm-writecache
dm-writecache is a closely related project and a direct inspiration for our work.
It manages two devices: an origin block device, where the data is stored and
read from in the long term, and a cache device, which can be an SSD or a PMEM
device, which is used for speeding up handling of write bio requests [50]. The fol-
lowing is a rough description of our understanding of how dm-writecache works,
based on the source code available in the Linux kernel.

At runtime, dm-writecache keeps a cache structure in the form of a red-black
tree stored on the PMEM. The entries in this tree roughly correspond to (groups
of) sectors on the origin device whose contents are not up-to-date. When a new
read or write request arrives, dm-writecache proceeds with the following steps:

1. Obtain a lock on the cache data structure.
2. Compare the new request with entries in the cache:

• In case that the request can be serviced by reading data from the cache
or updating cache entries, dm-writecache uses the cache entries.
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• Otherwise, for write requests dm-writecache may block if there is no
free space in the cache. It then waits for a background writeback thread
to free up space. Then, dm-writecache adds new entries to the cache.
Read requests are directly forwarded to the origin device, if they can-
not be read from PMEM.

3. Finally, dm-writecache unlocks the cache.

In the background, two workqueues are running. One of them takes requests
from the cache structure and submits them to the origin device, in case that the free
space in the cache falls beyond a certain threshold. dm-writecache takes special
care to throttle the requests in order to not overload lower I/O layers. The second
workqueue is responsible for handling notifications of completed bio requests.
It forwards these notifications to the higher I/O layers and and marks the cache
entries as free. This operation also requires obtaining the same global lock on the
caching structure to remove the written-back entries from it.

dm-writecache suffers from lock contention in multi-threaded workloads [40].
The global locking strategy makes it impossible for multiple threads to write to
the caching structure at the same time. In turn, this means that we cannot utilize
the full bandwidth that the Intel Optane devices can provide. Solving this problem
is the main goal of this bachelor thesis.

2.3.2 ZIL-PMEM

Another attempt to use Intel Optane devices as a cache for file system operations
in the context of the Zettabyte File System (ZFS) is ZIL-PMEM [40]. ZFS stores
synchronous writes in the ZFS Intent Log (ZIL), whose entries can be replayed in
the case of a crash to restore the potentially missing data [6]. The ZIL can also
be stored on a separate device, which is usually chosen to be faster than the main
storage device and thus acts as a write cache for ZFS [41].

ZIL-PMEM is a specialized implementation of the ZIL which uses Intel Op-
tane to store the log operations. By using a specially crafted data structure, ZIL-
PMEM is able to achieve a good utilization of the PMEM log device. It works es-
pecially well in multi-threaded write-dominated workloads. Unfortunately, ZIL-
PMEM is tightly integrated into ZFS. This means that it cannot be easily reused
in any other file systems. In this bachelor thesis, we develop a caching structure
very similar to the one used in ZIL-PMEM, but put it in the context of the Device
Mapper subsystem. We also extend it with mechanisms for handling read and
overlapping write requests, which is not necessary in ZIL-PMEM, as it is only a
file system log.
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2.3.3 Specialized Filesystems
There have been many other attempts to create an efficient file system which can
work with PMEM devices. A typical example is the NOVA file system [53].
While providing impressive performance, it utilizes PMEM as the main storage
medium. However, as mentioned in Chapter 1, Optane’s capacity is limited and
costs more than comparable SSDs [18, 35, 36]. This is less of an issue with cross-
media file systems like Strata [21] and Ziggurat [55]. Ziggurat stores files on
multiple storage devices organized in tiers (both PMEM and SSDs) and migrates
files between tiers based on different policies and heuristics. Strata, on the other
hand, uses a userspace component allowing applications to use PMEM, and a
specialized kernel file system for asynchronously writing back data to the slower
storage devices.

By working in the file system and application layers, these projects have more
possibilities for determining which data should be cached. They also have to
deal with less software management overhead, which can have a big impact when
working with fast storage devices [42]. As a result, approaches like these are able
to provide very good performance with minimal overhead.

Nevertheless, correctly implementing a whole file system is a complex and
bug-prone undertaking. Many of these projects require big changes to the Linux
kernel or special support in user space applications. In the words of NOVA’s
authors, “We have run complex programs on NOVA. There are, of course, many
bugs left to fix.” [26]. In addition, a file system often provides its own unique
features, which have to be reimplemented in a new file system. On the other hand,
a solution in a lower I/O layer like the Device Mapper subsystem can be reused
with existing file systems and requires no changes to existing software stacks.
For these reasons we believe a more generic approach than the aforementioned
projects would be preferable.



Chapter 3

Design

Taking the information from Chapter 2 into account, we designed DPWC, a po-
tential alternative to dm-writecache. DPWC manages two devices, the origin de-
vice, which is the main storage medium, and the cache device. Broadly speaking,
DPWC receives read and write requests from higher I/O layers of the OS. It then
stores write requests on the cache device, and at a later point on the main storage
device. DPWC forwards read requests to the main storage device. Depending
on which component handled the request, DPWC or the storage device notify the
higher I/O layers after the request has been handled.

During the design, we had the following goals and were willing to make the
following trade-offs:

• DPWC should be able to extract the maximum performance possible from
the cache device when caching write requests. We are willing to use more
RAM or PMEM space in order to achieve that.

• DPWC should work well in highly multi-threaded workloads. A global
locking strategy of all necessary data structures similar to dm-writecache is
not acceptable.

• We will optimize for write-dominated workloads. This means trading off
read performance for write performance, if necessary.

• DPWC must ensure that no data on the cache device is lost in the event of a
system crash or a power outage.

• DPWC should handle all operations correctly. This means that determin-
istic applications can read the same data from the disk after executing any
sequence of operations, regardless of whether DPWC is used or not. In par-
ticular, DPWC should not reorder two write requests or a read and a write
request to the same sector.

11
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• We should write data efficiently on the origin device. This way, we will be
able to free up space on the cache device faster and cache more requests in
total. Nevertheless, in case that the cache capacity is not enough, we still
need to guarantee correctness, as far as possible.

Before diving into the details of our design, we will take a look into the general
components of DPWC and the interaction between them. Figure 3.1 provides a
visual overview of these components and their integration with the Linux kernel.

Kernel

DPWC

Devices

Application

(Virtual) File System

Main

Caching Data Structure Writeback

Origin deviceCache device

System calls

read/write bio request write done (cached)

write bio to cache
read bio/
background write bio

background write
done

read/background write bio bio done

read done

Figure 3.1: Overview of DPWC at runtime in the context of the Linux Kernel I/O
stack. The flow of BIO requests and their endio notifications is shown.

3.1 Overview
DPWC consists of four main parts:
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The main module receives I/O requests (both read and write) and dispatches
them to the appropriate place. It forwards read requests directly to the writeback
system. Write requests are first cached on the cache device via the caching data
structure. Afterwards, the main module passes them to the writeback system.

The caching data structure (CDS) is responsible for managing the space on
the cache device and storing write requests on it.

The writeback system dispatches read and write requests to the origin de-
vice. It also keeps track of ordering dependencies between requests and ensures
sequentiality of requests where needed. Lastly, it notifies the CDS when a write
request has been successfully stored on the origin device.

The replay module recovers the data from the CDS in the case of a system
crash. The data is then copied, or replayed, to the origin device. The replay
module is rarely used, but very important for the persistency guarantees DPWC
has to make.

3.2 The Main Module
The main module’s only responsibility is dispatching new requests. It differenti-
ates three distinct cases:

• If the incoming request is a read request, the main module forwards it to the
origin device via the writeback system. The main module does no further
handling of this request, as the origin device will notify the higher I/O layers
as soon as the request has been completed.

• If the incoming request is a write request and there is enough space on the
cache device, then the following steps are taken:

1. CDS writes the request in the cache. After this point, the request is
considered to have been written to persistent storage.

2. The main module duplicates the request.
3. The duplicate request is forwarded to the writeback system for long-

term storage.
4. We notify the higher I/O layers that the original request is complete. In

the absence of DPWC (or a similar caching mechanism) this notifica-
tion will be sent by the origin device much later, after it has processed
the request. However, the CDS and the replay module guarantee that
the data is now persistently stored. In addition, the writeback sys-
tem guarantees that other requests for the same sectors will not be
reordered with the current request. Therefore it is safe to notify the
higher I/O layers and the application where the request originated that
they do not need to wait any longer in order to submit further requests.
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• If the incoming request is a write request and we do not have enough caching
space, the request must be forwarded to the writeback system for long-term
storage and no caching can be done. The request may have to wait for a
long time until it is processed.

An important detail here is the interface between the main module and the
writeback module. We use a strictly ordered queue of requests. The main module
always pushes new requests to the back of the queue, while the writeback module
consumes requests from the front. This queue is needed for two reasons. On one
hand, we want to ensure that the request handler does as little work as possible, in
order to reduce latencies for the applications. This is why we offload the writeback
module on a different thread. On the other hand, the writeback module needs to
handle the requests in chronological order, as discussed in Section 3.5, which
necessitates the aforementioned queue.

3.3 Caching Data Structure
The main module relies on the caching data structure (CDS) to manage data on
the cache device and to store new requests. The CDS needs to be able to manage
the concurrency level for PMEM access in order to ensure optimal performance
on Intel Optane hardware as described in section 2.2. In addition, the CDS needs
to be able to efficiently clear cached data as soon as it is written back on the origin
device. Nevertheless, no data should be lost in the case of a system crash. For the
purposes of recovery in such cases, we also need to store additional metadata for
the use of the replay module.

Taking these requirements, the information in section 2.2 and the caching
structure of ZIL-PMEM [40] in account, we designed a very similar data structure
as depicted on Figure 3.2. In the following paragraphs, we describe our design in
detail and explain how the different parts work together to fulfill our goals from
the beginning of this chapter.

The CDS consumes the whole cache device. It partitions the available space
into a fixed number of equally-sized physical generations. Each physical gen-
eration is in turn partitioned into a fixed number of equally-sized chunks. Each
chunk may contain zero or more entries, which represent cached write requests.
Each physical generation, chunk and entry have their own header. The informa-
tion stored in this header is used by the replay module in the case of a crash.
Details of the recovery procedure can be found in Section 3.4.

Since we have a fixed (and therefore limited) amount of physical generations,
the CDS also keeps track of virtual generations at runtime, each having its own
number. These numbers act like unique identifiers for virtual generations and im-
pose a total order on them. Each virtual generation is mapped to a single physical
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H
eader

Chunk 1 Chunk 2 Chunk 3 Chunk 4Phys. generation #1

G
eneration

header

Chunk header

Entry header

Entry data

Entry header

Entry data

Too little space

Chunk header

Entry header

Entry data

· · ·

Chunk header Chunk header

· · · · · ·
Phys. generation #2

· · ·Phys. generation · · ·

Slot 1 Slot 2

Thread 2Thread 1 Thread 3

Figure 3.2: Example of the PMEM data structure at runtime, with 3 writing
threads. Configuration uses 2 slots, 4 chunks per generation and at least 2 genera-
tions in total. The current virtual generation is mapped to physical generation #2.
Chunks 2 and 3 are assigned to Slot 1 and 2, respectively. Threads 1 and 3 use the
depicted slots, Thread 2 is waiting.

generation. The number of virtual generations is unbounded, and therefore during
the course of operation many virtual generations map to the same physical gener-
ation. In this way, generations allow us to efficiently recycle PMEM space after
the writeback module has processed all entries in it.

At any given point, one virtual generation is marked as the current generation.
Incoming write requests are always stored in chunks of the current generation,
that is, in chunks of the corresponding physical generation. When the current
generation has no more space to store new entries, a different physical genera-
tion is mapped to the next virtual generation. Then, the next virtual generation
becomes the current generation. This operation is described in detail later.

In order to enable parallel writing from multiple threads, we use the slot sys-
tem from ZIL-PMEM [40]. The slot system also doubles down as a mechanism
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for limiting the number of concurrent writers, which is necessary for optimal per-
formance as discussed in Section 2.2

Each thread which needs to store a new entry on the CDS needs to obtain
one of the fixed number of available slots. Each slot may point to a chunk of
the current generation. At any given time, at most one thread can hold a given
slot. Thus, a thread gains exclusive access to the chunk mapped to that slot. After
acquiring a slot, a thread needs to differentiate the following cases:

1. The slot already has an assigned chunk with enough remaining free space
for the new entry. In this case, the thread stores the write request as a new
entry and updates the available chunk size, releases the slot it holds, and
finally returns. The implementation of this operation needs to take care
of crash consistency, as the order of these operations has impact on the
working of the replay module, as discussed in Section 4.1.

2. In case the slot does not have an assigned chunk, or that chunk does not
have enough free space, the thread differentiates between two cases:

(a) There is an empty chunk in the current generation which has not been
assigned to a slot yet. The chunk is assigned to the slot held by the
thread, and the thread continues as in case 1.

(b) There is no empty chunk in the current generation. In this case, the
current generation is closed-off, meaning no new writes will happen
to chunks in it. This includes both the current virtual generation and
the corresponding physical generation. All slots’ assigned chunks are
cleared. Another, empty physical generation is mapped to the next
virtual generation. The latter then becomes the current generation. Fi-
nally, the thread may continue as in case 2a). We do these operations in
order to prevent other threads from writing to a closed-off generation.

This algorithm may fail only if the cache device is nearly full, that is, there are
no empty generations and chunks. In these cases, the operation is unsuccessful
and the main module handles the request as described in the previous section.

A closed-off physical generation P with mapped virtual generation V may be
reset and mapped to another virtual generation, as described in case 2b) above.
This is possible as soon as there are no pending (i.e. not written to the origin
device) requests in V and in older virtual generations. For this reason, the CDS
tracks the number of pending requests in each physical generation. Adding a
new request to any chunk of the generation increases this number, a request done
notification from the writeback module decreases it. If a P (and therefore V )
has no more pending requests, it needs to wait for all generations before it to be
completely written and then cleared. After that, P can be cleared and may be
reused for new virtual generations.
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3.4 Replay
The motivating factors for the design of the CDS have been multi-threaded per-
formance (covered by the slot/chunk system) and data loss prevention in extreme
cases such as a system crash. In such scenarios, the main module invokes the
replay module the next time the system is started. The replay module then uses
the information stored in the CDS in order to figure out which requests have not
been written to the disk and replays them. In this context, replaying a request
means creating a new request for the origin device with the contents stored in the
corresponding entry in the CDS.

For the replay we need to recover all requests stored in the CDS. We also
need to know the chronological order of operations, in case different operations
overwrite each other. As explained in the next paragraph, the CDS guarantees
that the entries it contains after a crash represent all requests which may need
to be replayed to prevent loss of data. We need to concern ourselves only with
requests which we have previously marked as persistently stored. Moreover, we
can obtain the chronological order by sorting the physical generations and entries
within them. Replaying the entries in that order is sufficient to restore

To facilitate this, each physical generation on the cache device has a genera-
tion identifier (GID) stored in its header. The GID is the same as the number of
the last virtual generation which was mapped to the given physical one. Each time
the current generation changes, the GID of the corresponding physical generation
is updated. The CDS also guarantees that for two virtual generations with GIDs A
and B, A < B, any request in A was submitted earlier than any request stored in
B. This is because once A is closed-off, no further writes to A are possible. Since
A < B, B is a generation which became current at a later point than A, so entries
in B were added after A was closed-off, thus after any entries in A.

Each entry in the CDS also gets its entry identifier (EID) stored in the entry’s
header when it is written. The EID is necessary to restore the chronological order
of entries within a generation. This information is impossible to recover from
simply knowing the chunks and entries present in a physical generation. While
entries inside a chunk are stored chronologically, a single thread may write to
different chunks. Without a generation-wide identifier like the EID, we cannot
know the order of the resulting entries.

We can also guarantee that if there are n entries in the CDS, they represent
exactly the last n write requests which DPWC has processed. This is because the
CDS caches all write operations. We remove entries from the CDS only when
clearing a whole physical generation P . The CDS guarantees that when clearing
P (and its corresponding virtual generation V ), all generations before V we also
cleared. It follows that the n entries in the CDS are a suffix of the chronological
list of operations, and any other requests are already stored in the origin device.
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Lastly, requests are idempotent, that is, executing the same request twice does not
change the result. Therefore, even if some of the n entries in the CDS have been
already written to the origin device, replaying all of them still produces the correct
result.

These considerations enable the replay module to replay all entries on the CDS
after a crash. As we have already established, these entries suffice to restore the
system to a correct state. Here, a correct state means that the data on the origin
device will be indistinguishable from the data which would have been stored there
if no crash had happened.

3.5 Writeback Module
The last important component of DPWC - the writeback module (WBM) - is re-
sponsible for managing requests to the origin device.

In contrast to dm-writecache, DPWC does not use the cached data in order
to speed up read requests. Instead, we rely on the page cache to service most of
these requests, as described in Section 2.1. The remainder of the read requests are
serviced by the origin device itself.

This poses a problem for our caching strategy, which notifies the higher I/O
layers as soon as a write request is stored in the cache. An application could
submit a read request or even more write requests for the same sector immediately
after it receives this notification. In both cases, the WBM would receive these
requests from the main module, potentially before the origin device has processed
the first request. The WBM needs to ensure that the new request(s) are blocked
until the first request completes. Otherwise, we might submit the two requests to
the origin device in parallel. The ordering of the two requests is then undefined
and may result in wrong data on the disk, or the wrong data being read by the
application (see Section 2.1.2).

The main module already serializes requests for the WBM as discussed in
Section 3.2. However, modern NVMe SSDs benefit from having multiple requests
in their queues [27]. Therefore, we use a data structure (an interval tree ordered
by the sectors accessed by a request) in order to detect conflicts between two
requests. Two requests are conflicting if they access the same sector(s) and at
least one of them is a write request. Two read requests are never in conflict, as the
order in which they are handled does not change the end result. The exact steps
for processing requests are given in Algorithm 1.

New requests are received via a single queue from the main module and are
processed sequentially. The algorithm ensures that only non-overlapping requests
may be sent to the origin device at the same time. The device may process them
in parallel, potentially speeding up the performance of the origin device. On the
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Algorithm 1 Algorithm for processing requests in the WBM.
1: activeRequests← IntervalTree of Requests
2: procedure PROCESSNEWREQUEST(req)
3: allPotentialConflicts← activeRequests.getIntersections(req)
4: activeRequests.insert(req)
5: for all prev ∈ allPotentialConflicts do
6: if prev.is_write() or req.is_write() then
7: waitForCompletion(prev)
8: end if
9: end for

10: submit(req) . At this point, there are no conflicts with earlier requests
11: end procedure

other hand, a second request for the same sector as a previous request will be
blocked until the older request is submitted and completed. This guarantees the
sequentiality of conflicting requests, which is the core goal of the WBM.

Once the origin device tells the WBM that a request is done, it is removed
from the interval tree and it is marked as complete. Blocked requests for the same
sectors may then be submitted, except if they are not waiting for further requests.
Finally, for completed write requests, the WBM notifies the caching data structure
that an entry in it has become obsolete. For completed read requests, the WBM
notifies the higher I/O layers that the requested data is available.

A drawback of this design is that the head-of-line phenomenon [16] is possi-
ble. If a request cannot be submitted immediately, waitForCompletion()
will block the thread processing new requests. In turn, this prevents all subse-
quent requests from being submitted, even if they have no conflicts. Fortunately,
this problem can be solved by introducing a second queue where blocking requests
are transferred to, after they are added to the interval tree. This way, conflicting
requests wait without blocking other, non-conflicting requests. Further improve-
ments are also possible and are discussed later in Section 5.2.5.

3.6 Discussion

There are many similarities between ZIL-PMEM [40], dm-writecache [50], and
our project. However, our approach differs significantly due to its writeback policy
and the way we make use of the PMEM space.

First of all, despite working as a cache, DPWC does not fit into the traditional
cache model, where write caches are either write-through or write-back [45].
Write-through caches store data on the cache medium, but also block until the
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data is stored on the primary storage medium as well [45]. In contrast, DPWC
indicates that the request is complete as soon as it is stored on the cache medium.
DPWC also is not a traditional write-back cache. Write-back caches, like DPWC,
do not wait for data to be written on the main storage medium [45]. However,
write-back caches usually do not update the backing memory immediately. In-
stead, they hope to cache multiple requests in the same location, and/or service
read requests from the cache [45, 8]. DPWC deviates from this: we make no at-
tempts to coalesce requests to the same blocks, and we do not service read requests
from the cache.

This nonstandard writeback policy is also the root of the difference between
our CDS and ZIL-PMEM’s PRB [40]. ZIL-PMEM writes back requests in batches,
and services read requests from the page cache. As DPWC works below the file
system level, it cannot rely on the page cache, and therefore needs a different
strategy for handling conflicting read requests.

Dm-writecache takes a more traditional approach. It works like a write-back
cache. Entries in the PMEM are dedicated to particular blocks on the disk. Sub-
sequent write requests to the same disk blocks may be coalesced together. Read
requests may be serviced by the entries in the cache, if the data has been cached
and not written back yet. Writes to the origin device happen only when the used
cache space reaches a particular threshold. The implementation, however, uses a
binary tree stored in the PMEM to organize the cached data. This has inherent
scalability issues, as the tree cannot be manipulated by multiple threads at the
same time. Our approach also requires synchronization between all writer and
reader threads when queuing requests to the writeback module. In contrast to dm-
writecache, however, there may be multiple cache entries for the same sectors,
and writers may write in parallel to the PMEM memory. Contention for DPWC’s
lock is also lower, because there are no expensive operations in the critical section
- only adding an element to a queue.
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Implementation

We implemented DPWC as an out-of-tree Linux kernel module. As our design
was made with the Device Mapper architecture in mind, we did not encounter any
significant difficulties integrating with the rest of the Linux kernel. Therefore, our
module works with the unpatched upstream Linux kernel. The full source code
can be found at https://github.com/ammen99/dpwc.

During the implementation, we had to make several decisions which impact
the performance and reliability of DPWC. In this chapter, we will present the most
important among these decisions and discuss their importance. At the end we will
also list a few limitations of our particular implementation.

4.1 Data on PMEM and Crash Consistency
In order to support the replay operation, the CDS needs to store the following in-
formation in the various headers on the PMEM module in addition to the requests’
data itself:

• Generation ID - 8 bytes in the generation header
• Used space in each chunk (including header) - 8 bytes in the chunk header
• Entry ID - 8 bytes in the entry header
• Entry size (including header) - 8 bytes in the entry header
• Entry start sector - 8 bytes in the entry header

All data needs to be correctly and fully written on the PMEM. Otherwise, the
replay operation may not be correct. In the following paragraphs, we will analyse
DPWC’s implementation in order to show that it will not lose any persistently
stored data. For the purposes of this analysis, we assume that we can store a 64-bit
integer atomically on PMEM. We also assume that the hardware is able to store
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and then read data without errors, and assume that there are no implementation
bugs in our code or in the Linux kernel.

First, we will take a look at the exact implementation of discovery of entries
on the PMEM after a crash. We use a fixed number of generations and chunks per
generation. Therefore, we can calculate the offset of each chunk inside the PMEM
memory region. Then, we can use Algorithm 2 to process all chunk entries:

Algorithm 2 Algorithm for iterating entries in a chunk on the PMEM
1: procedure REPLAYCHUNK(char ∗start)
2: used← readChunkHeader(start) - CHUNK_HEADER_SIZE
3: entry← start + CHUNK_HEADER_SIZE
4: while used > 0 do
5: (sector, id, size)← readEntryHeader(entry)
6: entryData← entry + ENTRY_HEADER_SIZE
7: processEntry(entryData, sector, id, size - ENTRY_HEADER_SIZE)
8: used← used - size
9: entry← entry + size

10: end while
11: end procedure

The replay algorithm does not have any error checking mechanisms. It is
therefore important that the CDS carefully writes data to the PMEM. We need to
ensure that all stored entries are discoverable by the algorithm, and that it will not
find any incomplete entries (which may wrongly overwrite valid data on the origin
device).

This is why when adding a new entry, the CDS does the following operations
in the given order:

1. Write the entry header on PMEM.
2. Copy the write request data in the entry data region on PMEM.
3. Update the chunk’s header by increasing the used space. Assumption: atomic

operation with 64 bits.

Each of these operations is done via non-temporal store instructions because
CPU caches might be lost in a system crash scenario. In addition, we use an
sfence instruction after the second and the third operations, in order to guaran-
tee that the writes have reached PMEM [7]. This way, if the system crashes at
any point before operation 3 is complete, the partly written data for the new entry
will be ignored by the replay module. Note that this data is lost, however we have
never given any notification to the userspace that the data is written.
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On the other hand, if we did notify userspace that the operation is successful,
the amount of used space marked in the entry’s chunk’s header may only increase.
We also never change the contents of an entry or its header once it is written on the
PMEM. This way, the replay module will always be able to discover the request
and replay it in case of a crash.

One last consideration is multi-threaded access to the same chunk. However,
our slot system guarantees that only a single thread may hold a given slot at a
time, and threads do not release their slots until they are done writing. A chunk
may only be assigned to one slot. Therefore, no races are possible when updating
a single chunk in a thread. The generation header is also correct, as it is written
only by the single thread which advances the current generation.

4.2 PMEM Space Usage

In Section 2.2 we have already established that data alignment is very important
when dealing with Intel Optane memory. We need to ensure that every entry’s data
is aligned at 256 bytes. This way, we can use an optimized inner loop for data
transfer with AVX-512 instructions. For simplicity, we made every generation,
chunk and entry header 256 bytes big. We also rounded every generation and
chunk’s size down to a multiple of 256. In this configuration, we do not need
any extra padding for the entry data, as BIO requests in the Linux kernel always
access a group of sectors, and each sector has size 512 B. This makes entry data
automatically have a length which preserves the 256-byte alignment.

A potential concern with this strategy is the waste of PMEM space. While
there is typically only a small number of generations and chunks (in our config-
uration, we did not use more than 4 generations and 32 chunks per generation),
there may be many chunk entries. In the extreme case, each write BIO updates a
single sector. In this case, we need 256B(padding) + 512B(data) = 768B per en-
try, which means that roughly 232

768 ≈ 30% of the space is wasted, after accounting
for the replay data in the header. However, in practice we usually get a BIO request
for a whole page from the page cache. In this case, we need 256 + 4096 = 4352B
per entry, and only 232

4352 ≈ 5% is wasted.

The amount of wasted space is further reduced if we reuse some of the padding
in the header to store temporary data for the interval tree used in the WBM. In our
final implementation, we used an additional 160B for this purpose. This brings
the wasted space down to just 72

4352 ≈ 1.7%.



24 CHAPTER 4. IMPLEMENTATION

4.3 Synchronization
During the implementation of DPWC we had to be careful in order to avoid lock-
ing as much as possible. There are, however, multiple places where threads are
forced to share resources.

The CDS needs to synchronize writer threads while they store data on the
PMEM. Each thread needs to obtain a slot in the CDS. We solve this problem us-
ing a similar strategy to ZIL-PMEM [40]. We use a semaphore to limit the number
of threads which can obtain a slot at the same time. The semaphore is initialized
to the number of slots, as it is impossible to have more threads writing to PMEM
than the number of slots. Obtaining a free slot can then be implemented using an
atomic compare-and-exchange loop. During our experiments, we observed that in
practice, there is low contention at the semaphore, therefore threads are unlikely
to enter sleep. Thus, this operation is typically fast.

A thread may need to obtain a new chunk to assign to a slot, because the slot
either has no chunk assigned, or the chunk is almost full. As long as the current
generation has free chunks left, we do not need any locking. Instead, we keep an
atomic integer which indicates the number of the next free chunk in the current
generation. To take a new chunk, a thread simply executes an atomic fetch-and-
increment operation on that integer.

The synchronization gets more complicated when there are no more free chunks
in the current generation. In this case, incrementing the aforementioned counter
gives us an invalid chunk. We need to mark the current generation as closed-off.
However, we may need to synchronize with writeback notification threads, which
may want to clear the generation once it has no pending requests. As this happens
only once per generation advancement, which is a comparatively rare event, we
used a lock to synchronize access here.

The writeback module also has similar issues. We need to synchronize the
thread processing new requests with threads handling the completion of requests
on the origin device. As this is a background module and therefore not critical for
write latencies, we opted for a simpler strategy with locks on the data structure.
In addition, operations done while this lock is held do not involve any I/O, and
therefore the critical sections are expected to be short and contention to be low.

4.4 Queuing
The Linux kernel provides a workqueue interface which we used in multiple
places in our project. In its essence, a workqueue is a queue of work items. Each
item is processed asynchronously to the thread(s) which placed it in the queue.
There are multiple flavors of workqueues available [9]. The first type are ordered
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workqueues. Items in such queues are processed strictly sequentially. This makes
ordered workqueues a great fit for the communication interface between the main
and the writeback modules, as explained in Section 3.2.

The second type, “regular” workqueues, support the execution of multiple
work items in parallel. They can be either bound or unbound [9]. Bound work-
queues attempt to process work items on the CPU core they were submitted, to
reduce inter-core data transfer. Unbound workqueues may process work items on
any CPU core, therefore allowing a higher degree of parallelism in work item han-
dling. This policy, however, may hurt performance if the work items are already
submitted from different CPU cores.

We used an unbound workqueue in the writeback module for submitting bios,
a slight deviation from our design where bios are submitted directly from the
WBM request handler. The benefits from this are twofold. On one hand, our
experiments show that the cost of a call to submit_bio() is not negligible. By
using multiple threads to submit bios, we are able to parallelize this operation.
On the other hand, different CPU cores usually use different hardware submission
queues (if these are present). Thus, by using multiple CPU cores to submit bios,
we are able to utilize the origin device better.

4.5 Known Limitations
As our work was done in the context of a bachelor thesis with a limited time
frame, our primary goal were correctness and performance. We did not attempt to
implement a production-ready module. Therefore, our implementation has several
limitations:

• Our kernel module has a limited number of tunable parameters. Currently,
only the number of generations can be changed without recompiling the
module. Replay will not work if the module is loaded with a different num-
ber of generations or chunks after a crash. Fixing this requires storing these
values on the PMEM and reading them before replaying.

• DPWC does only very limited error checking at startup and almost none at
runtime. We assume that every input to our module is correct. We also do
not handle any potential hardware errors. Instead, we rely on the ECC im-
plemented in Intel Optane to recognize and correct single-bit errors. Adding
additional error detection mechanisms is possible by using safer memory
reading procedures like memcpy_mcsafe() in the replay code.

A simple error handling mechanism would be stopping the replay procedure
as soon as an error is found. We can detect the earliest error, because we
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have the chronological order of entries. Errors will show up as duplicated or
missing EIDs in the sorted sequence. However, due to the idempotence and
independence of requests for different sectors, one can implement a more
sophisticated error handling procedure with multiple cases, depending on
where an error has occurred.

An error in an entry’s data does not prevent any other requests from being
properly replayed. In fact, we may cache multiple requests for the same
sector. Therefore, it is also possible that this data is not needed at all, in
case a later request would overwrite the data anyway.

Errors in an entry’s headers are a bit trickier:

– An error in an entry’s sector invalidates the whole entry. We could,
however, continue replaying other entries. In this way, we limit the
amount of lost data to the set of sectors in actually faulty entries.

– An error in an EID may be completely recoverable. As long as there
is at most one wrong EID per generation, we may recover it by look-
ing at the set of EIDs from other entries in that generation. EIDs are
sequential, so if there is a missing EID, we know that the faulty entry
must have that EID.
We may also not need to know the EID at all, for example in case there
are no other requests writing to the same sectors. In this scenario, we
can replay the entry in any order relative to the other entries.
However, if there are muliple errors in entry headers, we may not be
able to recover the data and it will be lost. Similar arguments can be
made for errors in the GIDs stored in the generations’ headers.

– An error in an entry’s size invalidates any entries afterwards. This is
due to the entry recovery algorithm 2. The same is true for errors in
chunk headers. We can limit the amount of lost data by nonetheless
replaying other generations/chunks.

These mechanisms may also be combined with the error correction facilities
of the file system. For example, the FS may be able to recover the data in
some blocks, or use its journal to repair errors in the entry headers. Other
systems may, however, benefit from a fail-fast error detection (for example,
to facilitate restore-from-backup to a safe state). Therefore, we believe that
an ideal implementation would allow a flexible error handling policy. We
cannot foresee any technical difficulties implementing any of these proce-
dures in our project.

• We have not implemented any throttling mechanisms to prevent excessive
amount of requests queued on the origin device, or in the request passing
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queue between the main module and the WBM. This means that our module
may potentially use a lot of system memory (RAM) for buffering requests.
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Chapter 5

Evaluation

To validate our approach, we tested DPWC for both correctness and performance.
All of the tests were carried out in the same setup inside a virtual machine. Our
host system runs a Fedora 35 Linux distribution with a stock 5.15.18-200
kernel. The system has two Intel Xeon Silver 4215 CPUs and 128 GB of RAM.
We used a QEMU virtual machine based on Fedora Cloud Base 35 and the stock
5.16.9-200 kernel. The VM uses 8 cores pinned to 8 physical cores of the
same host CPU. It also has 16 GB RAM allocated to it. We used the built-in
vNVDIMM QEMU virtualization support [46] to passthrough one region of a
Intel Optane Persistent Memory 200 Series module with a capacity of 40 GB. We
also used the VFIO kernel module [1] on the host system to passthrough a Micron
7300 SSD with a capacity of 1 TB. These two devices were used as the cache and
the origin device respectively for DPWC and dm-writecache.

5.1 Correctness Testing

As our module integrates with the rest of the Linux kernel and makes extensive
use of synchronization primitives and I/O devices, we opted for a testing strategy
based on actual user-space test clients instead of unit tests.

We developed several specialized test clients which stress individual parts of
DPWC. One of these clients, simply called verificator, works in two phases.
It first opens a file and does random one byte writes on it. The operations are
generated via a fixed seed and are thus reproducible. verificator executes
fsync() after every operation to trigger actual operations on the disk. In the
second phase, verificator reads the data from the disk and verifies it. We
ran verificator multiple times and also with multiple parallel instances and
found no errors.

We used the same test client for verification of the replay module. We manu-
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ally disabled all writeback functionality in DPWC’s code. After that, we ran the
verificator workloads until the cache device was nearly full. As writeback
was disabled, the data was stored only on the cache device, and any read requests
(which are serviced by the origin device) returned wrong information. Reload-
ing DPWC triggered the replay procedure. After it completed, all the data on the
origin device was correct.

For stress-testing the writeback module, we used a custom Device Mapper vir-
tual device dpwc-test as a wrapper around the origin device, as shown on Fig-
ure 5.1. dpwc-test manages a single block device and forwards all incoming
requests unmodified to it. In doing so, it injects configurable (via DebugFS [10])
delays in the submission of these requests. The purpose of these delays is to simu-
late full hardware submission queues on the origin device, which would normally
result in higher latencies for future requests. We set up DPWC with dpwc-test
configured as a small (1 MB) origin device. Then, we used a modified version
of verificator which overwrites whole intervals of bytes in DPWC. After
a time, the modified version also clears the page cache and validates the written
data. The delays introduced by dpwc-test resulted in many conflicts in the
writeback module. In the end, all of the stored data was correct.

DPWC

Devices

Main

Caching Data Structure Writeback

dpwc-test

Origin device

Cache device

write bio to cache
read bio/
background write bio

background write
done

read/background write bio bio done

add delay

Figure 5.1: Devices used in the dpwc-test configuration.

Lastly, we ran xfstests [52]. “xfstests is used as a file system regression test
suite for all of Linux’s major file systems: xfs, ext2, ext4, cifs, btrfs, f2fs, reiserfs,
gfs, jfs, udf, nfs, and tmpfs” [49]. Even though xfstests is aimed towards testing
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file systems, many of the tests also require interaction with two block devices
- TEST and SCRATCH devices. We ran all xfstests which belong to the quick
group and work with the EXT4 and XFS file systems. These tests were run twice.
The first time the TEST device was backed by DPWC, and the SCRATCH device
was a regular partition on our SSD. The second time we switched the places of
the two devices. We did not discover any regressions during the tests.

5.2 Performance

After convincing ourselves that DPWC works reasonably correctly, we proceeded
to measure its performance in different scenarios.

As a first step, we measured the performance of the Optane module with fio,
the Flexible I/O tester [48]. We used the libpmem engine, which is specially
optimized for PMEM. The results show the maximum bandwidth that can be
achieved is about 1600 MB/s with 3 or 4 parallel writer processes. This corre-
sponds to 400k IOPS. We observed a slight degradation (1500 MB/s) for a higher
number of writer processes. These numbers serve as an upper limit and a target
for DPWC.

Next, we tested DPWC and several other configurations so that we can get a
better overview of how DPWC stacks against them. The configurations are the
following:

SSD In this configuration, we used the Micron SSD device as the only storage
device. This configuration serves as a baseline for the other configurations.

dm-writecache Here we used dm-writecache included with the distribution’s ker-
nel build. We used it with its default settings and a 4 KB block size.
During our benchmarks, the working set remained below dm-writecache’s
low_watermark parameter. Because of that, dm-writecache does not
write back data to the origin device. This ensures a fair comparison with
DPWC, as the writeback would slow down dm-writecache and is meant to
serve as a throttling mechanism in case the cache device becomes full.

dpwc This configuration uses our own module with 8 writer slots, 4 generations
and 16 chunks per generation.

dpwc-4s Same as dpwc, but with only 4 writer slots. According to our previous
measurements, this is the optimal number of concurrent writers for Intel
Optane memory.
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pmem Lastly, we included the performance measurements when the Intel Optane
module is used as the primary storage medium. This configuration usually
has performance similar to the upper limits we have already established.

For each configuration, we used an EXT4 file system with default settings on
top of the corresponding (virtual) block device.

A notable omission in the previous list is ZIL-PMEM. Even though ZIL-
PMEM is a closely related project, we found that its performance depends on
the speed of the underlying main storage device, even when a PMEM log device
is used. This is why the ZIL-PMEM benchmarks in the original paper [40] use a
striped configuration with 3 SSDs. However, both dm-writecache’s and DPWC’s
write speed-ups are independent of the underlying origin device. Therefore, we
believe that a direct comparison with ZIL-PMEM would not be suitable in our
context.

5.2.1 Scalability
The main goal of DPWC is improving the performance in write-dominated multi-
threaded workloads. Therefore, our first benchmarks exactly simulate such sce-
narios. For all of the aforementioned configurations, we ran a fio benchmark with
the same options. Each writer process writes a total of 1GB random data in its
own file in the filesystem. As the maximum amount of writers in our configura-
tion was 16, this ensured that the total amount of written data (max. 16 GB) was
below the writeback limit for dm-writecache and could fit in its entirety in the
CDS of DPWC. Therefore, these numbers represent the peak bandwidth of these
modules without any writeback in the background.

We use the sync fio engine and configure it so that data is fsync()-ed
after every operation. This effectively makes every write operation synchronous
and ensures that the performance of the block device is actually measured. The
workload was tested with different number of writer processes and I/O operation
sizes (fio’s blocksize option). A visual representation of the results can be
seen in Figure 5.2.

We observe that in these tests, DPWC is usually between 37% and 105% faster
than dm-writecache as long as we have multiple writer threads. This holds true
regardless of the block size used. These speedups also reflect a corresponding
reduction in the average I/O latency, as every request is effectively synchronous
due to the fsync() call after each operation. For single-threaded workloads,
DPWC’s performance is within [-16%,+20%] of dm-writecache’s.

Nevertheless, DPWC fails to achieve the maximum PMEM bandwidth with
smaller block sizes, whereas Ext4 on PMEM does. We collected data with perf [31]
during a test run with numjobs=8 and blocksize=4K. The data consists of
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Figure 5.2: Total write bandwidth with N writer threads (numjobs=N ). Block
size indicates the size of each I/O operation.
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periodic samples of the call stacks from the currently running thread on each CPU
core. With enough data points, we can approximate the amount of time spent in
each function. The results can be seen in Figure 5.3. We found out that only 30%
of the time spent for handling an fsync() system call is spent in our module.
This includes the time spent copying data to PMEM. We also configured a De-
vice Mapper dm-zero device, which acts like /dev/zero: it discards write
requests and always reads zeroes. This effectively means this configuration is
only limited by the software overhead and not by a physical storage device. We
observed a peak bandwidth of 1300 MB/s when writing to a dm-zero device,
which corresponds to 330k IOPS. In comparison, the already established maxi-
mum Optane bandwidth is 1600 MB/s, or 400k IOPS. This strongly suggests that
the Device Mapper subsystem in the Linux kernel incurs significant overhead and
that we cannot utilize the full Intel Optane capabilities with small requests without
further optimizations in the Linux kernel.

Figure 5.3: A cut-out of the flamegraph [15] generated with data from perf. We
ran a benchmark with DPWC and 8 parallel writers. The highlighted part is the
only occurrence of DPWC in the path handling fsync().

With numjobs >= 8 and blocksize=1M DPWC manages to reach the
target maximum bandwidth. In these configurations the CPU overhead is miti-
gated by a good mixture of CPU and I/O work. We can also see that limiting the
number of concurrent writers to only 4 slots does not help performance in most
of the highly-threaded benchmarks. This is due to the fact that a 4-slot limitation
means that more writer processes block while waiting for a slot, and as we stated
previously, the actual bottleneck in may of these benchmarks is the CPU.

dm-writecache appears to achieve a better speedup in single-threaded work-
loads with blocksize=4K. In single-threaded cases, it does not suffer from
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contention and its global locking strategy incurs very limited overhead. In con-
trast, DPWC’s slot system and the queue between the main and the writeback
modules are designed to work well for multi-threaded access, but incur higher
overhead when such access is not necessary. With increasing block size, the man-
agement of requests becomes less important and the data transfer becomes the
dominant cost. In these cases (blocksize >= 64K) we see that our design
with 256-byte data alignment and efficient copying with AVX-512 non-temporal
store instructions does pay off and DPWC is faster than dm-writecache by 10-
20%.

5.2.2 Sustained writes
Another interesting metric is the bandwidth under sustained write load. We ran
the benchmark with 16 writer threads and 4 K block size for the DPWC, dm-
writecache and SSD configurations for 2 minutes and recorded the bandwidth for
each 0.5 second interval. We also limited the PMEM capacity to 10 GB for DPWC
and dm-writecache. All in all, this resulted in writing at least 60 GB of data in all
of the benchmarks, i.e. the data written exceeds the amount of cache space by a
factor of at least 6. The results are plotted on Figure 5.4.

Figure 5.4: Total write bandwidth timeline for all writer threads in different
configurations. dpwc-average and dm-writecache-average represent the average
bandwidth up to the given point in time.

The behavior of dm-writecache is rather predictable. In the beginning it is
caching data without writeback until the low_watermark threshold is reached.
After that we observe fluctuations around the average bandwidth, representing
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short periods during which writeback was happening, and periods without write-
back.

DPWC’s behavior shows extreme fluctuations due to the lack of any throttling
mechanisms. Similarly to dm-writecache, we observe a period of peak bandwidth
until the cache becomes full. After that, the bandwidth drops to zero, as any fur-
ther requests are directly enqueued in the WBM. As the WBM processes requests
sequentially, this means all writers block until the WBM has processed all queued
requests. At that point, some of the generations are usually completely written
back and therefore available for use in new requests. The result is a new period of
peak bandwidth until the cache becomes full again and then the sequence repeats.

The length of the initial peak bandwidth period for dm-writecache and DPWC
is almost the same. This is due to the fact that DPWC writes until the cache
becomes full. In contrast, dm-writecache with the default settings starts throttling
when the cache usage reaches 45%. However, DPWC’s peak bandwidth is almost
double that of dm-writecache (1200MB/s vs 700MB/s), which balances out the
fact that DPWC uses the full PMEM space available.

Interestingly, as there were no conflicting write requests during this bench-
mark, DPWC’s strategy of submitting multiple bios in parallel seems to have an
effect on the average bandwidth. It remained slightly above (569 MB/s) the aver-
age bandwidth of the SSD (508 MB/s) and of dm-writecache (517 MB/s).

5.2.3 Impact of read requests
In practice, even write-dominated workloads often need a certain amount of read
operations. Therefore, we measured the performance of DPWC with different
mixes of read and write operations of size 4 KB. The results are displayed on
Figure 5.5.

DPWC appears to be between 12% and 37% slower than dm-writecache for
most workloads, and up to 50% slower in highly multi-threaded (16 writers) mixed
workloads. The only outliers are the cases with 99% write requests and 4 or 8
writers, where DPWC is slightly faster. The SSD configuration also delivered
better performance than DPWC and even dm-writecache in multiple test cases.

These numbers shows the main weakness of DPWC. The main module and
the CDS are optimized for multi-threaded write requests. However, read requests
suffer from higher latencies as they spend time in the queue between the main
and the writeback modules and in the writeback module itself, especially since
it processes every request sequentially. This incurs a high performance penalty.
The SSD-only configuration, in contrast, is able to handle parallel read and write
requests in any order. There are also few conflicts between different requests in
this benchmark. Thus, very little time is spent waiting for a request to complete
before the next one is submitted.
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Figure 5.5: Total read+write bandwidth with N workers (numjobs=N ). The
PMEM configuration was left out as it outperforms all other configurations by a
large margin.
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Lastly, our writeback strategy involves sending write requests to the origin de-
vice as soon as possible. This means that even in write-dominated workloads (for
example the 99% write workload), the origin device is constantly under pressure.
Thus, it is unable to process the read requests in a timely manner, resulting in even
higher read latencies for the DPWC configuration.

5.2.4 Database performance

We also evaluated the performance of our storage configurations with the follow-
ing database benchmarks:

Redis is an “open source, in-memory data store used by millions of developers
as a database, cache, streaming engine, and message broker.” [37].

We used Redis server v6.2.6 from the distribution’s package manager. By
default, Redis is an in-memory data store but can be configured to persist
data in two ways. The Redis Database (RDB) mechanism stores point-in-
time periodic snapshots of the dataset. The Append Only File (AOF) logs
every write operation and can be used to replay operations at startup. The
combination of RDB and AOF makes Redis a persistent database. We en-
abled both of these features and configured Redis to call fsync() after
every write. The io-threads option was also set to 6. This is the recom-
mended value for 8-core systems. With this option, the Redis server is able
to process multiple incoming requests from different clients in parallel.

For the benchmarks, we used the standard redis-benchmark utility [38]. We
ran 2 M SET commands 5 times for all configurations with varying number
of client threads, and recorded the average operations per second as reported
by the redis-benchmark program. The results are displayed on Figure 5.6.
We observed moderate improvements in the range 12-34% compared to dm-
writecache. PMEM remains the fastest storage configuration except for the
single-threaded case, where DPWC comes out the fastest.

Even though Redis handles client requests in multiple threads, we observed
that write operations in the CDS always used the first slot. We also observed
only a minimal amount of read requests. In other words, this workload
can be characterized as single-threaded and write-only from the perspective
of the CDS, and therefore DPWC does not provide the significant boost
seen previously with multi-threaded write workloads. The improvements in
this case can be mostly be attributed to the offloading of submission of bio
requests to a different thread, which is the main difference with all of the
other configurations.
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Figure 5.6: Operations per second in the redis-set benchmark for different num-
ber of client threads. Note that the values are plotted in thousand operations per
second.

RocksDB “RocksDB is a persistent key-value store. It is optimized for fast, low
latency storage such as flash drivers and high-speed disk drivers. RocksDB
exploits the full potential of high read/write rates offered by flash or RAM” [39].
These qualities make RocksDB an interesting candidate for testing with
DPWC, as our goal is to emulate the performance of such a device.

We used RocksDB 7.0.3-33f8a08a built from source. For benchmarking,
the built-in benchmarking tool db_benchwas used. We chose the fillsync
benchmark, which “writes values in random key order in sync mode” [5].
All parameters were left to their default values, except the database path,
which was set to a directory in the corresponding storage stack for each
configuration. We also varied the amount of writer threads.

Figure 5.7: Operations per second in the RocksDB fillsync benchmark for dif-
ferent number of inserter threads. Note that the values are plotted in thousand
operations per second.

Similarly to the Redis benchmark, we found that this scenario can also be
described as write-only and single-threaded I/O workload. As can be seen in
Figure 5.7, DPWC is only able to provide a 43% speedup compared to dm-
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writecache when the degree of multi-threading is sufficiently high (8 writer
threads configuration). We believe that this is again due to the fact that with
our design, bio requests can be submitted asynchronously and even on other
CPU cores, which seems beneficial for performance when the CPU utiliza-
tion is higher. In the cases with fewer threads, DPWC was between 22%
and 31% slower than dm-writecache in this benchmark. This matches our
observations from the synthetic FIO workloads for similar single-threaded
write workloads.

MariaDB “MariaDB Server is one of the most popular open source relational
databases.” [24] We used the MariaDB 10.5.13 version which comes with
the package manager on Fedora 35. All settings were left to default. The
/usr/lib/mysql directory was bind-mounted to a directory in the cor-
responding storage configuration for each test.

For driving the benchmark we used sysbench, “a scriptable multi-threaded
benchmark tool based on LuaJIT” [20]. We ran it in the oltp_insert
configuration, which simulates database insertions with multiple parallel
threads. As usual, we used the default settings, prewarmed the database
before each test run and varied the number of inserter threads. We ran each
test 5 times and recorded the average operations per second as reported by
sysbench. The results are displayed on Figure 5.8.

Figure 5.8: Operations per second in the MariaDB/sysbench oltp_insert
benchmark for different number of inserter threads. Note that the values are plot-
ted in thousand operations per second.

MariaDB/sysbench is the only benchmark where we observed actual paral-
lel writes, even though the first slot in the CDS was used more than 99% of
the time. We also observed high variations in the results in the single thread
configuration, despite averaging results. Nevertheless, DPWC was always
5-20% slower than dm-writecache in the multi-threaded cases, but was still
faster than the raw SSD configuration by 10-30%. There results look simi-
lar to the fio benchmarks with one writer thread from the beginning of this
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chapter. We conclude that MariaDB does not benefit from our strategy of
delayed bio submission, as its write patterns are essentially single-threaded
despite appearances.

5.2.5 Analysis and Experiments

Motivated by the rather poor performance of DPWC in some of the benchmarks
above, we experimented with slight variations of our module and writeback strat-
egy. Our goal was to explore possible performance trade-offs between peak multi-
threaded write performance and all other cases.

We collected perf data from the workload with 1 writer and block size 4 KB.
We saw that up to 42% of the time spent in dpwc_map, the function in our mod-
ule which handles all incoming requests, is taken up by queue_item(). This
function is called when adding a new request to the synchronization queue be-
tween the main and the writeback modules. This seems to indicate that using
workqueues may not be the most efficient solution for this problem.

However, our benchmarks indicate that read performance is even more of an
issue than single-threaded write performance. The key insight for solving this
problem is that read requests are often stuck waiting for write requests to be pro-
cessed in the WBM. However, read requests very rarely need this, as they usually
do not induce conflicts. Conflicting read requests would mean that the data to be
read was recently written. That data is, however, typically available in the page
cache already.

Keeping this in mind, we wrote a prototype reimplementation of the WBM
with the following changes:

• Instead of using a workqueue between the main and the writeback modules,
the main module calls directly into the WBM. This change reduces the peak
write bandwidth, as the write request handler needs to do more work instead
of just enqueueing the request for the WBM. However, this also removes
the need for the ordered workqueue between the two modules and reduces
latencies for read requests.

• If we detect a conflict, we place the request on a dedicated ordered workqueue
for conflicting requests. This operation is rare since most requests should
never block. By moving such requests to their own workqueue, we enable
the processing of further requests instead of blocking as in our default im-
plementation. Non-conflicting reads and writes are added to the interval
tree and then placed on separate workqueues to be submitted to the origin
device.
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• By using a simple usleep_idle_range() call in the write submission
workqueue, we throttle write requests sent to the SSD. Read requests, on
the other hand, are sent to the SSD as fast as possible. This measure avoids
excessive requests to the origin device and ensures that read requests are
serviced sooner.

Note that the throttling of write requests may mean that a conflicting read
request will be stalled for a long time. As stated previously, conflicting
reads are a very rare event. For example, they did not occur at all during our
benchmarks, as the working set could fit into the main memory.

We also tried varying the multi-core policy for the blocking and conflicting
workqueues. As mentioned previously in Section 4.4, workqueues can be either
bound or unbound [9]. We tried both configurations in our fio benchmarks and
plotted the results, which can be seen on Figure 5.9. The modified writeback
strategy does indeed lower the maximum write bandwidth, as predicted. On the
upside, we saw a positive change in mixed and read-only configurations. Unfor-
tunately, none of the configurations could improve performance across the board.

The main takeaway from this experiment is that our writeback module can be
significantly improved. The tests seem to indicate that the usage of workqueues
has a non-trivial overhead. We believe that a strategy similar do dm-writecache’s
could solve this issue. Instead of writing data immediately, the WBM should write
back whole generations at once, when the cache usage reaches a particular thresh-
old, like dm-writecache’s low_watermark. Read requests can be serviced from
the SSD or by reading from the entries in the CDS, if the data is already cached.

This strategy can potentially combine some of the benefits of DPWC and dm-
writecache. By avoiding writes when the cache is not full, we avoid the workqueue
overhead and reads can be submitted without delays. On the other hand, parallel
writes to the CDS remain possible. Unfortunately, we could not test this version
due to limited scope of this bachelor thesis.
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Figure 5.9: Total read+write bandwidth with N workers (numjobs=N ) and dif-
ferent read/write mixes. dpwc is our base implementation. dpwc-skipwq incor-
porates the changes for our experiment in Section 5.2.5 with bound workqueues.
dpwc-skipwq-unbound is the same, but with unbound workqueues.
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Chapter 6

Conclusion

In this bachelor thesis we showed that the existing Linux kernel infrastructure,
and more specifically dm-writecache, is often unable to take full advantage of
the high-performance Intel Optane devices. This is partly due to using less effi-
cient data transfer routines and also due to the usage of global locks, which limits
performance in multi-threaded workloads.

We designed and implemented our own alternative, DPWC. Despite certain
inefficiencies in the software stack, DPWC is a definite improvement over the
status quo in pure write workloads, providing a significant (up to 2.05x) speedup
over dm-writecache. The key to achieving this result is the caching data structure
inspired by ZIL-PMEM [40], which allows efficient parallel writes in the cache,
and the asynchronous writeback module.

Unfortunately, in optimizing for a specific case, our module fails to hold up to
the competition in many other benchmarks. Analysis and experiments show that
in practice, the performance in a particular workload depends on many factors and
the specific storage access patterns of the application. This makes it very difficult
to find a one-size-fits-it-all solution. Nevertheless, we believe that the approach
used in DPWC is a viable option for further developments and can be used in
real-life scenarios.

6.1 Future Work
During the course of this thesis, we have also identified multiple areas where
DPWC can be improved. There are also many areas of the design which can be
tweaked and potentially boost performance or improve failure recovery in many
cases. Here are some of the directions which, in our opinion, are worth pursuing:

Writeback Strategy As suggested in Section 5.2.5, an alternative writeback strat-
egy for DPWC may bring significant advantages in mixed workloads. We
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would like to test out a variant of DPWC where data is written back only
when the cache is (nearly) full, and conflicting read requests are serviced
from the cache.

Tighter integration with the origin device In Section 5.2.5, we saw that throt-
tling write requests to the origin device helps with read performance in
mixed workloads. As an alternative to changing the writeback strategy, we
might be able to integrate better with multi-queue NVMe SSDs and use
dedicated queues for read requests. We would also like to explore the pos-
sibility of cooperating with the lower block I/O layers to prioritize those
requests.

Throttling DPWC’s performance under sustained writes has extreme fluctua-
tions. It would be interesting to implement a throttling mechanism, poten-
tially similar to dm-writecache’s, and measure its influence on the average
bandwidth.

Better configurability and error handling To make DPWC an actually viable
project in real-life scenarios, it should be extended with more options to
control the various aspects of the CDS (number of generations, chunks and
slots). In addition, DPWC should be able to better handle software and
medium errors as described in Section 4.5.

Aside from work on DPWC, we would have found the following items inter-
esting in the context of this bachelor thesis:

Comparison with ZIL-PMEM and striped configurations ZIL-PMEM uses a
very similar cache data structure. Therefore, a comparison with it may be
able to show the differences in the overhead between ZFS and Device Map-
per. ZIL-PMEM also achieves its maximal performance in a striped origin
device configuration. Evaluating DPWC on that setup will also show how
the performance of the origin device affects the overall performance of our
module.

Investigate the overhead of Linux kernel interfaces In Sections 5.2.1 and 5.2.5,
we have mentioned that our initial measurements show that the Device Map-
per subsystem incurs a significant overhead. The same appears to be true
for workqueues. It would be interesting to explore what exactly causes these
issues and how these interfaces might be optimized for our particular sce-
nario.
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