
Toward Specialization of Memory
Management in Unikernels

Bachelor’s Thesis
submitted by

cand. inform. Hugo Lefeuvre
to the KIT Department of Informatics

Reviewer: Prof. Dr. Frank Bellosa
Second Reviewer: Prof. Dr. Wolfgang Karl
Advisor: Dr.-Ing. Marc Rittinghaus

01. January 2020 – 03. June 2020

KIT – The Research University in the Helmholtz Association www.kit.edu

I hereby declare that the work presented in this thesis is entirely my own and
that I did not use any source or auxiliary means other than these referenced.
This thesis was carried out in accordance with the Rules for Safeguarding Good
Scienti�c Practice at Karlsruhe Institute of Technology (KIT).

Karlsruhe, June 3, 2020

iv

Abstract

Unikernels are standalone, single-purpose appliances assembled from user-space
source code at compile time. Unikernels achieve high performance, low memory
footprint, and fast boot time with a small trusted computing base. These charac-
teristics are obtained by specializing operating system components toward the
application at build time. Amongst the classical system components, the dy-
namic memory allocator is known to have a crucial impact on performance and
its specialization potential is well recognized in the literature. In particular, it is
known that allocators typically trade performance for security or memory usage
for performance, and no general-purpose allocator will behave perfectly in all
situations. Despite of this, unikernels do not typically o�er more than a single
general-purpose memory allocator.

This thesis explores the idea of leveraging memory allocators as a specializa-
tion layer in unikernels. We analyze dynamic memory allocation in unikernels,
and how it can be specialized. Following this, we design, implement, and eval-
uate allocator specialization in Unikraft, a unikernel framework. To this end,
we port several general-purpose memory allocators to Unikraft and measure the
performance of o�-the-shelf applications across a wide range of scenarios and
key performance indicators. By specializing the allocator, we reduce the boot
time of Unikraft from 7.4 ms to less than 1.5 ms for an Nginx unikernel. We show
that allocator specialization can improve performance and memory footprint at
moderate cost, achieving speedups of up to 12% for Redis and 26% for SQLite and
reducing the memory footprint by 22% for Redis and 50% for Nginx.

v

vi ABSTRACT

Acknowledgments

I would like to express my gratitude to my supervisor, Dr. Marc Rittinghaus, for
guiding me through this journey and having the patience of reviewing my work.
This thesis would have been very di�erent without his insightful comments.

I would like to thank my colleagues at NEC Laboratories Europe, Simon
Kuenzer, Dr. Felipe Huici, Alexander Jung, Sharan Santhanam, and Dr. Roberto
Bifulco for letting me take part to their research. I learned a lot from them. I am
grateful to NEC Laboratories Europe GmbH for funding this thesis and allowing
me to work with such a competent team.

Finally, I would like to thank my family, for their support throughout my
studies, for the pictures of bread and cats that warmed my heart in the time of
Corona.

vii

viii ACKNOWLEDGMENTS

Contents

Abstract v

Acknowledgments vii

Contents 1

1 Introduction 3

2 Background and Related Work 5

2.1 Unikernels . 5
2.1.1 Introduction to Unikernels 6
2.1.2 Characteristics and Architecture of Unikraft 10

2.2 Dynamic Memory Allocation . 14
2.2.1 Memory Management in General-Purpose OSs 16
2.2.2 General-Purpose Memory Allocation 18
2.2.3 Custom Memory Allocation 19
2.2.4 Memory Allocators in Unikraft 22

3 Analysis 29

3.1 Dynamic Memory Allocation in Unikernels 29
3.1.1 Memory Allocation in the Kernel 30
3.1.2 Memory Allocation in the Application 33
3.1.3 Impact of System Calls 34

3.2 Specializing Memory Allocators 37
3.3 Conclusion . 42

4 Design and Implementation 43

4.1 Memory Allocation Subsystem in Unikraft 43
4.1.1 Internal Allocation Interface 44
4.1.2 Backend Implementations 45

4.2 Porting Process . 46

1

2 CONTENTS

4.2.1 General Porting E�ort 46
4.2.2 Challenges of the Porting Process 48

4.3 Conclusion . 55

5 Evaluation 57

5.1 Evaluation Setup . 57
5.1.1 Unikraft Network Stack Con�guration 58
5.1.2 Runtime Overhead of the Tracepoints System 58
5.1.3 Baseline Memory Allocator 58

5.2 Image Size . 59
5.2.1 Experimental Results . 59
5.2.2 Conclusion . 60

5.3 Boot Time . 61
5.3.1 Optimization of Internal Boot Time 62
5.3.2 External Boot Time . 62
5.3.3 Internal Boot Time . 64
5.3.4 Conclusion . 68

5.4 Runtime Performance . 68
5.4.1 SQLite . 68
5.4.2 Redis . 72
5.4.3 Nginx . 75
5.4.4 Conclusion . 76

5.5 Runtime Memory Usage . 77
5.5.1 SQLite . 77
5.5.2 Redis . 78
5.5.3 Nginx . 78
5.5.4 Conclusion . 79

6 Conclusion and Future Work 81

6.1 Future Work . 82

A Benchmark Data 85

A.1 SQLite . 85

B Reproducibility 87

B.1 Network Stack Con�guration . 87
B.2 Nginx Con�guration . 88
B.3 Redis Con�guration . 88

Bibliography 89

Chapter 1

Introduction

Unikernels are standalone, single-purpose appliances assembled from user-space
source code at compile time. Unikernels achieve high performance, low mem-
ory footprint, and fast boot time with a small trusted computing base [64]. These
characteristics are obtained by specializing operating system components toward
the application at build time. Freed from the constraints of general-purpose oper-
ating systems, unikernel components can be specialized to enable, for instance,
fast boot time and �exible deployment of cloud services (e.g., just-in-time in-
stanciation [65]), low memory footprint and high density (e.g., high density TLS
termination [66]), or runtime guarantees for real-time systems [25].

Amongst the classical system components, the dynamic memory allocator is
known to have a crucial impact on performance and its specialization potential
is well recognized in the literature [14]. In particular, it is known that memory
allocators typically trade performance for security or memory usage for perfor-
mance and no general-purpose allocator will behave perfectly in all situations
[91]. Despite of this, most well-known unikernels do not o�er more than a sin-
gle dynamic memory allocator.

This thesis explores the idea of using memory allocators as a specialization
layer. We investigate the bene�ts and costs bound to di�erent classes of alloca-
tors and investigate whether and how these can be leveraged to optimize toward
di�erent key performance indicators (KPIs) such as image size, boot time, run-
time performance, memory footprint, or security.

Most of the previous research on dynamic memory allocation has been real-
ized in the context of general-purpose operating systems. Nevertheless uniker-
nels and general-purpose operating systems present signi�cant di�erences with
regard to dynamic memory allocation: unikernels run as a single process, in a
single processor mode, with a single address space, making expensive system
calls as cheap as simple procedure calls [52]. This thesis investigates the trans-
ferability of previous research to unikernel environments.

3

4 CHAPTER 1. INTRODUCTION

The �rst part of this thesis analyzes the specialization potential of mem-
ory allocators in unikernels. We discuss the di�erences between unikernels and
general-purpose operating systems with regard to memory allocation, how these
di�erences a�ect the design of memory allocators in unikernels, and therefore
how they impact allocator specialization strategies. Then, we propose a con-
crete allocator specialization approach for Unikraft [56], a unikernel framework
featuring an extensive con�guration and build system.

Following this, we evaluate our approach by porting several allocators to
Unikraft and evaluating the performance of these allocators across a wide range
of scenarios with o�-the-shelf applications. We measure the performance gain
that can be obtained by specializing the allocator from the perspective of four
KPIs: image size, boot time, runtime performance, and runtime memory usage.
In particular, this thesis makes the following contributions:

• We provide a systematic analysis of dynamic memory allocation in uniker-
nels. In doing so, we analyze the impact of the cost of system calls (and
more speci�cally mode switch costs) on memory allocation.

• We port several memory allocators to the Unikraft framework, adapting
and improving the existing API, and document the technical di�culties
that can arise when porting a user-space allocator to be used as kernel
allocator.

• We show that memory allocators can signi�cantly in�uence the boot time
of unikernels. By specializing the allocator, we achieve minimal boot times
of 39 µs for a noop kernel, 113 µs for an SQLite unikernel, and 1.4 ms for
Nginx and Redis unikernels.

• We show that allocator specialization can improve performance and mem-
ory footprint at reasonable cost in unikernels, achieving speedups of 12%
and 26% for Redis and SQLite and reducing Redis’ and Nginx’s memory
footprint by 22% and 50%.

This thesis is structured as follows: Chapter 2 provides background to uniker-
nels, library operating systems, and dynamic memory allocation. The architec-
ture and characteristics of Unikraft are presented, along with the memory al-
locators that are studied throughout this thesis. Chapter 3 analyzes the di�er-
ences between general-purpose operating systems and unikernels with regard
to dynamic memory allocation and investigates the specialization potential of
memory allocators in the context of unikernels. Chapter 4 presents the port-
ing process of the di�erent allocators in Unikraft and the challenges involved.
Chapter 5 presents our measurements and discusses our results. Finally, Chap-
ter 6 concludes and o�ers insights into future research.

Chapter 2

Background and Related Work

This thesis explores the idea of leveraging memory allocators as a specialization
layer in unikernels, and reviews the di�erences between general-purpose oper-
ating systems (OS) and unikernels with regard to dynamic memory allocation.
The following chapter provides relevant background for the rest of this thesis.

Section 2.1 focuses on library operating systems and unikernels. We intro-
duce unikernels and explain how they di�er from general-purpose operating sys-
tems and containers. We present Unikraft and compare it with other unikernel
approaches in the literature, e�ectively motivating the choice of Unikraft for this
thesis. Section 2.2 provides background to dynamic memory allocation. We in-
troduce the memory allocation problem and discuss custom and general-purpose
memory allocation. Finally we present four memory allocators that will be stud-
ied as part of this work: Unikraft’s buddy allocator, Mimalloc, tlsf and tinyalloc.

2.1 Unikernels

Cloud services o�er networked access to a large pool of computing resources,
accessible by customers on a highly �exible basis. The cloud backend is subject
to high stress: services can be scaled up and down at any moment, and high
availability is expected [27]. As a consequence there is a surge to develop e�cient
resource pooling and virtualization technologies.

Virtual Machines (VMs) are hardware abstractions that can be used by cloud
providers to emulate several self-contained machines on a single physical server.
The VM abstraction is provided by a hypervisor that sits directly on the hard-
ware, allowing VMs to be created, suspended, resized, and migrated to other
physical hosts dynamically. Virtual machines running a general-purpose oper-
ating system such as Linux o�er customers an environment that resembles a
physical machine, with the added �exibility of cloud technologies.

5

6 CHAPTER 2. BACKGROUND AND RELATED WORK

While classical VMs seemingly provide a pertinent answer to the cloud com-
puting problem, they are also associated with slow boot times, insu�cient den-
sity and scalability [83]. In fact, general-purpose operating systems have not
been designed to run in virtualized cloud environments. The process abstraction
overlaps with the VM abstraction in a cloud industry vastly relying on single-
purpose appliances [52]. In addition, the hardware abstraction o�ered by the OS
overlaps with the hardware abstraction already done by the hypervisor [52].

These observations led to an increased resort to lightweight virtualization.
Instead of virtualizing an entire machine, lightweight virtualization technologies
such as containers virtualize the operating system only [83]. Containers rely on
OS facilities to provide abstraction and isolation. In Linux, lightweight virtual-
ization can be implemented using control groups (cgroups) [42] or namespaces
[51]. Control groups allow to de�ne groups of processes whose usage of system
resources can be limited and monitored. Namespaces provide an additional layer
of abstraction over system resources; each namespace provides the illusion of an
isolated instance of the resource managed by the operating system.

Containers achieve performance comparable to bare metal, with fast startup
and instanciation time [83]. They allow for dense systems: up to thousands of
containers per machine, while virtual machines rarely manage more than hun-
dreds [66]. Unfortunately, the performance of lightweight virtualization comes at
the cost of security. General-purpose operating systems — upon which contain-
ers rely — expose a trusted computing base (TCB) typically tens of times larger
than hypervisors, resulting in increased attack surface [37]. Linux’s system call
application programming interface (API) has known an uninterrupted growth
since the beginning of the 2000s [66]. Security vulnerabilities not only in the
cgroup and namespace subsystems but in any part of the kernel could allow ap-
plications to interfere across container boundaries. Comparatively, VMs running
on the same hypervisor would need to exploit a vulnerability in the hypervisor
itself to interfere with each other, which is less likely due to the smaller TCB of
hypervisors. The isolation o�ered by lightweight virtualization technologies is
therefore much more brittle.

In conclusion, classical virtual machines appear burdened by an excess of
abstraction. Containers address the problem of performance but su�er from
an insu�cient degree of isolation. This motivates the need for a trade-o� that
would combine performance and isolation, e�ectively inspiring the development
of unikernels in the course of the 2010s.

2.1.1 Introduction to Unikernels

The unikernel approach to virtual machines was used for the �rst time by Mad-
havapeddy et al. [64] as part of their work on Mirage, a novel approach to deploy

2.1. UNIKERNELS 7

Hypervisor

Operating System

Runtime & Libraries

Application

Operating System

Runtime & Libraries

Application

Hypervisor

Unikernel Application

Virtual MachineContainer Unikernel-based VM

HardwareHardware Hardware

Figure 2.1: Comparison of containers, general-purpose and unikernel VMs [38].
Containers run a user-space stack on top of a shared kernel, resulting in high
performance but low isolation. General-purpose VMs run a full OS stack on top
of a hypervisor, resulting in high isolation but low performance. Unikernel-based
VMs run a single-image, specialized OS stack on top of a hypervisor, resulting in
high isolation and higher performance than general-purpose VMs.

cloud services written in OCaml. Unikernels are de�ned as single-purpose, self-
contained appliances built from user-space source code at compile time. In the
unikernel approach, OS services and abstractions, language runtime, libraries,
and application code are specialized, compiled, and linked together as a single
kernel image that can run in virtualized environments. Both kernel and applica-
tion thus run as a single process in privileged mode with a single address space,
e�ectively removing the distinction between user and kernel-space. The funda-
mental idea behind unikernels is that by sacri�cing the versatility of general-
purpose virtual machines, unikernel-based VMs can achieve performance closer
to that of containers without shelving isolation [66]. Figure 2.1 o�ers a compar-
ative overview of containers, general-purpose and unikernel VMs.

Unlike containers, unikernels are self-contained. Unikernels rely on the VM
abstraction o�ered by the hypervisor and implement all device drivers, operating
system services, and abstractions required by the application to work. Contain-
ers, on the other hand, rely on a shared kernel and only virtualize the operating
system environment. Unikernels are therefore signi�cantly more isolated.

8 CHAPTER 2. BACKGROUND AND RELATED WORK

Containers typically stand out through their fast startup time and high den-
sity. It was shown that unikernels can also provide excellent numbers for these
performance indicators, as a result of their lightweight code base [66, 73]. How-
ever, this performance is generally tainted by bottlenecks at the hypervisor level.
Xavier et al. [93] found an average 4-7x startup time slowdown essentially due
to VM instanciation overhead in the hypervisor. On the other hand, Manco et al.
[66] show that this overhead can be avoided using a custom hypervisor toolstack,
making unikernel VMs boot as fast as fork() or exec() system calls. More recent
work by Olivier et al. [73] show that unikernels coupled with custom hypervi-
sor toolstacks typically achieve boot and destruction times as fast or faster than
containers.

Unlike general-purpose VMs, unikernels run entirely in privileged mode,
with a single address space. This allows unikernels to take a liberal approach
to hardware abstraction which is often criticized in general-purpose OSs. A
compelling example is asynchronous I/O. Enberg et al. [31] point out that this
abstraction was developed at a time when I/O speed was much slower than the
CPU: a program would asynchronously request an I/O operation and be inter-
rupted when the operation succeeded. Now, the overhead imposed by the op-
erating system’s I/O abstraction and the following asynchronous interruption is
comparable to the time actually taken by the hardware to complete the I/O task.
Unikernels can achieve performance gains by eschewing such abstractions.

Finally, in contrast to general-purpose VMs which typically incorporate a
kernel, multiple libraries, language runtimes, and applications, unikernels are
single-image systems. The entire software stack is con�gured, compiled, and
linked as a single bootable binary, allowing for a high degree of specialization and
optimization. This high degree of specialization and optimization is an essential
factor in the performance of unikernels [68].

Specialization and Optimization

Unikernels are designed to serve the purpose of a single application. There is
as such no need for all operating system services, abstractions, and interfaces
to be present in the unikernel image. Unused code is avoided, as it increases
the trusted code base and slows down boot time by unnecessarily initializing
unused functionalities. Unikernels are therefore developed as a set of libraries
that independently implement particular operating system services1 . Unikernels

1Unikernels can thus be seen as an approach to library operating systems [64]. Classical li-
brary operating systems such as Exokernel [32] (1995) or Drawbridge [76] (2011) relocate the
so-called OS personality of monolithic operating systems to user-space, within the process. The
OS personality is de�ned as the implementation of operating system APIs and application visible
semantics [76]. This approach to library operating systems is now commonly referred to as pico-

2.1. UNIKERNELS 9

can be specialized by opting out irrelevant services and abstractions, so that only
necessary components are embedded in the �nal image.

Along with image size reduction, certain unikernels allow for per-component
specialization. Operating system components such as the network stack can be
optimally con�gured with regard to application and environment speci�c con-
straints. In addition, provided that the unikernel o�ers multiple implementa-
tions of the same component (e.g., as selectable libraries), the most appropriate
implementation can be chosen depending on the application and targeted key
performance indicators (KPIs) [56].

Finally, the compilation and linking process allows for a consistent, system-
wide optimization policy driven by targeted KPIs such as performance or space.
The unikernel linker has a comprehensive overview of the system and can per-
form aggressive link time optimizations (LTO) such as dead code elimination [64]
and function inlining.

Unikernel Approaches

It is possible to classify previous approaches to unikernels in the literature into
three categories. First, unikernels that are fully hand-crafted for a particular
application, such as ClickOS [68], an OS optimized for network function virtu-
alization. Hand-crafted unikernels o�er optimal performance as a result of their
extreme specialization, however, the porting time is maximal. Second, unikernels
that specialize on a particular language, such as Mirage (OCaml) [64], HaLVM
(Haskell) [89], or IncludeOS (C++) [18]. Applications targeting such unikernels
have a lower porting time as the base libraries and/or language runtime have
already been ported and optimized. On the other hand, these unikernels are less
specialized than hand-crafted unikernels and therefore o�er a lower degree of
performance. Finally, unikernels that o�er binary compatibility, such as OSV

[52] or HermiTux [73]. These unikernels target apps that would normally run
on Linux. They are characterized by a low porting overhead. Granted that all dy-
namically loaded libraries required by the application binary are satis�ed in the
unikernel, the porting time is practically zero. However, these unikernels present
less potential for per-component specialization, and the binary compatibility in-
terface is associated with additional costs. Furthermore, the binary compatibility
interface has to be maintained in phase with the original kernel (Linux in the case
of OSV and HermiTux) which might o�set to some extent the low porting costs.

processes [28]. Having the OS personality running as part of the process o�ers a good potential
for specialization. However, unlike unikernels, picoprocesses do not target single-purpose ap-
pliances and do not provide image size reduction. Furthermore, their specialization potential is
limited to the OS personality, making top-down specialization up to resource management and
scheduling impossible.

10 CHAPTER 2. BACKGROUND AND RELATED WORK

Applications of Unikernels

Note that not all unikernels target the cloud industry. Madhavapeddy et al. [65]
show that unikernels can enable technologies such as just-in-time instanciation
on embedded systems. More recently, De Simone and Mazzeo [25] highlight the
potential of unikernels as an alternative to containers in embedded and real-
time systems. Finally, other studies such as Lankes et al. [58] show applications
of unikernels on bare metal in the context of high performance computing.

2.1.2 Characteristics and Architecture of Unikraft

Unikraft is an open-source unikernel framework that aims at automating the
build of unikernels as much as possible, while providing a high specialization
potential. The framework approach comes with the goal of facilitating building,
optimizing, and sharing code among unikernels, platforms, and use-cases [56].

Unikraft is composed of a build system and a library pool. Operating system
and application components are developed as pluggable libraries that can be con-
�gured and assembled by the build system. This approach can be summarized as
everything is a library, a radical interpretation of library operating systems [56].

Unikraft’s build system recognizes three types of libraries: (1) main libraries,
(2) architecture libraries, and (3) platform libraries. Main libraries are very generic.
They can de�ne and implement decomposed operating system functionalities
such as schedulers, memory allocators, or �lesystems, but also user-space li-
braries (e.g., newlib) or applications (e.g., nginx). Note that Unikraft does not
di�erentiate between application and library. From the perspective of the build
system, an application is a library which provides a main() function. Architecture
libraries such as arm or x86 provide architecture speci�c primitives (e.g., atomic
operations). Finally, platform libraries, such as kvm, xen, or raspi (Raspberry Pi
platform) implement platform-speci�c services and functionalities. Note that
platforms can be virtualized or not. Among others, the platform library is re-
sponsible for supplying the bootloader’s entry point and device drivers (e.g., vir-
tio), along with linker scripts that de�ne the executable format (e.g., ELF for Xen,
Multiboot for KVM).

Libraries can be internal or external. Internal and external libraries are tech-
nically very similar. The main di�erence is that internal libraries live within the
Unikraft o�cial repository2 (main tree) and do not have external dependencies
(i.e., the main tree is self-contained). main and platform libraries can be internal
or external. architecture libraries, however, can only be internal.

Internal libraries de�ne and implement the core Unikraft API, which is de-
signed to resemble POSIX.1 [9]. Within the main tree, API de�nition is conven-

2https://xenbits.xen.org/gitweb/?p=unikraft/unikraft.git

https://xenbits.xen.org/gitweb/?p=unikraft/unikraft.git

2.1. UNIKERNELS 11

./

unikraft/

{}

apps/

app-helloworld/

...

libs/

lib-newlib/

...

plats/

plat-solo5/

...

unikraft/

arch/

x86/

...

lib/

ukalloc/

ukallocbbuddy/

...

plat/

kvm/

...

...

Figure 2.2: Simpli�ed Unikraft development tree. The main tree (unikraft/) hosts
main (lib/), platform (plat/), and architecture (arch/) libraries. External main
libraries live under libs/ and apps/, external platforms under plats/.

tionally separated from implementation. The kernel API is de�ned by a speci�c
set of internal libraries that provide interface headers, generic functionalities,
and helpers. uksched, for instance, de�nes the scheduler API, and ukalloc de�nes
the allocation API. APIs can be implemented by an arbitrary number of internal
and external libraries. The main tree o�ers at least one implementation of each
API element. ukschedcoop, for example, provides a cooperative implementation
of the scheduler API, and ukallocbbuddy implements the memory allocation API
as a buddy system. Figure 2.2 depicts a simpli�ed Unikraft development tree,
summarizing the di�erent types of libraries within and outside of the main tree.

Build Process

Functional unikernels can be assembled by the build system from a limited set
of core components3:

• An architecture library (e.g., x86), which provides architecture abstraction
for use by platform and main libraries.

• A platform library (e.g., kvm), which de�nes the image format and performs
platform- and architecture-speci�c boot-time initialization.

3This list is slightly simpli�ed. In practice, a small number of additional abstractions are
required, but reviewing them outreaches the scope of this thesis. An exhaustive list is available
in Section 5.3 as part of our evaluation of internal boot time.

12 CHAPTER 2. BACKGROUND AND RELATED WORK

• The ukboot main library, which performs generic kernel initialization.

• The ukalloc interface, which provides the internal memory allocation in-
terface, and one implementation of the interface, such as ukallocbbuddy.

• A C standard library. The main tree provides a minimalist standard li-
brary called nolibc. nolibc is not a fully-featured libc but only provides the
functionalities needed by internal libraries. newlib [4] and musl [3], two
additional standard libraries, have been ported outside the main tree.

• Any library which provides a main() function (e.g., helloworld).

Libraries can be selected and con�gured via make menuconfig, which relies on
a KCon�g system similar to the Linux kernel [55]. Each library provides infor-
mation to the KCon�g system via a Config.uk �le: con�guration options, help
messages, etc. Upon execution of make menuconfig, the KCon�g system retrieves
this information from the various libraries and �lls the con�guration menu. Ar-
chitecture libraries, for instance, allow the user to specialize the image for a spe-
ci�c type of processor (via -march compiler options). Nginx allows individual
modules to be enabled or disabled (dav, scgi, etc.). Figure 2.3 summarizes the
assembly process of Unikraft images, from the perspective of the user.

Porting Process

Each library directory contains one Config.uk �le which contains information for
the KCon�g system, one Makefile.uk which contains build information, patches,
and glue code. Porting means �lling in Makefile.uk with paths to headers that
need to be included, source �les that need to be compiled, and compilation �ags.
Some applications also generate data or code at compile time; this has to be han-
dled as well. Porting also means adapting the library to Unikraft’s interface. This
is facilitated by the fact that Unikraft o�ers an API very similar to POSIX. How-
ever, some libraries like C standard libraries require more changes. For instance,
system call wrappers have to be modi�ed to not issue a syscall instruction and
instead call the appropriate system call procedure in Unikraft. Finally, Unikraft
remains at an early development stage, and porting therefore also means imple-
menting missing OS functionalities (e.g., missing system calls).

Tracepoints

Unikraft supports tracepoints [7]. If enabled in ukdebug, data associated with
the content of the timestamp counter (TSC) can be saved in an internal, �xed-
size bu�er. Tracepoints data comprises the tracepoint function name (tracepoint

2.1. UNIKERNELS 13

Main library pool

Unikernels

lib-lwip

Network stacks

lib-tcpip

lib-vfs

Filesystems

lib-fat

lib-coop

Schedulers

lib-preemptlib-bbuddy

Memory allocators

lib-mimalloc

arch-x86_64 arch-arm64

unikraft_xen_x86_64 unikraft_xen_arm64 unikraft_kvm_x86_64 unikraft_kvm_arm64

Select/Create
Application

Select and
Configure
libraries

Build + LTO

Run

1

2

3

4

Application

lib-nginx lib-redis

Architecture libraries

plat-kvm plat-xen

Platform libraries

lib-helloworld

lib-newlib

Standard libraries

lib-nolibc lib-ocaml

Language runtimes

lib-python

Figure 2.3: Unikernel building process in Unikraft, from the perspective of the
user [56]. Users �rst select and con�gure a target application, along with nec-
essary main, platform, and architecture libraries. Target unikernels are obtained
after building, linking, and optimizing. The image format is de�ned by the plat-
form library’s linked scripts, which are executed at the third stage.

label) and up to 7 optional tracepoint parameters of any type. At each tracepoint
write, the data is written to the bu�er along with additional metadata. When
the end of the bu�er is reached, ukdebug automatically disables tracepoints. The
content of the bu�er can be retrieved externally at kernel shutdown or dumped to
standard output. A set of gdb scripts is provided by the build system. Tracepoints
are associated with a certain runtime overhead: disable and re-enable interrupts,
multiple memory writes, pointer arithmetic, and a TSC read. Note that disabled
tracepoints are automatically optimized out at build time.

Conclusion

Compared to other unikernels such as Hermitux, OSV, or Mirage, Unikraft’s
framework approach enables a greater potential for specialization and increased
versatility. In particular, we expect that Unikraft’s framework approach makes

14 CHAPTER 2. BACKGROUND AND RELATED WORK

HermiTux

OSv
Mirage

ClickOS

Unikraft

Low

Medium

High

Low Medium High

P
e
r
fo

r
m

a
n

c
e

Porting effort

Figure 2.4: Position of the Unikraft framework on a performance v.s. porting
e�ort plane compared to HermiTux, OSV, Mirage, and ClickOS. Porting applica-
tions to Unikraft requires more e�ort but a higher degree of performance can be
achieved due to a higher degree of specialization.

it easier and more elegant to implement allocator specialization. On the other
hand, it su�ers from increased porting costs and is signi�cantly less mature than
other older unikernel projects. Figure 2.4 depicts the position of Unikraft on a
performance/porting e�ort plane, compared to other unikernel projects.

2.2 Dynamic Memory Allocation

The virtual address space of processes in general-purpose operating systems is
typically organized in several sections called segments: the text segment, the ini-
tialized and uninitialized (bss) data segments, the stack, and the heap [50]. Fig-
ure 2.5 depicts a typical, non-randomized memory layout in Linux x86-32. The
text segment contains program code. The initialized and uninitialized segments
contain initialized and uninitialized global and static variables, respectively. Fi-
nally, the stack and the heap can be used by programs to allocate memory at
runtime. The stack is a last-in-�rst-out (LIFO) data structure. When a function is
entered, a new stack frame is created, containing function arguments and local
variables. All variables are automatically freed when the stack frame is removed
at function exit [50]. Memory allocated from the stack is therefore managed
automatically. The heap takes a special role as its memory is explicitly man-
aged by the program. For this purpose, the OS supplies the program a section
of memory that the program is free to use as it sees �t. However, in practice,
e�ciently managing this memory is a non-trivial and error-prone task. For this
reason, management of heap memory is typically the responsibility of a dynamic

2.2. DYNAMIC MEMORY ALLOCATION 15

.text.data.bss -heap

shared memory,

memory mappings

& shared

libraries

stack

kernel

+

argv &

environ

Program breakTop of stack

0x
00
00
00
00

0x
40
00
00
00

0x
C0
00
00
00

0x
08
04
80
00

Figure 2.5: Typical memory layout of a process on Linux/x86-32, without Address
Space Layout Randomization (ASLR) [50]. The stack grows downwards, the heap
upwards. The upper limit of the heap is called program break. Memory mappings
are done in between. The kernel is mapped at the top, after 0xC0000000. With
ASLR, all components would still be present but randomly placed across the heap
e�ectively making the exploitation of memory corruption bugs harder [47].

memory allocator that manages the heap memory on behalf of the application.
Applications request heap space of a certain size through an allocation inter-

face. If the request can be satis�ed, the allocator responds with the address of a
su�ciently large block of memory within the heap area, which is then used by
the application independently of the allocator. If the allocator does not have suf-
�cient space to satisfy the request, it can ask the kernel to expand the heap. The
application can give back ownership to the allocator when it does not need the
memory anymore. Memory allocation algorithms are as such online algorithms
[91], required to irrevocably satisfy requests in sequence with minimal delay.

There is a consensus that memory allocators have a crucial impact on over-
all performance [14, 30, 43]. Berger et al. [14] show that programs can run as
much as 60% faster just by switching to a more appropriate memory allocator.
For this reason, allocators historically focused on minimizing runtime overhead
while keeping memory usage as low as possible. Further research highlighted
other determining factors such as runtime guarantees for embedded and real-
time systems [69], security for memory unsafe languages [12], scalability in the
context of multithreaded applications [13], or compiled size for cloud images.
The memory allocation problem is therefore a complex issue, involving a variety
of trade-o�s. In fact, even the single problem of minimizing runtime and memory
usage cannot be solved for all allocation patterns by a single allocator [91].

Nevertheless, it was shown that allocation patterns typically exhibit regular-
ities within and across programs [91, 96]. If dynamic memory allocators can-
not behave optimally in all cases, they only have to do so for realistic patterns.
Two approaches to dynamic memory allocation are present in the literature:
general-purpose allocation and special-purpose allocation (also referred to as cus-

16 CHAPTER 2. BACKGROUND AND RELATED WORK

tom). While general-purpose allocators attempt to provide good overall behavior
for the most common allocation patterns, custom memory allocators ambition to
o�er optimal performance for a speci�c application or allocation pattern.

In this section, we �rst provide an overview of memory management in
general-purpose operating systems. Then, we introduce general- and special-
purpose memory allocation in further detail. Finally, we present the four mem-
ory allocators that will be studied in the course of this thesis.

2.2.1 Memory Management in General-Purpose OSs

This subsection o�ers an overview of memory allocation in general-purpose op-
erating systems. We present the characteristics of memory allocation in user and
kernel-space, and how they interact with each other.

User-Space Memory Management

User space memory allocators manage heap memory. The size of the heap is de-
termined by the position of the program break. The heap can be grown or shrunk
at the allocator’s request. Growing or shrinking the heap requires modi�cations
in the page table, as this will create or remove memory mappings in the process’
virtual address space. These operations can therefore only be executed by the
kernel. In general-purpose operating systems, user- and kernel-space communi-
cate via system calls. Following system calls are typically used in the context of
dynamic memory allocation:

• The brk() system call moves the program break to the passed pointer and
returns its previous position [50]. The success of the operation is condi-
tioned by the validity of the passed pointer and the resource limits of the
process. The sbrk() variant increments the program break by a passed
integer.

• The mmap() system call creates new memory mappings [50]. The type of
memory mapping is de�ned by the �ags argument. mmap() can be used,
among others, to map �les in memory or map a new bu�er of physical
memory in the address space. Mappings can be modi�ed using mremap() or
removed using munmap().

• The madvise() system call can be used by the program to provide addi-
tional information (advice) to the kernel about how it is going to make use
of memory [50]. The advice can be that the program will read memory se-
quentially or randomly so that the kernel can adapt its read-ahead policy,
or that the program does not need certain pages anymore.

2.2. DYNAMIC MEMORY ALLOCATION 17

• The mprotect() system call can be used by the application to ask the ker-
nel to change the virtual memory protection of certain pages [50]. The
application can request pages to be any combination of read, write, and
execute4.

Memory allocators should be conservative in their resort to system calls, as
these are typically bound to high costs [84]. In particular, system calls that mod-
ify the size of the heap should be taken with care, as they trigger not only changes
in the page table, but also force zeroing of newly allocated pages. Yang et al. [94]
show that zeroing can be very expensive: up to 12.7% of all application cycles.

Kernel-Space Memory Management

Kernel stacks are typically small and of �xed size [21]. For this reason, ker-
nel components widely rely on dynamic memory allocation. On the one side,
the kernel might simply require an arbitrarily sized contiguous bu�er of virtual
memory. This type of allocation is similar to user-space memory allocation and
can be served by practically any memory allocator operating on the kernel vir-
tual address space. On the other side, the kernel might require an arbitrarily sized
bu�er of virtual memory that maps to a contiguous bu�er of physical memory
[75]. This might be necessary when allocating bu�ers for direct memory access
(DMA): external peripherals will access this memory without going through the
memory management unit (MMU)5. Such allocations are typically handled by a
specialized memory allocator that runs on a portion of memory that is always
resident, mapped one-to-one with physical memory, and, if relevant, usable for
DMA. In the Linux kernel, for instance, memory that is not guaranteed to be
contiguous can be allocated via the vmalloc interface, and contiguous memory
via the kmalloc interface6 [39].

There is no consensus on whether kernel allocations should be contiguous in
the general case (i.e., when there is no explicit requirement for contiguous mem-
ory). For instance, the recommended allocation interface in the Linux kernel is
kmalloc [23], which provides physically contiguous memory. On the other hand,
the FreeBSD kernel recommends the malloc interface [54], which does not guar-
antee contiguous memory. The main advantage of using contiguous memory in
the kernel is that such allocations do not require modi�cation of the page table

4Not all combinations are supported by all platforms.
5Alternative solutions such as input-output memory management units (IOMMU) or Scat-

ter/Gather DMA do exist, but they are bound to additional costs, see Park et al. [75].
6Other allocation mechanisms exist in the Linux kernel, however, enumerating them would

be beyond the scope of this work. An exhaustive list is be accessible as part of the Linux Memory
Management Documentation: https://www.kernel.org/doc/html/latest/vm/index.html.

https://www.kernel.org/doc/html/latest/vm/index.html

18 CHAPTER 2. BACKGROUND AND RELATED WORK

since there is already a one-to-one mapping. This results in a lower allocation
overhead for the kernel. Second, these allocations can be registered as a sin-
gle large page, resulting in a single TLB entry and reduced TLB misses [21]. The
main drawback of a wide usage of contiguous memory is external fragmentation.
A high degree of fragmentation could make �nding large bu�ers of contiguous
physical memory particularly di�cult in situations of memory pressure, leading
to decreased performance.

Kernel memory allocation interfaces are typically similar to POSIX with the
addition of a few kernel-speci�c features [23, 54]. Most importantly, kernel al-
locators allow callers to specify whether or not sleeping or performing I/O is
allowed during allocation. This is essential for use in interrupt handlers. Other
options, for instance, can force the kernel to retry the allocation as often as pos-
sible until it �nds a free bu�er.

2.2.2 General-Purpose Memory Allocation

General-purpose memory allocators aim to o�er good performance for most al-
location patterns. They implement the standard allocation interface and typi-
cally make decisions based exclusively on size. This is an important di�erence
with custom allocators, which typically integrate additional semantic informa-
tion from the application. In the C language, general-purpose allocators imple-
ment the malloc() and free() family of functions, in C++ new and delete, etc.

General-purpose allocators make decisions at allocation and deallocation time
based on policies [91]. Policies de�ne the behavior of the allocator: where to place
the requested memory block in the heap, whether or not to reuse freed memory,
waste space by reusing freed blocks of a larger size, or split and/or coalesce freed
blocks. Policies in general-purpose allocators are developed to leverage regulari-
ties across programs. Such regularities can be that objects allocated together are
likely to be freed together [91], or that there is a high degree of temporal locality
in the size of memory requests [40]. For instance, a policy resulting from such
observations could be to store objects of same size together.

Memory allocators implement policies with di�erentmechanisms [91]. Mech-
anisms are technical solutions to implement policies. Allocators can, for exam-
ple, maintain a single linked list of free blocks that is linearly traversed to satisfy
allocation requests (sequential �ts, notably �rst �t, and best �t), maintain sev-
eral linked lists for distinct size classes (segregated �ts), or maintain a bitmap of
free blocks (bitmapped �ts). Not only di�erent policies, but also di�erent mecha-
nisms can result in very di�erent properties with regard to runtime performance,
memory usage, real-time guarantees, etc.

2.2. DYNAMIC MEMORY ALLOCATION 19

The memory allocation research has been very proli�c over the last two
decades and a large number of mechanisms and policies have been introduced7.
Since there is no strong theory behind program behavior or memory allocation,
memory allocators are typically evaluated experimentally on a set of benchmarks
and real-world programs. Despite the ad-hoc nature of general-purpose mem-
ory allocators, signi�cant progress can be observed since the 1990s, and general-
purpose memory allocators now perform very well on average. Nevertheless,
the weaknesses of general-purpose memory allocators remain tangible and the
claims of their shortcomings very present [81]. A historical remedy to this prob-
lem was custom memory allocation.

2.2.3 Custom Memory Allocation

Custom memory allocators (CMAs) specialize on a particular allocation behav-
ior. They are typically employed as an optimization of general-purpose alloca-
tors, promising a gain in runtime performance, reduced memory consumption,
or eased manual memory management [15]. Approaches to custom memory al-
location di�er in the level of coupling between application and allocator: some
CMAs implement a speci�c, non-POSIX compliant API that requires direct sup-
port from application code, whereas others achieve specialization by pro�ling
the application and synthesizing a custom allocator backend. This subsection
summarizes the di�erent approaches, and concludes the strengths, weaknesses,
and trade-o�s of custom memory allocation, and how they could be leveraged in
the context of unikernels.

Manual Approaches

Some approaches rely on a tight coupling, such as regions [36] or object stacks
[91], two historical approaches to special-purpose memory allocation. Regions
allocate memory by incrementing a pointer within a chunk of memory. Freeing
individual objects is not supported, so that all objects within a chunk have to be
freed at the same time. Object stacks are very similar to regions. However, they
implement a stack-like deallocation behavior: freeing an object automatically
frees all objects allocated more recently in the stack. Both regions and object
stacks rely on simpli�ed bookkeeping to improve performance but require direct
support from application code.

More recent approaches to tightly coupled memory allocation include hint-
based allocation, such as Defero [45] (2007). Defero performs allocations based
on size and location. The allocation function is given a size and a location hint,

7We present four allocators that rely on di�erent policies and mechanisms in Subsection 2.2.4.

20 CHAPTER 2. BACKGROUND AND RELATED WORK

and tries to return a block which is the closest possible to the passed hint. Well
chosen hints result in increased locality of reference and thus less TLB and cache
misses. Other hint-based allocators include tp and Medius [46].

There is a consensus in the literature that tightly coupled CMAs such as re-
gions, obstacks, and hint-based allocators can result in high performance in-
crease. Berger et al. [15] (2002) �nd that regions can deliver performance im-
provements of up to 44% in runtime performance compared to the Lea allocator,
a state-of-the-art general-purpose allocator at the time of their study. However,
tightly coupled CMAs require a tedious and error-prone manual source code in-
tegration, greatly limiting their practicability in practice [46, 91].

Per-Class & Container-Centric Approaches

Previous observation motivated the development of strategies that do not re-
quire manual modi�cation of the source code. A historical approach is per-class
allocation. Per-class allocators implement the standard allocation interface but
specialize on a single object type or size. In C++, such allocators can be associ-
ated to a speci�c class by overloading the new and delete operators [14]. Per-class
allocators can be easily written using Berger et al. [14]’s heap layers, an allocator
framework based on C++ templates that allows fast implementation of custom
memory allocators from reusable parts.

Note that there is little consensus about the performance impact of per-class
allocators. Berger et al. [15] (2002) explain that, while per-class allocators did
certainly perform well in the past, modern general-purpose allocators perform
very well in situations where many objects of a same size are allocated, making
per-class allocators essentially super�uous.

A more recent approach called container-centric allocation combines C++ STL
containers8 and hint-based CMAs like Defero, tp or Medius [46]. Container-
centric allocation leverages the fact that STL containers allocate their elements
independently. By modifying the STL library, containers can be instrumented to
automatically pass a hint to the underlying allocator, maximizing for example
locality of reference within a container. Performance increase can therefore be
achieved without introducing additional complexity in the application.

Container-centric approaches have shown to produce very good results at
low cost. Jula and Rauchwerger [46] show that container-driven allocation pro-
duce runtime improvements of 7% and 17% on average, compared to the Lea and
FreeBSD allocators, respectively. However, container-centric approaches have a
limited scope. Defero, tp, and Medius in particular can only be considered in
C++ applications that make use of STL containers.

8We are here referring to holder objects from the C++ standard library, such as std::vector
or std::list, not lightweight virtualization.

2.2. DYNAMIC MEMORY ALLOCATION 21

Pro�le-guided Approaches

Finally, certain strategies rely on loosely coupled memory allocators that lever-
age program-speci�c heuristics through the standard allocation interface. An
early example of a loosely coupled custom memory allocator is Grunwald and
Zorn’s Customalloc (1993) [40], a system which automatically synthetizes cus-
tom allocators from previously recorded allocation traces. Programmers write
their application using the standard POSIX allocation interface. Then, Custom-
alloc runs the application a number of times, analyzing the allocation behavior
for di�erent inputs. Following the analysis, it synthetizes a CMA that maintains
distinct free-lists for the most common allocation sizes. Free-lists are managed
di�erently by a fast or a general allocator depending on statistical data from the
analysis. The fast allocator trades memory usage for performance, and statistical
data help to �nd an optimal trade-o� between memory usage and performance.

The Customalloc approach shows that there is a potential in generating
memory allocators from allocation traces. Nevertheless, such approaches take
the risk of being mislead by trace data [88], and su�er from limited portability
with hard-coded customization at compile-time [17, 61].

Savage and Jones [81]’s halo (2020), a very recent allocator takes a similar
approach. halo pro�les the application and applies grouping and identi�cation
algorithms to determine how allocated data is used. At runtime, it uses previ-
ously gained clustering information to maximize temporal locality, adjacently
placing data that is used at the same time. In this manner, halo demonstrates
speedups up to 28% over jemalloc [81], at the cost of build-time analysis and
increased memory usage.

Conclusion

We conclude that manual approaches to special-purpose memory allocation can
produce good results with regions or hint-based allocators. However, manual
approaches are not practicable in many cases due to their tedious and error prone
porting process. Less coupled approaches such as container-centric allocation
can also produce good results but they are restricted to speci�c applications that
make heavy use, for example, of C++ STL containers. Finally, pro�le guided
approaches such as halo can have very good results but at the cost of memory
usage and compile time.

We see a clear bene�t in applying loosely coupled CMA technologies such as
halo, Defero, tp, or Medius but only in cases where it �ts with the application,
and the trade-o�s (e.g., more memory usage for more performance) bene�t the
user. The need for �exibility thus advocates the use of allocator specialization in
unikernels.

22 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.4 Memory Allocators in Unikraft

This subsection introduces Unikraft’s buddy system (which we will refer to as
bbuddy), Mimalloc [62], tlsf [69] and tinyalloc [82]. These allocators will be
studied in Unikraft as part of Section 4.2.

bbuddy

bbuddy is Unikraft’s binary buddy allocator. It is based on MiniOS’s mm.c page
allocator9, an implementation of Knuth’s buddy system [53]. bbuddy is a page
allocator and as such it only allows for allocation and deallocation at page gran-
ularity (4 KiB on x86, huge pages are not supported by Unikraft as of 0.4.0). A set
of external wrappers called ifpages (page allocation interface) implements the
standard POSIX allocation interface on top of bbuddy’s page allocation prim-
itives. In particular, allocations under a page are padded to a whole page, po-
tentially leading to signi�cant internal fragmentation. bbuddy supports non-
contiguous memory, called memory regions in Unikraft. These might happen
when the Unikraft kernel is booted with an initial ramdisk image.

bbuddy is a classical buddy system, however, its initialization function di�ers
slightly from the original algorithm. The initialization function is passed a linear
memory block of arbitrary size. After reserving space for metadata, it splits the
linear block into smaller blocks of size 2=+B bytes with a so-called order of =
(= > 0). The page shift is de�ned as B := ;>62(page_size) and guarantees that
blocks are not smaller than the page size. = is constrained by the amount of
memory passed to the initialization function. In addition to this, blocks need to
be contiguous and aligned to their own size. Alignment constraints are leveraged
to ease block coalescing. Note that, as a consequence of previously mentioned
constraints, the initial linear block of memory does not need to be a power of
two. bbuddy exposes an addmem function which allows to repeat this process for
additional memory regions.

There are sizeof(void*) ·8− B free-lists (i.e., 52 for 64 bit systems and a page
size of 4 KiB). Lists of order = point to free blocks of size 2=+B bytes.

The allocation function goes through the free-lists in increasing order start-
ing at the requested size, taking the smallest block order that can be used to
satisfy the request. The chunk is unlinked from the free-list and halved as often
as necessary to obtain a block of su�cient order. The halves (also called buddies)
are added to the corresponding free-lists.

The deallocation function �nds the region corresponding to the supplied
pointer. In order to speedup the identi�cation of mergeable buddies, bbuddy
maintains a page bitmap that marks each page as allocated or free.

9https://xenbits.xen.org/gitweb/?p=mini-os.git;a=blob;f=mm.c

https://xenbits.xen.org/gitweb/?p=mini-os.git;a=blob;f=mm.c

2.2. DYNAMIC MEMORY ALLOCATION 23

Besides the free-lists and the page bitmap, bbuddy maintains a free page
counter for statistical purposes. Figure 2.6 summarizes bbuddy’s metadata and
heap layout.

Memory Region 1Free pages: 15

Memory Region 2Free pages: 7

Heap metadata

free_head[0] =

free_head[1] =

free_head[2] =

...

page bitmap

page bitmap

freefree

free

free free

free freeused

used

used used used

Figure 2.6: Heap metadata in bbuddy. Allocator-wide segregated free-lists refer-
ence free chunks of a given order, across regions. Page bitmaps allow for fast page
status veri�cation (used or free) during buddy coalescing. A free page counter
allows for fast lookup of per region memory usage for statistics purposes.

Mimalloc

Mimalloc was introduced by Leijen et al. [62] (2019) as part of their work on the
functional languages Koka and Lean at Microsoft Research. Mimalloc features
a good support for multithreaded workloads, overall high performance, a small
code base and has a secure variant called smimalloc.

Mimalloc is centered around a fast and a slow path. The fast, highly optimized
malloc and free paths are used most of the time. The fast allocation path satis-
�es requests with minimal bookkeeping, executing a single conditional branch
and pop operation. The slow path, guaranteed to be taken regularly, performs
housekeeping operations.

A fundamental observation behind Mimalloc’s design is that memory alloca-
tors are now frequently used as back-end implementation of languages such as
Python. These languages often leverage reference counting to free memory, typ-
ically leading to a large number of free calls when the execution exits a certain
code block. This sudden, irregular, and large amount of free calls is undesirable
as it introduces ‘pauses’ within program execution. Mimalloc addresses this via
a so-called deferred-free mechanism: applications can de�ne a limit of free calls

24 CHAPTER 2. BACKGROUND AND RELATED WORK

to execute in a row. After hitting this limit they can pass remaining variables to
a deferred-free-list which will be processed as part of the slow allocation path.

Mimalloc’s good support for multithreaded workloads is achieved via a lock-
free design. Each thread has its own heap. Heaps are organized in segments that
contain so-called pages, themselves containing objects of a given size class. Size
classes are multiples of the machine word size (8 bytes on 64-bit systems), up to
8 KiB. Over 8 KiB, segments only contain a single page and are always allocated
from the slow path. Note that these pages are not OS pages; they are closer to
what is called superblock or subslab in other allocators. The central articulation
of Mimalloc’s lock-free design is the concept of sharded free-lists. There are three
free-lists per page. The �rst one is the standard free-list, used as a source of free
blocks by the fast path. The second one, called the thread-free list, contains blocks
freed by other threads updated in a lock-free manner via atomic push operations.
The third one, the local-free list, contains blocks freed by the local thread. Both
the local- and thread-free-lists are merged into the standard free-list as part of
the slow path. The local- and thread-free-lists are therefore keys to a regular
journey in the slow path: whenever the fast path encounters an empty standard
free-list, the slow path is triggered to merge the local- and thread-free-lists or
request more memory from the OS.

It is no accident that free-lists are present per page and not per segment; this
extreme free-list sharding increases locality of reference. The authors indeed
observe that applications tend to allocate structures containing elements of the
same size class. In the case where there is only one free-list per size class, ele-
ments are likely to spread all across the heap, or at least all across pages of a size
class. Having one free-list per page forces elements to be on the same page as
far as possible. Figure 2.7 summarizes Mimalloc’s heap layout.

tlsf

The Two-Level Segregated Fit (tlsf) memory allocator was introduced by Mas-
mano et al. [69] to address the lack of good memory allocators in the context
of real-time operating systems. tlsf features allocation and deallocation with
a temporal cost of O(1), along with a small and bounded fragmentation behav-
ior. These characteristics contrast with most common allocators which typically
feature unbounded worst-case temporal cost and fragmentation.

tlsf focuses on small systems where memory is a scarce resource, possibly
without memory management unit (hence without virtual memory). The mem-
ory model is especially adapted for linear address spaces. There are no security
features; the environment is considered trusted, and protection is done at user
interface level.

2.2. DYNAMIC MEMORY ALLOCATION 25

Figure 2.7: Mimalloc per-thread heap layout [62]. We observe the presence of
segments holding pages of a same size class. Page metadata and page areas are
separated by a guard page. There are three free lists per page, a consequence of
the extreme free-list sharding policy.

tlsf relies on a good �t strategy, which can be considered the bounded coun-
terpart of best �t, a strategy known to produce the least fragmentation. The im-
plementation is based on segregated lists: a number of independent and ordered
free-lists provide blocks whose size is between one size class and the following
one. Good �t and segregated lists are used consistently for all size classes.

Typical segregated �ts have a single list holding pointers to per size-class
free-lists. The authors highlight that searching these lists can be costly if their
number is high, which is precisely tlsf’s case. They solve this problem by using
two-level segregated �ts, another level of indirection. tlsf’s �rst level free-list
splits in coarse power of two size classes. The second level free-list splits power of
two size classes linearly in sli size classes, where sli is a user-supplied parameter.
The �rst and second level free-lists are associated with a bitmap that allows fast
lookup whether a segregated list still holds free blocks or not. Note that this
search can be done in constant time due to hardware support for bitmap search
(�nd �rst set operations, e.g., lzcnt instruction on x86). As a result, malloc() can
be performed with an asymptotic behavior of O(1).

tlsf splits blocks when necessary and follows an immediate coalescing pol-
icy: while this might not be the most e�cient strategy, it reduces unpredictability

26 CHAPTER 2. BACKGROUND AND RELATED WORK

and fragmentation. Memory blocks are only split above a threshold of 16 bytes:
Masmano and others observe that the majority of allocations are not simple data
such as pointers and integers, but larger structures. Having such a limit allows
to store metadata within free blocks, which limits memory overhead.

Block headers contain size information, along with a pointer to the beginning
of the previous block. This pointer is used for coalescing purposes upon inserting
a newly freed block to the free-lists. Free blocks contain pointers to the previous
and next free blocks as well, hence the requirement for a split limit of 16 bytes.
Figure 2.8 summarizes tlsf’s two-level segregated �t mechanism.

Figure 2.8: tlsf’s Two-Level Segregated Fit mechanism [69]. The �rst level free-
list separates in size classes that are a power of two apart. The second level splits
power of two size classes linearly in user-supplied sli size classes. The �rst and
second level free-lists are associated a bitmap for fast free block lookup, allowing
block search in O(1).

tinyalloc

tinyalloc [82] is a minimalist implementation of malloc() and free(). It is meant
for use in systems with unmanaged linear memory such as WebAssembly or
embedded systems.

2.2. DYNAMIC MEMORY ALLOCATION 27

......

0x
04
00

0x
04
10

0x
04
1c

0x
04
28

0x
04
34

0x
04
40

0x
05
78

0
x
5
8
4

0
x
0
0
0

0
x
0
0
5

0
x
5
7
8

0
x
4
1
c

0
x
0
0
c

0
x
0
0
0

0
x
4
4
0

0
x
0
0
0

0
x
5
8
9

0
x
0
0
0

0
x
0
0
d

0
x
4
2
8

0
x
4
3
4

0
x
5
9
6

0
x
4
1
0

0x
05
84

0x
05
89

0x
05
96

Allocator metadata Block metadata Fresh blocks (here, 27x) Allocated data (here, 3x)

Figure 2.9: tinyalloc heap layout [82]. Allocator metadata contain a pointer to
the �rst free block (in green), a pointer to the �rst used block (in red), a pointer
to the �rst fresh block (in blue), and a pointer to the heap top (in white). Block
metadata contain the address of the associated heap chunk, a pointer to the next
block in the list, and the size of the block. In this diagram, there are two freed
blocks (1x12 bytes, 1x5 bytes), one used block (1x13 bytes), and 27x remaining
fresh blocks (the allocator was therefore initialized with 30 fresh blocks).

tinyalloc keeps three lists of blocks. The �rst one holds so-called fresh blocks.
Fresh blocks are blocks that are uninitialized and not associated with actual mem-
ory. Fresh blocks are allocated at initialization time and only available in a �xed,
user-con�gurable number. The second list holds used blocks. Used blocks are as-
sociated to a chunk of heap memory and are currently in use by the application.
The third list holds free blocks. Free blocks are used blocks that have been freed.
Unlike fresh blocks, free blocks have already been initialized and associated to a
block of memory.

Upon receiving an allocation request, tinyalloc applies a �rst �t (sequential
�t) policy, scanning through the entire free-list for a su�ciently large block of
memory. Block splitting is optional, with a con�gurable split threshold. If no
su�ciently large block is found, tinyalloc reserves space on the heap by increas-
ing the heap pointer. A fresh block is then initialized with the newly allocated
memory and added to the used list. Note that this is only possible if there are
remaining fresh blocks. Otherwise, the allocation simply fails. The number of
fresh block therefore has to be chosen carefully.

The heap is split in two parts: the one currently in use, split in chunk rep-
resented by free and used blocks, and the rest waiting to be associated to fresh
blocks. The separation is done via a top pointer that points to the �rst byte of
unassociated memory. Figure 2.9 summarizes tinyalloc’s heap layout.

28 CHAPTER 2. BACKGROUND AND RELATED WORK

Chapter 3

Analysis

The previous chapter introduced Unikraft and how it achieves performance in-
crease by fully specializing operating system components toward the application.
We introduced the memory allocation problem and emphasized that dynamic
memory allocators hold untapped specialization potential that can be leveraged
to optimize for speci�c key performance indicators (KPIs). We observed the need
for a solution that takes advantage of the particularities of applications with-
out paying the price of manual specialization. This motivates us to study how
memory allocators �t in Unikraft’s everything is a library specialization strategy,
whether choosing from a range of general-purpose allocators can be considered
a trade-o� between custom- and general-purpose allocation, and how this spe-
cialization a�ects KPIs.

In this chapter we further study general-purpose memory allocation in the
context of unikernels. Section 3.1 discusses the di�erences between unikernels
and general-purpose operating systems with regard to memory allocation. We
are interested to determine how these di�erences a�ect the design of allocators
in unikernels, and therefore how they impact allocator specialization strategies.
Section 3.2 analyzes how to best leverage memory allocators as a specialization
layer in unikernels and proposes a concrete specialization experiment that is
based on the Unikraft framework.

3.1 Dynamic Memory Allocation in Unikernels

The vast majority of memory allocation research is realized in the context of
general-purpose operating systems. To the best of our knowledge, no previ-
ous work in the literature speci�cally discusses memory allocation in the con-
text of unikernels. However, we know that unikernels and general-purpose OSs
present signi�cant di�erences that are also relevant to dynamic memory alloca-

29

30 CHAPTER 3. ANALYSIS

tion: unikernels run as a single process, in privileged mode, with a single address
space, making expensive system calls as cheap as simple procedure calls [52]. We
therefore see the need to examine if such di�erences in the execution environ-
ment can lead to new conclusions regarding memory management in unikernels
and how such conclusions might drive allocator specialization strategies.

We have shown in 2.2.1 that general-purpose operating systems perform dy-
namic memory allocation in kernel and user space, and noted that both modes
typically possess very di�erent requirements. We are interested in better un-
derstanding whether these properties still exist in unikernels, and what they
imply in the context of allocator specialization. In particular, we want to de-
termine whether the separation of kernel-space and user-space allocators still
makes sense in unikernels. Subsection 3.1.1 reviews the special aspects of kernel
memory allocation in general-purpose OSs, and their relevance in unikernels.
Subsection 3.1.2 analyzes how the characteristics of unikernels a�ect memory
allocation at the application level.

3.1.1 Memory Allocation in the Kernel

We showed in 2.2.1 that kernel memory allocators need to (1) guarantee isolation
between user and kernel space, (2) optionally allocate memory that will always be
resident, (3) provide physically contiguous memory upon request, and (4) provide
atomic behavior in critical execution paths. This subsection analyzes whether
these requirements still apply to memory allocators in unikernels. Following
this, we conclude on the possibility to share a memory allocator between kernel
and application in unikernels.

Isolation The classical approach to unikernels considers the hypervisor as the
trusted computing base. Unikernel-based VMs rely on the hypervisor to provide
isolation, run entirely in privileged mode, and do not provide internal isolation.
Hence, there is no concept of a user space, and as such no fundamental security
reason why kernel and application should not share the same memory allocator.

Note that the absence of intra-unikernel isolation was criticized by recent
work [74, 85]. In particular, Sung et al. [85] stress that while numerous unikernels
are written in memory safe languages [59, 64], the use of unsafe primitives (e.g.,
inline assembly, dereferencing of raw pointers) is unavoidable in an OS-context.
The authors argue that the absence of internal isolation between safe and unsafe
unikernel components discards the bene�ts of using memory safe languages.
Based on this observation, they show that isolation between memory safe kernel
code, unsafe kernel code, and user space can be re-introduced at low cost on the
basis of Intel Memory Protection Keys (MPK), ultimately entailing a separation
of kernel and application memory allocators.

3.1. DYNAMIC MEMORY ALLOCATION IN UNIKERNELS 31

Thus, the necessity of separating memory allocators should be viewed in re-
lation to the memory safety model of unikernels. While classical unikernels will
draw no security bene�ts from such a separation, multiple allocators coupled
with protection domains can back up memory safety in unikernels that rely on
memory safe languages.

Resident Memory Many components of general-purpose kernels depend ex-
clusively upon unpaged memory (i.e., memory that is always resident in mem-
ory). An essential reason for this is that page-fault handlers need to page in
non-resident memory from disk, resulting in I/O operations. Thus, page-faults
must not happen in atomic contexts. This observation is also valid for uniker-
nels. Unikernels that implement paging (and in particular page eviction) there-
fore need to provide a kernel allocator that can supply unpaged memory.

Supporting paged kernel memory is a trade-o� between the added complex-
ity of critical sections and the potential gain in memory footprint. For this reason,
paged kernel memory is not a widely supported functionality among general-
purpose OSs. Linux and FreeBSD, for instance, do not support it [34, 39]. Uniker-
nels are known to have a small memory footprint, and as such we expect that
they will draw little bene�t from supporting paged kernel memory.

Note that unikernels do not typically perform complex paging. IncludeOS
[18], for example, operates with virtual memory switched o�, that is directly on
physical memory. Unikraft supports virtual memory but relies on a one-to-one
physical to virtual memory mapping. In such cases, there is an implicit guarantee
of memory to be resident. OSV [52] provides more complete support for virtual
memory but does not support page eviction and demand paging can be disabled
for kernel allocations.

Physically ContiguousMemory The requirement for physically contiguous
memory also applies to unikernels. Many unikernels [18, 52, 56, 64], for instance,
implement virtio paravirtualized drivers, which require host-guest communica-
tion channels (e.g., virtqueues) to be physically contiguous [86]. The require-
ment for physically contiguous memory is satis�ed di�erently among uniker-
nel projects. Unikraft addresses this problem by relying on a one-to-one virtual
memory mapping, whereas IncludeOS [18] operates directly on physical mem-
ory. In this case, a single allocator can be shared between kernel and application.
The virtual memory management in OSV instead supports explicit allocation of
physically contiguous memory by incorporating knowledge of the state of the
physical memory into the kernel allocator [52].

32 CHAPTER 3. ANALYSIS

Atomic Behavior General-purpose kernels often implement complex mech-
anisms for memory release as part of the allocation path. When a situation of
memory pressure is detected, the kernel can put the calling process to sleep in
order to release some memory from caches or write bu�ers to disk [23, 54]. As a
consequence, memory allocations can result in blocking behavior. Kernel mem-
ory allocators therefore take an argument that enables or disables blocking be-
havior, allowing the use of dynamic memory allocation in critical paths. This
equally applies to unikernels. OSV, for instance, implements the Shrinker API
[52] which allows system components to register callbacks that will be called
when the system is low on memory, possibly resulting in �lesystem operations
within the allocation path. OSV’s kernel allocator thereby provides the caller
the option to choose between atomic and non-atomic behavior. Unikraft, on the
other hand, does not implement such a mechanism. Memory allocation is im-
plicitly a non-blocking operation.

We conclude that kernel memory allocation in unikernels is not very di�erent
from kernel memory allocation in general-purpose operating systems. Uniker-
nels also need dynamic memory allocators that can provide, upon request, phys-
ically contiguous memory, unpaged memory, or atomic behavior. The need for
isolation is not present in the classical approach to unikernels, but recent work
showed that there are meaningful applications for reintroducing a certain degree
of isolation within unikernels.

We note that the requirements for memory contiguity, unpaged memory, or
non-blocking behavior can be satis�ed implicitly by the memory allocator in
certain unikernels. Unikernels that do not implement paging (and more speci�-
cally, page eviction), operate on one-to-one mapped memory ranges, and do not
block in the allocation path do not technically require di�erent allocators for ker-
nel and application1. This is, for example, the case in Unikraft and IncludeOS.
Nevertheless, we emphasize that relying on a single allocator for kernel and ap-
plication is not necessarily a good decision from the perspective of performance.
Decades of experience in general-purpose operating systems showed that the
kernel is a good candidate for custom memory allocation, and using specialized
allocators such as object pools has the potential to drastically improve perfor-
mance [17, 29, 39]. If technically possible, the decision whether or not to share
an allocator between kernel and application should therefore be an informed de-
cision based on KPIs (boot time, binary size, runtime performance, etc.) and the
selected kernel feature set. Developing a kernel allocator for Unikraft is outside
the scope of this thesis. However, Unikraft’s ability to have several memory allo-

1This also applies to unikernels that do implement these functionalities but allow users to
disable them for specialization purposes.

3.1. DYNAMIC MEMORY ALLOCATION IN UNIKERNELS 33

cation backends associated to di�erent memory pools signi�cantly facilitates the
implementation of a kernel-speci�c allocator. For instance, a specialized kernel
allocator could be assigned a one-to-one mapped memory range.

3.1.2 Memory Allocation in the Application

We recognize two characteristics of unikernels that are especially relevant in
the context of memory allocation: (1) absence of system call overhead, and (2)
no symmetric multiprocessing (although some unikernels do support it). While
these characteristics do not fundamentally change the functioning of dynamic
memory allocators — in fact, any user-space allocator should work just �ne in
a unikernel environment, we believe that some allocators might leverage them
better than others.

System Call Overhead

We have shown in 2.2.1 that user-space memory allocators use system calls to
grow or shrink the heap (mmap(), brk() and sbrk()), modify the protection of spe-
ci�c pages (mprotect()), or pass on memory usage hints to the operating system
(madvise()). We showed that system calls have historically been associated with
signi�cant costs (we will reevaluate these costs in 3.1.3), and concluded that user-
space memory allocators need to balance the cost of system calls with virtual
memory usage, security, and performance. In the context of unikernels, however,
this trade-o� is very di�erent, as the entire code runs in privileged mode. System
calls are therefore simple procedure calls and applications can make heavy use
of them to increase the coupling between kernel and application code. This has
two fundamental consequences in the context of memory allocation. First, the
allocator can grow and shrink the heap at minimal cost, and second, the allocator
can modify page protections at minimal cost.

The ability to resize the heap at reduced cost can be leveraged in unikernels
that rely on dynamically sized heaps like OSV [52] and Hermitux [58]. Even if
unikernels host a single application (reducing the relevance of memory fairness),
the application still shares the physical memory with the kernel. It is therefore
important to avoid situations of kernel memory pressure caused exclusively by
a waste of memory in the application. The other way around, the application
should not be limited by an excessively conservative heap size. Note, however,
that unikernels which rely on statically sized heaps like Unikraft or on a single
kernel-user heap like IncludeOS [18] do not bene�t from an increased ability to
resize the heap at runtime.

System calls have been a historical limitation of attempts at providing mem-
ory safety [24, 26]. Therefore, the ability to modify page protections and com-

34 CHAPTER 3. ANALYSIS

municate memory usage advice to the kernel code at low cost can be leveraged
to mitigate the performance overhead of security-focused allocators, enabling,
for instance, widespread reliance on guard pages.

Single-Core Support

Unikernels frequently assume a uniprocessor model. Unikraft, in particular, runs
on a single core with cooperative scheduling. Therefore, no locking is required
as long as threads do not yield within malloc() [33]. We observe that this might
disadvantage allocators with support for multithreading that do not provide op-
timizations for uniprocessor systems. Such optimizations can be to avoid infras-
tructure for per-processor arenas or heaps [33], relax synchronization, or remove
per-thread metadata [70]. Previous research showed that such optimizations can
improve performance by as much as 15% [70].

3.1.3 Impact of System Calls

We have previously emphasized that the absence of classic system calls are a ma-
jor di�erence between unikernels and general-purpose operating systems. We
are interested to quantify this. In particular, we see the need to estimate the
performance gain that can be o�ered by unikernels with regard to memory allo-
cation and how this impacts the cost of temporal memory safety in unikernels. In
this subsection, we �rst present an analysis of the cost of system calls in general-
purpose operating systems and compare it to the cost of a procedure call. Then,
we analyze the number of memory allocation related system calls performed by
di�erent general-purpose and security-focused allocators.

Several studies in the literature such as Soares and Stumm [84] (Linux ker-
nel) and Rittinghaus [78] (Microsoft Windows) have already quanti�ed the cost
of a system call in di�erent general-purpose operating systems. However, these
measurements are about a decade old and we are not aware of any more recent
work on this matter. The absence of recent measurements is problematic since
the performance of core OS functionalities is known to have decreased signi�-
cantly in the last few years [77]. Spectre and Meltdown mitigations, in particular,
account for a signi�cant part of this performance decrease, and kernel page ta-
ble isolation (KPTI) [41] is already known to have a signi�cant impact on the
cost of system calls [22]. This cost, however, has not been precisely quanti�ed in
the literature. We therefore provide more recent measurements that take recent
changes into account.

3.1. DYNAMIC MEMORY ALLOCATION IN UNIKERNELS 35

Experimental Setup

Our measurements are run on a gnu/linux Debian Buster system with a Linux
kernel version 5.6.6, built from source. The machine is equipped with 1x Intel®
Xeon® E5-2690 v4 with 2.6Ghz base frequency and an invariant timestamp counter
(TSC). Hyper-threading is disabled.

Cost of System Calls

We want to benchmark the cost of a system call and compare it with the cost
of a procedure call. The cost of a system call can be separated into (1) direct
costs (mode switch), and (2) indirect costs (pipeline �ushing, pollution of TLB,
processor caches, etc.) [84]. Direct system call costs can be measured from user
space via a null system call, which returns a constant value. By measuring the
time elapsed between the execution of the syscall instruction and its return, we
have a precise measurement of the mode switch cost. Indirect costs are signi�-
cantly more complicated to measure. Indirect costs will be lower in unikernels
(no syscall instruction, hence no pipeline �ushing), but still exist as the execu-
tion of the function call will still alter the TLB and cache.

In this subsection we focus on mode switch costs, providing us with a lower
bound estimate of the cost of system calls. We proceed as follows. First, we
implement a null system call in a Linux 5.6.6 kernel. Then, we (1) determine
the measurement overhead by doing two TSC reads sequentially and taking the
di�erence, (2) measure the time using the TSC it takes to execute one million
(non-inlined) function calls that return a constant value, and (3) benchmark the
time it takes to perform one million null system calls. The experiment is re-
peated 100 times, the measurement overhead is subtracted, and average results
are taken. Note that we leverage the cpuid instruction to ensure the serialization
of the TSC reading (rdtsc).

The experiment is run three times, one with the default kernel con�gura-
tion, one disabling kernel page table isolation (nopti kernel argument), and one
disabling all recent security mitigations (mitigations=off kernel argument [2]).
Table 3.1 shows our results. We observe that the cost of system calls has risen
by x4.5 with recent CPU vulnerability mitigations (KPTI, in particular). While
this has not been observed in the literature at the time of this writing, we �nd
that this is consistent with Corbet [22] and Ren et al. [77]. The results with-
out security mitigations are consistent with Soares and Stumm [84]. We observe
that system calls are on average 111x more expensive than procedure calls (25x
without security mitigations). These numbers are signi�cant in the context of
memory allocation; 665 CPU cycles is equivalent to more than 30 allocation calls
with a modern general-purpose allocator, assuming a per-allocation cost of 20-

36 CHAPTER 3. ANALYSIS

Security Mitigations System Call Function Call
gnu/linux 5.6.6 default 665 6

default + nopti 202 6
mitigations=off 149 6

Table 3.1: Cost of function and system calls in Linux 5.6.6, with the default con�g-
uration, without KPTI (nopti), and without security mitigations (mitigations=off,
which includes nopti [2]), in CPU cycles.

25 cycles [48]. The cost of a procedure call does not vary between the di�erent
runs, which is to be expected since programs do not interact with the kernel as
part of a procedure call.

System Calls in Memory Allocation

We run barnes [11] and espresso [80] and record the number of system calls per-
formed by the applications with varying memory allocators (smimalloc, mimal-
loc2 [62], snmalloc [63], jemalloc [33], and hoard [13]). System calls are recorded
via strace. barnes simulates the gravitational forces between 163840 particles.
espresso is a programmable logic array analyzer. Both are very common pro-
grams in the allocation literature [13, 15, 62]. These applications are considered
to represent a typical allocation pattern, which justi�es our choice for this study.
smimalloc, mimalloc, snmalloc, jemalloc, and hoard are well studied allocators
that leverage di�erent allocation strategies3.

Tables 3.2 shows our results. We observe that the number of system calls
performed by allocators varies signi�cantly. In particular, smimalloc, the secure
variant of mimalloc, performs notably more mprotect() system calls: 7x and 34x
more than mimalloc for barnes and espresso, respectively. Note that smimalloc
only o�ers weak security guarantees in comparison to state-of-the-art security-
focused allocators such as Oscar [24]. In particular, smimalloc does not provide
protection against use-after-free. We assume that Oscar, which performs one sys-
tem call per allocated heap chunk, would present a signi�cantly higher number
of system calls. Unfortunately, we are not aware of any open source implemen-
tation of Oscar and were therefore unable to integrate it into this benchmark.

2See 2.2.4 for an introduction to mimalloc and smimalloc.
3Note that we did not include tinyalloc, tlsf, and bbuddy as these allocators operate on a

static chunk of memory and therefore do not perform any system calls.

3.2. SPECIALIZING MEMORY ALLOCATORS 37

all brk() mmap() munmap() madvise() mprotect()

smimalloc 177 4 38 2 0 90
mimalloc 100 4 38 2 0 13
snmalloc 111 4 45 2 0 15
jemalloc 141 5 56 6 1 17

hoard 155 4 62 23 0 17

(a) barnes

all brk() mmap() munmap() madvise() mprotect()

smimalloc 44699 4 35 2 0 438
mimalloc 44274 4 35 2 0 13
snmalloc 44285 4 42 2 0 15
jemalloc 44343 5 50 6 32 17

hoard 44336 4 69 20 0 17

(b) espresso

Table 3.2: Number of system calls performed with varying allocators and work-
loads. The all column displays the total number of system calls performed by the
application, including system calls that are unrelated to memory management.

Conclusion

We have shown that the cost of system calls has increased considerably in the
last few years due to security features such as kernel page table isolation. We
have recalled that current approaches to provide temporal memory safety su�er
from an increased system call overhead and illustrated that this is also the case
of hardened allocators such as smimalloc. The cost of such allocators has there-
fore intensi�ed over the last few years and unikernels can leverage the absence
of system call overhead to o�er state-of-the-art temporal memory protection at
lower cost.

3.2 Specializing Memory Allocators

Section 2.1 introduced the typical key performance indicators of unikernels: im-
age size, boot time, runtime memory usage, runtime performance, and security.
This section presents these KPIs in greater detail and analyzes how memory al-
locators can be leveraged to tune unikernel environments for them. We put our
�ndings into practice by porting a selection of memory allocators to Unikraft:
bbuddy, tinyalloc, tlsf, and Mimalloc. This section motivates this choice and

38 CHAPTER 3. ANALYSIS

our expectations that these memory allocators will present optimal behavior in
di�erent contexts and KPIs. Figure 3.1 presents the interdependence between
KPIs, graphically summarizing our work in this section.

runtime memory usagesecurity

image sizeboot time runtime performance
[66, 67, 71]

[65]

[19]
[24, 26]

[14, 40]

[24]

[15, 81]

Figure 3.1: Graphical representation of the correlation between unikernel KPIs.
A full arrow represent an in�uences relation. Dashed arrows represent a trade-
o� situation where one KPI can be traded o� for the other and vice versa. Edges
are labeled with known work on the matter. Relations without labels have not
been explicitly highlighted in the literature.

Boot time Small boot times are an important capability of operating systems
to meet the expectations of elasticity and agility of cloud services [67]. Previous
work in the literature, for instance, leveraged the small boot times of uniker-
nels to provide just-in-time instanciation of networked services [65]. In addition
to the intrinsic boot time of unikernel components, we recognize the following
in�uencing factors:

• Image size: Manco et al. [66] show that VM instanciation times (and there-
fore boot times) increase linearly with image size due to the overhead of
reading the image from storage, parsing it, and laying it out in memory.
Other work [71] emphasize that cloud systems need to transfer VM images
within data centers from repositories to compute nodes. The I/O overhead
is therefore proportional to image size.

• Security and hardening features: Security features impact boot time, either
by requiring an increased amount of initialization, or simply by degrading

3.2. SPECIALIZING MEMORY ALLOCATORS 39

runtime performance at boot time. The �rst can be illustrated by smimal-
loc [62], whose free-list randomization feature entails higher initialization
costs compared to non-randomized variants. The latter can be illustrated
by the Oscar allocator, which performs twice as more system calls at boot
time since there are no fresh shadows that can be reused yet [24].

• Runtime memory usage: Madhavapeddy et al. [65] show that the amount
of guest memory associated with the virtual machine can signi�cantly in-
�uence the instanciation time. The authors observe, for instance, that the
VM creation time on the Xen hypervisor increases from 650 ms for a 16 MB
domain to over a second for 256 MB. Assuming appropriate guest memory
sizing, reduced memory footprint allows to reduce domain creation ex-
penses, ultimately decreasing the total boot time.

• Runtime performance: Runtime performance can be traded o� for boot
time by lazily initializing objects and structures. Mimalloc, for instance,
o�oads the initialization of internal structures (e.g., segments, thread local
heaps) to the �rst allocation that accesses these structures [62]. The boot
time is consequently faster, at the cost of a decreased runtime performance
for the �rst allocations. The other way around, boot time can be traded
o� for performance by fully initializing the system, potentially �lling up
caches in advance. tinyalloc, for instance, pre-initializes all block metadata
at startup [82].

• Cloud instance type: Mao and Humphrey [67] show that a larger quantity
of cloud resources (e.g., primary and secondary storage, CPUs) takes longer
to allocate. As a result, cloud instance size and boot time can be negatively
correlated. Increased runtime memory usage and/or decreased runtime
performance therefore indirectly in�uence boot time, as those might re-
quire service administrators to increase the size of the instance.

Hence, a memory allocator designed for fast boot times has (1) a minimal
initialization time, (2) services boot-time allocations with minimal delay, (3) pro-
vides overall low runtime memory usage, and (4) presents a negligible impact
on the image size. Lightweight allocators are therefore more prone to provide
fast boot times. tlsf ful�lls these characteristics as a lightweight allocator with
constant-time initialization and bounded fragmentation. tinyalloc, on the other
hand, pre-initializes all fresh blocks at startup, potentially resulting in a sig-
ni�cant overhead depending on the con�guration. The boot time behavior of
bbuddy is also di�cult to predict, as it does not run in constant time (see Sub-
section 2.2.4). Finally, we expect that Mimalloc, despite of its lazy initialization
strategy, presents a non-negligible initialization overhead because of its large
size and complex data structures.

40 CHAPTER 3. ANALYSIS

Runtimememory usage Runtime memory usage has an increased relevance
in situations of high VM density, as is the case with high density TLS termination
[66]. Apart from the intrinsic memory consumption properties of the unikernel,
we �nd the following in�uencing factors:

• Runtime performance: There are well-known trade-o�s between mem-
ory usage and performance. A generic concept is caching, which trades
o� memory for performance (e.g., slab caches [39]). Another example is
region-based allocation, which o�ers substantial speedups (up to 44%) at
the cost of an increased memory footprint (up to 63%) [15]. The other way
around, performance can be traded o� for space by maximizing the block
placement e�ort in the allocator to reduce fragmentation (e.g., by applying
a best-�t strategy [91]).

• Security and hardening features: Previous research showed that security
features can have an important impact on runtime memory usage. The
Oscar and DangSan allocators, for instance, present a memory overhead of
61.5% and 140% with the CPU2006 benchmarks, respectively [24]. Another
example is Leijen et al. [62], who show that the addition of security features
to mimalloc (notably guard pages) increases the peak memory usage by
71% in their Redis benchmark.

Overall, a good memory allocator with regard to memory consumption fea-
tures a low fragmentation, a small resident size, and a low degree of bookkeeping,
possibly involving a decreased degree of runtime performance. Hardening fea-
tures should be chosen pragmatically as part of the risk management process, as
they also impact the memory footprint. Note that not only low fragmentation
but also bounded fragmentation can be required in the context of real-time sys-
tems [69]. We expect that tlsf presents a low memory footprint due to its good
�t mechanism [69]. On the other hand, tinyalloc might present more fragmenta-
tion issues due to its �rst �t mechanism, despite of a low degree of bookkeeping.
We expect that bbuddy presents a high degree of fragmentation as a page al-
locator (all allocations are rounded up to the next page boundary). Finally, we
expect that Mimalloc presents a low degree of fragmentation due to the sharded
free-lists, but it tends toward high overall memory consumption on systems that
do not support demand paging as the size classes are physically segregated.

Runtime performance The following factors typically in�uence the runtime
performance of unikernels:

• Image size: While image size does not in�uence runtime performance per
se, compilation optimizations such as inlining have the capacity to increase
performance at the cost of an increased image size [14, 40].

3.2. SPECIALIZING MEMORY ALLOCATORS 41

• Runtime memory usage: We have already discussed the trade-o�s between
runtime performance and runtime memory usage in the previous para-
graph: performance can be traded o� for memory usage and the other
way around.

• Security and hardening features: We have previously illustrated the re-
lation between security and runtime performance in our system call mea-
surements (see 3.1.3), showing that security features such as KPTI multiply
the cost of mode switches by x3. A further example is smimalloc, which
can present runtime overheads of up to 46% compared to mimalloc [62],
the same allocator without security features.

Therefore, memory allocators that optimize runtime performance have in-
herently good performance properties (fast allocation and deallocation, good lo-
cality of reference) and o�er an increased potential for inlining. Similarly to
runtime memory usage, hardening features should be chosen conservatively as
they have a signi�cant impact on runtime performance. Note that not only fast
allocation and deallocation but also bounded allocation and deallocation times
can be required in the context of real-time systems [69]. We expect that Mi-
malloc, as a state-of-the-art allocator with highly optimized fast and slow paths,
provides particularly good runtime performance behavior. Similarly, we expect
that tinyalloc provides good performance for workloads that are not deallocation
intensive (as deallocations involve an increase of the size of the free-list). Unlike
Mimalloc and tinyalloc, tlsf o�ers bounded allocation and deallocation time,
but, set apart pathological cases, runs slower than optimized general-purpose
allocators such as the Lea allocator [69].

Security Aside from the security features supported by the OS (e.g., ASLR),
previous work [19] pointed at the in�uence of software attack surface (i.e., im-
age size) on the security KPI. Hence, a good memory allocator with regard to
security provides security features (e.g., use-after-free detection, free-list ran-
domization, or bu�er over�ow detection) and has a lean code base to limit the
potential for vulnerabilities within the allocator itself. Mimalloc is particularly
interesting here since it provides hardening features that can optionally be en-
abled at build time. tlsf, tinyalloc, and bbuddy, apart from their small code base,
do not provide security features4. We note, however, that tlsf has a mature,
well-maintained code base, which limits the risks of �aws within the allocator.

Image size The image size is an important factor of boot time and security
and its relevance increases with the VM density. Unsurprisingly, the image size

4In fact, the design of tlsf explicitly assumes a trusted environment [69].

42 CHAPTER 3. ANALYSIS

essentially depends on the intrinsic size of unikernel components, the degree
of optimizations performed (e.g., dead-code elimination), and the image format
(e.g., Multiboot v.s. ELF). Hence, we expect that the memory allocation subsys-
tem can be specialized toward binary size by relying on lightweight allocators. In
this regard, we except that bbuddy (322 source lines of code – SLOC), tinyalloc
(418 SLOC), and tlsf (736 SLOC) will exhibit similar results, which will di�er
from the results for Mimalloc (5868 SLOC).

3.3 Conclusion

In this chapter, we have discussed the di�erences between unikernels and general-
purpose operating systems with regard to memory allocation. We showed that
kernel memory allocation in unikernels is subject to similar constraints com-
pared to general-purpose OSs (resident memory, physically contiguous memory,
etc.). However, we noted that, depending on the unikernel implementation, some
of these requirements might be implicitly satis�ed. As a result, sharing a single
memory allocator in unikernels such as in the current Unikraft 0.4.0 is possible.
From the perspective of the application, we highlight the impact of the absence
of system calls and the uniprocessor mode.

We supported our claims by measuring the cost of system calls in the Linux
kernel, showing their cost has increased by x4.5 with recent Spectre and Melt-
down patches — notably kernel page table isolation, widening the gap between
system (665 ms) and function (6 ms) calls. Showing that smimalloc performs
25x more mprotect() system calls in the espresso workload, we conclude that
security-focused memory allocators can bene�t from the system call-less archi-
tecture of unikernels.

Finally, we discussed how to best leverage memory allocators as a special-
ization later in unikernels. We presented the typical unikernel KPIs in greater
details and how they interdepend. We put our �ndings in practice, presenting
and discussing a list of four memory allocators that are suitable to perform allo-
cator specialization in Unikraft.

Chapter 4

Design and Implementation

The previous chapter proposed allocator specialization in the Unikraft frame-
work. We port three memory allocators to Unikraft 0.4.0: Mimalloc [62], tlsf
[69], and tinyalloc [82]. We adapt and improve the pre-existing allocator bbuddy1.
Finally we proceed to benchmark a wide range of scenarios with o�-the-shelf ap-
plications, evaluating the potential of allocator specialization in unikernels. This
chapter discusses the process of porting the allocators to Unikraft, beginning
with an overview of Unikraft’s memory allocation subsystem in 4.1. The porting
process is described in 4.2.

4.1 Memory Allocation Subsystem in Unikraft

Unikraft’s allocation subsystem is composed of three layers: (1) a POSIX compli-
ant external API, (2) an internal allocation interface called ukalloc, and (3) one or
more backend allocator implementations such as bbuddy.

The external interface is motivated by backward compatibility to facilitate
the porting of existing applications to Unikraft. In the case of the C language,
the external API is exposed by a modi�ed C standard library which can be nolibc,
newlib or musl. The external allocation interface acts as a compatibility wrap-
per for the Unikraft-speci�c internal allocation interface, which in turn redirects
allocation requests to the appropriate allocator backend. The internal allocation
interface therefore serves as a multiplexing facility that enables the presence
of multiple memory allocation backends within the same unikernel. Figure 4.1
depicts a simpli�ed malloc() call graph in an Nginx Unikraft unikernel, summa-
rizing this layered structure.

1See 2.2.4 for an introduction to Mimalloc, tlsf, tinyalloc and bbuddy.

43

44 CHAPTER 4. DESIGN AND IMPLEMENTATION

nginx

main

newlib

malloc

ukalloc

uk_malloc

uk_alloc_get_default

ukallocbbuddy

bbuddy_palloc

Physical memory

Figure 4.1: Simpli�ed malloc() call graph in an Nginx unikernel. Allocation re-
quests transition through three interface layers: the C standard library, the inter-
nal allocation interface, and the allocation backend. A complete version of this
call graph is available in 4.1.2.

4.1.1 Internal Allocation Interface

The internal allocation interface exposes uk_ pre�xed versions of the standard
POSIX allocation interface: uk_malloc(), uk_calloc(), etc. In contrast to POSIX,
these functions require the caller to specify which allocation backend should be
used to satisfy the request. For instance, uk_malloc() is de�ned as follows:

s t a t i c i n l i n e void ∗ uk_mal loc (s t ruc t u k _ a l l o c ∗ a , s i z e _ t s i z e)

uk_malloc(), like most of the internal allocation interface, is designed as in-
line method in order to avoid any additional function call overhead in the al-
location path2. The struct uk_alloc * argument represents the allocation back-
end. This structure essentially contains function pointers that refer to the al-
locator’s implementation of the POSIX allocation interface: malloc(), calloc(),
posix_memalign(), etc.

In addition, ukalloc exposes uk_alloc_get_default(), which returns the de-
fault allocation backend. This function can be used by components that are not
assigned a speci�c memory allocator, such as the C standard library. The default
allocator is the �rst registered allocator.

2Enforcing inlining in the Unikraft allocation path is one of the contributions of this thesis.

4.1. MEMORY ALLOCATION SUBSYSTEM IN UNIKRAFT 45

4.1.2 Backend Implementations

Allocators can be implemented as internal or external libraries. They must spec-
ify an initialization function which is called at boot time. bbuddy, for instance,
declares the following initialization function:

s t ruc t u k _ a l l o c ∗ u k _ a l l o c b b u d d y _ i n i t (void ∗ base , s i z e _ t l e n) ;

Initialization functions take a void *base pointer to the �rst usable byte of
the heap, along with a size_t len argument which speci�es the size of heap.
Initialization functions must register the allocator to the ukalloc interface via
uk_alloc_register(). Registering the allocator to ukalloc essentially allows to
determine the default allocator, which is the �rst registered allocator. Initializa-
tion functions must fully initialize the allocator. bbuddy for instance builds up its
internal page bitmaps and free-lists. Finally, initialization functions must return
a struct uk_alloc * that contains function pointers to the allocator’s implemen-
tation of the POSIX API. The allocator is considered ready to satisfy memory
allocations as soon as the initialization function returned.

Initialization functions are called early in the boot process, as many core
system components rely on a functioning allocator for their internal structures.
We have previously mentioned that several memory allocators can exist con-
currently in Unikraft. Which memory allocator is associated to which memory
source is handled by the boot process. However, as of Unikraft 0.4.0, there is no
mechanism that does this dynamically. The association between memory source
and allocator is hardcoded in the boot code.

Allocation Interfaces

Dynamic memory allocators in Unikraft are expected to implement the standard
POSIX allocation API. Memory allocators used by the kernel must also imple-
ment Unikraft’s page allocation interface. The page allocation interface is de-
�ned as follows:

void ∗ p a l l o c (s t ruc t u k _ a l l o c ∗ a , unsigned long num_pages) ;
void p f r e e (s t ruc t u k _ a l l o c ∗ a , void ∗ addr ,

unsigned long num_pages) ;

palloc() allocates a number of pages from the supplied allocation backend.
Pointers returned by palloc() are always aligned at page size. pfree() deallocates
pages starting at the given address. Note that the allocator must be the same
which has been used for allocation, and the number of pages passed to pfree()

must match the number of pages initially passed to palloc(). Finally, memory
allocated using palloc() must always be freed using pfree() — not free(). The

46 CHAPTER 4. DESIGN AND IMPLEMENTATION

page allocation is a low level interface; metadata are outsourced to the caller in
order to reduce complexity in the page allocator implementation.

Not all allocators implement the full POSIX allocation interface. bbuddy for
instance only implements the page allocation API. For this reason, ukalloc ex-
poses wrappers that can be used to implement a full POSIX allocation inter-
face on top of a limited set of allocation primitives. In the case of bbuddy,
the page compatibility interface ifpages implements the standard POSIX allo-
cation interface on top of palloc() and pfree(). Figure 4.2 depicts a complete
malloc() call graph in an Nginx Unikraft unikernel, showing the implementation
of uk_malloc() on top of bbuddy_palloc() by ifpages.

nginx

main

newlib

malloc

ukalloc

uk_malloc

uk_alloc_get_default

ifpages

uk_malloc_ifpages

ukallocbbuddy

bbuddy_palloc

Physical memory

Figure 4.2: malloc() call graph in an Nginx unikernel. uk_malloc() is implemented
by an ifpages wrapper on top of bbuddy_palloc().

4.2 Porting Process

We adapt bbuddy and port three more memory allocators to Unikraft 0.4.0: Mi-
malloc, tlsf, and tinyalloc. This section presents the porting process of these
allocators. We �rst present a general overview of the engineering e�ort in 4.2.1.
Then, we present three challenges that we encountered during the porting pro-
cess, and how we addressed them in 4.2.2.

4.2.1 General Porting E�ort

This subsection presents a quick summary of the general porting process of a
memory allocator.

4.2. PORTING PROCESS 47

1. First of all, the standard library skeleton is set up. Figure 4.3 depicts the
Unikraft library directory in the case of tlsf.

2. Following this, the Unikraft make�le is �lled with build information. Build
information comprises the allocator’s upstream repository, compilation in-
formation such as an enumeration of C implementation and header �les,
as well as build and link �ags. Using the link to the allocator’s upstream
repository, the build system automatically downloads the compressed al-
locator source and patches it as part of the build process.

3. The Unikraft con�g �le is then �lled with dependency information. In the
case of Mimalloc, for example, a dependency on the pthread library is de-
clared. A description of the allocator is provided for Unikraft’s menucon�g
entry.

4. Then, the header �le of the library is implemented, which exports the li-
brary’s public interface. It is straightforward, as only the initialization
function is exposed to the rest of the unikernel. The actual POSIX allo-
cation API is accessed via function pointers provided by the initialization
function, as described in 4.1.2.

5. Finally, the glue code is implemented, together with required patches for
the allocator source. The glue code contains the initialization function, and
compatibility wrappers for the ported allocator source.

Compatibility wrappers and patches can be of varying complexity. A basic
example is that allocators tend to rely on static variables to store allocator state
metadata. This is an issue in the context of Unikraft, as this makes the support for
multiple instances of the same allocator within the same unikernel impossible.

./

Config.uk

glue.c

include/

uk/

tlsf.h

Makefile.uk

patches/

Figure 4.3: Unikraft library directory in the case of tlsf. The port skeleton com-
prises Unikraft build data, glue code, and patches for the allocator source.

48 CHAPTER 4. DESIGN AND IMPLEMENTATION

Changing this can vary from straightforward (tinyalloc) to fairly complex (Mi-
malloc). More fundamental issues can also arise, such as incomplete interfaces,
or dependencies that can’t be satis�ed at boot time. The following subsection
presents three of these intricacies, and how we addressed them.

4.2.2 Challenges of the Porting Process

Previous subsection presented the general porting process of memory allocators
in Unikraft. Unfortunately, memory allocators are both complex systems and
core OS components, resulting in various complications of the porting process.
This subsection discusses three of them.

API Consistency

We have previously mentioned compatibility interfaces: some allocators do not
implement the full POSIX interface. In the case of this thesis, neither tlsf nor
tinyalloc implement aligned allocation, and none of tlsf, tinyalloc and Mimalloc
implement the page allocation interface. It was therefore part of the porting
process to develop two compatibility interfaces:

• ifmalloc (malloc compatibility interface): implements a POSIX interface on
top of a simple malloc() and free() interface.

• compat: implements Unikraft’s page allocation interface on top of a POSIX
interface.

The implementation of the compat interface is straightforward: palloc() can
be very easily implemented on top of posix_memalign(), without additional meta-
data. The ifmalloc interface, however, is more challenging. Figure 4.4 summa-
rizes the design of external interfaces, compatibility wrappers, and allocator in-
terfaces in Unikraft’s memory management subsytem.

Our �rst implementation of ifmalloc based on the design of the pre-existing
ifpages interface. However, we found that ifpages’s posix_memalign() wrapper
only supported alignment up to a page and returned out-of-bounds pointers in
several cases. We therefore needed to develop a new solution for both ifpages
and ifmalloc. The following paragraphs summarize our work on this matter.

Strategy We overallocate memory from the underlying allocator, and return a
block of memory located within the overallocated bu�er that meets alignment
constraints. Two aspects have to be considered in this design. First, the free()

function has to be able to recover the original pointer before passing it on to the
underlying allocator. Second, the amount of overallocated memory should be
chosen carefully in order to waste the least memory possible.

4.2. PORTING PROCESS 49

tinyalloc TLSF mimalloc BBUDDY

ifmalloc

ifpages

compat

POSIX palloc

Figure 4.4: Schematic representation of allocator interfaces, compatibility wrap-
pers and external interfaces. tinyalloc and tlsf rely on ifmalloc to provide a
complete POSIX interface. tinyalloc, tlsf and Mimalloc rely on compat to pro-
vide a page allocation interface. bbuddy relies on ifpages to provide a complete
POSIX interface. ifmalloc and compat have been developed as part of this work.
ifpages was redesigned.

Policy We apply the same strategy for both ifpages and ifmalloc. However, our
implementation di�ers slightly between them. In particular, the ifpages interface
leverages the fact that palloc() guarantees page-aligned memory. The following
paragraphs present the functioning of the newly designed ifpages interface.

We solve the deallocation problem by introducing new metadata: a pointer to
the base address returned by the underlying palloc(), and the number of pages
allocated (required by pfree()). Finding the minimal number of pages that can
be allocated without over- or under�owing is not trivial. We minimize memory
waste by di�erentiating between three speci�c cases, depending on the requested
alignment 0, the page size ?, and the size of metadata, which is here simpli�ed
to 16. Both ? and 0 are powers of two. In the case of malloc(), we consider
0 := 1. The bu�er size requested by the user is referred to as B, and the address
of the bu�er handed out by the underlying palloc() is referred to as G. Figure 4.5
represents the memory layout for each of the three cases.

1. 0 > ?

The requested alignment is a multiple of the page size. We allocate 0+B bytes.
Allocating 0 bytes allows us to be certain to �nd at least one pointer aligned at
0 within the chunk handed out to us by palloc(). Hence, allocating 0 + B bytes
allows us to be certain to �nd at least one bu�er of size B bytes aligned at 0 within
the chunk.

We store metadata at the beginning of the page preceding the pointer re-
turned to the user. We always return the �rst pointer aligned at 0 within the

50 CHAPTER 4. DESIGN AND IMPLEMENTATION

chunk handed out to us by palloc(), with one exception: if G was already aligned
at 0, then G + 0, the second pointer aligned at 0, is returned. Indeed, returning G

would lead us to under�ow when storing metadata. Note that G+0 is still located
within the �rst 0 bytes of the chunk, there is therefore no risk to over�ow. In
conclusion, 0 + B is the minimal amount of memory that can be requested from
palloc() in this case.

2. 16 ≤ 0 < ?

The requested alignment is smaller than a page but larger than 16. We also
allocate 0 + B. Since G is aligned at ?, it is also aligned at 0, and G + 0 is the
next pointer aligned at 0 after G. G + 0 is returned and metadata are stored at G.
Note that 16 ≤ 0, so storing metadata will not under�ow. 0 + B is therefore the
minimal amount of memory that can be requested from palloc() in this case.

3. 0 < 16
The requested alignment is smaller than the size of metadata. Because of this,

allocating 0 + B would leave insu�cient space to store metadata. Note that since
16 is a power of two, it is also a multiple of 0, i.e. any pointer aligned at 16 will
also be aligned at 0. Hence, we allocate 16 + B, store metadata at G and return
G + 16.

...

data

a = 3 * p

16 � a < p ...

...

waste waste waste waste

2

a < 16 ...

a

data

...

...

wastewastewaste

p

x

1

4

Figure 4.5: Memory layout for various cases of aligned allocation. The �rst case
represents a situation where 0 = 3 · ? ≥ ?. We allocate 3 · ? + B, rounded up
to four pages. The second case represents a situation where 16 < 0 < ? and
0 + B > ?. We therefore allocate two pages. The third case represents a situation
where 0 < 16 and 16 + B < ?. We allocate a single page.

4.2. PORTING PROCESS 51

Evaluation We have implemented a fully POSIX-compliant interface on top
of the page allocation interface. Even if this design minimizes memory usage,
such wrappers are not memory e�cient per se. For allocations above a page,
the internal memory usage is <0G({ B

16+B ,
B

0+B }), which falls under 50% as soon as
B < 0. The memory waste problem could be addressed by relying on allocators
that propose a full implementation of the POSIX interface such as Mimalloc, or by
modifying allocators themselves to implement posix_memalign() natively. Both
solutions were not practicable in our case since we wanted to evaluate tinyalloc,
tlsf and bbuddy without interfering with their internal functioning. Finally,
this wrapper is problematic from a security standpoint as allocator metadata is
not separated from user data. Any over�ow or under�ow could lead to takeover
of the allocator. This is not fundamentally an issue in the case of tinyalloc, tlsf
and bbuddy as these allocators do not implement any security counter-measure.

Allocator Initialization Time

We have previously mentioned that memory allocators in Unikraft are initial-
ized early in the boot process. This is necessary since many core OS compo-
nents such as the interrupt handler rely on dynamic memory allocation. This,
however, posed an issue when porting Mimalloc, which requires a functioning
pthreads environment. Initializing pthreads before the allocator is not possi-
ble, since pthreads itself requires a functioning memory allocator. Note that this
challenge is not speci�c to Unikraft. Other OSs such as Linux rely on a boot al-
locator to bootstrap the system in a state that allows more complex allocators to
take over [39]. Our solution is not fundamentally di�erent from them: we intro-
duce a minimalist bootstrap allocator which handles allocation requests until the
system is ready to initialize Mimalloc, or any other complex allocator. The fol-
lowing paragraphs introduce our solution, how it di�ers from other approaches,
its bene�ts, and drawbacks.

The bootstrap allocator is initialized by the boot process, as described in 4.1.2.
Mimalloc’s initialization function in fact initializes the bootstrap allocator. The
bootstrap allocator is very similar to a region: allocations are performed by lin-
early increasing a pointer without storing metadata. This promises high per-
formance for early boot time allocations by eschewing bookkeeping3. However,
unlike region-based allocators, the bootstrap allocator does not support freeing
at all. This is not a problem because we observed that allocations done during the
early boot time are typically never freed until OS shutdown: interrupt handlers,
schedulers, stacks, thread control blocks and TLS areas (for the main and idle
threads), PCI device driver structures and long lived pthread internal structures

3See 2.2.3 for a more detailed introduction to region-based memory allocation.

52 CHAPTER 4. DESIGN AND IMPLEMENTATION

are all necessary to the functioning of the unikernel. This region-based design
is a noticeable di�erence to Linux’s boot memory allocator, which relies on a
�rst-�t algorithm [39]. Unlike Unikraft, the Linux kernel can free a considerable
amount of memory allocated from the boot memory allocator, thus motivating
the use of a full-�edged boot memory allocator.

The transition from the bootstrap allocator to Mimalloc is handled by the
bootstrap allocator itself. At each allocation, the bootstrap allocator veri�es the
state of the system. If Mimalloc can be initialized, the transition is started. Note
that this can be done e�ciently by inspecting the thread control block (TCB),
which can be retrieved by bitmasking the stack pointer. During the initialization
of Mimalloc, the bootstrap allocator continues to satisfy allocation requests, as
Mimalloc’s initialization itself might trigger allocation requests via pthreads. The
transition function replaces the function pointers in Mimalloc’s struct uk_alloc

to point to Mimalloc’s actual interface. This transition is therefore invisible for
the rest of the system. Figure 4.6 depicts a malloc() call graph at boot time, show-
ing the system state veri�cation, and the incrementation of the internal region
pointer.

uksched

uk_sched_create

ukalloc

uk_malloc

ifmalloc

uk_malloc_ifmalloc

uk_thread_current

ukmimalloc

uk_mimalloc_boot_malloc

_tls_ready

uk_mimalloc_memory_grow

Figure 4.6: malloc() call graph at boot time. The state of the system is veri�ed
by _tls_ready(), retrieving the TCB using uk_thread_current(). In the case of
this call graph, the system is not yet set up. The internal region pointer is incre-
mented via uk_mimalloc_memory_grow(). The bootstrap allocator only implements
malloc() (and a dummy free() function), and therefore uses the ifmalloc interface
for POSIX compliance.

4.2. PORTING PROCESS 53

Evaluation We have implemented a bootstrap allocator that satis�es early
boot time allocation requests with minimal overhead. This allows the system
to set up before more complex allocators such as Mimalloc can be initialized.

This solution is motivated by the same question as Linux’s boot memory al-
locator [39]. However, unlike Linux, the bootstrap memory allocator does not
support deallocation. This is not necessary in the case of Unikraft, because allo-
cations done during the early boot time are only freed at shutdown. If Unikraft
would come to evolve and start freeing some of these bu�ers during runtime,
the inability to free memory could become a drawback and an allocator similar
to the Linux boot memory allocator could be considered. However, even in this
case our minimalist allocator could be considered, o�ering the opportunity to
specialize toward boot time at the expense of memory usage.

System Call Dependency

Memory allocators manage a pool of memory which can be either statically or
dynamically sized. Allocators relying on a �xed size memory pool such as tinyal-
loc and tlsf are common in embedded systems, and more generally in the con-
text of physical memory management. On the other hand, user space allocators
such as Mimalloc typically rely on dynamically sized memory pools. Memory
allocators that manage a statically sized memory pool can easily be ported to
Unikraft. 4.1.2 describes their initialization in greater detail. In contrast, mem-
ory allocators that manage a dynamically sized memory pool present more dif-
�culties, as they typically expect functioning brk() or mmap() system calls4. This
requirement is problematic, because it supposes the existence of an underlying
logic for physical memory management. However, in the case of a one-to-one
memory mapping, the allocator manages both virtual and physical memory, and
such physical memory managers therefore do not exist.

Mimalloc This is precisely the case of Mimalloc. Unlike tlsf or tinyalloc,
Mimalloc’s initialization function does not take a memory bu�er. Instead, Mi-
malloc lazily requests memory from the operating system as part of the heap
and segments initialization process. Mimalloc does it via mmap() system calls on
POSIX-like OSs. In addition to this, Mimalloc also supports WebAssembly, which
presents an API highly similar to the sbrk() interface5.

4See 2.2.1 for an introduction to memory management system calls in general-purpose OSs.
5WebAssembly presents a linear memory model with two memory management instructions:

memory.size which returns the current size of memory, and memory.grow which grows the
linear memory by a given delta and returns the previous memory size [79].

54 CHAPTER 4. DESIGN AND IMPLEMENTATION

Solution Based on this WebAssembly interface, we implement a simple wrap-
per which exposes an interface similar to sbrk() to Mimalloc. We were motivated
to expose this interface instead of mmap() because the amount of code that needed
to be modi�ed within Mimalloc would have been signi�cantly higher by relying
on mmap(). This is because Mimalloc’s mmap() logic expects a full-�edged system
call API from the operating system (madvise(), mprotect(), etc.).

Furthermore, this solution can be tightly integrated with the bootstrap alloca-
tor design that we introduced earlier in this subsection. The bootstrap allocator
satis�es early boot time allocation by incrementing a region pointer. Whenever
Mimalloc is initialized, the bootstrap allocator keeps on managing the memory
and supplies Mimalloc via a sbrk() API. Figure 4.7 depicts a malloc call graph
with Mimalloc upon requesting more memory via the sbrk() wrapper.

nginx

main

newlib

malloc

ukalloc

uk_malloc

uk_alloc_get_default

ukmimalloc

uk_mimalloc_malloc

uk_mimalloc_memory_grow

mimalloc

mi_malloc

mi_os_mem_alloc

Figure 4.7: malloc() call graph with Mimalloc requesting more memory from the
brk-like wrapper.

Evaluation The previously described approach allows to run user-space al-
locators that rely on the brk() system call interface on Unikraft with minimal
modi�cation. A similar interface could be developed for the mmap() system call.
A more contained solution would be to directly patch the allocator to rely on a
�xed-size bu�er. However, this solution was not practicable for this thesis since
we wanted to evaluate possibly unmodi�ed allocators.

4.3. CONCLUSION 55

4.3 Conclusion

In this chapter, we ported and adapted four memory allocators to the Unikraft
framework. We showed that while the general porting process of libraries in
Unikraft is straightforward, the port of allocators raises non-trivial issues such as
maintaining and implementing a consistent allocation interface across allocators,
adapting user-space allocators to work in an environment that does not o�er the
brk/mmap interface and satisfying their dependencies at boot time.

56 CHAPTER 4. DESIGN AND IMPLEMENTATION

Chapter 5

Evaluation

In the last chapter, we ported several general-purpose memory allocators to
Unikraft 0.4.0. In this chapter, we evaluate the performance of these alloca-
tors across a wide range of scenarios with o�-the-shelf applications: the SQLite
database engine, the Redis cache and message broker, and the Nginx web server.
We measure the performance gain that can be obtained by specializing the al-
locator from the perspective of four of the key performance indicators (KPIs)
previously introduced in Chapter 3: image size, boot time, runtime performance,
and runtime memory usage. This chapter is structured as follows: Section 5.1
introduces our evaluation environment and determines the measurement over-
head of Unikraft’s tracepoint system. Then, Section 5.2, Section 5.3, and Sec-
tion 5.4 present our results on image size, boot time, and runtime performance.
Section 5.5 concludes with our results on runtime memory usage.

5.1 Evaluation Setup

Following measurements are realized on a gnu/linux Debian Buster system
equipped with 1x Intel® Xeon® E5-2690 v4 with 2.6Ghz base frequency and an
invariant timestamp counter (TSC). We use the Linux kernel from the o�cial De-
bian repositories, version 4.19.0. Hyper-threading is disabled. We use taskset to
pin the QEMU guest, the QEMU host process, and, if applicable, the benchmark
client on physical CPU cores that are isolated from the Linux host scheduler
via the isolcpu mechanism. Note that the QEMU host process and the QEMU
guest are pinned on di�erent CPU cores. While pinning both processes on the
same core increases the potential for sharing cache entries, we �nd that this also
increases the contention for CPU resources, leading to signi�cantly reduced per-
formance under certain workloads (e.g., nginx). In the guest, �le systems are
exclusively in-memory (ramfs).

57

58 CHAPTER 5. EVALUATION

5.1.1 Unikraft Network Stack Con�guration

Our �rst network-bound measurements presented low performance and little
variation between allocators. We found that this was due to a performance bot-
tleneck in the network stack. We address these issues by enabling memory pools
in Unikraft’s LwIP network stack, increasing the maximum number of TCP sock-
ets (which is set to 5 in the default con�guration) and the maximum number of
TCP listeners. Our optimized LwIP con�guration can be found in Appendix B.

5.1.2 Runtime Overhead of the Tracepoints System

Several experiments in this chapter rely on Unikraft’s tracepoints system, which
has been previously introduced in Subsection 2.1.2. We noted that the tracepoints
system is associated with a speci�c runtime overhead due to disabling and re-
enabling interrupts, several writes to memory, pointer arithmetic, and a read of
the timestamp counter. In order to precisely quantify this overhead, we measure,
using the TSC, the time it takes to perform one million tracepoint writes without
arguments. The tracepoint label is 10 bytes long. The experiment is repeated 10
times and average values are taken. We perform the same experiment with one
32-bit integer argument, since this speci�c case is also present in our measure-
ments. Table 5.1 presents our results. We observe that the runtime overhead of
a tracepoint write averages 30 ns, which, in the following measurements, will be
considered negligible unless otherwise speci�ed.

Arguments Tracepoint overhead (in ns)
0 30
1 31

Table 5.1: Runtime overhead of a tracepoints write with zero and one arguments,
in nanoseconds. The addition of one 32-bit argument causes an additional over-
head of 1 nanosecond.

5.1.3 Baseline Memory Allocator

In order to baseline our binary size and boot time measurements, we imple-
mented bootalloc, a minimalist allocator similar to the bootstrap allocator pre-
sented in Subsection 4.2.2. The initialization time of our baseline allocator is
minimal, as it simply allocates a struct uk_alloc at the beginning of the heap,
and saves the base and len arguments. As a region-based allocator, allocation

5.2. IMAGE SIZE 59

functions simply increment a pointer without bookkeeping information. Deallo-
cation is not supported1. Allocation and deallocation functions are therefore as
fast as possible [15]. Note, however, that the locality of reference is not necessar-
ily optimal. Achieving optimal locality of reference would require a signi�cantly
more complex baseline allocator, e.g., performing heap layout optimizations [81].

5.2 Image Size

We have motivated the importance of image size as a key performance indica-
tor in 3.2: small cloud images are necessary to reduce unikernel provisioning
time and virtual machine (VM) startup time. In this section, we measure the im-
pact of dynamic memory allocators on the image size of unikernels. We build
helloworld, SQLite, and Nginx unikernels for the KVM platform with varying al-
locators. Images are compiled with optimization for performance (-O2). We per-
form two measurements, enabling and disabling link-time optimizations (LTO)
and dead-code elimination (DCE). We compare the size of resulting images using
the du utility in order to avoid incorrect measurements due to sparse images.

5.2.1 Experimental Results

Table 5.2 presents our results. We observe that, concerning the image size, tinyal-
loc, bbuddy, and tlsf are indistinguishable from our baseline allocator. For each
application, the binary size of all four allocators is identical, with and without
LTO and DCE. This surprising result is due to the Multiboot image layout [72]
used in KVM: even if all three libraries have di�erent compiled sizes, the di�er-
ences are hidden by internal alignment.

Mimalloc, on the other hand, presents more contrasted results. Without
LTO/DCE, Mimalloc produces a helloworld image which is more than 3x larger
than the other images. We provide three explanations: (1) Mimalloc introduces
additional dependencies in the helloworld image (notably pthread-embedded),
(2) Mimalloc has a larger code base compared to other allocators in this bench-
mark (see Figure 5.1), and (3) the di�erence is worsened by internal alignment
constraints of the Multiboot speci�cation that we previously mentioned. Note
that the di�erence is much smaller for more realistic images such as SQLite and
Nginx: around 4% of the �nal image (65,536 bytes), due to an alignment jump
caused by Mimalloc’s slightly larger code base.

1The lack of deallocation support is an obvious limitation of bootalloc as a general-purpose
allocator. This does not, however, impact our image size measurements. In our boot time mea-
surements, we assume that su�cient memory is available to the system (i.e., bootalloc will not
run out of memory).

60 CHAPTER 5. EVALUATION

helloworld SQLite Nginx
bbuddy 264,360 1,575,136 1,509,840

mimalloc 854,408 1,640,744 1,575,448
tinyalloc 264,360 1,575,136 1,509,840

tlsf 264,360 1,575,136 1,509,840
bootalloc 264,360 1,575,136 1,509,840

(a) Without LTO and DCE.

helloworld SQLite Nginx
bbuddy 198,824 985,456 1,051,232

mimalloc 330,264 985,528 1,116,840
tinyalloc 198,824 985,456 1,051,232

tlsf 198,824 985,456 1,051,232
bootalloc 198,824 985,456 1,051,232

(b) With LTO and DCE.

Table 5.2: Image size of Unikraft helloworld, SQLite, and Nginx unikernels with
varying allocators, with and without LTO/DCE. Values are in bytes.

We observe smaller di�erences with link-time optimizations and dead-code
elimination: the use of Mimalloc causes a 1.7x size increase for helloworld. In
the case of Nginx, the di�erence is around 6% (65,608 bytes) due to alignment in
the image. Finally, no signi�cant di�erence can be observed between Mimalloc
and other allocators in the SQLite unikernel: the size jump due to alignment is
avoided due to fortunate LTO/DCE optimization.

5.2.2 Conclusion

We observe that KVM image sizes present a threshold-like evolution behavior
due to alignment constraints. For this reason, concerning the image size, rela-
tively small allocators such as tlsf, tinyalloc, or bbuddy are indistinguishable
from our baseline allocator bootalloc. On the other hand, we �nd that Mimal-
loc presents a signi�cantly higher impact on the image size: up to 300% on our
helloworld image, and 4-6% on more realistic unikernels such as SQLite and Ng-
inx. We show that this is mostly due to additional dependencies (in the case of
helloworld) and threshold e�ects caused by alignment in the unikernel image.

We stress that Mimalloc is described as a small allocator in the literature
[62] and expect that larger allocators (e.g., jemalloc [33], tbbmalloc [57]) might
present an even larger image size footprint due to previously mentioned e�ects

5.3. BOOT TIME 61

0

5000

10000

15000

20000

25000

30000

35000

40000

bb
ud
dy

tin
ya
llo
c tls

f

m
im
all
oc

sn
m
all
oc

jem
all
oc

tb
bm
all
oc

C
od
e
ba
se
si
ze
(S
L
O
C
)

32
2

41
8

73
6 58
68

64
96

18
76
8 25
00
0

Figure 5.1: Code base size of di�erent allocators, in source lines of code (SLOC).

(see Figure 5.1). Furthermore, our unikernels shipped a single allocator. Uniker-
nels that embed several allocators might be more strongly a�ected by the image
size footprint of allocators. We conclude that while the impact of lightweight
allocators (< 1000 SLOC) is negligible, the impact of multiple, or larger alloca-
tors can be signi�cant and should therefore be taken into account as part of the
specialization strategy.

5.3 Boot Time

Subsection 3.2 discussed the impact of dynamic memory allocators on the boot
time of unikernels. This section pursues this discussion by experimentally eval-
uating the impact of allocator choice on this KPI.

In this section, we di�erentiate between the internal and the external (or to-
tal) boot time of unikernels. We de�ne the internal boot time as the time needed
to start the application once the virtual machine monitor (VMM) has passed on
control to the kernel. In Unikraft, this corresponds to the time needed to transi-
tion from the platform entry to the execution of main(). In contrast, the external
boot time also includes the VMM overhead.

Subsection 5.3.1 presents two optimizations that we implemented in Unikraft
in order to enable further boot time measurements. Then, Subsection 5.3.2 eval-
uates Unikraft’s external boot time with di�erent VMMs and motivates allocator
specialization toward boot time. Finally, Subsection 5.3.3 evaluates the impact of
allocator specialization on internal boot time in the KVM platform.

62 CHAPTER 5. EVALUATION

5.3.1 Optimization of Internal Boot Time

First boot time measurements revealed signi�cant issues in the Unikraft frame-
work that made unikernels longer to boot. This e�ectively masked the impact
of memory allocator specialization on boot time. This subsection presents two
optimizations that we performed in order to realize our measurements.

Calibration of the Timestamp Counter

The timestamp counter (TSC) returns a monotonically increasing value. On pro-
cessors featuring an invariant TSC, the counter runs at a constant frequency,
which is not necessarily the same as the processor’s [44]. In order to convert
TSC measurements to a value in nanoseconds, the TSC frequency therefore has
to be determined. As of Unikraft 0.4.0, the TSC clock frequency is estimated us-
ing the i8254 timer over a period of 0.1 s. This solution is undesirable because it
delays the boot. Hypervisors advertise the TSC clock frequency via the hyper-
visor generic cpuid timing information leaf [49]. We have patched the Unikraft
KVM platform library to retrieve TSC clock frequency via cpuid and only fall
back to manual calibration if unavailable. Note that the TSC clock frequency
is only advertised since QEMU 2.9 and requires the -cpu +invtsc command-line
argument. These conditions are respected in the following measurements.

Optimization of the PCI Bus Driver

First measurements revealed an average boot time overhead of the PCI bus driver
of 74 ms, representing more than 98% of the overall boot time. As of Unikraft
0.4.0, the PCI driver implements PCI bus enumeration in a brute-force manner,
scanning all devices on all buses (256 buses and 32 devices per bus, i.e., 8192
devices in total), ultimately resulting in tens of thousands of I/O read and write
operations. E�cient drivers implement PCI bus enumeration in a recursive man-
ner, starting by bus number 0 and further processing downstream bridges [92].
However, refactoring the PCI driver is outside the scope of this thesis. For these
measurements, we modi�ed the driver to scan only the �rst bus. Although this
approach does not support PCI bridges, they are not used in our measurements.
The overhead of our approach is similar to that of a recursive scan, which would
also stop after bus 0. In this way, we reduced the PCI bus driver initialization
overhead to less than 400 µs.

5.3.2 External Boot Time

We evaluate the external boot time of a Unikraft helloworld unikernel with qe-
mu/kvm and Solo5 [6, 90], a VMM designed speci�cally for unikernels. This

5.3. BOOT TIME 63

Total Hypervisor BIOS/Firmware Unikraft
qemu/kvm, NIC 86 37 49 < 1

qemu/kvm 76 35 41 < 1
Solo5 3.4 n.a. n.a. n.a.

Table 5.3: Average external boot time with (1) qemu/kvm 5.0.50 and SeaBIOS
1.12.1 with and without NIC and (2) Solo5 0.4.1, in milliseconds (ms).

measurement is important to understand the in�uence of the internal boot time
on the total boot time, that is, the potential of allocator specialization on this KPI.
The measurements are realized using the perf program. In the case of qemu/kvm,
we leverage custom tracepoints to further separate the overhead of the hypervi-
sor from the overhead of the BIOS [35]. We realize two distinct measurements,
one with and one without network interface controller (NIC). Instrumenting the
Solo5 platform is a non-trivial task. Therefore, our Solo5 measurements include
boot, execution, and destruction time, and thus provide an upper bound for the
external boot time. The VM is assigned 2 MiB of guest memory. The experiment
is repeated 100 times and average values are taken. Table 5.3 presents our results.

These measurements show that the unikernel itself represents a minor frac-
tion of the boot time overhead in qemu/kvm. The overhead is primarily divided
between the initialization of qemu/kvm and the BIOS, which is slightly more
expensive. Solo5 reduces the numbers signi�cantly with total boot times aver-
aging 3-4 ms. This highlights the large amount of e�orts invested in VMMs to
reduce boot time. As a point of reference, fork() or exec() system calls typically
present overheads of 1 ms [66], and boot times of 30 ms are su�cient to perform
just-in-time instanciation [65].

While these measurements provide a �rst understanding of the VMM over-
head, these do not include a realistic unikernel boot time as the loaded applica-
tion is a simple helloworld. We anticipate that more realistic applications such
as Nginx will present longer boot times that will be signi�cant with regard to
the total boot time in specialized VMMs such as Solo52, thus motivating further
optimization of the internal boot time. In the next subsection, we evaluate the
internal boot time of unikernels, breaking down to individual components and
determining the potential of memory allocator specialization.

2Note that Solo5 is not the only VMM that targets lightweight VMs. Amazon Firecracker [10],
for instance, is also supported by Unikraft and we observed similar total boot times in the range
of a few milliseconds.

64 CHAPTER 5. EVALUATION

5.3.3 Internal Boot Time

Subsection 3.2 pointed at two qualities of dynamic memory allocators that can
in�uence boot time: (1) overhead of the initialization function and (2) runtime
performance at boot time. We later discussed in Subsection 4.1.2 that initializa-
tion functions depend on the amount of memory allocated to the virtual machine
at boot time (e.g., via the -m command line option in KVM). Therefore, we study
the boot time of unikernels not only vertically by varying the allocator, but also
horizontally by varying the amount of memory being allocated to the VM.

We measure the internal boot time of helloworld, SQLite, and Nginx uniker-
nels with varying allocators. The helloworld unikernel is interesting to study
as it represents the base cost, or lower bound of Unikraft’s boot time. Nginx
and SQLite, on the other hand, are realistic unikernels with and without net-
working. Measurements are realized using Unikraft’s tracepoints system. We
consider the measurement overhead (2 to 9 tracepoint writes) to be negligible
since it accounts for at most 0.005% of measured values according to our results
from Subsection 5.1.2.

Helloworld

We evaluate the boot time of a minimalist helloworld unikernel in KVM. The PCI
bus driver and virtio drivers are disabled. The unikernel includes the following
main libraries: nolibc, ukalloc, ukargparse, ukboot, ukdebug, and uktimeconv.
This corresponds to the minimal set of libraries required to build a functional
Unikraft image. Table 5.5 shows our results for total internal boot time. Figure 5.2
shows a breakdown of the unikernel boot time overhead.

First, we observe that bbuddy does not have a constant initialization time
with increasing VM memory. This is due to its initialization function which splits

2 MiB 512 MiB 1024 MiB
bbuddy 68 5703 6558
mimalloc n.a. 352 351
tinyalloc 69 70 70
tlsf 48 48 48
bootalloc 39 40 40

Table 5.4: Internal boot time of a minimal Unikraft helloworld unikernel with
varying allocators and memory sizes, in microseconds (µs). The default con�gu-
ration of Mimalloc does not support 2 MiB heaps, explaining the missing value.
This characteristic is discussed in further details in Subsection 5.5.1.

5.3. BOOT TIME 65

the linear address space into smaller blocks of size 2=+B (see 2.2.4). In this bench-
mark, we observe that this behavior does not scale for large memory sizes. Con-
sidering a memory size of 1024 MiB, a unikernel with bbuddy boots 19x slower
than with Mimalloc, and 164x slower than with bootalloc. Increasing the VM
memory from 2 MiB to 1024 MiB multiplies the boot time by x96.

Second, we observe that Mimalloc boots signi�cantly slower than other allo-
cators: 5x slower than tinyalloc, 7x slower than tlsf, and 9x slower than bootal-
loc. We provide two explanations: (1) Mimalloc is a considerably more complex
allocator and (2) the additional dependencies of Mimalloc result in additional
initialization time (see Figure 5.2). Unlike other images, the Mimalloc unikernel
also initializes the virtual �le system (vfscore) and pthread-embedded libraries.
Note that the initialization of Mimalloc happens in two steps: (1) the bootstrap
allocator is initialized at allocator instanciation time and (2) the initialization of
Mimalloc is triggered as part of the initialization of pthread-embedded, as soon
as the thread local storage (TLS) has been set up (see Subsection 4.2.2). There-
fore, Mimalloc’s actual initialization overhead is accounted in Figure 5.2 as part
of pthreads.

0

50

100

150

200

250

300

350

400

bb
ud

dy

bo
ot

all
oc

m
im

all
oc ta tls

f

In
te

rn
al

 b
o

ot
 ti

m
e

(μ
s)

Helloworld (1024MiB)

0
100
200
300
400
500
600
700
800
900

1000

bb
ud

dy

bo
ot

all
oc

m
im

all
oc ta tls

f

SQLite (1024MiB)

time

plat

vfscore

allocator

pthreads

misc

0

2000

4000

6000

8000

0

2000

4000

6000

8000

Figure 5.2: Internal boot time of Unikraft helloworld and SQLite unikernels, with
varying allocators. The minimal helloworld unikernel and the SQLite uniker-
nel are both passed 1024 MiB of memory. Like previously shown in Table 5.5,
Unikraft’s page allocator behaves pathologically. The miniplot at the right dis-
plays an uncropped version of the SQLite plot. pthread-embedded is initialized
in all SQLite images, but this process takes more time in the Mimalloc unikernel
since it also includes the transition from the bootstrap allocator to Mimalloc. The
initialization overhead of the TSC clock discussed in 5.3.1 is displayed as time.

66 CHAPTER 5. EVALUATION

SQLite

We perform a similar experiment with a Unikraft SQLite unikernel. In addition to
the base libraries included in the helloworld image, the SQLite unikernel also ini-
tializes vfscore, pthread-embedded, and relies on the newlib C standard library.
Figure 5.2 presents our results.

These results con�rm that most of the overhead displayed as pthreads in the
Mimalloc image originates from the initialization of Mimalloc. We further ob-
serve that the di�erence between tinyalloc (136 µs), tlsf (123 µs), and bootalloc
(113 µs) is less signi�cant. In the case of bbuddy and Mimalloc, the allocator still
represents the main cost of the unikernel boot process: bbuddy (7.7 ms) and Mi-
malloc (425 µs) are 68x and 3.8x slower to initialize than bootalloc, respectively.

Nginx

Finally, we measure the internal boot time of a Unikraft Nginx unikernel. In addi-
tion to the libraries already shipped by the SQLite unikernel, the Nginx unikernel
includes virtio network drivers, the Unikraft generic bus interface (ukbus), the
PCI bus driver, the lwip network stack (without memory pools), and mounts an
initramfs disk image (rootfs). Figure 5.3 presents our results.

0

1

2

3

4

5

6

7

8

bb
ud

dy

bo
ot

all
oc

m
im

all
oc ta tls

f

In
te

rn
al

 b
o

ot
 ti

m
e

(m
s)

plat

virtio

vfscore

allocator

ukbus

pthread

lwip

rootfs

misc

Figure 5.3: Internal boot time of Unikraft Nginx Unikernel, with varying alloca-
tor. The initialization of the PCI bus driver discussed in 5.3.1 is included in ukbus.
The calibration of the TSC is included in plat.

5.3. BOOT TIME 67

lwip f rootfs f

bbuddy 380.57 2.2 153.26 1.8
mimalloc 580.12 4.3 152.90 4.2
tinyalloc 580.12 2.8 164.66 4.7
tlsf 510.96 3.3 192.50 4.8
bootalloc 503.09 2.8 195.17 3.4

Table 5.5: Mean initialization time of lwip and rootfs in an Unikraft Nginx uniker-
nel with varying allocators, in microseconds (µs). The standard deviation of our
measurements is indicated in the f column.

We �nd that, even with a real-world kernel that initializes an entire network
stack, the scalability issue of bbuddy is still critical: the initialization of bbuddy
(7.4 ms) remains 4.4x slower than Mimalloc (1.7 ms) and 5.3x slower than tlsf
and bootalloc (1.4 ms). These discrepancies are relevant compared to the total
boot times observed in the previous subsection: bbuddy’s initialization overhead,
for instance, represents 2.2x Solo5’s total boot time.

In contrast to previous measurements, tinyalloc has a particularly high ini-
tialization time of 2.6 ms (1.5x higher than Mimalloc). We explain this obser-
vation by the number of fresh blocks initialized by tinyalloc: 2048 for tinyalloc
and SQLite, 200,000 for Nginx. Note that the number of fresh blocks initialized
by tinyalloc is a user con�gurable parameter (see 2.2.4 for an introduction to
tinyalloc). It is therefore possible to choose a lower number of blocks. However,
we �nd that a lower number of blocks results in decreased Nginx performance,
e�ectively trading o� runtime performance for boot time.

Most components do not exhibit a di�erent runtime pro�le depending on
the allocator. Nevertheless, we observe di�erences in the initialization time of
the LwIP network stack and the decompression and mounting of the initramfs
disk, as shown in Table 5.5. Notably, the network stack is consistently 50% faster
to initialize with bbuddy than with Mimalloc and tinyalloc, and 32-34% faster
compared to tlsf and bootalloc. On the other hand, bbuddy and Mimalloc do
not exhibit di�erences during the initialization of the rootfs. Both o�er a speedup
of 26-27% compared to tlsf and bootalloc, but only 7% compared to tinyalloc.
It is unclear why bbuddy o�ers such a speedup for both lwip and rootfs. The
fact that bbuddy performs consistently better than bootalloc might indicate a
better behavior with regard to locality of reference, however this is hard to verify
without measuring the number of cache- and TLB-misses, which Unikraft does
not support yet.

68 CHAPTER 5. EVALUATION

5.3.4 Conclusion

In this section, we evaluated the impact of allocator choice on boot time. We �rst
studied the external boot time with di�erent VMM setups. Then, we continued
with a study of internal boot time with di�erent o�-the-shelf applications.

Our study of total boot time highlights that, while classical hypervisors were
neither meant for fast boot times nor for unikernels, there exist specialized VMMs
such as Solo5 that can leverage the full potential of unikernels to provide mini-
mal boot times. We show that, while classical hypervisors represent the vast ma-
jority of the boot time overhead, specialized solutions such as Solo5 e�ectively
reduce the hypervisor overhead to a few milliseconds, thus motivating further
optimization of internal boot time.

In our study of internal boot time, we showed that the choice of allocator im-
pacts the internal boot time signi�cantly, even for realistic unikernel applications
such as Nginx or SQLite. Coupling boot time optimizations (in particular, TSC
frequency calibration) and allocator specialization, we achieve a minimal inter-
nal boot time of 39 µs in the helloworld unikernel, 113 µs in the SQLite unikernel,
and 1.4 ms in the Nginx unikernel. In addition, we show that the initialization of
the allocator can represent a major source of overhead at boot time, notably due
to scalability issues. Finally, we observe that allocators can impact the initializa-
tion time of core unikernel components such as the network stack.

5.4 Runtime Performance

In this section, we measure the impact of allocator specialization on runtime
performance in the SQLite database engine, in the Nginx web server, and in the
Redis cache and message broker.

5.4.1 SQLite

We measure the performance of the SQLite database engine in Unikraft with
varying allocators. To this end, we perform an increasing number of SQL INSERT

queries3 within an SQLite 3.30.1 Unikraft kernel, a methodology similar to Boicea
et al. [16]. Note that no networking or sockets are involved. The database is lo-
cated in an in-memory �le system to minimize I/O overhead. We record the time
needed to perform all queries using Unikraft’s tracepoints system. The experi-
ment is repeated 30 times and average results are taken. Figure 5.4 presents our
results.

3We performed similar experiments with di�erent types of queries and found similar results.
Nevertheless, our results showed that SQL INSERT queries stressed the allocation subsystem best,
making them more �t to highlight the di�erences between allocators.

5.4. RUNTIME PERFORMANCE 69

0

0.5

1

1.5

2

10 100 1000 10000 60000 100000

R
el

at
iv

e
ex

e
cu

tio
n

sp
ee

d
up

 (
hi

g
he

r
is

 b
et

te
r)

Number of SQL INSERT queries

mimalloc

tinyalloc

tlsf

bbuddy

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
26

1.
07

1.
01

0.
95

0.
81

0.
82

1.
18

1.
02

0.
96

0.
95

0.
88

0.
89

1.
11

0.
92

0.
89

0.
50

0.
25

Figure 5.4: Average execution speedup with an increasing number of SQL INSERT

queries in SQLite Unikraft, relative to Mimalloc. bbuddy did not run the 100,000
queries benchmark to completion, which explains the missing value. Results are
normalized against Mimalloc since (1) it presents values everywhere and (2) we
expect that it presents the best results overall as a state-of-the-art allocator.

We observe that tinyalloc o�ers a speedup of 26% and 7% over Mimalloc for 10
and 100 INSERT queries, respectively. On the other hand, Mimalloc performs 18%
faster for 100,000 queries. Interestingly, this benchmark also shows a collapse of
bbuddy’s performance after 1000 queries, performing 50% slower than Mimalloc
for 10,000 queries and 75% slower for 60,000 queries. For 100,000 queries, the
bbuddy unikernel encountered an out-of-memory situation and therefore did not
run to completion. The precise cause of this observed performance is discussed
later in this subsection. Overall, we observe that lightweight allocators perform
best for short workloads, but tend to underperform in the long run.

Note that Mimalloc underperforms for short workloads because of its lazy ini-
tialization strategy: whenever a memory block of a certain size class is requested,
the corresponding heap, segment, and ultimately page is retrieved (see 2.2.4). If
no segment or page was initialized for this size class, Mimalloc appropriately
initializes the missing structures. This initialization overhead can be substantial:
Table 5.6 shows that Mimalloc undergoes an extra cost of 105 µs during database
initialization compared to tinyalloc (x2.6).

On the other hand, Mimalloc’s fast allocation and deallocation paths and high
locality of reference result in high performance for longer workloads. For 60,000

70 CHAPTER 5. EVALUATION

Allocator Opening time (in µs)
bbuddy 104

mimalloc 171
tlsf 99

tinyalloc 66

Table 5.6: Average time needed to open an empty SQLite database with varying
allocators, in microseconds (µs).

and 100,000 queries, Mimalloc presents an average execution speedup of 11% to
19% compared to tlsf and bbuddy. This translates to a di�erence of execution
time of more than a second between Mimalloc and tinyalloc (see absolute num-
bers in Appendix A.1). In order to better explain these results, we perform the
same experiment and record the average execution time of malloc() for each SQL
query, with varying allocators4. Figure 5.5 shows our results.

In the case of tinyalloc we observe that the allocation overhead increases with
the number of queries. For the �rst 1000 queries, the time in malloc() averages
25 ns, the second fastest after Mimalloc. After 20,000 queries however, the av-
erage allocation time exceeds 80 ns, e�ectively becoming the slowest one. This
e�ect is due to the linear cost of tinyalloc’s sequential �t strategy. Appendix A.1
provides average numbers for all queries: overall, tinyalloc has the highest allo-
cation time, con�rming that tinyalloc performs best for short workloads but is
unsuitable for long-lived applications.

tlsf, on the other hand, exhibits the expected behavior of a real-time memory
allocator: the allocation overhead is low (38 ns, the second lowest after Mimalloc)
and very stable (considering all queries, the standard deviation is only 4 ns).

The steadiness of tlsf contrasts with Mimalloc, which exhibits two cate-
gories of cost: the fast path, which features the overall lowest allocation cost,
presenting allocation costs as low as 18 ns, and the slow path, with a consider-
able number of allocations executing in more than 100 ns. Despite of the signi�-
cant costs incurred in the slow path, the overall allocations remain fastest of all
allocators with an average of 32 ns (18% faster than tlsf).

The presence of two categories of cost also applies to bbuddy at a di�erent
scale. Figure 5.5b (cropped at 200 ns) shows that most allocations average at 30 ns.
Figure 5.6, on the other hand, shows that bbuddy presents tree-like outliers in the
order of microseconds. These outliers are caused by the buddy system’s splitting
strategy. Note that bbuddy’s outliers are not su�cient to explain the overall

4We performed the same measurements for free() and obtained similar results. These results
are not present in this study for space reasons.

5.4. RUNTIME PERFORMANCE 71

underperformance after 1000 queries. We expect that these results are caused
by a very low cache locality: since bbuddy rounds up allocation to the next
page boundary, small allocations occupy a full page, entailing a very low locality
and subsequent cache and TLB misses. We could not perform this measurement
because Unikraft does not support reading the performance registers.

0

20

40

60

80

100

120

140

160

180

200

0

20
00

0

40
00

0

60
00

0

80
00

0

10
00

00

T
im

e
sp

e
nt

 in
 m

al
lo

c
(n

se
c)

(a) tinyalloc

0

20

40

60

80

100

120

140

160

180

200

0

20
00

0

40
00

0

60
00

0

80
00

0

10
00

00

T
im

e
sp

e
nt

 in
 m

al
lo

c
(n

se
c)

(b) bbuddy

0

20

40

60

80

100

120

140

160

180

200

0

20
00

0

40
00

0

60
00

0

80
00

0

10
00

00

T
im

e
sp

e
nt

 in
 m

al
lo

c
(n

se
c)

(c) tlsf

0

50

100

150

200

250

300

350

400

0

20
00

0

40
00

0

60
00

0

80
00

0

10
00

00

slow path

fast path

T
im

e
sp

e
nt

 in
 m

al
lo

c
(n

se
c)

(d) Mimalloc

Figure 5.5: Average allocation time in SQLite Unikraft with an increasing number
of SQL INSERT queries and varying allocators, in nanoseconds (ns). A point at
coordinate (G, H) indicates that the average execution time of malloc() was H ns
during the Gth INSERT query. bbuddy did not run to completion and therefore
only presents values until 56,850. Note that the results presented in Figure 5.4
reached 60,000 because the space overhead of the tracepoints system was less
important. 5.5b is cropped at 200 ns, e�ectively hiding a second category of costs.
An uncropped graph is visible in Figure 5.6.

72 CHAPTER 5. EVALUATION

0

20

40

60

80

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

T
im

e
sp

e
nt

 in
 m

al
lo

c
(μ

se
c)

Number of SQL INSERT queries

Figure 5.6: Evolution of the average allocation time in SQLite Unikraft with an
increasing number of SQL INSERT queries and the bbuddy allocator, in microsec-
onds (µs).

5.4.2 Redis

We measure the performance of the Redis cache and message broker in Unikraft
with varying allocators using the redis-benchmark [5] tool. The benchmarking
tool runs on the host and communicates with the Redis unikernel guest via TCP.
The Redis database lives exclusively in memory, and snapshots are disabled. Ap-
pendix B presents our Redis con�guration in further details. Our benchmark
opens 30 concurrent connections with a pipelining level of 165 and executes a
total of 100,000 requests. In order to baseline our results, we perform the same
experiment in (1) our bare metal system (described in 5.1), (2) an Alpine Linux
virtual machine (KVM) with Linux 5.4.34, and (3) an Alpine Linux Docker con-
tainer. All experiments are based on Redis 5.0.6. Figure 5.7 presents our results
in Unikraft and Figure 5.8 presents our baselining results.

Figure 5.7 shows a clear ordering in allocator performance: For all four re-
quest types, Mimalloc performs best, followed by tlsf, bbuddy, and tinyalloc.
We observe that, for GET requests, Mimalloc performs 7.5% faster than tlsf, 11.5%

5Without pipelining, client and server communicate in a blocking manner: the client makes
a query and must wait for the server to answer before making a new query. With a pipelining of
16, the client can send 16 requests at a time (potentially all in the same TCP packet) and receive
all answers simultaneously [20]. In the case of our benchmark, the use of pipelining allows us to
circumvent potential network bottlenecks, and increase the pressure on the memory allocator in
the unikernel, thus providing a better understanding of the di�erences among allocators.

5.4. RUNTIME PERFORMANCE 73

0

200

400

600

800

1000

1200

1400

1600

GET SET LPUSH MSET

A
ve

ra
g

e
th

ro
ug

h
pu

t (
x1

00
0

 r
eq

/s
)

Redis request type

mimalloc

tlsf

bbuddy

ta
11

84

95
9

33
8

21
8

11
00

86
2

29
8

18
5

10
61

84
9

29
5

18
2

59
7

46
2

17
3

69

Figure 5.7: Average throughput of Redis Unikraft in thousands of requests per
second with varying allocators and request type.

faster than bbuddy, and 98% faster than tinyalloc. SET (set the value of a key),
LPUSH (insert at the head of a list) and MSET (batched SET operations) are more
expensive operations for the Redis server, inducing an increased pressure on
the allocator. The di�erence between allocators therefore gradually increases:
Mimalloc performs 11% faster than tlsf for SET requests, 13% faster for LPUSH

requests, and 18% faster for MSET requests. These results are consistent with Lei-
jen et al. [62] who observed a similar behavior with Mimalloc, reporting average
speedups of 7% to 14% compared to tcmalloc and jemalloc, respectively.

Our baseline measurements (Figure 5.8) show that the Unikraft unikernel out-
performs the native Linux Redis server by 2.4% for GET requests, the docker con-
tainer by 25%, and the Linux VM by 53.5%. Concerning SET requests, the Unikraft
unikernel outperforms the native Linux server by 13%, the docker container by
28%, and the Linux VM by 56%. The fact that Unikraft outperforms (or performs
as well as) a native Redis server is at �rst startling. We provide the following
explanations:

• The Unikraft server performs allocator specialization, while the native Re-
dis server does not. For both GET and SET queries, the performance of
Unikraft with tlsf is below the performance of the native Redis server.
Allocator specialization is therefore the enabling element for Unikraft to
outperform the native Linux server.

• Note that we did perform the same benchmark replacing the allocator in
our native Linux server via the LD_PRELOAD mechanism, however, this did

74 CHAPTER 5. EVALUATION

not make the native server perform signi�cantly better. We expect that the
di�erence would be more signi�cant if Mimalloc would be present at com-
pile time instead of relying on the preloading mechanism. Indeed, making
the compiler aware of the allocator allows it to perform compile and link
time optimizations. Unfortunately, we could not perform this experiment
since Mimalloc is not natively supported by the current Redis code base.

• Finally, we recall the high cost of system calls and note that Redis is a par-
ticularly system call intensive application. Zhang et al. [95] show that a
Redis server can generate as much as 32,700 system calls per second. In or-
der to illustrate the critical impact of system overhead on the performance
of Redis, we perform the same baseline experiment on a host system with
security mitigations disabled (mitigations=off [2], notably disabling KPTI).
We �nd that, in such as setup, a Redis server on native Linux performs 8%
better than Unikraft for GET requests. We also observe that the performance
gap between Unikraft and Docker shrinks to 13.6%. For SET requests, the
performance di�erence between Unikraft and native Linux is statistically
insigni�cant (approximately 0.005%), and the di�erence between docker
and Unikraft is around 21%.

0

400

800

1200

1600

2000

GET SET

A
ve

ra
g

e
th

ro
ug

h
pu

t (
x1

00
0

 r
eq

/s
)

Default host configuration

linux-native

docker

linux-kvm

unikraft

11
56

89
5

94
9

74
9

77
1

61
3

11
84

95
9

GET SET

Without security mitigations

13
02

98
8

10
59

82
0

80
5

63
5

12
04

99
3

Figure 5.8: Average throughput of Redis Unikraft in thousands of requests per
second with varying systems and request type. The diagram at the left presents
results with the default Linux con�guration. The diagram at the right presents
results with security mitigations disabled (mitigations=off).

5.4. RUNTIME PERFORMANCE 75

5.4.3 Nginx

We measure the performance of the Nginx web server in Unikraft with varying
allocators. In order to limit the impact of I/O calls on our results, logging is
disabled. Appendix B presents our Nginx con�guration in further details. Using
the wrk [8] HTTP benchmarking tool, we benchmark the server for 1 minute
with 14 threads and 30 connections from the host. A single static �le of 612
bytes (a small HTML page) is requested. The experiment is repeated 10 times
and average values are taken. In order to baseline our results, we perform the
same experiment in (1) our bare metal system (described in 5.1), (2) an Alpine
Linux virtual machine (KVM) with Linux 5.4.34, and (3) an Alpine Linux Docker
container. All experiments are based on Nginx 1.15.6. Figure 5.9 presents our
results in Unikraft, and Table 5.7 presents our baselining results.

0

20000

40000

60000

80000

100000

120000

140000

Memory pools Heap only

A
ve

ra
g

e
th

ro
ug

h
pu

t (
re

q
/s

)

89
98

4

37
68

6

88
80

5

88
41

4

mimalloc

tinyalloc

tlsf

bbuddy

23
42

4

77
85 23

42
6

23
42

5

Figure 5.9: Average throughput of Nginx Unikraft in requests per second, with
varying allocators, with and without LwIP memory pools.

Figure 5.9 shows that the di�erence between tlsf, bbuddy, and Mimalloc
is around 1%, which is equivalent to the uncertainty of our results. There is
therefore no statistically signi�cant di�erence between them. On the other hand,
tinyalloc underperforms by 39% compared to tlsf, bbuddy, and Mimalloc: tinyal-
loc’s sequential �t mechanism does not adapt very well to long lived workloads
such as web or database servers, where the free-list tends to reach large sizes.

The absence of statistical di�erence between tlsf, bbuddy, and Mimalloc is
unexpected. Nevertheless, these results are consistent with Larson and Krishnan
[60] who show that reasonably well-designed allocators present little di�erence
in web servers on uniprocessor systems. The authors highlight that critical char-
acteristics of memory allocators in the context of server applications are (1) scal-
ability on systems that support symmetric multiprocessing (SMP), (2) thread in-
dependence, (3) stability, and (4) predictable performance. Since Unikraft works

76 CHAPTER 5. EVALUATION

exclusively in uniprocessor mode, scalability on SMP systems and thread inde-
pendence are not considered here. We expect that this experiment will exhibit
more di�erences between allocators once SMP support will be added to Unikraft.

The performance speedup granted by custom allocation in the network stack
averages x3.8 for tlsf, bbuddy, and Mimalloc. Note that, in heap mode, the net-
work stack tends to perform allocations and deallocations at a high rate, resulting
in a considerably larger free-list and overall degraded performance for tinyalloc.
As a result, the memory pool speedup is slightly higher for tinyalloc (x4.8).

Finally, our baseline results (Table 5.7) show that Unikraft performs 23% faster
than the Docker container, 53% faster than the general-purpose Linux VM, but
11% slower than the native Nginx web server.

System Platform Throughput (in req/s)
Debian Linux Native 100,223

Unikraft (Mimalloc) KVM 89,984
Alpine Linux Docker 73,063
Alpine Linux KVM 58,858

Table 5.7: Average throughput of Nginx in requests per second, with varying
systems and platforms.

5.4.4 Conclusion

We show that allocator specialization can improve performance signi�cantly. In
particular, we observe speedups up to 26% for an SQLite unikernel using tinyalloc
and up to 18% for a Redis unikernel using Mimalloc. Nginx mitigates our results,
showing no signi�cant di�erence between allocators (in fact, Nginx presents
a clear loss of performance with tinyalloc). We support our results with mi-
crobenchmarks showing that the time spent in the allocator accounts for a sig-
ni�cant part of these di�erences. In addition, our study of the SQLite unikernel
con�rms that allocator specialization strategies should not only consider the ap-
plication but also the targeted workload: while SQLite exhibits speedups of up
to 26% for short workloads (< 1000 queries), Mimalloc o�ers a clear speedup of
>10% for long-lived workloads (1000 - 100,000 queries).

5.5. RUNTIME MEMORY USAGE 77

5.5 Runtime Memory Usage

In this section, we measure the impact of dynamic memory allocators on runtime
memory usage. To this end, we determine the peak memory consumption of
Unikraft SQLite, Nginx, and Redis images under di�erent workloads for the KVM
platform.

5.5.1 SQLite

We perform the same experiment as previously realized in Subsection 5.4.1: we
perform an increasing number of SQL INSERT queries in a Unikraft SQLite uniker-
nel. In order to determine the minimum memory usage, we (1) leverage trace-
points to signal successful execution of all queries and (2) determine the mini-
mum guest memory size (passed via -m for KVM) that allows the unikernel to
reliably run to completion. Table 5.8 presents our results.

10 100 1000 10,000 60,000 100,000
bbuddy 5 6 20 162 946 n.a.

mimalloc 261 261 261 261 261 261
tinyalloc 14 14 15 19 42 61

tlsf 4 4 4 9 37 59

Table 5.8: Memory usage of SQLite Unikraft, with varying allocators and number
of requests, in mebibytes (MiB). bbuddy did not run to completion within the
1 GB limit for 100,000 queries.

As a page allocator, bbuddy su�ers from a high degree of internal fragmen-
tation. While its space usage is comparable to that of tlsf or tinyalloc for less
than 1000 queries, bbuddy requires 18x and 25.5x more memory than tlsf for
10,000 and 60,000, respectively. For 100,000 bbuddy does not run to completion,
indicating that its space usage exceeds the limit of 1 GB imposed by Unikraft’s
one-to-one memory mapping.

Mimalloc allocates 256 MiB memory regions from the operating system and
then manages it independently. While this is �ne for systems that support de-
mand paging, this strategy increases the minimal space requirement to at least
256 MiB for Unikraft, hence the observation of 261 MiB. Note that this issue could
be addressed by providing a new region backend to Mimalloc that does not en-
force such memory requirements. However, this requires signi�cant engineering
that outreaches the scope of this thesis. We therefore consider this observation
as a limitation of Mimalloc for systems that do not support demand paging.

78 CHAPTER 5. EVALUATION

tinyalloc present an initially higher memory usage comparatively to tlsf and
bbuddy due to the preallocation of allocator metadata (fresh blocks) at system
startup. Nevertheless, the overall increase of memory between 10 and 100,000
queries remains low (4.4x) compared to tlsf (14.8x).

Finally, tlsf presents the overall lowest memory usage. For the �rst 1000
queries the memory footprint stays identical whereas tinyalloc already shows
an increase of 35%. Nevertheless, the overall fragmentation remains suboptimal
for longer workloads, due to tlsf’s use of size classes and subsequent rounding.

5.5.2 Redis

We determine the minimal amount of memory required to (1) start a functional
Unikraft Redis unikernel and (2) successfully perform the benchmark that we
realized in Subsection 5.4.2. To this end, we leverage binary search to return
the smallest amount of guest memory for which (1) ping and (2) redis-benchmark
execute successfully. Table 5.9 present our results.

Our �ndings are similar to the previous subsection: we observe a di�erence
of a few mebibytes between tinyalloc and tlsf that are due to the number of fresh
blocks initialized. Mimalloc su�ers from excess memory usage due to its initial
region allocation. Finally, bbuddy su�ers from a pathological internal fragmen-
tation, with an overall x7-9 larger memory footprint compared to tlsf. Overall,
allocator specialization allows to reduce the memory consumption by at least
22% (tinyalloc/tlsf).

ping redis-benchmark

bbuddy 61 67
mimalloc 261 261
tinyalloc 9 11

tlsf 7 9

Table 5.9: Memory usage of Redis Unikraft, with varying allocators and work-
loads.

5.5.3 Nginx

Similarly to the previous subsection, we determine the minimal amount of mem-
ory required to (1) start a functional Nginx server and (2) successfully perform the
benchmark that we previously realized in Subsection 5.4.3. Table 5.10 presents
our results.

5.5. RUNTIME MEMORY USAGE 79

Our results are consistent with previous measurements: tlsf reduces the
memory footprint by 50% compared to tinyalloc, and 160% compared to bbuddy.
Unlike Redis, we do not observe an increase of memory usage between the work-
loads which is not surprising since the web server essentially serves content (logs
are disabled, and we query a single static �le).

ping wrk

buddy 13 13
mimalloc 261 261
tinyalloc 10 10

tlsf 5 5

Table 5.10: Memory usage of Nginx Unikraft, with varying allocators and work-
loads.

5.5.4 Conclusion

Memory footprint shows the clearest di�erentiation between memory allocators
among all KPIs. We show that, by choosing tlsf over other allocators, memory
consumption can consistently be reduced by at least 22% for a Redis unikernel
and 50% for an Nginx unikernel. Our results also highlight that using unmodi�ed
user-space allocators in a system that does not support demand paging can lead
to a signi�cant waste of memory. Mimalloc, for instance, consistently requires
261 MiB of memory, regardless of the actual memory usage of the unikernel.
Overall, these results are interesting because they show that these is no clear
cut; what we �nd to be optimal for runtime performance (Mimalloc) performs,
in fact, signi�cantly worse for runtime memory usage.

80 CHAPTER 5. EVALUATION

Chapter 6

Conclusion and Future Work

Unikernels achieve high performance, low memory footprint, and fast boot time
with a small trusted computing base. These characteristics are obtained by spe-
cializing operating system components. Amongst the classical system compo-
nents, the dynamic memory allocator is known to have a crucial impact on per-
formance, and its specialization potential is well recognized in the literature. De-
spite of this, unikernels do not typically specialize the memory allocator.

In this thesis, we explored the idea of leveraging memory allocators as a spe-
cialization layer in unikernels. We �rst provided a systematic analysis of mem-
ory allocation in unikernels. We showed that unikernels and general-purpose
OSs are subject to similar constraints with regard to memory allocation (e.g.,
resident memory, physically contiguous memory) but highlighted that, depend-
ing on the unikernel implementation, some of these constraints might be im-
plicitly satis�ed. We stressed that unikernels do not play by the same rules as
general-purpose OSs: system calls are simple function calls and it is common
for unikernels to exclusively target uniprocessor systems. As a result, general-
purpose allocators that are optimal on general-purpose OSs are not necessarily
a best choice in the context of unikernels.

Following our analysis, we implemented allocator specialization in Unikraft,
a unikernel framework. We ported Mimalloc, tlsf, and tinyalloc to the Unikraft
framework and adapted the existing allocator bbuddy. We described the techni-
cal di�culties that can arise when porting user-space memory allocators to be
used as system allocator such as satisfying allocator dependencies at initializa-
tion time or providing a uniform API and documented our technical solutions.

Finally, we evaluated our approach in the KVM platform from the perspec-
tive of four key performance indicators: (1) image size, (2) boot time, (3) runtime
performance, and (4) runtime memory usage. We showed that reasonably small
allocators do not impact the image size. On the other hand, allocator special-
ization can have a signi�cant impact on internal unikernel boot time, and more

81

82 CHAPTER 6. CONCLUSION AND FUTURE WORK

generally on the total boot time considering specialized VMMs such as Solo5. We
found, for instance, that a simple �aw in bbuddy’s initialization function results
in an increase of internal boot time of x5.3 for an Nginx unikernel and up to x164
for a helloworld unikernel. We further showed that allocator specialization can
bring signi�cant speedups in runtime performance: up to 26% for SQLite with
tinyalloc and 18% for Redis with Mimalloc. We highlighted that, considering al-
locator specialization, not only the application but also the targeted workload
should be considered. Finally we evaluated the impact of allocator specialization
on runtime memory usage, showing that, by choosing tlsf over other allocators,
memory consumption can be reduced by at least 22% for a Redis unikernel and
50% for an Nginx unikernel.

6.1 Future Work

In this section, we conclude this thesis with a discussion of the limitations of our
approach and draw future lines of research from unexplored paths and ideas.

Choice of the Allocator

While we demonstrated that there can be signi�cant bene�ts in specializing the
allocator, we stress that these can only be achieved if the allocator is chosen
properly. An improper choice could, in fact, lead to a loss of performance; this
case was illustrated with tinyalloc in our Nginx measurements. Unfortunately,
the process of choosing the right allocator remains somewhat of a black art, re-
quiring a certain understanding of the memory allocators, of the application,
benchmarking, etc. Further work should address this issue. If the workload is
well-de�ned, this could take the form of an automated system that systemat-
ically benchmarks the unikernel with di�erent allocators1, e�ectively general-
izing and systematizing the manual benchmarks realized in this thesis. Such a
system could, for example, be made available to Unikraft’s users via the kraft

toolchain [1].

Security

Subsection 3.1.2 and 3.1.3 motivated the potential that security-focused alloca-
tors can have in unikernels due to the absence of system call costs, which have
historically been a limitation. Future research should further study the chal-
lenges of providing temporal memory safety in unikernels, and to what extent

1Uelgen and Avci [87] explore a similar approach with imas in general-purpose OSs.

6.1. FUTURE WORK 83

the characteristics of unikernels (in particular the absence of system call costs)
can reduce the costs.

Per-Component Allocator Specialization

This thesis has focused on specializing the allocator for the unikernel as a whole.
However, we showed that using memory pools in the network stack produces a
high performance increase (x3.8-x4.8). Based on this observation, further work
could push the specialization a step further, specializing the allocator on a per-
component basis, potentially trading o� image size and boot time for runtime
performance, memory usage, or security.

Post-Link Heap-Layout Optimization

Finally, we note that the approach taken by Savage and Jones [81] with halo
(introduced in Subsection 2.2.3) could be complimentary this work. halo takes
a pro�le-guided approach to custom memory allocation: the application (e.g.,
the unikernel) is run with an instrumented allocator to generate pro�ling data.
Clustering algorithms are then applied to the data, determining groups of mem-
ory blocks that are used at the same time. Finally, the application is rebuilt and
halo synthetizes a custom allocator that takes advantage from the clustering in-
formation to maximize locality of reference (e.g., by co-locating related blocks).
This approach is purely complimentary to ours: the synthesized allocator only
handles the allocations that can be associated to a cluster; the remaining ones
are passed on to a general-purpose allocator. Furthermore, this approach is as-
sociated to a signi�cant degree of fragmentation, e�ectively trading o� memory
for performance, which emphasizes the complimentary nature of halo.

84 CHAPTER 6. CONCLUSION AND FUTURE WORK

Appendix A

Benchmark Data

A.1 SQLite

of queries mimalloc tinyalloc tlsf bbuddy
10 425353 336276 360489 384059
100 1419498 1325004 1396580 1547310
1000 11542240 11448888 12069495 12980661
10000 130335589 137487409 137755463 262148137
60000 1456010505 1788309033 1659447196 5774684236
100000 5123929061 6268938839 5772283102 n.a.

Table A.1: Average execution time of an increasing number of SQL INSERT queries
in SQLite Unikraft, in nanoseconds (ns). This data is graphed relative to Mimalloc
in Figure 5.4.

Allocator Mean f

bbuddy 67 992
mimalloc 32 17

tlsf 38 4
tinyalloc 104 36

Table A.2: Mean execution time of malloc() with varying allocators under an in-
creasing number of SQL INSERT queries, in nanoseconds. The f column provides
the standard deviation of our measurements.

85

86 APPENDIX A. BENCHMARK DATA

Appendix B

Reproducibility

B.1 Network Stack Con�guration

Table B.1 presents the optimized network stack con�guration used in Chap-
ter 5. Table B.2 presents the network stack (LwIP) con�guration used to enable
memory pools. We de�ne three custom memory pools of 6000 elements of size
256 bytes, 512 bytes, and 1560 bytes, respectively.

Parameter Value Comments
MEMP_NUM_TCP_PCB_LISTEN 64 Max. number of simultaneous TCP listeners
MEMP_NUM_NETCONN 64 Max. number of struct netconn, which limits

the maximum number of open sockets
MEMP_NUM_TCP_PCB 500 Max. number of simultaneous TCP connections

Table B.1: LwIP con�guration used in Chapter 5.

Parameter Value Comments
MEM_LIBC_MALLOC 0 Do not use the allocator from the C stan-

dard library
MEM_USE_POOLS 1 Use pool-based memory allocation
MEM_USE_POOLS_TRY_BIGGER_POOLS 1 If adequately sized pools are full, fallback

to a bigger pool
MEMP_USE_CUSTOM_POOLS 1 Enable custom memory pools

Table B.2: Additional LwIP con�guration used to enable memory pools.

87

88 APPENDIX B. REPRODUCIBILITY

B.2 Nginx Con�guration

w o r k e r _ p r o c e s s e s 1 ;
daemon o f f ;
m a s t e r _ p r o c e s s o f f ;
a c c e s s _ l o g o f f ;

e v e n t s {
w o r k e r _ c o n n e c t i o n s 3 2 ;

}

h t t p {
[. . .]

k e e p a l i v e _ t i m e o u t 6 5 ;

o p e n _ f i l e _ c a c h e max=200000 i n a c t i v e =20 s ;
o p e n _ f i l e _ c a c h e _ v a l i d 30 s ;
o p e n _ f i l e _ c a c h e _ m i n _ u s e s 2 ;
o p e n _ f i l e _ c a c h e _ e r r o r s on ;

[. . .]
}

B.3 Redis Con�guration

Parameter Value Comments
appendonly no Disable Append-Only File (AOF)
save empty Disable Redis Database Backup (RDB)
logfile warning Only log critical events

Table B.3: Custom Redis con�guration used in Chapter 5.

Bibliography

[1] Unikraft’s User Guide — Getting started with kraft. URL http://docs.

unikraft.org/kraft.html. Online; accessed May 04, 2020.

[2] The Linux Kernel User’s and Administrator’s Guide v5.7.0-rc2 — The ker-
nel’s command-line parameters. URL https://www.kernel.org/doc/html/

latest/admin-guide/kernel-parameters.html. Online; accessed April 24,
2020.

[3] musl — lightweight, fast, simple, and free C standard library. URL https:

//musl.libc.org/. Online; accessed May 18, 2020.

[4] newlib — a C library intended for use on embedded systems. URL https:

//www.sourceware.org/newlib/. Online; accessed May 18, 2020.

[5] How fast is redis? URL https://redis.io/topics/benchmarks. Online;
accessed May 18, 2020.

[6] Solo5 — a sandboxed execution environment for unikernels. Online; ac-
cessed May 24, 2020.

[7] Unikraft’s Developer Guide — Debugging in Unikraft. URL http://docs.

unikraft.org/developers-debugging.html. Online; accessed May 04,
2020.

[8] wrk – modern http benchmarking tool. URL https://github.com/wg/wrk.
Online; accessed May 24, 2020.

[9] IEEE Standard for Information Technology – Portable Operating System Inter-
face (POSIX(R)) Base Speci�cations, Issue 7. Institute of Electrical and Elec-
tronics Engineers (IEEE), January 2018.

[10] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori,
Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Firecracker:
Lightweight Virtualization for Serverless Applications. In 17th USENIX

89

http://docs.unikraft.org/kraft.html
http://docs.unikraft.org/kraft.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html
https://musl.libc.org/
https://musl.libc.org/
https://www.sourceware.org/newlib/
https://www.sourceware.org/newlib/
https://redis.io/topics/benchmarks
http://docs.unikraft.org/developers-debugging.html
http://docs.unikraft.org/developers-debugging.html
https://github.com/wg/wrk

90 BIBLIOGRAPHY

Symposium on Networked Systems Design and Implementation, pages 419–
434. USENIX Association, February 2020.

[11] Josh Barnes and Piet Hut. A hierarchical O(N log N) force-calculation algo-
rithm. Nature, 324(6096):446–449, December 1986.

[12] Emery D Berger and Benjamin G Zorn. DieHard: probabilistic memory
safety for unsafe languages. In 27th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, volume 41, pages 158–168. As-
sociation for Computing Machinery, 2006.

[13] Emery D Berger, Kathryn S McKinley, Robert D Blumofe, and Paul R Wil-
son. Hoard: A scalable memory allocator for multithreaded applications. In
9th international conference on Architectural support for programming lan-
guages and operating systems. Association for Computing Machinery, 2000.

[14] Emery D Berger, Benjamin G Zorn, and Kathryn S McKinley. Composing
high-performance memory allocators. In ACM SIGPLAN Conference on pro-
gramming language design and implementation, volume 1, pages 114–124.
Association for Computing Machinery, 2001.

[15] Emery D Berger, Benjamin G Zorn, and Kathryn S McKinley. Reconsidering
custom memory allocation. In 17th ACM SIGPLAN conference on object-
oriented programming, systems, languages, and applications. Association for
Computing Machinery, 2002.

[16] A. Boicea, F. Radulescu, and L. I. Agapin. MongoDB vs Oracle – Database
Comparison. In 3rd International Conference on Emerging Intelligent Data
and Web Technologies, pages 330–335, 2012.

[17] Je� Bonwick. The Slab Allocator: An Object-Caching Kernel Memory Allo-
cator. In USENIX Summer 1994 Technical Conference. USENIX Association,
June 1994.

[18] A. Bratterud, A. Walla, H. Haugerud, P. E. Engelstad, and K. Begnum. In-
cludeOS: A Minimal, Resource E�cient Unikernel for Cloud Services. In 7th
International Conference on Cloud Computing Technology and Science, pages
250–257, 2015.

[19] Alfred Bratterud, Andreas Happe, and Robert Anderson Keith Duncan. En-
hancing Cloud Security and Privacy: The Unikernel Solution. In 8th Interna-
tional Conference on Cloud Computing, GRIDs, and Virtualization, February
2017.

BIBLIOGRAPHY 91

[20] Josiah L. Carlson. Redis in Action, chapter 4, pages 84–87. Manning Publi-
cations Co., 2013.

[21] Jonathan Corbet. Virtually mapped kernel stacks. Linux Weekly News, June
2016. URL https://lwn.net/Articles/692208/.

[22] Jonathan Corbet. The current state of kernel page-table isolation. Linux
Weekly News, December 2017. URL https://lwn.net/Articles/741878/.

[23] Jonathan Corbet, Rubini Alessandro, and Greg Kroah-Hartman. Linux De-
vice Drivers, Third Edition, chapter 8, pages 213–234. O’Reilly Media, Febru-
ary 2009.

[24] Thurston HY Dang, Petros Maniatis, and David Wagner. Oscar: A practical
page-permissions-based scheme for thwarting dangling pointers. In 26th
USENIX Conference on Security Symposium, pages 815–832, 2017.

[25] L. De Simone and G. Mazzeo. Isolating Real-Time Safety-Critical Embed-
ded Systems via SGX-Based Lightweight Virtualization. In 9th IEEE Inter-
national Workshop on Software Certi�cation, pages 308–313, October 2019.

[26] D. Dhurjati and V. Adve. E�ciently detecting all dangling pointer uses in
production servers. In International Conference on Dependable Systems and
Networks, pages 269–280, July 2006.

[27] Tharam Dillon, Chen Wu, and Elizabeth Chang. Cloud computing: issues
and challenges. In 24th IEEE international conference on advanced informa-
tion networking and applications, pages 27–33, 2010.

[28] John R. Douceur, Jeremy Elson, Jon Howell, and Jacob R. Lorch. Leveraging
Legacy Code to Deploy Desktop Applications on the Web. In 8th USENIX
Conference onOperating SystemsDesign and Implementation, pages 339–354,
2008.

[29] Rohit Dube. A comparison of the memory management sub-systems in
freebsd and linux. Technical report, Institute for Advanced Computer Stud-
ies and Department of Computer Science, University of Maryland, Septem-
ber 1998.

[30] Dominik Durner, Viktor Leis, and Thomas Neumann. On the impact of
memory allocation on high-performance query processing. In 15th Inter-
national Workshop on Data Management on New Hardware. Association for
Computing Machinery, July 2019.

https://lwn.net/Articles/692208/
https://lwn.net/Articles/741878/

92 BIBLIOGRAPHY

[31] Pekka Enberg, Ashwin Rao, and Sasu Tarkoma. I/O Is Faster Than the CPU:
Let’s Partition Resources and Eliminate (Most) OS Abstractions. In 17th
Workshop on Hot Topics in Operating Systems, pages 81–87. Association for
Computing Machinery, 2019.

[32] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel: An operating sys-
tem architecture for application-level resource management. ACM SIGOPS
Operating Systems Review, 29(5):251–266, December 1995.

[33] Jason Evans. A scalable concurrent malloc (3) implementation for freebsd.
In BSDCan conference, Ottawa, Canada, April 2006.

[34] FreeBSD Handbook. The FreeBSD Documentation Project. URL https://

www.freebsd.org/doc/en/books/handbook. Online; accessed April 29, 2020.

[35] Stefano Garzarella. How to measure the boot time of a linux vm with
qemu/kvm, August 2019. URL https://stefano-garzarella.github.io/

posts/2019-08-24-qemu-linux-boot-time/. Online; accessed May 18,
2020.

[36] David Gay and Alex Aiken. Memory Management with Explicit Regions.
In ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 313–323. Association for Computing Machinery, 1998.

[37] Carl Gebhardt, Chris I. Dalton, and Allan Tomlinson. Separating Hypervi-
sor Trusted Computing Base Supported by Hardware. In 5th ACM Work-
shop on Scalable Trusted Computing, pages 79–84. Association for Comput-
ing Machinery, 2010.

[38] T. Goethals, M. Sebrechts, A. Atrey, B. Volckaert, and F. De Turck. Uniker-
nels vs Containers: An In-Depth Benchmarking Study in the Context of
Microservice Applications. In 8th International Symposium on Cloud and
Service Computing (SC2), pages 1–8, November 2018.

[39] Mel Gorman. Understanding the Linux virtual memory manager. Bruce
Perens’ Open Source series. Prentice Hall, Upper Saddle River, NJ, 2004.

[40] Dirk Grunwald and Benjamin Zorn. Customalloc: E�cient synthesized
memory allocators. Software: Practice and Experience, 23(8):851–869, Au-
gust 1993.

[41] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine
Maurice, and Stefan Mangard. Kaslr is dead: Long live kaslr. In Eric Bodden,
Mathias Payer, and Elias Athanasopoulos, editors, Engineering Secure Soft-
ware and Systems, pages 161–176. Springer International Publishing, 2017.

https://www.freebsd.org/doc/en/books/handbook
https://www.freebsd.org/doc/en/books/handbook
https://stefano-garzarella.github.io/posts/2019-08-24-qemu-linux-boot-time/
https://stefano-garzarella.github.io/posts/2019-08-24-qemu-linux-boot-time/

BIBLIOGRAPHY 93

[42] Serge Hallyn and Michael Kerrisk. CGROUPS(7). In Linux Programmer’s
Manual. Linux man-pages project, November 2019. URL http://man7.org/

linux/man-pages/man7/cgroups.7.html. Release 5.05.

[43] Yusuf Hasan and J. Morris Chang. A tunable hybrid memory allocator.
Journal of Systems and Software, 79(8):1051–1063, August 2006.

[44] Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.
Intel Corporation, September 2016. Chapter 17.15.

[45] Alin Jula and Lawrence Rauchwerger. Custom Memory Allocation for
Free. In Languages and Compilers for Parallel Computing, pages 299–313.
Springer, November 2007.

[46] Alin Jula and Lawrence Rauchwerger. Two Memory Allocators That Use
Hints to Improve Locality. In International Symposium on Memory Manage-
ment, pages 109–118. Association for Computing Machinery, 2009.

[47] Jun Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent runtime randomization
for security. In 22nd International Symposium on Reliable Distributed Sys-
tems, pages 260–269, October 2003.

[48] Svilen Kanev, Sam Likun Xi, Gu-Yeon Wei, and David Brooks. Mallacc:
Accelerating memory allocation. In 22nd International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pages
33–45. Association for Computing Machinery, 2017.

[49] Alok Kataria. CPUID usage for interaction between Hypervisors and Linux,
October 2008. URL https://lwn.net/Articles/301888/. Online; accessed
May 06, 2020.

[50] Michael Kerrisk. The Linux Programming Interface: A Linux and UNIX Sys-
tem Programming Handbook. No Starch Press, 2010.

[51] Michael Kerrisk and Eric Biederman. NAMESPACES(7). In Linux Program-
mer’s Manual. Linux man-pages project, August 2019. URL http://man7.

org/linux/man-pages/man7/namespaces.7.html. Release 5.05.

[52] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav HarEl, Don
Marti, and Vlad Zolotarov. OSv - Optimizing the Operating System for Vir-
tual Machines. In 2014 USENIX Annual Technical Conference, pages 61–72,
2014.

[53] Donald E. Knuth. The Art of Computer Programming, volume 1. Addison-
Wesley, 1968. pp. 435–455.

http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
https://lwn.net/Articles/301888/
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html

94 BIBLIOGRAPHY

[54] Joseph Kong. FreeBSD Device Drivers, chapter 2, pages 17–25. No Starch
Press, May 2012.

[55] Greg Kroah-Hartman. The kernel con�guration and build process. Linux
Journal, 2003(109):3, May 2003.

[56] Simon Kuenzer. Unikraft: Unikernels made easy. In 32nd Large Installation
System Administration Conference, 2018. URL https://www.usenix.org/

conference/lisa18/presentation/kuenzer.

[57] Alexey Kukanov and Michael J. Voss. The foundations for scalable multi-
core software in intel threading building blocks. Intel Technology Journal,
11(04):309–322, November 2007.

[58] Stefan Lankes, Simon Pickartz, and Jens Breitbart. HermitCore: A Uniker-
nel for Extreme Scale Computing. In 6th International Workshop on Runtime
and Operating Systems for Supercomputers. Association for Computing Ma-
chinery, 2016.

[59] Stefan Lankes, Jens Breitbart, and Simon Pickartz. Exploring rust for
unikernel development. In 10th Workshop on Programming Languages
and Operating Systems, pages 8–15. Association for Computing Machinery,
2019.

[60] Per-Ake Larson and Murali Krishnan. Memory allocation for long-running
server applications. In 1st International Symposium on Memory Manage-
ment, pages 176–185, 1998.

[61] Sangho Lee, Teresa Johnson, and Easwaran Raman. Feedback Directed Op-
timization of TCMalloc. In Workshop on Memory Systems Performance and
Correctness. Association for Computing Machinery, June 2014.

[62] Daan Leijen, Benjamin Zorn, and Leonardo de Moura. Mimalloc: Free list
sharding in action. In Programming Languages and Systems, pages 244–265.
Springer International Publishing, 2019.

[63] Paul Liétar, Theodore Butler, Sylvan Clebsch, Sophia Drossopoulou, Juliana
Franco, Matthew J. Parkinson, Alex Shamis, Christoph M. Wintersteiger,
and David Chisnall. Snmalloc: A message passing allocator. In Interna-
tional Symposium on Memory Management, pages 122–135. Association for
Computing Machinery, 2019.

[64] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott,
Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon

https://www.usenix.org/conference/lisa18/presentation/kuenzer
https://www.usenix.org/conference/lisa18/presentation/kuenzer

BIBLIOGRAPHY 95

Crowcroft. Unikernels: Library operating systems for the cloud. 18th In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems, pages 461–472, 2013.

[65] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas Gaza-
gnaire, David Sheets, Dave Scott, Richard Mortier, Amir Chaudhry, Balraj
Singh, Jon Ludlam, Jon Crowcroft, and Ian Leslie. Jitsu: Just-In-Time Sum-
moning of Unikernels. In 12th USENIX Symposium on Networked Systems
Design and Implementation, pages 559–573. USENIX Association, May 2015.

[66] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer,
Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. My VM is
Lighter (and Safer) than your Container. In 26th Symposium on Operating
Systems Principles, pages 218–233. Association for Computing Machinery,
2017.

[67] M. Mao and M. Humphrey. A Performance Study on the VM Startup Time
in the Cloud. In 5th International Conference on Cloud Computing, pages
423–430, 2012.

[68] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio
Honda, Roberto Bifulco, and Felipe Huici. ClickOS and the Art of Network
Function Virtualization. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 459–473. USENIX Association,
April 2014.

[69] M. Masmano, I. Ripoll, A. Crespo, and J. Real. TLSF: a new dynamic memory
allocator for real-time systems. In 16th Euromicro Conference on Real-Time
Systems, pages 79–88, 2004.

[70] Maged M. Michael. Scalable lock-free dynamic memory allocation. In ACM
SIGPLANConference on Programming Language Design and Implementation,
pages 35–46. Association for Computing Machinery, 2004.

[71] T. L. Nguyen and A. Lebre. Virtual Machine Boot Time Model. In 25th Eu-
romicro International Conference on Parallel, Distributed and Network-based
Processing, pages 430–437, 2017.

[72] Yoshinori K. Okuji, Brian Ford, Erich Stefan Boleyn, and Kunihiro Ishiguro.
Multiboot Speci�cation. Free Software Foundation, 2019. URL https://www.

gnu.org/software/grub/manual/multiboot/.

[73] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy
Ravindran. A Binary-Compatible Unikernel. In 15th ACM SIGPLAN/SIGOPS

https://www.gnu.org/software/grub/manual/multiboot/
https://www.gnu.org/software/grub/manual/multiboot/

96 BIBLIOGRAPHY

International Conference on Virtual Execution Environments, pages 59–73.
Association for Computing Machinery, 2019.

[74] Pierre Olivier, Antonio Barbalace, and Binoy Ravindran. The case for intra-
unikernel isolation. In 10th Workshop on Systems for Post-Moore Architec-
tures, April 2020.

[75] SeongJae Park, Minchan Kim, and Heon Y. Yeom. GCMA: Guaranteed Con-
tiguous Memory Allocator. ACM Special Interest Group on Embedded Sys-
tems Review, 13(1):29–34, March 2016.

[76] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and
Galen C. Hunt. Rethinking the Library OS from the Top Down. In 16th In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems, pages 291–304. Association for Computing Machin-
ery, 2011.

[77] Xiang (Jenny) Ren, Kirk Rodrigues, Luyuan Chen, Camilo Vega, Michael
Stumm, and Ding Yuan. An Analysis of Performance Evolution of Linux’s
Core Operations. In 27th ACM Symposium on Operating Systems Principles,
pages 554–569. Association for Computing Machinery, 2019.

[78] Marc Rittinghaus. System call aggregation for a hybrid thread model. Study
thesis, Karlsruhe Institute of Technology, December 2010. URL https://os.

itec.kit.edu/21_2210.php.

[79] Andreas Rossberg, editor. WebAssembly Speci�cation, Release 1.1, chapter
‘Instructions’. WebAssembly Community Group, April 2020. URL https:

//webassembly.github.io/spec/core/index.html.

[80] Richard L. Rudell. Multiple-valued logic minimization for pla synthesis.
Technical report, Electronics Research Laboratory, University of California,
June 1986.

[81] Joe Savage and Timothy M. Jones. HALO: Post-Link Heap-Layout Optimi-
sation. In 18th ACM/IEEE International Symposium on Code Generation and
Optimization, pages 94–106. Association for Computing Machinery, 2020.

[82] Karsten Schmidt. thi.ng/tinyalloc: malloc / free replacement for un-
managed, linear memory situations. URL https://github.com/thi-ng/

tinyalloc. Online; accessed April 20, 2020.

https://os.itec.kit.edu/21_2210.php
https://os.itec.kit.edu/21_2210.php
https://webassembly.github.io/spec/core/index.html
https://webassembly.github.io/spec/core/index.html
https://github.com/thi-ng/tinyalloc
https://github.com/thi-ng/tinyalloc

BIBLIOGRAPHY 97

[83] Prateek Sharma, Lucas Chaufournier, Prashant Shenoy, and Y. C. Tay. Con-
tainers and Virtual Machines at Scale: A Comparative Study. In 17th In-
ternational Middleware Conference. Association for Computing Machinery,
2016.

[84] Livio Soares and Michael Stumm. FlexSC: Flexible System Call Scheduling
with Exception-Less System Calls. In 9th USENIX Conference on Operat-
ing Systems Design and Implementation, pages 33–46. USENIX Association,
2010.

[85] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran. Intra-
Unikernel Isolation with Intel Memory Protection Keys. In 16th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments,
pages 143–156. Association for Computing Machinery, 2020.

[86] Michael S. Tsirkin and Huck Cornelia, editors. Virtual I/O Device, Ver-
sion 1.1, chapter 2 ‘Basic Facilities of a Virtio Device’. OASIS Open,
April 2019. URL https://docs.oasis-open.org/virtio/virtio/v1.1/

virtio-v1.1.html. Committee Speci�cation 01.

[87] Onur Uelgen and Mutlu Avci. The intelligent memory allocator selector.
Computer Languages, Systems & Structures, 44:342–354, 2015.

[88] Kiem-Phong Vo. Vmalloc: A General and E�cient Memory Allocator. Soft-
ware: Practice and Experience, 26(3):357–374, March 1996.

[89] Adam Wick. The HaLVM: A Simple Platform for Simple Platforms.
XenSummit, August 2012. URL http://www-archive.xenproject.org/

xensummit/xs12na_talks/M9b.html.

[90] Dan Williams and Ricardo Koller. Unikernel Monitors: Extending Minimal-
ism Outside of the Box. In 8th USENIX Conference on Hot Topics in Cloud
Computing, pages 71–76. USENIX Association, 2016.

[91] Paul R Wilson, Mark S Johnstone, Michael Neely, and David Boles. Dynamic
storage allocation: A survey and critical review. In International Workshop
on Memory Management, pages 1–116. Springer, 1995.

[92] Heymian Wong. PCI Express Multi-Root Switch Recon�guration During
System Operation. Master’s thesis, Massachusetts Institute of Technology,
May 2011. URL https://dspace.mit.edu/handle/1721.1/66819. Section
3.4 – PCI Bus Enumeration.

https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html
https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html
http://www-archive.xenproject.org/xensummit/xs12na_talks/M9b.html
http://www-archive.xenproject.org/xensummit/xs12na_talks/M9b.html
https://dspace.mit.edu/handle/1721.1/66819

98 BIBLIOGRAPHY

[93] B. Xavier, T. Ferreto, and L. Jersak. Time Provisioning Evaluation of KVM,
Docker and Unikernels in a Cloud Platform. In 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages 277–280,
2016.

[94] Xi Yang, Stephen M. Blackburn, Daniel Frampton, Jennifer B. Sartor, and
Kathryn S. McKinley. Why nothing matters: The impact of zeroing. In
11th ACM International Conference on Object Oriented Programming Systems
Languages and Applications, pages 307–324. Association for Computing Ma-
chinery, 2011.

[95] Hao Zhang, Bogdan Marius Tudor, Gang Chen, and Beng Chin Ooi. E�cient
In-Memory Data Management: An Analysis. VLDB Endowment Journal, 7
(10):833–836, June 2014.

[96] Benjamin Zorn and Dirk Grunwald. Empirical Measurements of Six
Allocation-Intensive C Programs. ACM SIGPLAN Notices, 27(12):71–80, De-
cember 1992.

	Abstract
	Acknowledgments
	Contents
	Introduction
	Background and Related Work
	Unikernels
	Introduction to Unikernels
	Characteristics and Architecture of Unikraft

	Dynamic Memory Allocation
	Memory Management in General-Purpose OSs
	General-Purpose Memory Allocation
	Custom Memory Allocation
	Memory Allocators in Unikraft

	Analysis
	Dynamic Memory Allocation in Unikernels
	Memory Allocation in the Kernel
	Memory Allocation in the Application
	Impact of System Calls

	Specializing Memory Allocators
	Conclusion

	Design and Implementation
	Memory Allocation Subsystem in Unikraft
	Internal Allocation Interface
	Backend Implementations

	Porting Process
	General Porting Effort
	Challenges of the Porting Process

	Conclusion

	Evaluation
	Evaluation Setup
	Unikraft Network Stack Configuration
	Runtime Overhead of the Tracepoints System
	Baseline Memory Allocator

	Image Size
	Experimental Results
	Conclusion

	Boot Time
	Optimization of Internal Boot Time
	External Boot Time
	Internal Boot Time
	Conclusion

	Runtime Performance
	SQLite
	Redis
	Nginx
	Conclusion

	Runtime Memory Usage
	SQLite
	Redis
	Nginx
	Conclusion

	Conclusion and Future Work
	Future Work

	Benchmark Data
	SQLite

	Reproducibility
	Network Stack Configuration
	Nginx Configuration
	Redis Configuration

	Bibliography

