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Abstract

Intel Optane DC Persistent Memory provides high density, byte-addressable main
memory with larger capacity and slightly lower bandwidth and speed than DRAM.
To utilize this larger quantity of slower main memory easily, Intel’s hardware pro-
vides the so-called Memory Mode, which uses DRAM as a cache for the persistent
memory. [23[] [19]

This work aims to determine the cache organization of the Memory Mode, by
designing and using a series of benchmarks, and aims to reimplement a software
variant of the Memory Mode through a user space library to provide a more flexi-
ble and transparent alternative to the Memory Mode.
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Chapter 1

Introduction

Intel and Micron have recently released a new type of non-volatile main mem-
ory called 3D XPoint (read CrossPoint). The underlying technology seems to be
phase change memory (PCM) [24]. With this PCM technology, Intel and Micron
can produce non-volatile, byte-addressable main memory. Compared to Dynamic
Random Access Memory (DRAM), it is cheaper and denser, but a bit slower.
More specifically, it has higher read latency, similar write latency, and much lower
write bandwidth. This can be seen in Table[I.T| and Figure [I.T] respectively. Intel
markets this new technology under the name Intel Optane DC Persistent Mem-
ory [9]. As this new memory is cheaper and denser than DRAM, it allows us to
get larger amounts of main memory than before. This can be especially useful
for in-memory databases, which need enormous amounts of main memory (as the
entire data resides in main memory).

For the remainder of this work, Intel Optane DC Persistent Memory shall be
called NVM, short for non-volatile memory.

Intel’s NVM is designed to work together with DRAM in a system. It has
two main operating modes: App Direct Mode and Memory Mode. In App Direct
Mode, both the NVM and the DRAM are visible to the processes running on the
system. The DRAM is the main memory, while the NVM is byte-addressable
storage in this configuration. In Memory Mode on the other hand, both NVM and
DRAM together form the main memory. The DRAM is a transparent cache for
the larger and slower NVM. The cache is managed by the memory controller, and
the total capacity is equal to the capacity of the NVM. Both of these modes are
explained in much more detail in the background Section [2.1] [10]

Intel provides this Memory Mode to allow programs to immediately start us-
ing the new NVM without any adaptation. Nevertheless, those programs could
increase their performance if they were adapted to better work with the specific
cache organization the Memory Mode has. Since Intel has so far not released how
the cache works internally, we tried to build a series of benchmarks to experimen-
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Figure 1.1: Comparison of read and write bandwidths between local and remote
DRAM, and NVDIMMs. [23]]

tally determine the information ourselves. This was met with mixed success. We
also tried to develop our own software implementation of the Memory Mode, that
is more transparent and adaptable than the Memory Mode. Our software imple-
mentation is still work in progress, and is not yet ready to replace the Memory
Mode, although results show that it could at some point in the future. This could
provide an alternative to software developers who do not wish to adapt their soft-
ware to use the App Direct Mode, but would still like to adapt their program to

the Memory Mode.
Technolo Random Read | Random Write | Largest DIMM Price of
&y Latency Latency available 128 GB DIMM
DRAM 81 ns 86 ns 128 GB 1.350%
NVDIMM 305 ns 94 ns 512 GB 850%

Table 1.1: A comparison of the volatile DRAM and the non-volatile PCM mem-
ory technologies. Write latencies are close, but the real difference is the write
bandwidth as can be seen in Figure|l.1|Latency from [23], availability and prices

from [19]] and |

1]




Chapter 2

Background

This sections explains some of the technology and methods used in this work.

2.1 Intel Optane DC Persistent Memory (NVM)

Intel Optane DC Persistent Memory is a new type of non-volatile main memory
developed by Intel and Micron. This means it is byte-addressable, and data will
not be lost if the power is cut. This is in contrast to DRAM, which needs a steady
supply of power to retain any data [21]]. Since this NVM is denser and cheaper
than DRAM, but also a bit slower as shown in Table it can be placed between
DRAM and traditional persistent storage, such as SSDs and HDDs, on the mem-
ory hierarchy [15]. The NVM can be used in two main modes of operation, the
Memory Mode and the App Direct Mode. The next two sections will describe
these two modes.

2.1.1 App Direct Mode

In this mode, the NVM and the DRAM are visible in the system. The DRAM
is used as standard main memory. The NVM on the other hand can be set up in
different ways. The NVM is divided into regions according to the physical layout
of the memory. One region is generally a physically contiguous span of NVM
[17], such as the NVM belonging to one NUMA node. This NVM can then be
further divided into namespaces, which can operate in four different modes [|17]]:

fsdax This option creates a block device out of the namespace with the DAX (see
section2.1.3)) file system capability. This device is then accessible in the
/dev/ directory, and a file system can be created on it. This is the default.

devdax This mode provides a single character device file, also under /dev/.

5



6 CHAPTER 2. BACKGROUND

sector This is for legacy file systems and small boot devices.
raw This provides a simple memory disk without DAX capability.

During the reimplementation part of this work in Section [5] we use the f£sdax
mode.

2.1.2 Memory Mode

In this mode, the NVM and DRAM are no longer visible as individual entities, but
both together form the main memory of the system. The DRAM is used as a cache
to the slower and larger NVM. The main memory capacity is equal to the amount
of NVM installed on the system, making the DRAM completely transparent. The
memory controller takes care of the cache, so we do not know how this cache
works, which is one of the main subjects of this work. [|10]]

This mode is a lot easier to use than the App Direct mode, since you only need
to set the system to Memory Mode, and then you can use it the same way as any
other system without NVM.

2.1.3 Direct Access File Systems (DAX)

Direct Access (DAX) is a feature that has been added recently to some file sys-
tems, like ext 4 and xfs, to make better use of non-volatile main memory. Tradi-
tionally under Linux, reads and writes on open files are buffered in the page cache
in DRAM. When a process calls mmap to map parts of a file into its virtual address
space, the file is copied into the same page cache and that copy is then mapped into
the process’s virtual address space. When using a file system that supports DAX
and a file that is stored on non-volatile main memory, we do not need to copy the
file into the page cache. Instead, we can map the non-volatile main memory di-
rectly into the process’s virtual address space. We can then read and write directly
on the NVM, so we save the copy of the file into the page cache. [4]



Chapter 3

Related Work

Since most of the work presented in this section only covers one part of this work,
this section is divided into two parts. Each work is in the section it relates most
to.

3.1 Analysis

Researchers at the Non-Volatile Systems Laboratory at the University of Califor-
nia, San Diego have published a paper extensively analyzing the Memory Mode,
the App Direct mode, and applications designed for non-volatile main memory.
While they claim to know how the Memory Mode works, they are missing some
sources. This is one of the earlier works analyzing the Memory Mode. [23]].

X-Mem is a tool to measure the performance of main memory. It is described
and used in a paper by its authors, Mark Gottscho et al. In the paper, the tool is
used to infer CPU cache organization of cloud provider’s systems, where the exact
hardware is unknown. This is similar to our goal, where we are trying to gather
information about an unknown cache organization, although the Memory Mode’s
DRAM cache is much larger and necessitate different techniques [22]].

Andreas Abel wrote a master’s thesis in which they explore methods to de-
termine the CPU cache organization experimentally, most notably the cache size
and associativity. We attempt to determine those characteristics in the Memory
Mode. Their methods methods seem quite similar to the ones we use to determine
those characteristics, but differ a bit since they are designed for small CPU caches,
instead of the large cache of the Memory Mode. [[18]].

7
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3.2 Reimplementation

Xiangyao Yu et al. developed Banshee, a DRAM cache between in- and oft-
package DRAM. While they are not using persistent memory, they are still im-
plementing a cache in DRAM, which we will also be doing in Section [5| The
techniques described in their publication seem to be a bit more advanced than the
techniques used in our reimplementation, but they could be used if our reimple-
mentation is further developed in the future [26].



Chapter 4

Analysis

In this chapter, we will discuss the design, implementation and results of a series
of benchmarks designed to shed light on the inner workings of the Memory Mode.

4.1 Benchmark Design

In this section, we will talk about the design of the benchmarks. The goal of these
benchmarks is to determine the characteristics of the Memory Mode (e.g., cache
line size and prefetching behavior). These properties of the Memory Mode help
us better understand it, and implement our own version of the Memory Mode in
Section

4.1.1 Cache Size Test

The goal of this test is to determine the actual size of the DRAM cache. Of course,
the answer could be that the size of the DRAM cache is simply the amount of
DRAM installed on the system. It is also possible that the Memory Mode uses
some internal data structures to manage the cache, and that those data structures
are stored in the DRAM. This would mean that some part of the DRAM is not
available as cache, but is instead reserved.

Since our system is divided into two NUMA nodes, with each node having half
of the DRAM and NVM respectively, this test can also check if pinning a process
to the memory of a NUMA node also limits the amount of DRAM available as
cache to the Memory Mode. The assumption is that only the DRAM of the node
will be used, especially since we know only the NVM of the node will be used if
the process is restricted using cpusets

!One of the tests contained a bug and was killed due to the system being out of memory. The
OS killed the faulty test at about 255 GB of main memory usage, which is the amount of NVM on

9



10 CHAPTER 4. ANALYSIS

The idea behind this test is not too complicated: first, we get a large area of
memory. This area should be larger than the amount of DRAM available. We
then access this whole area sequentially, and then we measure the time it takes to
access a byte at the beginning of the area. If we can then see if this byte is still
cached or not, we may be able to get some information about the cache size, or
even the replacement strategy.

4.1.2 Cache Line Size Test

The goal of this test is to determine the granularity with which the Memory Mode
swaps memory in and out.

For this test, we need a large chunk of memory, that is larger than the amount
of DRAM available. Next, we clear the cache to create an area that we can execute
the test in. We then measure two memory accesses that are x bytes apart. The idea
behind this is that if x is larger than the granularity with which the Memory Mode
swaps memory in, then both the first and second access will be slow. If, on the
other hand, x is smaller than the granularity, the first access should be slow, while
the second is fast.

We can already make a few assumptions about x: x is most likely a power of 2,
and x is most likely not smaller than the L3 cache line size, which is 64 Bytes. We
can restrict testing accordingly, by only testing for cache line sizes that are either
2™ or 2" — 1, and larger than 64 Bytes. This cuts down the time the tests take a
lot, especially since we clear the cache once per x we test for.

4.1.3 Prefetch Test

The goal of this test is to gather information about any prefetching that the Mem-
ory Mode may do.

For this test, we need a large chunk of memory, that is larger than the amount
of DRAM available. We clear the cache and create a testing area. We then access
the memory with a certain stride sequentially. We chose 2" and 2" — 1 as possible
strides, up to 4096 Bytes, to cut down on run time and to only look at strides we
believe are interesting. When we measure the time of these accesses, and compare
it with the results from the cache line size test in Section#.1.2] we may be able to
see if an when prefetching happens, and if there are some boundaries over which
no prefetching can happerﬂ The comparison with the results from the cache line

one NUMA node (and half of the system total).

2The CPU cache prefetcher for example cannot prefetch across page boundaries, because it
only knows the physical memory, and two adjacent physical frames are not necessarily occupied
by adjacent pages.
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size test is necessary so that we do not mistake data that is always loaded together
(i.e., in the same cache line) for prefetching.

4.1.4 Associativity Test

The goal of this test is to determine if the cache is n-way set associative, direct
mapped, or fully associative.

For this test, we need an area of memory that is not in cache. To limit the
amount of variables this benchmark has to test for, it uses the cache line size from
Section [4.1.2] and the cache size from Section [4.1.1] If we know those variables,
we can calculate, for a given set associativity, how large a set would be, and how
far apart two memory lines belonging to the same set would be. Next, we access
exactly the memory belonging to a certain set. We then access more memory than
can fit into a set of the cache, but less than fits into all of the cache. Finally, we
measure how long it takes to access the first few elements that we accessed.

The assumption here is as follows: if we guessed the right level of set asso-
ciativity, the first entries will have been evicted from the cache, since the set was
not large enough to store all the memory we accessed. If we guessed wrong, the
memory we accessed would be cached in different sets, and since we accessed
less than the total cache available, it should all still be in the cache. If we then
look how fast those measured accesses are, we can determine if we guessed right
or wrong.

Similar tests exist for CPU caches, they are for example shown in [18]].

4.1.5 Writeback Test

The goal of this test is to analyze the write speed when using the Memory Mode
to get information about the writeback behavior i.e., whether it is write back or
write through.

For this test, we need once again a large chunk of memory, larger than the
amount of DRAM available. We then write to the memory every x bytes, and
measure the time it takes.

We are then looking if writes slow down at any point, or if they stay at a con-
stant speed throughout the whole test. If they drop off at some point, that may
be the because the Memory Mode needs to start writing back pages. If speed
stays constant, it may be because pages are write through, and data is immedi-
ately written to the NVM and DRAM. It may also be that pages are written back
asynchronously though, so further analysis may be required in that case.
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4.2 Implementation Details

4.2.1 Cache Clearing

For multiple tests, we need a tool that makes sure that a certain memory region is
currently not cached in DRAM.

The initial idea behind this tool was very simple: if you access enough mem-
ory, eventually something has to be evicted from the cache. In the first iteration,
it was simply a for-loop that ran sequentially over a large chunk of memory, writ-
ing a 1 every 64 Byteﬂ Imagine an example system with 64 GB of DRAM
(and a much larger amount of NVM), on which you then run this for-loop over
128GB. Our assumption is that the start of the 128 GB region is now no longer
in the DRAM cache, but instead resides in the NVM and has to be swapped in
if accessed. If this assumption holds, we can now run a test in the region at the
beginning of those 128 GB. Usually, this function is called between every test.

Since tests did not produce any useful results, we developed a more advanced
method. Because we executed all tests in the same region at the start of those
128 GB, we assumed that the Memory Mode may recognize this region as some
sort of a hot region that it tries to keep always cached, since there is a lot of activity
there. The next approach was to select a random region within the large chunk
of memory we use, that is large enough to execute the tests in it. This random
region is then accessed first, followed by the memory before the test region in a
descending manner, and the memory after the test region in an ascending manner.
This pattern was designed to prevent the Memory Mode from recognizing a hot
zone as above, as each test is executed in a random place, instead of the same
place. It may also throw off the prefetcher a bit more, since the accesses are
no longer strictly sequential and ascending, but rather ascending and descending
interleaved.

4.2.2 Measure Memory Access Time

Measuring the time it takes to access memory exactly is very important for this
kind of work, so this code will be described in a very detailed way. The code can
be seen in Listing [4.2.3] We start by explaining the different building blocks used
in the code:

e _ sync_synchronize (): This function issues a full memory barrier.
This prevents the compiler and the processor from moving memory instruc-
tions across it. [2]

3Since the CPU cache uses 64 Byte lines, it would not make much sense to write in shorter
intervals.
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e _mm_clflush(voidx ptr): This functioninvalidates and flushes the cache
line that contains pt r from all levels of the cache hierarchy. [7]

e _ rdtsc(): This function reads the processor’s time stamp counter and
returns it. [|8]]

Now, to explain the function itself: First, we flush the CPU cache lines that
contain the address in line 8. This is to prevent us from measuring an access to
the CPU cache instead of an access to DRAM or NVM, since we already know
how the CPU cache works. We then read the CPU’s time stamp counter in line 11.
In line 14, we copy the value at location address into a local variable, that exists
either in a register. Line 14 is also the main place where the code to measure a read
access differs: in that function, a value from a register is written to the location
address points to. Afterwards, we read the time stamp counter again. The code
in line 20-21 is there to prevent the compiler from removing the memory access in
line 14. This is done by returning the value retrieved from address in the dummy
buffer. Line 14 now has a purpose and can no longer be omitted by the compiler.
We then return the difference of the two time stamp counter values in line 23. The
__sync_synchronize calls prevent any reordering of the instructions, as we
need to ensure that the code is executed in exactly this order.

To ensure that everything is working correctly, we looked at the output of the
compiler using objdump. This was necessary to ensure that the compiler did not
remove or reorder any instruction that is crucial to the code.

4.2.3 Logging Tool

This tool is pretty straightforward: it takes the results of the benchmarks, usually
(address, time) pairs, and writes them to a file.

We then visualize the data using python and matplotlib, to get a better
understanding of the results we just produced. The simplest form of visualization
is to plot the access times against the addresses using dots or crosses in a scatter
plot. We also have some more complex features, like outlier elimination using the
z-score [25]], and drawing mean and variance instead of individual dots to better
see linear correlation.
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1 |unsigned long measureMemoryAccess (
2 const char =xaddress,
3 char xdummy)

4 [{

5 unsigned long long cyclesl , cycles2;
6

7 __sync_synchronize ();

8 _mm_clflush(address);

9

10 __sync_synchronize ();

11 cyclesl = __rdtsc ();

12

13 __sync_synchronize ();

14 char temp = xaddress;

15

16 __sync_synchronize ();

17 cycles2 = __rdtsc ();

18

19 __sync_synchronize ();

20 temp += 1;

21 x*dummy = temp;

22

23 return cycles2 — cyclesl;
24 |}

Listing 4.1: This is the code used to measure a read access.

4.2.4 Timer Interrupt Reader

One major source of interference for the time measuring would be an interrupt
in the middle of the measuring section. Since timer interrupts are usually the
most frequent intermptsﬂ we decided to only check those. To track the number of
interrupts, we open the /proc/interrupts file, which contains a table with the
number of interrupts since system start for every interrupt and every processor.
We retrieve the number of interrupts for the right core and interrupt type. We
added this code to Listing @ in line 9 and after line 19, to count the number of
timer interrupts that happened during the time measuring section.

“If there is a lot of network activity or I/O on a system, those interrupts can be more frequent
than the timer interrupt. Since we do not do anything other than running these tests on the system,
timer interrupts are the most frequent on the system. This was also confirmed by looking at the
/proc/interrupts file.
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4.2.5 cgroups

To control the tests better, we used cgroups to restrict the test processes. cgroups
are a Linux feature that can restrict what CPUs a given process can run on, and
which NUMA node’s memory it can use. Our tests were restricted to CPU num-
ber 8, which is the first CPU on the second NUMA nodeﬂ They were also only
allowed to use the main memory of that node.

4.3 Results

In this section we will discuss the results of the benchmarks described in Sec-
tiond.11

To provide some reference for the times presented here, an access to DRAM
takes about 300 cycles, while an access to NVM takes about 900. These numbers
were measured using the measuring function from Section 4.2}

4.3.1 Test System

Motherboard X11DPi-N(T) by Supermicro
DRAM 8 DIMM DDR4 16GB by Micron
NVM 4 DIMM Intel Optane DC Persistent Memory 128GB
CPU 2 Intel Xeon Silver 4215 CPU
oS Fedora 31, 5.3.7-301.fc31.x86_64 kernel

Table 4.1: Detailed overview of the test system’s setup.

The system has 512 GB of NVM and 128 GB of DRAM. It s split into two NUMA
nodes, with each node having one CPU and half of the mentioned main memory.
The system is running Fedora 31. The detailed setup can be seen in Table

4.3.2 Cache Line Size Test

This test reads from two different addresses to see if they are both on the same
cache line.

The results of this test are split into four graphs: the first two are histograms
that show the distribution of the time it took for the first read. This read should
always hit uncached memory. This is depicted in Figure 4.1] The figure contains

>There is no deeper reason as to why that CPU was chosen, except that it is on a different node
than CPU 0, which may sometimes hold a special status.
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Figure 4.1: Distribution of the measurements of the first read for the cache line
size test. On the left is the forwards test, and on the right the reverse.

a forwards and a reverse subfigure. This describes the order in which the two
addresses were accessed. forwards means that address was accessed first, and
address + delta was accessed second, while reverse is the opposite order.
Figure@has two peaks, one around 300 cycles, and another around 1200 cycles.
While it seems that the cache clearing did not work in most cases, it also seemed
to have worked in a substantial amount of cases.

The second pair of subfigures in Figure [d.2] represents the average time it took
the second read to come through. While there is some variance in the data, the
averages are all pretty close to the 300 cycles line. These second accesses all
(apart from very few outliers that were removed by the outlier detection) seem to
be on cached memory.

The test starts with an assumed cache line size of 32 Bytes and goes up to
4 GB, so it starts with values that should absolutely be on the same cache line,
and goes up to values larger than the largest page typically supported, which is
1 GB [6]. This leads us to the conclusion that something went wrong during the
test, but we don’t really know what.

4.3.3 Cache Size Test

This test accesses a lot of memory sequentially, and then measures how long it
takes to read from a single address that is a certain distance from the end of the
accessed area.

The results of this test are visualized in Figure[4.3] The test spans such a large
area, because we were not sure if all of the system’s DRAM (128 GB) was used
as cache, or only half of it, since the test was restricted to the memory of one of
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Figure 4.2: Mean time it took to read a byte from first address + delta,
after first address was accessed. Left is forwards, right is reverse order. Tri-
angle is the mean, while the length of the line symbolizes the variance. Triangles
appear in pairs, as tests were executed for deltas of 2" and 2" — 1.

the two NUMA nodes. As can be seen in the figure, it seems that almost all of the
reads were on cached memory, apart from a few outliers. Ideally, accesses should
have been on uncached memory if their distance to the end of the testing area is
larger than the cache size. We can also assume that most of the accesses were to
local DRAM, since accesses to remote DRAM are slower, and all accesses here
take about the same time, which would indicate that only 64 GB of DRAM were
used to defeat our test.

4.3.4 Prefetch Test

This test accesses memory that is initially uncached at regular intervals to see at
what point the next access has already been prefetched.

This test relies on the assumption that the memory it is run on is not in cache,
so that we can see a few initial slow memory accesses, which then speed up at
some point (or not, depending on the level of prefetching). The problem is that
the first access was in most cases already in cache when it happened. Figure
shows the distribution of the first memory access of each individual test run, and
almost all values are concentrated around the 300 cycles mark, which indicates a
DRAM access.
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Figure 4.3: The results of the cache size test as a simple scatter plot. Note that the
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Figure 4.4: This histogram shows the distribution of the very first memory access
of each prefetch test, for all strides we tested. Most values are concentrated around
the 300 mark, which indicates an access to DRAM. The y axis indicates how often
we ran the tests, and the specific values are not important.
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4.3.5 Associativity Test

As mentioned previously in Section 4.1.4] this test takes the cache size and the
cache line size as input. Since the results of the other tests that were supposed to
determine those values were so inconclusive, this test was not run.

4.3.6 Writeback Test

This test measures writes at regular intervals over a large amount of memory.

The results of this test are visualized in Figure §.5] This figures consists of
two subfigures: the top one is a scatter plot containing the time measurements of
periodic sequential writes over a large area. The writes were executed every 4 KB,
but we "only" put every 16384th value into the scatter plot. Most of the crosses
are on the 300 cycles line, which indicates write to DRAM. There seems to be no
useful pattern in the few crosses above that line. The second graph is a histogram
to show just how few crosses are not part of the big cluster at the bottom.

Unfortunately, we cannot really use these results to do any real predictions
about the write back behavior.

4.4 Discussion

The results we found in this section are not very conclusive. We can nevertheless
learn something from it. The Memory Mode seems to be more complex and
efficient than initially assumed. The tests we described in Section {.T|did provide
expected results on my local test machineﬂ when tested on the L3 cache. Now, it
is clear that a small CPU cache that is designed to be small and extremely fast, is
very much different than the Memory Mode, which handles hundreds of GBs of
data. Nevertheless, it is still disappointing that the tests yield so few meaningful
results.

We can speculate why the tests did not produce the wanted results. The cache
clearing function may be a cause, although it was redesigned, so it is less likely
to be the cause. Another reason may be the time measuring function: it could
be that _mm_clflush (address), which flushes any CPU cache lines contain-
ing address, also loads address into the DRAM. There could also be another
problem with that function that we overlooked. The logging tool and visualiza-
tion are less likely to be to blame, since we manually inspected the data using
hexdump, and it looks reasonably varied, so it is unlikely that some data got erro-
neously duplicated, overwriting other data. There is also a lot of variance in some

It has an Intel Core i5-4670K CPU, which has a 6144K L3 cache, that is 12 ways set-
associative.
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Figure 4.5: The first figure is a scatter plot of the time it took to write a byte to a
certain address, relative to the start of the test. The black line at the bottom is not
a line, but also crosses. The second figure shows the distribution of the values in
the first plot, since the first plot may be a bit unclear.
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results that we cannot explain, although the timer interrupts we recorded in about
50% of tests may explain some of it.

We can also speculate about the role of the CPU in the Memory Mode. Not
every Intel CPU supports the NVM, and if you look at the marketing page for
the CPU in our test system [11], there is a specific field to indicate if it supports
Optane DC Persistent Memory. So my assumption is that the Memory Mode
is not something that exists as an independent system, but rather something that
is tightly integrated into the CPU. This might allow it to "beat" our tests, that
assumed a more simplistic system.
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Chapter 5

Reimplementation

In this part of the work, we will discuss the reimplementation of the Memory
Mode in software. This is supposed to be a more adaptable and transparent alter-
native to the Memory Mode. In the first Section [5.1} we will discuss the design
choices behind this implementation. In the second Section [5.2] we will discuss
the actual implementation details and the problems we faced during the imple-
mentation. In the third Section we will then discuss the performance of this
reimplementation. Finally, we will discuss how the implementation went overall,
and what could be done in the future to make it better in Section [5.41

5.1 Design

This section discusses the general idea and design choices behind our reimple-
mentation of the Memory Mode. Since the tests in the analysis Section {] were
inconclusive, we had to make some design choices ourselves that should other-
wise have been determined by those tests. When making these choices, we either
took an alternative that we thought made sense intuitively, or made the implemen-
tation easier. We will now go over the choices we made.

5.1.1 Overview

We start by providing a general overview of the project. The goal is to build a
library that offers similar functionality to the Memory Mode. The library manages
any memory the process allocates with it. The library has a limited amount of
DRAM it can use as a cache, and a much larger amount of NVM it can use if the
process needs more memory than there is DRAM available to the library. It has
to decide which parts of the process’s main memory are in the DRAM cache, and
which parts are not. These decisions will be discussed in the next few sections.

23
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The actual implementation, and the mechanics that are part of it, will be discussed
later in Section

5.1.2 Interface

This library provides its own implementation of malloc, calloc, and realloc
functions from the C standard library [12]. These can be used to allocate memory
that is then managed by this library. This means that we only manage a process’s
heap. While it would be nice to manage all segments of the process’s main mem-
ory, the heap is usually by far the largest, so we think it is okay to only manage
the heap in a first version of the library. The other segments (like the stack for
example) are often not only smaller, but also very active, and it would therefore
make sense to have them permanently in DRAM. Thus far, the library does not
include these segments when it calculates how much DRAM it is already using as
cache, since they are small, and calculating their size exactly is difficult.

5.1.3 Not Implementing free

As you may have noticed, the f ree function was missing from the list of functions
the library provides. This was a deliberate choice. While free is of course im-
portant when designing regular programs, it is not that important in benchmarks.
Most benchmarks allocate a lot of memory at the start, run the actual benchmark-
ing code using that memory, and then only free it at the very end. free needs
to be implemented in the future, if this library is ever used for anything other
than benchmarks. But for now, we decided to reduce development time by not
implementing free.

5.1.4 Cache Size

A major difference to the Memory Mode is that the amount of DRAM used for
the cache is now configurable at compile and run time. This is not too difficult
to do in our software implementation, and is one big advantage of the software
variant. The Memory Mode always uses all the DRAM available in the system, as
mentioned in the technical background Section [2.1.2]

Our library uses some local variables on the stack and global variables that are
not accounted for in the amount of DRAM the library is allowed to use, but they
only take up a limited amount of memory. We do not use recursion, so the stack
only grows up to a certain upper bound, and the global variables are of fixed size,
and do not grow either. The global variables include locks, file descriptors, and
head and tail pointers for lists among others. Anything that can grow in size is
allocated dynamically and taken into account.
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5.1.5 Cache Line Size

An important design choice is to determine the granularity with which memory
is moved between NVM and DRAM. There is a test in Section that was
designed to determine this, but was unable to do so.

So we chose 4 KB as the granularity. It is the smallest possible granularity we
can work with, since mmap and munmap cannot handle a smaller granularity, and
we need those functions to manage the DRAM [13]]. Anything larger than 4 KB
seems too expensive, since we also have to copy the entire amount of memory if
only a single byte in the cache line is accessed.

5.1.6 Prefetching

Our library does not do any prefetching. This would be possible at page level,
although we cannot see individual accesses to a page once it is in DRAM. Another
problem is that the prefetcher would most likely run synchronously to the code,
so it would only provide a benefit if copying two pages together from NVM to
DRAM is much more efficient than copying a single page.

5.1.7 Write Behavior

The library uses write-allocate, meaning that a page is swapped into the cache
when something is written to it. We can assume that this is similar to the Memory
Mode, though we did not decisively prove it.

The library also uses a write-back policy instead of write-through. This means
that changes to a page will only be transferred to NVM if the page is swapped out
of DRAM.

5.1.8 Cache Inclusion Policy

There are two possibilities to store data when implementing something like the
Memory Mode: an inclusive cache, where everything is always in NVM, and
some parts are copied to DRAM, or an exclusive cache, where data is in either
DRAM or NVM, but not both at the same time. When using the Memory Mode,
the size of the main memory is equal to the size of the NVM, so we can assume
that the Memory Mode uses an inclusive cache. Our library is an inclusive cache
with a small change: since pages are only written back when they are swapped
out as mentioned in Section they only appear in NVM once they have been
swapped out at least once. This means that freshly allocated pages only exist in
DRAM, but a page that is swapped out and then back in will exist in both DRAM
and NVM.
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5.1.9 Associativity

The DRAM cache is fully associative, meaning that any part of the NVM can be
put anywhere in DRAM. We do not control where we put data in the physical
memory, we let the OS and the DAX file system on the NVM do that for us.

5.1.10 Replacement Algorithm

The library uses a First In, First Out (FIFO) replacement algorithm. This is a
natural choice, since the library automatically knows when a page is swapped in,
and does not gain any other information about the page while it is swapped in
without some additional effort. The library could for example disallow access
to certain pages that are swapped in to be notified when they are accessed, to
implement some variant of a least recently used replacement algorithm, but that
would require additional effort.

5.2 Implementation

This section goes over the implementation process of the library. It is split into
four parts: the first part[5.2.T] covers the data structures needed to manage every-
thing. The second part [5.2.2] covers the functions that do the actual work (i.e.,
move pages from DRAM to NVM and vice versa). The third part covers the
functions that will be called by a program using this library, such as malloc. The
fourth and final part[5.2.4] describes some of the problems encountered during the
implementation, and how we addressed them.

A clarification about usage of the phrases swapped in and swapped out. When
using swapped in, we describe something that is currently in DRAM (and NVM).
To swap in is then used to describe the act of moving something to DRAM, to
achieve a swapped in state. Swapped out is the opposite, where something is only
in NVM.

5.2.1 Data Structures

Here, we cover the data structures needed to manage the memory that is provided
to a process by this library.

Swap File

We need a place to store the pages we move from the DRAM to the NVM. This
is the swap file. It is a temporary file that resides in the DAX file system on
the NVM. DAX file systems are explained in the technical Background Section 2]
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Each page will have dedicated place in this file once it has been swapped out once.
Pages that are swapped out for the first time are appended to the file.

This is also a place where free would cause additional work: when free is
called for a certain memory region, all entries to the swap file from that region
need to be removed. This means that we have make holes into the swap file.
This then makes inserting new pages more difficult, since they can no longer be
simply appended, but should instead fill holes, if there are any. While it is far
from impossible to implement this, we believe it is not worth the effort for the
prototype, as explained in Section[5.1.3]

The file is created the first time malloc is called.

Swap Lists

We need a place to store where in the swap file each page is. For this, we use
two linked lists. One for all pages that are in DRAM, and one for the pages that
are not in DRAM. The entries of these lists contain the starting address of the
page in DRAM, and the offset in the swap file, if the page has an entry in the
swap file. Linked lists may not the most efficient data structure for this purpose,
but they are easy to implement, and elements can easily be inserted and removed.
Each list also has its own read-write-lock, to control parallel access to them. This
read-write-lock allows multiple threads to iterate over the lists to search elements
in parallel, while also ensuring that only one thread can access the list while it is
being altered.

Allocations List

This is list keeps track of all the memory regions that malloc, calloc and
realloc have given to the process. This list was only added pretty late into devel-
opment, when we noticed that we needed to implement realloc. Since realloc
can extend or move existing allocations, it cannot be implemented without keep-
ing track of the pointers returned by malloc. Before this list existed, not wanting
to add it was another reason to forego the implementation of free. It stores three
values per element: starting address, requested size, and allocated size. It also has
its own mutex to control parallel access. We expect this list to be pretty short, so
we chose a mutex over a read-write-lock.

5.2.2 Performing the Swap

This section explains the functions that move the pages between DRAM and NVM
if necessary.



28 CHAPTER 5. REIMPLEMENTATION

Swap In

This function is called to copy a page from NVM to DRAM.

It starts by retrieving the address of the page in NVM from the list of all
swapped out pages. If it is no longer in the list, the function assumes that another
thread has already taken care of this request and simply returns.

If the page has no entry in the swap file, this page is initialized with an anony-
mous page from mmap. These pages are completely zeroed [[13]]. This happens if
the page is accessed for the first time after malloc is called.

If the page already has a corresponding entry in the swap file, the page should
then be swapped in. This is done by allocating a new anonymous page with mmap
at a random place, mapping the relevant part of the swap file with mmap to another
random place, and then copying the data from the swap file to the newly allocated
page in DRAM. Remember that the swap file resides in a DAX file system, so this
is a copy from NVM to DRAM, even though both are mapped in the process’s
virtual address space. The new DRAM page is then moved to the right address
with mremap. We do this to prevent other threads from accessing a page that is
only partly initialized with the data from the swap file.

Finally, the list element containing the start of the DRAM page and the off-
set in the swap file is appended to the list of swapped in pages. This makes the
replacement algorithm’s job quite easy, since the swapped in list is automatically
ordered from least to most recently swapped in. The replacement algorithm re-
places the least recently swapped in page (also known as FIFO), as mentioned in
Section[5.1.10] so it only has to take the head of this list.

Swap Out

This is the counterpart to the Swap In function from above. It removes a page
from DRAM and stores its content in the swap file.

This function starts by retrieving the list element for this page from the list of
swapped in pages. If the element is not in the list, we assume that another thread
takes care of this and we simply return.

If the list element is retrieved, we check if the page has already a designated
spot in the swap file. If not, we make the swap file longer with ftruncate and
assign this additional space in the swap file to this page. This happens the first
time a page is swapped out.

Now we can move the contents of the page to the swap file. This is done by
duplicating the mapping to the page, so that it is now at a random place, and at
its initial place. The mapping at the initial place is then replaced with a mapping
to /dev/zero with no access rights. When this page is now accessed, a segmen-
tation fault will be triggered, that is treated by the library’s own handler. This
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handler is described in the next Section[5.2.3] We map /dev/zero to the page so
that it 1s still reserved, but does not occupy any actual memory. We then mmap the
designated part of the swap file, and copy the contents of the page. Both the swap
file and the duplicate of the page in DRAM are then unmapped. We duplicate the
mapping and remove the original to prevent other threads from accessing a page
that is being swapped out.

Finally, the list element is appended to the list of all swapped out pages.

5.2.3 Functions called from Outside

This section will describe the functions that a process that uses this library will
call. This includes the segmentation fault handler, so calls is used a bit more
liberally.

Segmentation Fault Handler

Whenever the process accesses memory that is currently not in DRAM, a seg-
mentation fault will be triggered. That signal is then handled by this handler. The
handler is setup the first time malloc is called.

When the handler is invoked, it retrieves the address of the fault. The handler
then checks if it needs to swap out a page before another page can be swapped in,
and does so if necessary, using the swap out function. The page that is swapped
out is chosen according to the replacement algorithm described in Section[5.1.10]

Then, the page that triggered the segmentation fault is swapped in using the
swap in function. Two different threads may trigger a fault on the same page,
and the handler is then called twice at the same time. This can lead to two pages
being swapped out, but only one being swapped in. We believe that it is not a big
problem, as the DRAM cache will be full again once the next page is swapped in.

malloc

This is the main function used to allocate memory when using this library. The
first time it is called, it sets up the swap file and the segmentation fault handler
as mentioned previously. malloc takes a single argument, which is the number
of bytes the caller wants to allocate. Our implementation is a bit inefficient and
only allocates multiples of 4 KiB, so each request is rounded up accordingly. We
believe that this is acceptable for running benchmarks, since they usually allocate
memory in large chunks before running the tests, so the internal fragmentation is
limited, but it should be fixed in the long run.

malloc then calls mmap to map a region of the requested size at a random
place. We map /dev/zero to the entire region, to reserve this part of the virtual
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address space. We also disallow any accesses to the region, so that the segmen-
tation fault handler is called whenever a page is accessed for the first time. The
handler can then initialize the page.

Finally, malloc creates entries in the swapped out list for each page, and also
creates an entry in the list of pointers returned by malloc. Creating the entries
in the swapped out list this early, instead of creating them lazily as memory gets
accessed the first time, is necessary to eliminate race conditions between threads.
If there was no list element before the page was created, the swap in function
couldn’t decide if the page was accessed for the first time, or if another thread
took care of it.

calloc

This function is designed to allocate memory for arrays and takes two arguments:
number of array elements, and size of array elements. Our implementation does
a multiplication and then forwards the request to malloc. The contents of the
region are then set to zero before the pointer is returned.

realloc

This function can be used to change the size of a memory region allocated with
any of the three functions explained here. It takes two arguments: the address of
the region, and the new size. We can look up the region in the list of all regions
allocated with malloc. Three interesting cases are then possible:

e The new size is shorter than the old size: since we do not free any memory
as explained in Section [5.1.3] we simply change the length of the region in
the list and return.

e The new size is longer than the old size, but still smaller than the allocated
siz: we can also simply change the size in the list and return.

e The new size is longer than the old size, and also larger than the allocated
size: We would call free if it was implemented, and then we call malloc
with the new size.

This means that, once more, the bulk of the work is done by malloc.

"We only allocate multiples of entire pages as mentioned in Section
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Changing The Cache Size

As mentioned before in Section [5.1.4] with this library it is possible to change the
amount of DRAM used at compile and run time. To change at compile time, set
the INITIAL_DRAM_CAPACITY macro to the desired quantity. To change at run
time, call the mm_setDRAMAmount function.

This function adjusts the amount of DRAM used by the library, and swaps out
enough pages to meet the new goal if necessary.

5.2.4 Problems Encountered

Here, we will discuss some of the problems we encountered and how we addressed
them.

Allocating Memory For Internal Data Structures

Two separate problems occurred when allocating memory for the internal data
structures, such as the elements in the swapped in and out lists from Section[5.2.1]

The first problem appeared when we used our own malloc to allocate mem-
ory for one list element per DRAM page. Since our malloc only allocates entire
pages, each list element now occupies an entire page. This is not only very waste-
ful, since list elements are only 40 Bytes in size, but it also leads to an infinite
loop: the page for the list element also needs a list element to manage it, which
then again needs a page from malloc, and so forth. We chose to solve this by
using a slab cache. This slab cache takes a page, and splits it into many parts that
can then each be used to store a list element. This prevents the loop where one
page needs one entire page to manage it.

The second problem was that the slab cache initially called malloc to allocate
a page for the cache. This leads again to an infinite loop, where some part of
malloc uses the slab cache, which then calls malloc to get a page, and so forth.
The solution we chose was to have the slab cache mmap its own pages. We also
made these pages permanently resident in DRAM, for two reasons: the first being
the use of linked lists, meaning we need the entire list very often, so any part
that would be swapped out would most likely be swapped in again very shortly
after. The second reason is a possible deadlock. Imagine page A containing the
managing list element for page B, while page B contains the element for page A.
If both were to be swapped out at the same time, they cannot be swapped back
in, since both of the elements containing each others location in the swap file
would be unavailable. While this second problem is not unsolvable, we believe it
is far easier to keep the pages permanently in DRAM, especially considering the
performance mentioned when explaining the first problem.
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The slab cache pages are counted towards the amount of DRAM used by the
cache. This could theoretically lead to a situation where the entire DRAM cache
is filled with slab cache pages, although it is quite unlikely, since each slab cache
page contains 102 elements, so the process would need to use about 100 times as
much total memory as the size of the DRAM cache. Intel recommends a ratio of
1:8 for DRAM:NVM when using their Memory Mode, so our library should work
fine with similar ratios [16].

External Libraries Calling malloc

Since our library should be able to handle multi-threaded processes, we used some
pthread locks. This includes read-write-locks for the linked lists in Section[5.2.1]
and some mutexes to prevent other small race conditions. Initially, these locks
were initialized during the first call to ma1l1oc with the functions provided by the
pthread library. Unfortunately, those functions call mal1loc, which leads to un-
wanted recursion, where malloc calls pthread_mutex_init which then again
calls malloc. This means that the second call to malloc either runs the setup
code again, which leads to an infinite loop, or it skips it and uses uninitialized
locks. Both cases are quite bad. This was easily solvable though, since pthread
provides static initializers for their locks, that initialize locks with default settings,
without a function call.

Unfortunately, this was not the end of it, since some of the pt hread functions
to lock a lock also call malloc [[3]]. And of course, our malloc locks a lock at
some point. This leads to an infinite loop, that only ends when the OS finally de-
cides to kill the process because it uses too many resources. This was not as easily
solved as the first problem, so we decided to implement our own locks that do not
use malloc. While these locks do not use any advanced features that pthread
locks may use, they work without malloc. An advanced implementation might
try to make the library lock free to circumvent the entire problem, but that is still
a lot of work.

Our malloc And System Calls

Another problem that arose when trying to run some benchmarks happened when
one benchmark used fscanf to read a file. What appears to happen inside the
function is that it calls malloc to allocate a page, and then immediately passes
that to a read system call as a buffer. This is a use case that is probably not
exclusive to £scanf, but that was the place where we observed it. This is a prob-
lem, since our malloc allocates inaccessible memory, that is only made acces-
sible once a segmentation fault has been triggered, as explained in Section [5.2.3]
fscanf does not appear to access the memory between calling malloc and read,
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so it is still inaccessible when the kernel receives the buffer. The kernel notices
that the buffer is not accessible, and returns an error to the process, instead of
writing to the memory, which would then trigger the wanted segmentation fault.

One unsuccessful idea was to overwrite the read function from unistd.h
with a wrapper that accesses the buffer once before then calling the real read.
fscanf didn’t seem to call the overwritten version of read, so this did not work.
This solution would also require more work to be complete, since we would need
to overwrite the wrapper functions for all system calls that give the kernel a buffer
to either read from or write to.

The workaround that got the benchmark running was to add a line at the very
end of malloc that writes a zero ot the first page of the newly allocated mem-
ory, thereby triggering a segmentation fault, which puts the page into DRAM and
makes it accessible. This is a workaround specifically designed for fscanf E] and
the benchmarks and needs to be addressed in the future. The workaround is not
safe against race conditions, since it is possible that the page is swapped out again
between malloc and the system call.

5.3 Performance

5.3.1 Performance of the Library

In this section, we will analyze the performance of the library in benchmarks, and
then later analyze the reasons for this performance.

The Benchmark

We chose the Parsec Benchmark Suite [20] to measure the performance of the
library, since it offers varied workloads. This benchmark suite is not enough to
fully compare the library to the Memory Mode, as the Parsec packages only use
workloads that are a few GB large [20]. The Memory Mode is in general quite
difficult to benchmark, since it is not possible to limit the amount DRAM used as
cache [ as mentioned in Section So you would need a benchmark that uses
more memory than the system has DRAM available. It may be possible to limit
the amount of DRAM using NUMA, although it would still be 64 GB in our case.

2Qther system calls might need more than one page, but they did not pose a problem in our
very specific case.

¥You could open up the server and physically remove DIMMs from the motherboard to limit
the amount of DRAM the system has, although that is not a flexible solution.
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H Only DRAM ‘ Our Library ‘ Only NVM

blackscholes (700 MB) || Om 18,142s | Om 23,644s | Om 21,097s
freqmine (1.8 GB) Om 28,439s | 1m 24,830s | 1m 6,800s

Table 5.1: The real time it took two different benchmarks to run on our system.
Behind the name of the benchmark is the amount of memory it uses at its peak.
Our library was given 1 GB of DRAM. Only DRAM and Only NVM mean that the
benchmark was forced to use only that kind of memory as main memory.

Results of the Benchmark

The very limited amount of memory the Parsec benchmarks use are already enough
to discover pretty serious performance problems in our library. The results can be
seen in Table [5.1] Our library is outperformed by the Only NVM option, which
means that our cache slows the system down instead of speeding it up. This makes
the library useless in its current form. We will explore the reason for the problems
in the next Section[5.3.21

5.3.2 Reasons for the Performance

Since our library performed so poorly in the benchmarks, we decided to analyze
where the problem lies.

If we look at the Flame Graph in Figure [5.1] we can see pretty clearly where
the performance problem lies: the linked lists are the main time user. Functions
starting with _11_ belong to our implementation of linked lists, and about 96%
of the time is spent inside those functions. It might look like our read-write-
lock might also be the problem, although that most likely also comes from the
slowness of the linked lists: our implementation of the read-write-locks prevents
new threads from acquiring the read part of the lock if one thread tries to get the
write part. But the thread trying to acquire the write lock is slowed down, because
it has to wait for all other threads to release their read-locks before it can definitely
acquire the write-lock.

The swapOut function is not visible in the Flame Graph as it has no time
intensive list operations: the replacement algorithm from Section only re-
moves the head of the swapped in list, and newly swapped in pages are appended
to that list. Both operations are very fast, so there is no lock contention for that
list. The swapped out list on the other hand is often the target of linear searches,
which is really bad for performance.



35

5.3. PERFORMANCE

“JUBAQ[AI SB JOU I' K9] OS ‘WIS AIdA 2I9M SIX0Q 9s0Y) Inq ‘IJo nd st doj ay ], "uonounj jey) 3unnooxa juads sem awn 10w
Y X0q B IOPIM U], ‘WY MO[oq uondunj ay) Aq po[ed 21om dn 10ysiy suonoun, -Areiqrf Jno yjim ossaed jo a3eyoed
Yrewyouaq sutwbars oY) Joj ydeid [[eo © smoys 1] E Jx=d Fuisn pajeIoUd3 @ ydein swe[q ® ST SIYL, :[°G N3

ayoenojurpeo|
p I~ cugerowss T 3ebTT |

[ I SEEENAR o0 m oM Aw | pojpaTpomITAW
, | ] 1]
[ | |

M20IMTP0oIMITAw |




36 CHAPTER 5. REIMPLEMENTATION

5.4 Discussion

Generally, we believe the reimplementation worked out quite well. There are
obvious shortcomings, but they are at least obvious, which makes it a lot easier
to address them. We will now discuss the positives of the reimplementation, and
also the negatives and possible future work.

While the results from Section[5.3.T|where quite disappointing, we still believe
that the approach can work, especially since most of the performance problems
came from a single source. This means that it could be possible to implement
a Memory Mode in software, and even in user mode. Until now, stack and data
segments are not yet covered by the library, but those segments are usually not as
large as the heap, so adding them to the library should not be a large performance
hit.

We have also learned a few lessons about potential problems when implement-
ing such a project. We believe the main lesson learned is that it is quite difficult to
use external libraries when implementing a function as crucial as malloc, since
they may use malloc internally. This can then lead to loops, where our malloc
calls a library function, which then again calls our malloc. Therefore, we needed
to implement a few pieces software ourselves, instead of being able to take them
from a library. We also learned that it is not too difficult to make the library thread
safe. The race conditions and deadlocks that appeared could mostly be fixed with-
out any major redesign operations.

There are two major things that did not work: the first one being the linked
lists. Initially, they were only supposed to be a placeholder data structure that
is easy to implement and not error prone, while we figure the other parts of the
library out. Unfortunately, it took quite a bit longer than expected to figure the
rest out, and then there was no time left to replace the linked lists. The one upside
to this is that it is pretty easy to see what can be improved in the future. Replac-
ing them with a hashmap, or even page tables should increase the performance
massively.

The other problem are system calls: we have proposed a workaround in Sec-
tion [5.2.4] which swaps in the first page of newly allocated memory when it
is returned by malloc, to prevent other code from giving the kernel swapped
out buffers, since the kernel doesn’t trigger segmentation faults on them, but in-
stead just rejects them. As mentioned when explaining the problem, the proposed
workaround is still prone to race conditions, and is therefore not really satisfying.
One possible solution would be to adjust all system calls that take a buffer, so
that they trigger segfaults on buffers instead of rejecting them, if they are write
protected. But that might pose other problems to the system, and it might be a lot
of work to implement. So this is an open problem where the solution might not be
as obvious as it is for the first problem.
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A few smaller optimizations are also still possible: so far, malloc only allo-
cates entire 4 KB pages. This is of course quite wasteful, and it would be good to
update the code to be able to allocate smaller portions of a page. Another problem
is that mmap can still be used by programs to allocate DRAM without our library
noticing. Another future project could be to redirect mmap calls to our library as
well. Then there is the implementation of free, which is still missing, but is
necessary if we want to use the library for anything other than benchmarks. We
also mmap and unmap the swap file each time we perform a swap operation. The
virtual address space should be large enough to permanently map the swap file, to
reduce the amount times we have to call mmap and munmap.
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Chapter 6

General Conclusion

In this work, we analyzed Intel’s Memory Mode for their NVM. They present it
to us as a system that takes DRAM and uses it as a cache for the NVM, but do not
tell us much more about the mechanics and policies behind it. We tried to find out
how the Memory Mode works internally, and what policies are used. Then, we
attempted to use this knowledge to build a software replica of the Memory Mode,
to present a version of the Memory Mode that is more flexible and transparent.

Unfortunately, not everything went according to plan. In the analysis Sec-
tion 4f the results of our benchmarks were very inconclusive and did not provide
the insight into the Memory Mode we had hoped. We are still not certain what
went wrong in that section, whether it was a single component of the implemen-
tation that did not work, or if the general design of the benchmarks was flawed,
or if it was a combination of all those things. In the future, we may be able to
develop other benchmarks with different implementations, an they may help us
to understand how the Memory Mode works internally, and why our tests did not
work.

This did not help the second part [S| where we tried to use the insights we
gained in the first part 4] to reimplement the Memory Mode in software. Never-
theless, we build our own library to imitate the behavior of the Memory Mode.
We encountered some problems during the implementation, but we were able to
solve most of them. The performance of our library is still quite underwhelming,
but here we do know what we can do to improve it: the main data structure needs
to be replaced. There are other problems and projects for the future detailed in the
discussion of Section We believe that the library in its current state, together
with the proposed future work is at least a partial success, as it shows that such a
reimplementation of the Memory Mode should be possible, even in user mode.
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