
This paper is included in the Proceedings of the
2021 USENIX Annual Technical Conference.

July 14–16, 2021
978-1-939133-23-6

Open access to the Proceedings of the
2021 USENIX Annual Technical Conference

is sponsored by USENIX.

Fair Scheduling for AVX2 and AVX-512 Workloads
Mathias Gottschlag, Philipp Machauer, Yussuf Khalil, and Frank Bellosa,

Karlsruhe Institute of Technology
https://www.usenix.org/conference/atc21/presentation/gottschlag

Fair Scheduling for AVX2 and AVX-512 Workloads

Mathias Gottschlag
Karlsruhe Institute of Technology

Philipp Machauer
Karlsruhe Institute of Technology

Yussuf Khalil
Karlsruhe Institute of Technology

Frank Bellosa
Karlsruhe Institute of Technology

Abstract
CPU schedulers such as the Linux Completely Fair Sched-
uler try to allocate equal shares of the CPU performance to
tasks of equal priority by allocating equal CPU time as a
technique to improve quality of service for individual tasks.
Recently, CPUs have, however, become power-limited to the
point where different subsets of the instruction set allow for
different operating frequencies depending on the complexity
of the instructions. In particular, Intel CPUs with support for
AVX2 and AVX-512 instructions often reduce their frequency
when these 256-bit and 512-bit SIMD instructions are used
in order to prevent excessive power consumption. This fre-
quency reduction often impacts other less power-intensive
processes, in which case equal allocation of CPU time results
in unequal performance and a substantial lack of performance
isolation.

We describe a modification to existing schedulers to restore
fairness for workloads involving tasks which execute com-
plex power-intensive instructions. In particular, we present a
technique to identify AVX2/AVX-512 tasks responsible for
frequency reduction, and we modify CPU time accounting
to increase the priority of other tasks slowed down by these
AVX2/AVX-512 tasks. Whereas previously non-AVX appli-
cations running in parallel to AVX-512 applications were
slowed down by 24.9% on average, our prototype reduces the
performance difference between non-AVX tasks and AVX-
512 tasks in such scenarios to 5.4% on average, with a similar
improvement for workloads involving AVX2 applications.

1 Introduction

One common requirement for schedulers is to provide an ac-
ceptable quality of service to the tasks in the system [7]. Fair
schedulers evenly share CPU performance among the tasks or
groups of tasks in the system to achieve good quality of ser-
vice for all tasks [15]. In the past, it was commonly assumed
that even shares of the CPU time result in even shares of CPU
performance. The Linux Completely Fair Scheduler [20], for

Task A (AVX-512) Task B (no AVX)

Time
Fr

eq
ue

nc
y

C
on

te
xt

sw
itc

h

AVX-512, high
performance

B slowed
down by A

(a) Unfairness after context switches

Hyper-thread Hyper-thread

Time

Fr
eq

ue
nc

y

Time

Fr
eq

ue
nc

yAVX-512, high
performance

B slowed
down by A

Task A (AVX-512) Task B (no AVX)

(b) Unfairness due to hyper-threading

Figure 1: With AVX2 and AVX-512, equal CPU time shares
do not translate into fair shares of CPU performance. AVX2
and AVX-512 cause the CPU core to reduce its frequency
which can affect other non-AVX tasks. In these situations,
our prototype would increase the priority of task B to achieve
improved fairness. In this figure, the two frequencies represent
the non-AVX and AVX-512 turbo levels.

example, always executes the task with the lowest CPU time
used (scaled by priority) to allocate equal shares of CPU time
to individual tasks.

In systems with dynamic voltage and frequency scaling
(DVFS), the assumption that equal CPU time results in equal
performance does not hold. Reduced frequencies affect the
performance of applications differently depending on how
memory-limited the applications are, and techniques have
been developed to include this effect when distributing CPU
time [14]. Such techniques have not found their way into com-
mon operating systems, though, most likely because fairness
mostly matters when system utilization is high, in which case
operating systems rarely reduce the CPU frequency.

USENIX Association 2021 USENIX Annual Technical Conference 745

Recent CPUs, however, have started to use autonomous
DVFS outside of the control of the operating system to pre-
vent excessive power consumption. In the last years, transistor
scaling has increased power density, leading to a situation
where the performance of recent CPUs is largely limited by
their power consumption [28]. One common technique to im-
prove CPU performance in this power-limited design regime
is to use additional transistors to implement specialized accel-
erators which remain inactive most of the time. CPU cores
can operate at high frequencies while the accelerators are
inactive, whereas use of the accelerators requires a temporary
frequency reduction to prevent excessive power draw. This
adaptation of the CPU frequency to meet thermal and power
supply constraints increases individual cores’ frequencies to
always utilize their whole power budget but also decreases
frequencies if the cores risk overheating or instability, similar
to techniques such as Turbo Boost [1] which increases the
frequency of the whole processor when some cores are idle.

Recent Intel CPUs provide an example for such behavior
where low-power code is executed at increased frequencies.
For some workloads, these CPUs provide a substantial per-
formance advantage over previous CPU generations due to
the introduction of the AVX2 and AVX-512 SIMD instruc-
tion sets [6] which support operations on up to 512-bit vector
registers. The large difference in power consumption between
AVX2/AVX-512 instructions and other instructions, however,
requires individual CPU cores to reduce their frequency while
they execute AVX2 and AVX-512 code, whereas other less
power-intensive code is executed at higher frequencies [23].
As an example, the Intel Xeon Gold 6130 server CPU executes
non-AVX code at an all-core turbo frequency of 2.8 GHz,
whereas AVX2 and AVX-512 code is executed at 2.4 GHz
and 1.9 GHz, respectively [4].

If only AVX2 or AVX-512 code would be selectively
slowed down, no problem for fair schedulers would arise.
Only tasks choosing to execute AVX2 or AVX-512 code
would be slowed down and the increased throughput of these
instructions would more than compensate the frequency re-
duction. However, the impact of the lower frequency is not
limited to the AVX2 and AVX-512 code responsible for the
reduction [10]. In two scenarios, the frequency reduction also
affects other potentially unrelated tasks:

1. Context switches: When the CPU switches from an
AVX2 or AVX-512 task to a non-AVX task, the CPU
waits for a fixed timeout before restoring the standard
frequency [5]. Such a delay is sensible as it limits worst-
case overhead due to frequent clock changes. The fol-
lowing task is consequently slowed down as well.

2. Hyper-threading: When one hyper-thread executes either
AVX2 or AVX-512 code, the whole physical core needs
to reduce its frequency, so any code running on the other
hyper-thread is affected as well even if it does not ex-
ecute AVX2 or AVX-512 instructions [10]. This effect

has shown to be particularly prominent, with workloads
often being slowed down by more than 15% when exe-
cuted alongside an AVX-512 application on Linux [10].

As shown in Figure 1, when contemporary fair schedulers
allocate the same share of CPU time to AVX2/AVX-512 tasks
which cause a frequency reduction as to other tasks which
are also affected by the reduced frequencies, the latter would
receive a substantially reduced share of the system’s perfor-
mance. This unfairness and the resulting performance reduc-
tion is particularly problematic for tasks with soft real-time
requirements and for multi-tenant systems where individual
users commonly pay to receive a specific share of the CPU
time. While these effects are currently only observed on sys-
tems with recent Intel CPUs, we expect future power-limited
systems to show similar behavior as outlined above.

In this paper, we show that for these systems it is necessary
to rethink our notions of scheduling fairness. In particular,
we show that equal CPU time, minimal effects on quality of
service, and fair distribution of CPU performance are mutually
exclusive goals. We do so by describing a scheduler that is
commonly able to achieve the latter when some tasks – called
victim tasks in the following – are negatively affected by a
frequency reduction caused by other tasks.

We present a concrete implementation of this design for
Intel systems and AVX2 and AVX-512 instructions. Our ap-
proach mitigates the performance impact of frequency reduc-
tion via modified CPU time accounting where the CPU time
of victim tasks is scaled according to the decrease in CPU
frequency (Sections 3). We show how victim tasks can often
be recognized by the lack of characteristic register accesses
(Section 4). Variable turbo frequencies complicate calculating
the actually experienced frequency reduction, so we show how
on Intel systems the average frequency reduction during a
scheduling time slice can be calculated using only two config-
urable performance counters and a cycle counter (Section 5).
As the load balancing mechanism of the Linux CFS scheduler
prevents achieving fairness, we describe an implementation
of our design based on the Linux MuQSS scheduler modi-
fied to use the CFS scheduling algorithm (Section 6). Our
evaluation based on a range of real-world applications shows
that our prototype has close to zero runtime overhead, yet is
able to improve the fairness in workloads with AVX2 and
AVX-512, reducing the performance difference between two
applications from 24.9% to 5.4% if one of the applications
uses AVX-512 (Section 7). Finally, we discuss different fair-
ness criteria, showing how our approach can be modified to
achieve even stronger performance isolation (Section 8), as
well as the limitations of our approach (Section 9).

2 AVX Frequency Reduction

To mitigate the unfairness caused by power-intensive instruc-
tions, we first need to know which instructions cause the

746 2021 USENIX Annual Technical Conference USENIX Association

CPU to reduce its frequency and by how much the frequency
is reduced. Our prototype targets the AVX2 and AVX-512
instruction sets. Both are categorized by Intel into “heavy”
and “light” instructions, where the former consist of all float-
ing point instructions as well as multiplication instructions,
whereas the latter consist of all other instructions [5]. In the
default CPU configuration at the maximum non-AVX fre-
quency, all light and heavy instructions have the potential
to draw excessive current, which causes voltage drops and
system instability. During execution of all these instructions,
the CPU therefore increases its voltage to allow for increased
currents [8].

Not all 256-bit and 512-bit instructions, however, also cause
a frequency change. CPUs with support for AVX-512 provide
three different frequency ranges named “non-AVX frequen-
cies”, “AVX2 frequencies”, and “AVX-512 frequencies” [5].
Unlike the name suggests, “AVX-512 frequencies” are not
triggered by arbitrary 512-bit instructions but rather only by
512-bit heavy instructions. Similarly, “AVX2 frequencies” are
triggered by 512-bit light instructions and 256-bit heavy in-
structions. Short stretches of AVX2/AVX-512 instructions or
long code sections with infrequent AVX2/AVX-512 instruc-
tions may cause less frequency reduction or may not cause
any change in frequency at all [18]. After the last AVX2/AVX-
512 instruction requiring the frequency reduction, the CPU
waits for 670 µs before reverting to a higher frequency [11].

3 Frequency Reduction Compensation

As described in Section 1, there are two situations in which
tasks executing AVX2 and AVX-512 code can slow other
tasks down [10]. First, the delay before the CPU reverts to
a higher frequency means that after a context switch away
from an AVX2/AVX-512 task the next task continues to exe-
cute at the lower frequency. Second, in a system with hyper-
threading both hyper-threads of a physical core share the
same frequency, thus a AVX2/AVX-512 task executing on
one hyper-thread slows down the task executing on the other
hyper-thread.

In a situation where the frequency reduction caused by
power-intensive instructions is not limited to tasks executing
such instructions, CPU time is not proportional to perfor-
mance anymore and existing schedulers which allocate equal
CPU time to tasks of equal priority fail to provide a fair dis-
tribution of CPU performance. In this paper, we take relative
application performance compared to isolated execution as
the main metric for fairness and consider a distribution of
CPU performance “fair” if each task receives the same frac-
tion of the CPU performance that it would receive if it was
executing on the CPU alone. In a system without frequency
changes and with two tasks, for example, each task would ob-
tain 50% of the performance of the task executed in isolation.
If one of the tasks executes power-intensive instructions and
the other one does not, however, only the latter task (i.e., the

victim task) is affected by the resulting remote frequency re-
duction overhead [11] and receives a lower share of the CPU
performance. Note that AVX2/AVX-512 tasks themselves,
for example, can be assumed to obtain full CPU performance
despite executing at reduced frequencies. They profit from the
increased throughput of AVX2 and AVX-512 – applications
have little reason to use complex power-intensive instructions
if their speedup does not outweigh the frequency reduction.

Current schedulers allocate equal CPU time to individual
tasks even though only some are affected by remote AVX
overhead, resulting in compromised performance isolation.
Some existing techniques using consumed energy as the basis
for scheduling [22, 26, 31] may be applicable to solve this
problem (see Section 8 for a discussion of these and other
scheduling criteria). Such approaches are, however, not viable
on current hardware as the CPUs lack interfaces required for
sufficiently accurate energy models.

In this paper, we instead propose frequency reduction com-
pensation as a simple technique to modify existing fair sched-
ulers to reduce the impact of frequency reduction on the per-
formance of victim tasks. To increase the performance share
allocated to these tasks, we propose modifying CPU time
accounting to take the performance reduction into account.
If less CPU time is credited to a task, the scheduler will au-
tomatically schedule the task more often to make up for the
perceived CPU time inequality. For victim tasks, we scale
the CPU time credited to the tasks by the ratio between the
actual average CPU frequency and the frequency at which
the tasks could be executed if they were executed in isolation,
so that this virtual CPU time matches the CPU throughput
experienced by the tasks. The scheduler will then automati-
cally mitigate the performance impact experienced by victim
tasks to the point where all tasks receive equal shares of CPU
performance. Such frequency reduction can be applied to all
scheduling algorithms based on CPU time. In the following
sections, we first describe how to identify victim tasks (Sec-
tion 4) and then describe how to calculate the performance
impact due to the frequency reduction (Section 5) before
we describe important details in our implementation of the
techniques (Section 6).

4 Attribution of Frequency Changes

Any scaling of the virtual CPU time must be limited to vic-
tim tasks, as only those tasks are supposed to be executed
more frequently. First, we therefore need to identify whether
a task is a victim task, i.e., whether it is affected by excessive
frequency reduction caused by other tasks.

On recent Intel CPUs, it is trivial to determine whether
the CPU frequency was reduced, as the CPUs provide perfor-
mance events to count the cycles spent at AVX2 and AVX-512
frequency levels [5]. The CPUs do not provide a mechanism
for the operating system to detect whether a code region trig-
gers frequency reduction or not, though [11]. While the perfor-

USENIX Association 2021 USENIX Annual Technical Conference 747

mance events can be used to detect frequency level transitions,
they cannot be used to identify the hyper-thread which caused
a physical core to reduce its frequency. Also, during the time
after a context switch the counters do not provide information
about whether the current task could be executed at a higher
frequency.

We therefore detect power-intensive code based on register
accesses – many complex instruction set extensions introduce
additional architectural registers, so accesses to these registers
signal such power-intensive code. In our prototype, we use an
approach found in previous work that uses a trap-based mech-
anism to identify AVX-512 code [10]: When the OS clears the
ZMM_Hi256 and Hi16_ZMM bits in the XCR0 register, context
switching for 512-bit vector registers is disabled [2, p. 13-
1ff] and AVX-512 instructions trigger undefined instruction
exceptions [2, p. 14-34].

Whereas previous work uses this mechanism to perma-
nently disable AVX-512 on select CPU cores [10], we extend
the mechanism to AVX2, yet we only trap the first 256-bit or
512-bit register access within a time slice to detect whether
the task uses AVX2/AVX-512. At each context switch, we
test whether the next task has valid 256-bit or 512-bit regis-
ter content and flag the task as an AVX2/AVX-512 task if it
does. If there is no valid 512-bit register state, we prevent
further 512-bit register accesses as described above. If there
is no valid 256-bit register state, either, we clear the AVX bit
in the XCR0 register as well to make future AVX2 instructions
trigger exceptions. Then, if 256-bit registers are not enabled
when the undefined instruction exception handler is called,
we simply re-enable those registers, flag the current task as
an AVX2 task and continue execution. Similarly, if 256-bit
registers are already enabled but 512-bit registers are not, we
enable 512-bit registers and flag the current task as an AVX-
512 task. During the next scheduler invocation, we can test
whether the previous task was marked as an AVX2 or AVX-
512 task to determine whether to apply frequency reduction
compensation.

Note that this implementation triggers two exceptions for
the first AVX-512 instruction after a context switch. A more
optimized implementation can reduce overhead by checking
the register size of the trapped instruction and, if it accesses
512-bit registers, enabling both AVX2 and AVX-512 at once.

As Gottschlag et al. discuss, such a mechanism is not a
precise indicator of whether code requires a frequency re-
duction [10]. As described in Section 2, the conditions for a
frequency change are much more complex, so the mechanism
can cause false positives as not all 256-bit and 512-bit register
accesses cause a transition to AVX2/AVX-512 frequencies.
Victim tasks using light AVX2/AVX-512 instructions may
therefore not benefit from frequency reduction compensation
even if the tasks themselves do not require reduced frequen-
cies. In addition, AVX supports 256-bit registers as well, so
our approach cannot cleanly distinguish AVX and AVX2. We
discuss the impact of this limitation in Section 9.1.

4.1 CPU Feature Detection
One problem of disabling AVX2 and AVX-512 instructions
via changes in the XCR0 register is that this change breaks
CPU feature detection in most applications. Intel states that
before using any AVX instructions programs should first read
the XCR0 register via the XGETBV instruction and test whether
AVX2 and AVX-512 are supported by the OS and then ex-
ecute the CPUID instruction to test whether the required in-
structions are available [2, p. 14-15]. Related work suggests
that this problem can be solved by virtualizing the CPUID
instruction [10]. Recent Intel CPUs indeed provide an MSR
that can be used to disable CPUID. However, we found it im-
possible to trap the XGETBV instruction without also disabling
all vector instructions including widely used instruction set
extensions such as SSE.

Instead, we propose patching all executables to replace the
XGETBV instructions with an invalid instruction. In the invalid
instruction exception handler, the kernel can then emulate
XGETBV before returning to the application. We have verified
this technique to be functional, and the additional exception
causes minimal overhead given that most applications only
determine the available CPU features once at startup.

In our evaluation, we wanted to compare our prototype to
a stock Linux kernel, where we would not be able to execute
such modified applications as the kernel lacks support for vir-
tualization of XGETBV. As described in Section 7, we therefore
did not integrate the technique into our prototype and instead
manually modified the applications to assume that AVX2 and
AVX-512 were available.

5 Calculation of the Performance Impact

Whenever a victim task has been identified, CPU time ac-
counting for the task has to be scaled to increase the share of
actual CPU time allocated to that task. As described above,
the scaling has to occur in proportion to the performance
impact. If we assume that the workload is CPU-bound, the
performance impact p during a single scheduler time slice
is defined by the ratio between the average CPU frequency
experienced by the task and the average ideal CPU frequency
at which the task could have been executed in isolation:

p =
fmeasured

fideal
(1)

In the case of Intel CPUs, the ideal frequency is the non-
AVX frequency for non-AVX tasks and the AVX2 frequency
for tasks which accessed 256-bit registers during the time
slice. Note that memory-bound workloads suffer less from
frequency reduction. We discuss the impact of this limitation
in Section 9.2.

Whereas the average CPU frequency during a time slice is
easily measurable, the ideal CPU frequency is not. Both non-
AVX frequency and AVX2 frequency depend on the turbo

748 2021 USENIX Annual Technical Conference USENIX Association

level which is selected by the CPU depending on the number
of active cores. The number of active cores, however, can
change at any point during the time slice, so counting the ac-
tive cores during scheduler invocations is not sufficient to get
a high-quality estimate of the average ideal frequency. Instead,
we need to determine the average turbo level throughout the
whole time slice. To determine the turbo level, we compare
the measured frequency against each frequency expected had
the chip operated at one particular turbo level during the time
slice. If the measured frequency matches one of the expected
frequencies, we can assume the corresponding turbo level.
Else, the calculation of the ideal frequency has to be made via
linear interpolation between the closest turbo levels.

As a first step, we calculate the expected frequency at a
given turbo level for the measured amount of cycles spent at
AVX2 and AVX-512 frequency levels. Assuming that during
a time slice of length ttotal the system spends ti time at fre-
quency fi, the average frequency during the time slice can be
calculated as follows:

f =
1

ttotal
∑ ti fi (2)

In the following, we assume that f0 is the non-AVX frequency
at the given turbo level, whereas f1 and f2 are the AVX2 and
AVX-512 frequencies, respectively. These frequencies are
published by Intel for their server CPUs [4]. As we count the
cycles instead of the time spent at the three frequency levels,
we substitute ti = ci/ fi where ci are the cycles at frequency
fi. We arrive at the following equation:

f (c0,c1,c2) =
f0 f1 f2(c0 + c1 + c2)

f1 f2c0 + f0 f2c1 + f0 f1c2
(3)

ctotal = c0 + c1 + c2 is the total CPU cycle count and can be
measured via a fixed-function performance counter, so only
two programmable performance counters are required. If we
further substitute c0 = ctotal −c1 −c2 as well as r1 = c1/ctotal
and r2 = c2/ctotal as the ratio between the cycles spent at
AVX2/AVX-512 frequencies and the total cycle count, we
arrive at the final formula for the expected frequency at a
specific turbo level:

f (r1,r2) =
f0 f1 f2

(f0 − f1) f2r1 +(f0 − f2) f1r2 + f1 f2
(4)

While calculating this formula requires a division, all fre-
quencies lie within the same order of magnitude, so the for-
mula can be calculated using fixed-point arithmetic and no
floating-point arithmetic is required. The two-dimensional
case of this formula for a Xeon Gold 6130 CPU under the
assumption that r1 = 0 – the system did not spend any time
at the AVX2 frequency level – is shown in Figure 2.

At the end of each time slice, the scheduler measures the
cycles spent at AVX2 and AVX-512 frequency levels as well
as the average actual frequency. The formula above is then

0 0.2 0.4 0.6 0.8 1

2

2.5

3

3.5
1 - 2 cores

3 - 4 cores

5 - 8 cores
9 - 12 cores

13 - 16 cores

Share of AVX-512 frequency cycles

E
xp

ec
te

d
Fr

eq
ue

nc
y

(G
H

z)

Figure 2: For a given amount of AVX2 and AVX-512 cycles
during a time slice, the expected frequencies at the different
turbo levels can be compared with the actual measured CPU
frequency to determine the turbo level of the CPU. For ex-
ample, if during a time slice 30% of all cycles were spent at
the AVX-512 frequency level while an average frequency of
2.5 GHz was measured, the system likely spent most of the
time at the lowest turbo level and some time at the second
lowest as indicated by the dashed lines.

applied to the cycles to calculate the expected frequencies for
the given number of AVX2/AVX-512 cycles at the different
turbo levels. For each turbo level, the scheduler also calculates
f (0,0) as the ideal frequency for non-AVX tasks and f (r1,0)
as the ideal frequency for AVX2 tasks.1

The expected frequencies at the different turbo levels can
then be compared to the measured actual frequency to deter-
mine the turbo level of the CPU, and that turbo level is used
to determine the ideal frequency for the current task. If, as
mentioned above, the measured frequency matches neither
of the expected frequencies, linear interpolation is applied to
determine the ideal frequency. The resulting ideal frequency
can then be inserted into equation (1) to obtain the scaling
factor for the task’s CPU time.

6 Implementation

We base the implementation of our design on the MuQSS
scheduler [16], modified to use the scheduling policy of the
CFS scheduler for enhanced fairness. We initially intended to
use the CFS scheduler [20] as it provides particularly strict
fairness for non-AVX workloads. While we show that the
main scheduling policy of CFS is well-suited to our design,
the implementation of CFS is not.

CFS measures the accumulated virtual runtime of each
task, which is the actual CPU time multiplied by a priority
factor [20]. The runqueue is sorted by the virtual runtime of

1These calculations can be performed once at startup.

USENIX Association 2021 USENIX Annual Technical Conference 749

the tasks, and the scheduler always schedules the task with
the lowest virtual runtime to ensure that all tasks are given an
equal share of the CPU time. Changes to the virtual runtime
as described above therefore cause preferential scheduling of
victim tasks which counteracts the unfairness caused by AVX
frequency reduction.

Our design, however, is incompatible with the current im-
plementation of CFS. CFS maintains one separate runqueue
per logical CPU, so any frequency reduction compensation for
victim tasks only changes their priority within the runqueue
of their current logical CPU. If, for example, one hyper-thread
only executes AVX2/AVX-512 tasks, whereas the other only
executes non-AVX tasks, the latter tasks only compete against
each other during scheduling and there is no preferential treat-
ment compared to the AVX2/AVX-512 tasks.

Frequent load balancing might improve the fairness in such
a situation if an idle or more lightly loaded CPU would fetch
and execute victim tasks first. In CFS, however, different cores
can have different virtual runtime ranges and virtual runtimes
are normalized during load balancing, so the virtual runtime
advantage gained by victim tasks is often lost if tasks are
migrated to a different logical CPU.

Rewriting CFS so that runtimes of tasks from different log-
ical CPUs are comparable and introducing fast load balancing
based on these runtimes is likely possible without introducing
much overhead. However, we deemed the task too complex
for our limited resources, so we based our implementation
on the simpler MuQSS scheduler [16] which is a scheduler
for Linux based on virtual deadlines. MuQSS differs from
CFS in that it performs load balancing as part of the main
scheduler function so that logical CPUs very frequently try to
fetch tasks from other more heavily loaded CPUs.

Our tests, however, showed that MuQSS is often less fair
than CFS even when no AVX2/AVX-512 is involved. We
therefore replaced the deadline-based scheduling policy of
MuQSS with the CPU-time-based policy of CFS, resulting in
a hybrid of CFS scheduling policy and MuQSS load balanc-
ing. We then extended the policy with frequency reduction
compensation as described in the previous sections. Unlike
CFS, we do not perform full renormalization of the virtual
runtime of tasks during load balancing. Instead, when a CPU
selects a task from a different CPU, we simply limit the virtual
runtime advantage the incoming task can have compared to
the CPU’s current lowest virtual runtime to prevent starvation
of other tasks.

7 Evaluation

We evaluate our prototype to show to which degree our de-
sign can improve fairness and to determine the limitations
of the design. The evaluation is conducted on a system with
an Intel Xeon Gold 6130 CPU, 24 GiB of 2666 MHz DDR4
RAM, the Fedora 31 operating system, and the Linux 5.9 ker-
nel (with the CFS scheduler or with our modified scheduler

based on MuQSS). As benchmarks for our evaluation, we use
the nginx web server, most benchmarks from the Parsec 3.0
benchmark suite2, as well as the Linux kernel build bench-
mark from the Phoronix Test Suite 9.0.1 (called “kernel-build”
below). These benchmarks serve as potential victim tasks for
frequency reduction compensation. In our experiments, the
background application responsible for AVX frequency re-
duction is the x265 video encoder as it provides support for
AVX-512 [29]. As described in Section 4.1, we did not im-
plement our mechanism for CPU feature detection as part
of our prototype as it would have made comparisons to an
unmodified kernel much more difficult. Instead, we patch
x265 to assume that AVX-512 is always available. All experi-
ments are repeated ten times. MuQSS can be configured to
share runqueues between multiple logical CPUs, and we se-
lected runqueue sharing between hyper-thread siblings as we
expected this setting to further help with the load-balancing
issues described in the last section. As we show in Section 7.4,
however, this setting does not seem to have much impact on
the results.

7.1 Fairness
The main goal of our scheduler is to improve the fairness in a
system where some tasks cause AVX frequency reduction and
the performance of other tasks is affected. Fairness, in this
case, means that equal CPU performance is available to the in-
dividual tasks. It is difficult to measure such fairness directly.
Simply measuring the completion time of two applications
when executing individually and then measuring the comple-
tion time of each application while both are executed at the
same time does not yield the expected results. In particular, in
a system with hyper-threading, two hyper-threads share CPU
resources, and different applications may suffer differently
from contention on these shared resources. An application
with a large degree of instruction-level parallelism (ILP) may
be able to utilize all available CPU resources when executed
in isolation, but not when executed in parallel with a second
application, whereas an application with little ILP may not be
affected as much by other applications if the CPU resources
are shared in a fair fashion. This and similar effects make it
difficult to measure the unfairness caused by AVX frequency
reduction.

We therefore choose a different, more indirect approach.
Our experimental setup consists of two applications, a non-
AVX foreground application of which we measure the com-
pletion time3, and a background application (the x265 video
encoder as described above) which can be configured to use

2We excluded raytrace as it failed to finish even on a system with CFS
and x264 as it showed too much variation in all experiments to provide
meaningful results.

3Note that to generate HTTP requests for nginx we use the wrk2 bench-
mark client which has a constant benchmark duration. For the nginx bench-
mark, we therefore substitute the completion time with the inverse of the web
server throughput (i.e., the time required per HTTP request).

750 2021 USENIX Annual Technical Conference USENIX Association

Normalized throughput (inverse to completion time)
0.5 1

0.5+ 0.5
slowdownbase

bg (non-AVX) fg

bg (AVX-512) fg

bg (AVX-512) fg

Baseline

Prototype with
compensation

Unfairness = foreground completion time
ratio (“slowdownbase”)

Ideally, fg gets 50% of the performance re-
maining at reduced frequency

Figure 3: To calculate the fairness achieved by our prototype, we have to take into account that less overall CPU performance is
available due to AVX-induced frequency reduction. Each application is supposed to be allocated half of that reduced performance.

either AVX, AVX2, or AVX-512 instructions. We start four in-
stances of x265 with 8 threads each as otherwise x265 would
not be able to utilize all available logical CPUs. Note that
the completion time of x265 does not change much for the
different instruction sets and that AVX, AVX2, and AVX-512
instructions are executed on the same functional units of the
CPU core. Therefore, we avoid the problems described above
and completion time differences for the foreground applica-
tion should be representative of the AVX frequency reduction.

In a first experiment, which we call the baseline experiment,
we execute the applications using our modified scheduler but
without all code for frequency reduction compensation. 4

We calculate the slowdown due to reduced frequencies as
the completion time of the foreground application when the
background application uses AVX2/AVX-512 divided by the
completion time when the background application only uses
AVX which does reduce the CPU frequency:

slowdownbase,AVX-512 =
tbase,AVX-512

tbase,AVX
(5)

slowdownbase,AVX2 =
tbase,AVX2

tbase,AVX
(6)

In this experiment, the slowdown provides a good metric for
unfairness as no slowdown (slowdownbase = 1) means that
the foreground application received the same share of CPU
throughput irrespective of the choice of instructions:

unfairnessbase = slowdownbase −1 (7)

We then repeat identical completion time measurements in
a prototype experiment where we include frequency reduction
compensation. As Figure 3 shows, in this case calculating the
unfairness is slightly more complex. In a completely fair situ-
ation, both x265 and the foreground application would receive
50% of the CPU performance. However, overall CPU perfor-
mance is reduced when x265 uses AVX2 or AVX-512, so 50%

4We did not compare our prototype to CFS directly as we wanted to
isolate the impact of frequency reduction compensation. Related work shows
that CFS does not prevent AVX2/AVX-512 tasks from slowing other tasks
down [10], either, which violates the fairness definition used by this paper.

of this reduced performance are less than 50% of the CPU
performance without any frequency reduction. Consequently,
even with complete fairness, the foreground application still
runs somewhat slower if x265 reduces the CPU frequency.

As Figure 3 shows, a slowdown during the baseline ex-
periment of slowdownbase results in a remaining CPU perfor-
mance of perfcpu = 0.5+ 0.5/slowdownbase of the original
performance. We can use this information to calculate the
unfairness in the prototype experiment using the slowdown
in this experiment slowdownproto as well as slowdownbase. If
we, as in the baseline experiment, define the unfairness as the
ratio between the completion time of the background appli-
cation and the foreground application and then substitute the
time with the inverse of the throughput, we get the following
formula:

unfairnessproto =
tpbg

tpfg
−1 =

perfcpu − tpfg

tpfg
−1 (8)

As shown in Figure 3 the throughput of the foreground appli-
cation is tpfg = 0.5/slowdownproto. Inserting into equation (8)
and simplifying yields the following formula which we use
in the next sections to calculate the remaining unfairness in
our prototype:

unfairnessproto = slowdownproto +
slowdownproto

slowdownbase
−2 (9)

7.1.1 Benchmark Results

Figure 4 shows the results of the experiments described above.
It can immediately be seen that our prototype greatly reduces
the unfairness between the two applications. Whereas the
baseline system shows an average unfairness of 7.9% for
AVX2 and 24.9% for AVX-512, these numbers are reduced
to 2.5% and 5.4% by our prototype, respectively.

Some benchmarks show substantially worse results than
others, though. In particular, the blackscholes and dedup
benchmarks show a high degree of unfairness even with our
prototype. An analysis of these benchmarks shows that the
benchmarks are not able to scale to all logical CPUs of the sys-
tem. The blackscholes benchmark, in particular, contains long

USENIX Association 2021 USENIX Annual Technical Conference 751

nginx

blackscholes
bodytrack ferret

fluidanimate
freqmine

canneal
swaptions vips

dedup
facesim

streamcluster

kernel-build

0

20

40
U

nf
ai

rn
es

s
(%

)

AVX2 – Baseline AVX2 – Prototype AVX-512 – Baseline AVX-512 – Prototype

Figure 4: Unfairness for applications executed alongside x265 – for most workloads, our scheduler greatly reduces the unfairness
between AVX2/AVX-512 applications and other applications executed in parallel. For AVX2, the unfairness was reduced from
7.9% (blue bars) to 2.5% (brown bars) on average, and for AVX-512 from 24.9% (yellow bars) to 5.4% (red bars).

serial phases where only one thread was active. In this case,
the baseline setup already allocates almost one full logical
CPU to the application. Therefore, our prototype is ineffective
as it is not able to provide much more CPU time due to the
lack of additional runnable threads.

This result also shows the main limitation of our approach.
While overall our prototype is able to greatly increase fairness,
the central mechanism – i.e., increasing the priority of victim
tasks – is only effective if an increased priority translates into
increased CPU time. This is not the case if an application
already receives as much CPU time as it can utilize. Similarly,
our approach also fails if victim application and AVX2/AVX-
512 application are restricted to non-overlapping sets of logi-
cal CPUs, for example, via non-overlapping affinity masks,
but effectively share physical cores via hyper-threading.

7.1.2 Synthetic Workload

Our methodology to measure the fairness for real-world ap-
plications relies on unusually complex indirect calculation
of the target metric. Although the results of our experiments
seem consistent, we therefore conduct an additional direct
measurement of the fairness in a purely synthetic workload.
For this experiment, our foreground application simply con-
sists of 32 threads which together execute a fixed amount
of 256-bit fused multiply-add (FMA) instructions requiring
AVX2 frequencies, whereas the background application simi-
larly executes a fixed amount of 512-bit FMA instructions at
AVX-512 frequencies. As the two applications use very simi-
lar CPU resources, the resource contention effects described
in Section 7.1 should affect both equally and should therefore
not influence the observed fairness.

We try to choose the number of instructions executed by the
two applications so that both require the same time if executed
in isolation. We then perform a direct measurement of the
fairness by comparing the completion time of the applications
when executed in parallel at the same time. After one of the
application finishes, we immediately start it a second time

ng
in

x

x2
65

-n
on

av
x

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k

fe
rr

et
flu

id
an

im
at

e
fr

eq
m

in
e

sw
ap

tio
ns

st
re

am
cl

us
te

r

vi
ps

de
du

p
fa

ce
si

m

ke
rn

el
-b

ui
ld

x2
65

-a
vx

x2
65

-a
vx

2
x2

65
-a

vx
51

2

−5

0

5

C
om

pl
et

io
n

tim
e

di
ff

er
en

ce
(%

)

Figure 5: Our prototype causes almost no overhead when
compared to a scheduler without frequency reduction com-
pensation.

to prevent situations where only one application is running,
as it then receives substantially more CPU resources. The
increased throughput during that phase would mean that the
measured completion time difference would not be represen-
tative for the unfairness during parallel execution.

In this setup, equal completion times are an indicator that
both applications received equal shares of CPU performance.
Our prototype provides almost perfect fairness. Whereas on a
system without frequency reduction compensation the com-
pletion times differ by 19.2%, only a completion time differ-
ence of 0.5% remains in our prototype.

7.2 Overhead
While frequency reduction compensation can reduce the per-
formance impact of AVX2/AVX-512 tasks on other tasks, the
required modifications to the operating system can also cause
overhead. In particular, the modified scheduler algorithm is
executed many times per second on each core. The additional
code not only increases the time spent in the scheduler itself

752 2021 USENIX Annual Technical Conference USENIX Association

ng
in

x

x2
65

bl
ac

ks
ch

ol
es

de
du

p

fa
ce

si
m

flu
id

an
im

at
e

sw
ap

tio
ns

vi
ps

ke
rn

el
-b

ui
ld

0

0.5

1

1.5

C
om

pl
et

io
n

Ti
m

e
(n

or
m

al
iz

ed
to

C
FS

)

CFS
our scheduler

Figure 6: Our scheduler mostly provides competitive perfor-
mance compared to CFS.

but also the cache footprint of the scheduler. Furthermore, the
design triggers additional exceptions to detect 256-bit and
512-bit register accesses.

Most of the overhead, however, is only generated under
specific circumstances. For example, the frequency impact
of AVX2/AVX-512 is only calculated when the code detects
a reduced frequency level at some point during the last time
slice. The exceptions to detect AVX2 and AVX-512 tasks only
affect such tasks and are triggered at most once per scheduler
time slice.

To determine the overhead caused by our prototype, we
measure the completion time of a range of benchmarks when
executed in our prototype. We compare this time to the time
when the benchmarks are executed with the same scheduler
but without the code for frequency reduction compensation.
The benchmarks include the nginx, Parsec, and PTS bench-
marks used in Section 7.1 as well as the x265 video encoder
as an example of an application using AVX2 or AVX-512 in-
structions. Due to the large variance of the dedup benchmark,
we execute it 100 times to reduce the chance of misleading
results.

Figure 5 shows the results of this experiment. The highest
average overhead is measured for swaptions and amounted
to 1.82%. All other benchmarks show less overhead, with an
average overhead across all benchmarks of only 0.3%. We
expect this overhead to be acceptable in most scenarios. In
particular, the experiment shows that the additional excep-
tions to detect AVX2/AVX-512 code do not cause substantial
overhead, as can be seen by the low overhead for the AVX
benchmarks.

7.3 Comparison With CFS

In all experiments described above, the baseline for our
measurements is our own scheduler, with the code for fre-
quency reduction compensation removed at compile time.
Even though our scheduler implements the same basic algo-

rithm as CFS, it provides a radically different implementation
based on MuQSS. While MuQSS has been shown to provide
similar performance as CFS [17], the implementation differ-
ences would have likely had an impact on the behavior of
the benchmarks. Because we did not directly compare our
MuQSS-based prototype to CFS in the experiments above,
we show that the underlying scheduler – MuQSS modified
to use the CFS policy, but without frequency reduction com-
pensation – provides performance competitive to CFS. We
execute a subset of the benchmarks with these two schedulers
comparing the completion times.

Figure 6 shows the completion times of the benchmarks
when executed with our scheduler normalized to the com-
pletion times with CFS. For most benchmarks, our sched-
uler causes at most 17% overhead when compared with CFS.
This range matches the performance reported for unmodified
MuQSS [17]. We used perf to measure the instructions per
cycle (IPC) as an effort to determine the reason for the over-
head. Overall, the IPC differences were much smaller than the
overhead, with no clear correlation between the two, which
shows that ineffective caching due to the fast load balancing
required by our approach is not the main reason for the over-
head. Implementing a suitable load balancing mechanism in
other schedulers such as CFS is therefore unlikely to have
substantial negative impact.

7.4 Runqueue Sharing

As described in Section 6, our implementation relies either on
runqueues shared between multiple logical CPUs or on quick
load balancing as otherwise the scheduler would often not
have a choice between enough tasks to be able to effectively
implement prioritization of victim tasks. The MuQSS sched-
uler used as the basis for our implementation provides both
flexible runqueue sharing options as well as quick load bal-
ancing. As we want to determine whether shared runqueues
were required for our approach to be effective, we measure the
fairness for a subset of the benchmarks and with runqueues
shared between different numbers of logical CPUs. The re-
sults of this experiment are visualized in Figure 7a, where
we show the unfairness when AVX frequency compensation
is enabled. Note that sharing runqueues between cores in-
creases lock contention and potentially has a negative impact
on throughput, so we also measure the overhead compared
to a setup with runqueues shared between two logical CPUs.
The results of this experiment are shown in Figure 7b.

Counterintuitively, sharing runqueues beyond sibling hyper-
threads does not appear to have any beneficial impact on our
prototype, which shows that the load balancing mechanism of
our scheduler is able to provide all CPUs with enough choices
so that they are able to prioritize victim tasks. The runqueue
sharing options do result in slightly different throughput, how-
ever, with most benchmarks performing best if runqueues are
shared between two logical CPUs. We assume blackscholes

USENIX Association 2021 USENIX Annual Technical Conference 753

1 2 4 8 16 32
0

10

20
U

nf
ai

rn
es

s
(%

)

nginx blackscholes swaptions vips

Logical CPUs per runqueue

(a) Remaining unfairness due to AVX-512 frequency reduction
in our prototype (parallel execution with x265)

1 2 4 8 16 32

−10

0

10

O
ve

rh
ea

d
(%

)

nginx x265 blackscholes swaptions vips

Logical CPUs per runqueue

(b) Overhead for different runqueue sharing options compared to sharing
among two logical CPUs (without frequency reduction compensation)

Figure 7: Our scheduler can share runqueues between a flexible number of CPU cores. While sharing runqueues between sibling
hyper-threads – i.e., between two logical CPUs – provided the highest performance for most workloads, other configurations
caused additional overhead and did not provide improved fairness.

benefits from improved cache efficiency when executed with-
out shared runqueues. Note that despite the potential for such
results the default option for MuQSS is to share one runqueue
among all multicore siblings (i.e., 32 logical CPUs on our
system).5

8 Fairness Criteria

Our evaluation shows that equal distribution of CPU time as
implemented by contemporary schedulers fails to achieve its
goal, which is to allocate equal CPU performance to indi-
vidual tasks to improve performance isolation. We therefore
propose AVX frequency compensation as a technique for
fairer distribution of performance. While equal performance
in terms of equal slowdown due to remote AVX overhead is
an intuitive fairness definition, it is by far not the only one.
We have identified two main dimensions spanning the design
space of such definitions.

First, while current schedulers build upon CPU time as
the main metric for fairness and we base our approach on
a notion of CPU throughput, other metrics may be viable.
One alternative would be to base scheduling on energy as a
first-class operating system resource as suggested by related
work [22,26,31]. Similar to our approach, such designs could
penalize applications using power-intensive instructions such
as AVX2 or AVX-512. While energy-based scheduling can
therefore likely also solve the problem covered by this paper,
it is not viable on current hardware. The CPU power model
used by existing approaches either does not differentiate be-
tween executed instructions [22, 31] or uses the performance
monitoring unit and requires a careful choice of performance
events from which the energy can derived with sufficient
accuracy [24]. Current CPUs, however, do not provide any

5https://github.com/ckolivas/linux/blob/5.9-muqss/kernel/
Kconfig.MuQSS#L3

sufficiently specific performance events for the relevant set
of AVX2 and AVX-512 instructions [3, p. 19-3ff].6 If future
hardware provides a reliable method to estimate energy us-
age of individual logical CPUs, energy-based scheduling may
prove to be a more effective solution than our approach.

Second, the effects of CPU power management can be com-
pensated to different degrees, ranging from no compensation
at all as implemented by most current operating systems to full
compensation where only power-intensive tasks are affected
by frequency reduction overhead. The latter provides a degree
of performance isolation that is often desired in multi-tenant
systems where customers pay for specific CPU performance.
However, it also actively penalizes use of accelerators or sim-
ilar specialized hardware, even though such code is often
more energy-efficient due to the resulting speedup [6]. Our
approach implements a compromise between performance
isolation and incentives to use energy-efficient accelerators:
Our definition of fair distribution of CPU performance means
that the frequency reduction overhead is equally shared by
low-power tasks as well as the high-power tasks which caused
the overhead. In the future, we envision metadata such as the
CPU quota information provided by Linux cgroups to be
used to choose the appropriate type of frequency reduction
compensation on a task-by-task basis.

As part of such a more flexible approach, our scheduler can
easily be modified to support different degrees of performance
isolation. As a possible variant, we changed our scheduler
to not only reduce the CPU time credited to the victim task
according to the frequency reduction but to also add an iden-
tical amount to the CPU time credited to the last AVX2 or
AVX-512 task executed on the physical core. Whereas the
original scheduler only reduced the performance impact on
non-AVX tasks by a third during the benchmarks described

6While the CPUs provide performance events for floating point
AVX2/AVX-512 instructions, other instructions are not covered.

754 2021 USENIX Annual Technical Conference USENIX Association

https://github.com/ckolivas/linux/blob/5.9-muqss/kernel/Kconfig.MuQSS#L3
https://github.com/ckolivas/linux/blob/5.9-muqss/kernel/Kconfig.MuQSS#L3

above, this modification foregoes fairness and allocates more
CPU time to victim processes, thereby achieving an average
reduction by 70%, with many benchmarks experiencing a far
lower performance impact.

9 Limitations

Our evaluation demonstrates that our scheduler modifica-
tions greatly improve fairness for workloads consisting of
AVX2/AVX-512 tasks and non-AVX tasks. For many of the
scenarios we test, our prototype achieves 10 times better fair-
ness than a scheduler without frequency reduction compensa-
tion. This improvement comes at near-zero cost: As we show,
frequency reduction compensation has almost no overhead,
and it only contributes 329 additional lines of code to our
prototype. While our design therefore provides a practical
solution as-is, with substantial improvements over existing
schedulers, it has a number of limitations, some of which are
caused by limitations of the underlying hardware. We dis-
cuss these limitations below and sketch improvements of the
design where applicable.

9.1 Detection of AVX2 and AVX-512
As our design tries to increase the CPU time share of tasks
which suffer from AVX frequency reduction even though they
do not have to be executed at reduced frequencies, correct
attribution of reduced frequencies to AVX2/AVX-512 tasks
is a central part of our design. We use and extend an existing
approach [10] where the CPU is configured to trigger an
exception when 256-bit and 512-bit registers are accessed.
This simple policy does not match the actual conditions for
reduced frequencies which are substantially more complex [5,
18]. Often, usage of 256-bit and 512-bit registers is detected
even though a task does not actually require the respective
AVX2 and AVX-512 frequency levels. Yet, our prototype
assumes that a lower frequency level is required whenever a
task accesses the corresponding registers.

If, for example, a task executes light AVX-512 instructions,
our prototype never applies any compensation even if the
task could be executed at AVX2 frequencies as shown in Sec-
tion 2. Similarly, for tasks with light AVX2 instructions which
are able to execute at non-AVX frequencies, our prototype
only compensates the difference between AVX2 and AVX-
512 frequencies. To the best of our knowledge, there is no
better hardware interface available to detect power-intensive
AVX2/AVX-512 code sections. In our case, however, it is
important to note that the mechanism does not cause any false
negatives and therefore results in a conservative implemen-
tation where applications are never unfairly rewarded for a
frequency reduction they caused themselves.

In the future, an improved software mechanism to detect
AVX2/AVX-512 code may improve accuracy. For example,
the operating system could scan executable pages for 256-bit

and 512-bit operations and categorize them. Then, instead
of the current register-based mechanism, the OS could se-
lectively unmap all pages containing instructions which may
cause a transition to AVX2/AVX-512 frequencies to detect
AVX2/AVX-512 tasks via page faults.

9.2 Memory-Bound Processes

As described in Section 5, our prototype currently assumes
that performance is proportional to CPU frequency when de-
riving the performance impact from the calculated frequency
reduction. This is an assumption that is found in related work
as well [12]. The assumption is incorrect for memory-bound
tasks, however. Memory latency does not increase when the
CPU frequency is reduced, so memory-heavy applications suf-
fer less from reduced frequencies [13]. Unequal performance
impact due to different sensitivity to frequency changes has
been identified as a challenge for fair scheduling [14].

In our case, the result is that memory-bound tasks may be
given more than their fair share of the system’s performance if
frequency reduction compensation is applied. Consequently,
the negative impact on the AVX2/AVX-512 tasks causing the
frequency reduction is increased, as they in turn are allocated
less than their fair share of CPU performance. This negative
impact, however, is bounded: The AVX2/AVX-512 tasks al-
ways receive at least as much CPU performance as they would
if all other tasks were completely CPU-bound.

In the future, our design could be extended with a more
accurate performance model which takes memory accesses
into account, similar to DTS [14] which has shown that bet-
ter DVFS performance models can greatly increase fairness.
Many such models have been described in the literature [21].
It has been shown that often very few performance coun-
ters suffice to characterize the workload and to predict per-
formance at other CPU frequencies [25, 27]. As described
in Section 5, our current technique to determine the perfor-
mance impact requires at least two of the four configurable
performance counters of each logical CPU (one for AVX-512
and one for AVX2 frequency level cycles) as well as a fixed-
function CPU cycle counter.7 The two remaining configurable
counters can be used to determine how memory-heavy the
workload is and to implement a better performance model.

10 Related Work

To the best of our knowledge, our approach is the first fair
scheduler for workloads involving AVX2 and AVX-512 tasks.
However, there have been scheduling algorithms for software-
controlled DVFS and there have been other techniques to
mitigate the performance impact caused by AVX frequency

7Currently, the prototype uses three configurable performance counters.
The third counter is used to determine the total number of elapsed CPU cycles
and can be replaced with a fixed-function counter.

USENIX Association 2021 USENIX Annual Technical Conference 755

reduction. In the following section, we describe the corre-
sponding related work and lay out the differences to our ap-
proach.

10.1 Fair Scheduling and DVFS
Existing work on fair schedulers for systems with DVFS has
focused on software-controlled DVFS where the operating
system chooses the CPU frequency. Two main issues affecting
fairness arise from such DVFS:

1. CPU quotas are commonly expressed in terms of CPU
time, and a fixed CPU time quota translates into less
performance when the system is running at a reduced
frequency. Hagimont et al. [12] discuss the interaction
between load-based CPU frequency selection and fixed
and flexible CPU time quotas. Whereas fixed CPU time
quotas result in reduced fairness and insufficient CPU
throughput, flexible CPU time quotas commonly prevent
any frequency reduction.

Hypervisors often implement CPU time quotas in the
form of credit schedulers. To solve the problems stem-
ming from DVFS, the time per credit can be scaled by
the CPU frequency and frequency selection can be modi-
fied to take flexible CPU quotas into account [12]. In this
work, we use a similar approach where we implement
scaling within CPU time accounting. Our work differs,
though, in that we focus on hardware-controlled DVFS
and on unfairness problems where one task reduces the
CPU frequency experienced by another task. This sce-
nario requires different techniques to identify the tasks
affected by unfair scheduling and to determine the scale
of the resulting performance impact.

In Section 8, we discussed that CPU time is not the
only possible metric for scheduling. Credit schedulers
in particular have been modified to scale the time per
credit based on power consumption [30]. While such
policies could improve fairness in workloads with AVX2
and AVX-512, the required fine-grained accurate power
models cannot be constructed on current hardware for
the reasons outlined above.

2. Programs suffer from the same frequency reduction to
different degrees depending on how memory-heavy the
programs are. Jia et al. [14] show how this affects fair-
ness when the operating system reduces the CPU fre-
quency. They suggest dynamic time-slice scaling (DTS)
to achieve level performance, where the operating system
determines the performance impact of DVFS on applica-
tions and scales time-slices accordingly. Our work solves
a different problem – unfairness caused by hardware-
controlled DVFS – yet uses a very similar mechanism.
Instead of time-slice scaling, we modify CPU time ac-
counting as it requires fewer modifications to the CFS

scheduling algorithm. In general, we argue, though, that
the approach of DTS is orthogonal to our design. As
we describe in Section 9.2, we currently assume that all
tasks are affected equally by frequency reduction, so esti-
mates of the actual performance impact as conducted by
DTS can further improve the fairness of our approach.

10.2 Core Specialization

In this work, we describe a scheduler which compensates
AVX frequency reduction to improve fairness. An alterna-
tive approach would be to prevent AVX frequency reduction
whenever possible, as less AVX frequency reduction might
also lead to improved fairness. One such technique to prevent
AVX frequency reduction is to use core scheduling to limit co-
scheduling of AVX-512 and non-AVX-512 tasks [19]. Simi-
larly, core specialization [10] restricts scheduling of AVX-512
tasks to a subset of the system’s CPU cores. While, in contrast
to our approach, both techniques can potentially improve over-
all system throughput if they achieve higher average CPU fre-
quencies, they have the potential to cause substantial overhead.
Core scheduling leaves hyper-threads idle if necessary [19],
which may cause reduced utilization of CPU resources. Simi-
larly, an earlier version of core specialization was shown to
cause substantial overhead when tasks frequently had to be
migrated between cores [9]. We present an approach that is
far less intrusive and has less potential to cause overhead. We
therefore believe that our approach is applicable to a wider
range of situations.

11 Conclusion

When power-intensive instructions are executed, power-
limited CPUs may have to temporarily reduce their frequency
to prevent excessive power consumption. Often, this fre-
quency reduction also affects tasks that do not execute such
power-intensive instructions. Therefore, as we demonstrate,
these systems require new approaches to fair scheduling.

Recent Intel CPUs with support for AVX2 and AVX-512
show such behavior, and in this work we describe a technique
to identify victim tasks whose performance is affected by
other AVX2/AVX-512 tasks. We describe a modification to
CPU time accounting where the CPU time credited to these
victim tasks is scaled according to the frequency reduction
experienced by the tasks. The change causes fair schedulers
based on CPU time to prioritize the tasks to the degree where
they receive their fair share of CPU performance again. Our
prototype is able to reduce the unfairness from 7.9% to 2.5%
on average for workloads involving AVX2 applications and
from 24.9% to 5.4% for AVX-512.

756 2021 USENIX Annual Technical Conference USENIX Association

References

[1] Intel® Turbo Boost Technology in Intel® Core™ Mi-
croarchitecture (Nehalem) Based Processors. Technical
report, 11 2008.

[2] Intel® 64 and IA-32 Architectures Software Developer’s
Manual - Volume 1: Basic Architecture, May 2018.

[3] Intel® 64 and IA-32 Architectures Software Developer’s
Manual - Volume 3 (3A, 3B, 3C & 3D): System Program-
ming Guide, May 2018.

[4] Intel® Xeon® Processor Scalable Family – Specifica-
tion Update. Intel Corporation, February 2018.

[5] Intel® 64 and IA-32 Architectures Optimization Refer-
ence Manual, September 2019.

[6] Juan M. Cebrian, Lasse Natvig, and Magnus Jahre. Scal-
ability analysis of avx-512 extensions. The Journal of
Supercomputing, pages 1–16, 2019.

[7] Edward G. Coffman, Jr. and Leonard Kleinrock. Com-
puter scheduling methods and their countermeasures. In
Proceedings of the April 30–May 2, 1968, spring joint
computer conference (AFIPS ’68 (Spring)), pages 11–
21, 1968.

[8] Travis Downs. Gathering intel on Intel AVX-
512 transitions, January 17 2020. https:
//travisdowns.github.io/blog/2020/01/17/
avxfreq1.html.

[9] Mathias Gottschlag and Frank Bellosa. Reducing AVX-
induced frequency variation with core specialization.
In The 9th Workshop on Systems for Multi-core and
Heterogeneous Architectures, 2019.

[10] Mathias Gottschlag, Peter Brantsch, and Frank Bellosa.
Automatic core specialization for AVX-512 applications.
In Proceedings of the 13th ACM International Systems
and Storage Conference, pages 25–35, 2020.

[11] Mathias Gottschlag, Tim Schmidt, and Frank Bellosa.
AVX overhead profiling: How much does your fast code
slow you down? In Proceedings of the 11th ACM
SIGOPS Asia-Pacific Workshop on Systems, pages 59–
66, 2020.

[12] Daniel Hagimont, Christine Mayap Kamga, Laurent
Broto, Alain Tchana, and Noel De Palma. DVFS aware
CPU credit enforcement in a virtualized system. In
ACM/IFIP/USENIX International Conference on Dis-
tributed Systems Platforms and Open Distributed Pro-
cessing, pages 123–142. Springer, 2013.

[13] Ranjan Hebbar S R and Aleksandar Milenković. Impact
of thread and frequency scaling on performance and
energy efficiency: An evaluation of Core i7-8700K using
SPEC CPU2017. In 2019 SoutheastCon, pages 1–7.
IEEE, 2019.

[14] Gangyong Jia, Xuhong Gao, Xi Li, Chao Wang, and
Xuehai Zhou. DTS: Using dynamic time-slice scaling
to address the OS problem incurred by DVFS. In 2012
IEEE International Conference on Cluster Computing
Workshops, pages 65–72. IEEE, 2012.

[15] Judy Kay and Piers Lauder. A fair share scheduler.
Communications of the ACM, 31(1):44–55, 1988.

[16] Con Kolivas. MuQSS - the multiple queue
skiplist scheduler. http://ck.kolivas.org/patches/
muqss/sched-MuQSS.txt.

[17] Con Kolivas. First MuQSS throughput
benchmarks, October 18 2016. http://ck-
hack.blogspot.com/2016/10/first-muqss-
throughput-benchmarks.html.

[18] Daniel Lemire. AVX-512 throttling: heavy instruc-
tions are maybe not so dangerous, August 25, 2018.
https://lemire.me/blog/2018/08/25/avx-512-
throttling-heavy-instructions-are-maybe-
not-so-dangerous/.

[19] Aubrey Li. Core scheduling: prevent fast instructions
from slowing you down. Linux Plumbers Conference,
September 9 2019.

[20] Ingo Molnar. Modular scheduler core and completely
fair scheduler [CFS]. Linux-Kernel mailing list, 2007.

[21] Barry Rountree, David K. Lowenthal, Martin Schulz,
and Bronis R. de Supinski. Practical performance pre-
diction under dynamic voltage frequency scaling. In
2011 International Green Computing Conference and
Workshops, pages 1–8. IEEE, 2011.

[22] Arjun Roy, Stephen M. Rumble, Ryan Stutsman, Philip
Levis, David Mazieres, and Nickolai Zeldovich. Energy
management in mobile devices with the Cinder operat-
ing system. In Proceedings of the sixth conference on
Computer systems, pages 139–152, 2011.

[23] Robert Schöne, Thomas Ilsche, Mario Bielert, Andreas
Gocht, and Daniel Hackenberg. Energy efficiency fea-
tures of the Intel Skylake-SP processor and their impact
on performance. In 2019 International Conference on
High Performance Computing & Simulation (HPCS),
pages 399–406. IEEE, 2019.

[24] Arsalan Shahid, Muhammad Fahad, Ravi Reddy Manu-
machu, and Alexey Lastovetsky. A comparative study of

USENIX Association 2021 USENIX Annual Technical Conference 757

https://travisdowns.github.io/blog/2020/01/17/avxfreq1.html
https://travisdowns.github.io/blog/2020/01/17/avxfreq1.html
https://travisdowns.github.io/blog/2020/01/17/avxfreq1.html
http://ck.kolivas.org/patches/muqss/sched-MuQSS.txt
http://ck.kolivas.org/patches/muqss/sched-MuQSS.txt
http://ck-hack.blogspot.com/2016/10/first-muqss-throughput-benchmarks.html
http://ck-hack.blogspot.com/2016/10/first-muqss-throughput-benchmarks.html
http://ck-hack.blogspot.com/2016/10/first-muqss-throughput-benchmarks.html
https://lemire.me/blog/2018/08/25/avx-512-throttling-heavy-instructions-are-maybe-not-so-dangerous/
https://lemire.me/blog/2018/08/25/avx-512-throttling-heavy-instructions-are-maybe-not-so-dangerous/
https://lemire.me/blog/2018/08/25/avx-512-throttling-heavy-instructions-are-maybe-not-so-dangerous/

techniques for energy predictive modeling using perfor-
mance monitoring counters on modern multicore CPUs.
IEEE Access, 8:143306–143332, 2020.

[25] Vasileios Spiliopoulos, Stefanos Kaxiras, and Georgios
Keramidas. Green governors: A framework for continu-
ously adaptive dvfs. In 2011 International Green Com-
puting Conference and Workshops, pages 1–8. IEEE,
2011.

[26] Jan Stoess, Christian Lang, and Frank Bellosa. Energy
management for hypervisor-based virtual machines. In
2007 USENIX Annual Technical Conference (USENIX
ATC’07), pages 1–14, 2007.

[27] Bo Su, Joseph L Greathouse, Junli Gu, Michael Boyer,
Li Shen, and Zhiying Wang. Implementing a lead-
ing loads performance predictor on commodity proces-
sors. In 2014 USENIX Annual Technical Conference
(USENIX ATC’14), 2014.

[28] Michael B. Taylor. Is dark silicon useful? harnessing the
four horsemen of the coming dark silicon apocalypse. In
49th ACM/EDAC/IEEE Design Automation Conference,
pages 1131–1136. IEEE, 2012.

[29] Praveen Kumar Tiwari, Vignesh V Menon, Jayashri
Murugan, Jayashree Chandrasekaran, Gopi Satykr-
ishna Akisetty, Pradeep Ramachandran, Sravanthi Kota
Venkata, Christopher A Bird, and Kevin Cone. Accel-
erating x265 with Intel® Advanced Vector Extensions
512. Technical report, Intel, 05 2018.

[30] Chengjian Wen, Jun He, Jiong Zhang, and Xiang
Long. Pcfs: A power credit based fair scheduler under
DVFS for multi-core virtualization platform. In 2010
IEEE/ACM Int’l Conference on Green Computing and
Communications & Int’l Conference on Cyber, Physical
and Social Computing, pages 163–170. IEEE, 2010.

[31] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin
Vahdat. ECOSystem: Managing energy as a first class
operating system resource. ACM SIGOPS operating
systems review, 36(5):123–132, 2002.

758 2021 USENIX Annual Technical Conference USENIX Association

	Introduction
	AVX Frequency Reduction
	Frequency Reduction Compensation
	Attribution of Frequency Changes
	CPU Feature Detection

	Calculation of the Performance Impact
	Implementation
	Evaluation
	Fairness
	Benchmark Results
	Synthetic Workload

	Overhead
	Comparison With CFS
	Runqueue Sharing

	Fairness Criteria
	Limitations
	Detection of AVX2 and AVX-512
	Memory-Bound Processes

	Related Work
	Fair Scheduling and DVFS
	Core Specialization

	Conclusion

