
Towards Three-Stage Parallelization
of System Simulation

Bachelor’s Thesis
submitted by

Marco Schlumpp
to the KIT Department of Informatics

Reviewer: Prof. Dr. Frank Bellosa
Second Reviewer: Prof. Dr. Wolfgang Karl
Advisor: Dr.-Ing Marc Rittinghaus

17. Juni 2019 – 16. Oktober 2019

KIT – The Research University in the Helmholtz Association www.kit.edu

I hereby declare that the work presented in this thesis is entirely my own and that I did
not use any source or auxiliary means other than these referenced. This thesis was carried
out in accordance with the Rules for Safeguarding Good Scientific Practice at Karlsruhe
Institute of Technology (KIT).

Karlsruhe, October 16, 2019

iv

Abstract

Full system simulation is a flexible tool for dynamic analysis of computer systems.
However, it causes a large slowdown for most workloads. This slowdown can also
change the behavior of the observed system. SimuBoost addresses this by recording
the workload in a hardware-assisted virtual machine and replaying it in a full system
simulator. Therefore, the behavior of the workload is not affected by the large slowdown
of a full system simulator. To speed up the analysis, continuous checkpointing is used to
create independently analyzable segments. These segments can be analyzed by multiple
workers in parallel.

However, the continuous checkpointing introduces a new overhead source into the record-
ing process. An additional replay stage can be used to separate the recording from the
checkpointing. So far, SimuBoost has only implemented a replay engine for full system
simulation. However, running the checkpointing in a full system simulation with its asso-
ciated slowdown would cause significant delays in the parallelized analysis. Therefore, a
replay for hardware-assisted virtual machines is necessary.

We implemented the necessary replay engine and compared its run time with the run time
of the recording. Ideally, the difference should be small so the move to the stage does not
affect the checkpointing. We measured that in most workloads the run-time overhead is
less than 5%.

v

vi ABSTRACT

Contents

Abstract v

Contents 1

1 Introduction 3

2 Background 5
2.1 Deterministic Record and Replay . 7
2.2 Checkpointing . 10
2.3 QEMU/KVM . 12
2.4 SimuBoost . 14

3 Analysis 17
3.1 Checkpointing Overhead . 18
3.2 Three Stage Parallelization . 20

4 Design 21
4.1 Recording . 23
4.2 Replay . 24

5 Implementation 25
5.1 In-kernel Event Transport . 25
5.2 Event Replay . 27

6 Evaluation 31
6.1 Methodology . 31
6.2 Evaluation Environment . 33
6.3 Recording . 34
6.4 Replay . 36
6.5 Conclusion . 39

7 Conclusion 41
7.1 Future Work . 42

Bibliography 43

1

2 CONTENTS

Chapter 1

Introduction

Full system simulation is a powerful tool to explore and analyze the activity of a com-
puter system. The drawback of these simulators is the high slowdown caused by them.
Additionally, the slowdown can increase when logging interesting information of the
running workload such as memory accesses. There are two consequences of this slow-
down. Firstly, the turnaround time increases, as it is necessary to wait for the analysis
to finish. Secondly, the slowdown distorts the measurements and can also change the
behavior of the system. Thus, it can be difficult to gain meaningful results out of a full
system simulator.

SimuBoost [28] attempts to address the high run-time overhead of full system simulators
by using deterministic record and replay. First, the workload is recorded on a hardware-
assisted virtual machine. This process captures all non-deterministic events and is much
more lightweight than a full system simulation. In a second stage the events are injected
into a full system simulation. This way a reconstruction of the execution can be created.
Therefore, only the run-time overhead of the recording can influence the execution, which
is much lower than the run-time overhead of a full system simulator[28]. However, the
injection of each event depends on the previous state. Therefore, the replay and thus
the simulation is at first not parallelizable. To enable a parallelization of the analysis,
SimuBoost makes use of continuous checkpointing, which creates checkpoints in regular
intervals. The intervals enclosed between two consecutive checkpoints are distributed to
a worker pool, which does the actual analysis. Each worker can reconstruct the execution
independently by injecting the events of the interval on its starting checkpoint.

While the checkpointing makes it possible to parallelize the analysis, it causes a notable
run-time overhead, thus thwarting the idea of a lightweight recording phase. Rittinghaus
proposes a three-stage design to remove the checkpointing overhead from the record-
ing [28]. An additional stage is inserted between the recording and analysis stage, which

3

4 CHAPTER 1. INTRODUCTION

replays the workload simultaneous to the recording and is responsible for the checkpoint
creation. Because the parallelization factor now depends on the checkpoint production in
the new stage, the replay engine should be able to keep up with the recording. Therefore,
it should be based on a hardware-accelerated virtual machine.

The goal of this work is to implement a replay engine for hardware-assisted virtual
machines on top of KVM, which can host the checkpoint production for the three-stage
approach.

Chapter 2 gives an overview of the necessary technologies. An analysis of the run-
time overhead caused by the checkpointing is done in Chapter 3. Chapter 4 gives an
architectural overview of the replay engine. A description of the implementation is given
in Chapter 5. After evaluating the implemention in Chapter 6, we conclude this work
with a short summary in Chapter 7.

Chapter 2

Background

There are many approaches to measure performance data of a workload. For instance,
by using the performance monitoring unit (PMU) of modern processors [9]. This unit
usually contains multiple counters, which can be configured to count occurrences of
specific events such as cache misses or retired instructions. While they can provide an
insight into what the processor is doing, they are limited to low-level events and cannot
be customized. For example, it is possible to count how many times a cache miss occurs,
but it is impossible to record the accessed address.

A more flexible approach is to statically instrument the program code at interesting
locations. This can be either done manually or in an automated fashion by extending the
compiler [4]. A downside of this approach is that the resulting binary is specific to the
inserted instrumentation. If something different should be measured, the whole process
has to be redone. An alternative is to dynamically instrument applications at runtime [21].
Both approaches are only feasible for the scope of a few programs and not of a whole
system.

When flexibility and elaborate probe capabilities on a system-wide scope are necessary,
full system simulation (FSS) can be used instead. Because the hardware is only simulated
using software, arbitrary measurements can be done. The core of a FSS is the processor
simulation. A simple but flexible technique is to use an interpreter to execute the guest’s
code. Each instruction is fetched, decoded, executed and the result is applied to the
machine model. This is repeated as long as the simulation is running. The benefit of this
approach is the independence of the underlying host architecture.

However, to execute a single guest instruction the host must execute many instructions,
which makes it inherently slower than a native execution. A technique with better per-
formance for many workloads is dynamic binary translation. Instead of looking at a
single instruction, a whole block of instructions is considered. This block is translated

5

6 CHAPTER 2. BACKGROUND

into machine code suitable for execution by the host’s processor. The translated code is
usually cached, as most code is executed multiple times and the translation itself takes
some time. As part of the translation, the code is also modified to change the state of the
guest. For example, memory addresses cannot be directly used and need to be modified to
point to the virtualized guest’s memory. Privileged instructions such as lgdt on x86 are
translated into unprivileged code, which just modifies the guest state, instead of acting on
the physical hardware. Usually, simulators also include emulations of various common
devices such as video cards or chipsets. Therefore, guest operating systems can in most
cases run without any modifications in a FSS.

The level of detail of the simulation can vary depending on what information is needed.
In the most basic form, a full system simulator may only simulate the functionality and
will not try to re-create the timings of real hardware. This is called a functional simulator
and a well-known example for this is QEMU [3]. When timing accuracy is necessary,
the relevant parts of the hardware can be simulated with an accurate timing model. Some
simulators such as Simics [20] can be used either as a functional simulator or a simulator
with an accurate timing model.

The price for the flexibility of a full system simulation is that the simulation overhead
is very high. Rittinghaus measured a slowdown of factor 43 for an Apache web server
benchmark when running it on the functional simulator QEMU compared to running it
on a hardware-assisted virtual machine (VM) [28].

This slowdown can be problematic for workloads, where multiple systems are involved,
such as a web server running on a simulated system. The clients could be run outside the
simulation, but the results might not be representative anymore because the web server
needs more time to answer incoming requests. Alternatively, the clients could be part of
the simulation, but this would increase the slowdown even more.

The same problem applies to interactive workloads. While the system might not notice
that it is running slowly, a user interacting with the simulated system will notice the
slowdown. A consequence is that the user might interact more quickly from the system’s
point of view when using a simulation. Thus, the system might be more busy and
spend less time being idle. Unlike the non-interactive example above, the user cannot be
integrated into the simulation.

In both cases, the workload running in the simulated system may not reflect the behavior
of the workload on real hardware because the differences in the timing can influence
behavior aspects such as scheduling decisions of the operating system.

SimuBoost [28] is an approach to reduce the slowdown accompanying full system
simulation. The central techniques involved are deterministic record and replay as well as
continuous checkpointing of virtual machines. The following section gives an overview

2.1. DETERMINISTIC RECORD AND REPLAY 7

of deterministic record and replay. The concepts of virtual machine checkpoints and
continuous checkpoints are explained in Section 2.2. The approach of SimuBoost is
described in Section 2.4.

2.1 Deterministic Record and Replay

While the flexibility of a full system simulation is often desirable for an in-depth analysis
of a system, the resulting measurement may not be representative of measuring the
workload on real hardware because of the slowdown incurred by running on a full system
simulator. On top of this, any instrumentation can add additional overhead.

An approach to eliminate the slowdown associated with full system simulation and
instrumentation is to use deterministic record and replay [38]. The basic idea is that the
instruction execution is generally deterministic except for a small set of interactions with
the external environment such as I/O operations or hardware interrupts. By giving the
exact same input to a system from the same starting point, original execution flow can be
reproduced. Therefore, it is possible to record and replay a system similar to how a video
can be recorded and played.

The replay does not have to be done on the same platform as the recording. For example,
a workload can be recorded in a hardware-assisted virtual machine but replayed in a full
system simulator. This combination is called a heterogeneous replay. In contrast to this,
when either both phases use hardware-assisted virtual machines or both use a software
simulation, it is called homogeneous replay.

Homogeneous replay can be used for many purposes, such as time travel debugging [19]
or replicating virtual machines [11]. The benefit of a heterogeneous record and replay
is the higher flexibility, as the platforms for both stages can be chosen independently
based on the requirements of each stage. On the other hand, a homogeneous record and
replay system will be easier to implement because the platform’s behavior will be the
same across the two stages.

The events can be categorized into two main classes, which are necessary to reconstruct
the execution. For both classes it is enough to store the non-deterministic information
introduced into the system. The first class are events, which happen synchronously to
the instruction execution. For instance, reading the timestamp counter (rdtsc instruc-
tion [8]) is a synchronous event and only the observed timestamp counter value needs
to be stored. When replaying the resulting recording, it is enough to use the previously
stored values in the same order they were produced instead of executing the instruction
itself. The implementation is straightforward given an existing recording implementation
because the event can be injected at the same location where the events are recorded.

8 CHAPTER 2. BACKGROUND

The second class consists of events happening asynchronously to the execution, such
as hardware interrupts or DMA writes. This class is more difficult to replay efficiently
because the injection point has to be recorded and replayed with instruction granularity.
The instruction pointer is not sufficient because the same instruction might be executed
multiple times without any other event happening between each occurrence (e.g., as
part of a loop). Even considering the whole register file is not enough as the vital
location identifying information might reside on the stack or more generally somewhere
in memory. Considering the whole memory, however, would simply be too expensive
because hashing gigabytes of memory takes a considerable amount of time. A very
simple and efficient alternative is to count the number of executed instructions until an
event happens. This can be accomplished by using a performance counter configured
to count the executed instructions. However, this requires that the counter is accurate,
which is not the case in practice [22].

A workaround for these issues is to use a combination of mentioned strategies. For
instance, Rittinghaus used an instruction counter to roughly determine the location and
used register comparisons for the precise location [28]. A weakness of the approach is
that it is possible to craft a program, which can cause a divergence at the replay phase
and making it impossible to continue.

An example for this, is a simple loop which only contains code to keep track of the
iteration count. Instead of storing the counter in a register, the counter is stored in memory.
By doing so, the replay engine cannot distinguish between the iterations. Suppose an
asynchronous event such as an interrupt happens when this loop is executed. When the
interrupt handler is executed while recording, it will be able to read the current iteration
counter and do something based on the value. If a replay of this situation is attempted, the
replay engine might inject the asynchronous event too early because the register content
stays the same across all iterations and the instruction counter is only usable for rough
locations. When the interrupt handler reads the counter in this case, the value might differ
from the value read in the original recording causing a divergence. Because SimuBoost
was not designed with security-focused applications, this failure mode is not considered
a problem.

Over the years, many deterministic record and replay systems have been developed in
the industry and in the research community.

ReVirt [15] is an implementation of homogeneous record and replay for post-attack
analysis of system intrusions. The resulting log of non-deterministic events grows about
0.08GB/d while causing a run-time overhead of 8% when compiling a Linux kernel.
Their implementation is based on UMLinux [6]. UMLinux is a modified Linux allowing
the kernel to run in user space. As such, a significant limitation of the used design is
that it cannot run arbitrary operating systems. A similar project [19] uses homogeneous

2.1. DETERMINISTIC RECORD AND REPLAY 9

deterministic record and replay to implement time travel debugging. This work uses a
modified user-mode Linux kernel, which has the same limitation as the UMLinux-based
approach.

A variant of ReVirt with support for multiprocessor systems called SMP-ReVirt [14] was
developed in 2008. It is based on the Xen hypervisor and supports only paravirtualized
guests. It uses a homogeneous record and replay, too. The authors measured a run-
time overhead of 10% when recording a single processor guest building the Linux
kernel. In this case, the system generated compressed log files at 0.562GB/d. Burtsev
et al. [7] propose a general blueprint for implementing deterministic record and replay
systems. They also provided an example implementation on top of Xen. While the use
of paravirtualized hardware reduces the overhead of the virtualization, it also makes it
harder to use in a heterogeneous record/replay scenario, where the analysis phase runs in
a full system simulator. The paravirtualized hardware is usually hypervisor specific and
not available in other hypervisors.

ExecRecorder [23] is a homogeneous record and replay engine for post-attack analysis.
It uses a modified Bochs emulator, which is an x86 interpreter. Therefore, it is too slow
for recording a real world workload with representative timings. The tool generates log
files at 5.4GiB/h on average over multiple workloads.

PANDA [12] is a tool for reverse engineering whole systems. As part of the tool, the
authors wrote a record/replay engine based on QEMU. A similar implementation based
on QEMU was done by Dovgalyuk [13] but with focus on time travel debugging. The
record engine generates log files at 30 kB/s. Another deterministic record/replay engine
with a security focus was written by Srinivasan and Jiang [31]. They used a slightly
different approach for their implementation. Instead of modifying QEMU itself, they
largely left it unchanged and rather record all library calls QEMU makes, which are later
used to replay QEMU and the contained virtual machine. They measured a slowdown of
62% for an Apache web server benchmark.

However, these QEMU-based approaches use the dynamic binary translation mode for
the recording and replay. While it is faster than a pure interpreter such as Bochs, a Linux
kernel build, for example, still takes 22.7 times longer than on a hardware-assisted virtual
machine [28].

ReTrace [38] was a commercial record/replay implementation, which was part of the
VMware hypervisor. It was removed because the feature was not considered important
enough [17]. The purpose was to create detailed execution traces of a system, which
could be used for further analysis. ReTrace introduced the previously described idea of
using deterministic record and replay to reduce the simulation overhead. The workload
is first recorded in a hardware-assisted virtual machine. The second phase replays the
system based on the recording. The user can toggle the generation of an execution log

10 CHAPTER 2. BACKGROUND

for interesting parts of the recording. When the logging mode is activated, the hypervisor
uses an interpreter to execute the guest’s code. After each instruction, the current system
state is logged to the execution log. It also includes information about exceptions and
interrupts, which happen during the recording. The resulting log describes the complete
execution, which can be used for further analysis.

When using this approach it is essential that the simulated system behaves exactly the
same when being recorded and replayed. If the simulated system differs even slightly
when replaying, it can diverge at some point and cannot be replayed from that point
onwards. For example, the behavior of some instructions differs between QEMU and real
x86 processors [28]. Real processors perform a write probe before executing instructions
which read and then write memory. If the destination is not writable, the processor triggers
a write page fault. In contrast, QEMU directly attempts to read the memory, which results
in a read page fault in case of an inaccessible memory location. A consequence is that it
is hard to build a heterogeneous record/replay, which runs the two phases on different
hardware implementation or simulators.

2.2 Checkpointing

Checkpoints can be created to capture the state of a virtual machine at a given point in
time. The saved state contains the values of the CPU registers, the contents of the main
memory and may also include device state such as the framebuffer and configuration of
the video card.

The captured state can be used for many purposes. For example, it can be used to transfer
virtual machines to different hosts without stopping the VM. They can also be used to
restore a virtual machine in case of a failure.

When the checkpoints are created in regular intervals, the process is called continuous
checkpointing. For example, this can be used to build a flight data recorder [37]. If the
virtual machine crashes, the system state can be reconstructed afterwards to investigate
the cause of the crash. Continuous Checkpointing can also be used to ensure high
availability of virtual machines [11]. For this purpose, the virtual machine checkpoints
are continuously copied to a secondary host. If the primary host goes down for some
reason, the replicated virtual machine can substitute the lost VM.

To create a consistent checkpoint, the whole system needs to be temporarily stopped.
While the system is paused, the state can be captured. The duration for which the system
is paused is called downtime. During the downtime, the CPU registers and device state
are captured. Because registers are very small and there are only a few, this can be done
in about 3ms [28]. But the main memory can be fairly large and thus takes more time to

2.2. CHECKPOINTING 11

copy than the other state. For example, creating a copy of the main memory of a virtual
machine with 8GiB may take around 2 s [28]. For continuous checkpointing the resulting
downtime would be too long if the copying happened while the machine is paused.

Depending on the circumstances in which checkpointing is used, different optimizations
for this time-consuming and storage-intensive process can be applied. When continuous
checkpointing is used, an observation is that usually only some memory regions change
their content between two checkpoints. The method of copying only the modified pages
is called incremental checkpointing. This lowers the size of the incremental checkpoints
for many real-world workloads considerably. For example a Linux kernel build mod-
ifies approximately 156MiB on average when every 8 s a checkpoint is created [28].
When using this method the downtime depends on how many pages the guest modifies.
However, the consequence is that RAM-heavy workloads are still impacted by a large
downtime [28].

The next optimization is to use copy-on-write checkpointing [32, 5]. The goal is to delay
the actual copying and only mark the to be copied pages as read-only while the VM is
paused. After the execution is resumed, the copy process can happen asynchronously to
the execution. If the guest attempts to write into a page which is scheduled to be copied,
a page fault occurs and the hypervisor can copy the page ahead of schedule. Afterwards,
it can restore the original permissions, allowing modifications to the page. By using this
technique the downtime can be further reduced, but the overall slowdown is still high for
memory-heavy workloads. Because of the additional page faults, the slowdown can even
increase for synthetic benchmarks compared to a synchronous approach [28].

An important part of efficient incremental checkpointing is to keep track of modified
pages. The most basic way is to use the write-protection bits in the page tables. When
the guest attempts to write to a page, the hypervisor can mark the page as modified
and remove the write-protection of the page. The execution can continue afterwards.
The disadvantage is that there are many additional page faults. Taking checkpoints with
a 1 s interval and write-protection-based tracking of modified pages incurs a run-time
overhead of 25% for postmark.

An alternative is to consider the dirty bits in the page table entries. By walking through the
page table tree during the downtime, all modified pages can be collected. The intermediate
layers of the page table on x86 only store an accessed bit. But this bit can still be used
to prune the tree because no child table will have a dirty bit set if the parent was not
accessed [28]. This way, many branches can be skipped while scanning through the page
table. While the scan method reduces the overhead to 20%, it almost doubles the length
of the downtime for postmark [28].

Similar to memory copying, some work of the dirty logging can be moved outside the
downtime. In this case, the so-called pre-scan method asynchronously walks through

12 CHAPTER 2. BACKGROUND

the page table right before the downtime begins [28]. Afterwards, the normal downtime
starts and the page table is scanned again to detect pages that have been modified in the
meantime. The second scan takes less time because the previously mentioned pruning
optimization. The pre-scan can make the downtime duration comparable to the write-
protection approach for many workloads while keeping the low overall overhead benefit
of the scan method [28]. The overall overhead of copy-on-write, pre-scan, and incremental
checkpointing combined is around 10% for a Linux kernel build when using a checkpoint
interval of 1 s. For more memory intensive benchmarks such as postmark the combination
causes a 20% slowdown in the same configuration [28].

2.3 QEMU/KVM

QEMU [27] is an open source emulator, which can run operating systems either in a
full system simulator or hardware-assisted virtualization environment using KVM. For
full system simulation QEMU uses dynamic binary translation. In this mode the guest’s
instructions are dynamically translated to work on the virtual guest state instead of the
physical host. This may also include a translation between instruction sets if the guest
uses a foreign ISA. In addition to the processor emulation, QEMU also emulates a variety
of hardware components such as network interfaces and graphics cards.

However, the dynamic binary translation mode of QEMU is not fast enough for virtualiza-
tion purposes, where performance is more important than flexibility. To provide support
for virtualization on x86 QEMU relies on hardware support. For Intel processors this
functionality is called virtual-machine extensions (VMX) [9]. Other architectures have
similar mechanisms. For example, AMD calls it secure virtual machine [18] (SVM).

The VMX extension introduces two modes of operation for the processor. The first mode
is called root mode. This mode is mostly the same as the normal operating mode of the
processor with some small restrictions but can still access the hardware. Hypervisors
run in this mode and control the execution of virtual machines. The guest itself runs in
non-root mode, to which the processor switches upon the request of the hypervisor. After
the transition (called VMX entry) is completed, the processor will run the code of the
guest.

The configuration for this mode is stored in the virtual-machine control structure (VMCS).
The access to real hardware is usually restricted in non-root mode by setting appropriate
settings in the VMCS. When the guest accesses a restricted function such as port I/O, the
processor will transition back to root mode. This transition is called VMX exit. Based
on the exit code the hypervisor can determine the appropriate action. For instance, the
emulation of port I/O on a virtual device.

2.3. QEMU/KVM 13

To expose these different mechanisms under a uniform interface, Linux comes with
Kernel-based Virtual Machine (KVM). The scope of KVM is mostly limited to virtualize
bare processor cores and related chips such as interrupt controllers. Hypervisors have to
supplement the functionality provided by KVM to implement a complete virtual machine
environment.

Initialization

Guest
running?

VMX Entry

Guest code

Handle exit
in kernel?

Handle KVM
exit

Handle VMX
exit

VMX Exit

User space Kernel space Guest

yes

no

yes

no

End

Figure 2.1: Hypervisors can provide a particular environment for guests by handling
KVM exits.

The user space API is based on ioctls [33]. An overview of the typical interaction with it
is shown in Figure 2.1. After opening /dev/kvm, the KVM_CREATE_VM ioctl can be
used on the open descriptor to create a virtual machine. Multiple virtual CPUs can be
created afterwards using KVM_CREATE_VCPU. Most other ioctls are used to manipulate
the state of the virtual machine or the virtual processors. For example, the registers can
be accessed or interrupts can be injected. The execution can be started by using the
KVM_RUN ioctl. KVM then uses one of the previously mentioned hardware mechanisms
such as VMX to execute the code of the guest. When a VMX exit happens, KVM
first decides whether the exit can be handled in kernel space. For instance, accessing a
swapped out page will be handled in the kernel. If the exit cannot be handled in kernel

14 CHAPTER 2. BACKGROUND

space, the request is passed to user space by returning from the KVM_RUN ioctl system
call. The user space program receives a description of the event which caused the exit
and can further handle it.

As described previously, QEMU was originally a pure emulator. It was later extended to
be able to use KVM instead of using its hybrid translation backend. In this configuration,
QEMU responds to the KVM exits by forwarding the requests to the emulated devices.

2.4 SimuBoost

SimuBoost combines record and replay with checkpointing to address the slowdown of
classical full system simulation. Figure 2.2 shows an architectural overview of SimuBoost.
The high run-time overhead of a full system simulation is reduced by using heterogeneous
record and replay. The workload runs in a hardware-assisted virtual machine using QEMU
with KVM. This reduces the overhead when running the workload compared to running
it on a full system simulator, which preserves the representativeness [30]. The analysis
is done by replaying the previously captured non-deterministic events in QEMU in the
emulator mode. The benefit of this separation is having the flexibility of a full system
simulation without the distortion in execution behavior that would be caused by the high
slowdown of the simulation.

hardware-assisted
virtualization

full system
simulation

Node 1

Node 2

⋮

⋯

⋯Recording + Checkpointing

Figure 2.2: The workload is recorded on a hardware-assisted virtual machine and check-
points are created in regular intervals. The resulting segments are distributed to a pool of
worker nodes.

By using continuous checkpointing the analysis can be parallelized and drastically
reduces the overall time required for the simulation. Each time a checkpoint is created,
the interval between the previous and the current checkpoint can be replayed. Because
each interval is independent of each other, the parallelism is mainly limited by the creation
of new checkpoints and the availability of simulation nodes.

2.4. SIMUBOOST 15

2.4.1 Simutrace

SimuBoost uses Simutrace [29] to store the recorded non-deterministic events, check-
points, and analysis traces. It uses a client/server architecture to allow access to the data.
When clients run on the same host as the server, the clients can communicate with the
server using a named pipe. The data itself is transported using shared memory. When the
client sends a request to append a new segment to a stream, the Simutrace server hands
out an empty 64MiB segment in a shared memory region. When the client is either done
with writing data or the segment is full, the client can tell the server about the completion.

The process for reading segments is similar. The client can request segments and the
server will write the content of the requested segment into a shared memory region, which
can be then accessed by the client. The benefit of this approach is that the data needs to
be copied less often as it would when sent over a pipe or socket. However, clients can
also access the server via network if the server runs on a different host. In this setup it is
no longer possible to use shared memory and the data is sent over network sockets.

After Simutrace receives a new segment of data, it can apply different compression
and storage schemes depending on the stream type. For example, the non-deterministic
event streams of SimuBoost are compressed using LZMA. Checkpoints, on the other
hand, use a mixture of custom and general-purpose compression methods as well as data
deduplication [28]. After all filters have run, the output is written to storage. In case of a
local shared memory buffer, the buffer is reused for further client requests.

16 CHAPTER 2. BACKGROUND

Chapter 3

Analysis

The term probe effect describes the symptom of influencing measurements by doing
the measurements. For example, a profiler might add instrumentation to the beginning
and ending of every function. By doing so every function call will be more expensive,
because the inserted code will consume some time. The resulting slowdown is more
significant for small functions than for more time-consuming ones. Therefore, some parts
might appear more expensive than they are in a non-instrumented build.

The effect is not necessarily caused by additional executed code only, but bottlenecks in
the system can also induce a probe effect. For example, the main memory bandwidth is
limited and a concurrently executed memory-intensive analysis application can negatively
affect the performance of other programs even when they run on different cores.

Because any conclusions based on imprecise measurements can be misleading, it is
crucial to minimize the probe effect. The probe effect also affects the analysis of a
system in full system simulators, because many operations are slower than on a real
machine. By splitting the analysis into two phases, a lightweight recording and a slow
analysis, SimuBoost already moved the simulation and instrumentation overhead away
from the main execution. However, the goal of parallelizing the analysis workload makes
it necessary to use checkpointing. While a well-optimized checkpointing implementation
can reduce the overall slowdown, it will still cause a probe effect. However, any probe
effect in the recording is carried into the analysis. In this case, the checkpoint creation
slows down the simulated system causing an unnecessary probe effect. In the following,
we investigate impact of checkpointing by measuring the overall run-time overhead.
Section 3.2 describes an approach to remove the probe effect caused by checkpointing.

17

18 CHAPTER 3. ANALYSIS

3.1 Checkpointing Overhead

To measure the actual impact of checkpointing, we first run a workload on a virtual
machine without checkpointing and then run it on a virtual machine with checkpointing
enabled. This is based on the assumption that the induced probe effect will increase the
time needed for the affected operations. This should be the case because the instrumenta-
tion will always add additional operations to the operations executed inside the simulated
system. Thus, when comparing the two runs, the difference in the total time spent is
approximately the sum of the time taken for these additional operations.

We run following benchmarks on the same setup as described in Section 6.2 but using
an unmodified version of SimuBoost. SimuBoost is configured to record the workload
and to use copy-on-write, pre-scan, and incremental checkpointing (see Section 2.2).
Multiple checkpoints intervals are tested because shorter intervals can be scheduled more
tightly onto the analysis worker pool. The downside of a higher checkpoint frequency
is the increased overhead. Additionally, each benchmark is run with only the recording
active. The results are compared against a benchmark run without recording the non-
deterministic events and without creating checkpoints. A more detailed description of
our methodology can be found in Section 6. The results are shown in Figure 3.1.

0

10

20

30

ap
ac

he

en
co

de
−m

p3

gn
up

g

lin
ux

−k
er

ne
l−b

uil
d

po
stm

ar
k

po
vr

ay

py
be

nc
h

sq
lite

O
ve

rh
ea

d
[%

]

Checkpoints 500ms 1s 2s 4s Recording only

Figure 3.1: Checkpointing can cause a considerable slowdown. Memory-intensive bench-
marks such as postmark are particularly affected by the overhead.

3.1. CHECKPOINTING OVERHEAD 19

The first benchmark is the Apache web server benchmark. In the benchmark the current
time is often retrieved using the rdtsc instruction [28]. By doing so many events
are generated, which causes the recording to have an overhead of 17% compared to
other benchmarks. While activating the checkpointing increases the overhead to 27%,
increasing the checkpoint frequency does only slightly increase the overhead.

In contrast, the encode-mp3 and pybench benchmarks only experience an overhead of
5% when being recorded. Enabling checkpointing increases the overhead to 10%, while
increasing the checkpointing interval does only have a small effect similar to the Apache
benchmark. For the Linux kernel compilation the overhead caused by the recording is
less than 1%. However, creating checkpoints in 1 s intervals raises the overhead to 12%.

Postmark touches large amounts of memory, which causes a large overhead of 32% in
combination with checkpointing in 500ms intervals. The event recording itself only
causes a 6% overhead. Workloads which are CPU-heavy, such as POV-ray are only
slightly affected by both recording and checkpointing. Even when creating checkpoints
in 500ms intervals, the overhead is only 2%.

In summary, creating checkpoints causes a non-negligible probe effect and can cause
distortions even with low checkpoint intervals. Using checkpointing has a considerable
effect for all measured benchmarks, except for purely processor-bound benchmarks. As
the parallelization approach of SimuBoost requires high frequency checkpointing, the
overhead can very high for memory-intensive workloads.

20 CHAPTER 3. ANALYSIS

3.2 Three Stage Parallelization

hardware-assisted
virtualization

full system
simulation

Node 1

Node 2

⋮

⋯

⋯
Events

Recording

Checkpointing

Figure 3.2: Using three stages to remove the checkpointing overhead from the recording.
The probe effect caused by the checkpointing is no longer affecting the measurements in
the analysis.

A proposed improvement to remove the probe effect induced by checkpointing is to
move the checkpointing to a new intermediate phase between the record and analy-
sis phase [28].This phase directly replays the previously recorded workload, thereby
producing the exact same execution irrespective of any additional overhead. Creating
checkpoints in this phase does not add to the probe effect. As shown in Figure 3.2, the
analysis of an interval can start as soon as the new replay phase creates the checkpoint at
the start of an interval. This matches the current approach used by SimuBoost.

To maintain a fast and effective parallelization for the interval simulations, the replay
phase must not be slower than the original recording phase. Thus, the new checkpointing
phase cannot use the existing replay engine of SimuBoost built into the slow full system
simulation. Instead, we need to replay the execution in a hardware-assisted virtual
machine, which is the same environment already used for the recording in the first phase.
As part of this work, such a replay engine will be implemented.

Chapter 4

Design

In the previous section, we described the approach of creating checkpoints in an additional
phase to remove the probe effect caused by checkpointing from recordings. This approach
requires a replay implementation for hardware-assisted virtual machines to maintain the
parallelizability of SimuBoost. As the newly written replay engine has to be integrated
into the existing SimuBoost system, the implementation has to consume the event format
output by the current recording engine.

As explained in Section 2.1, program execution is mostly deterministic. By recording
the few remaining non-deterministic operations, a replay of the original workload can
be created. I/O is usually non-deterministic because the retrieved values depend on
factors not controlled by the hypervisor such as key presses or network communication.
Events which expose some sort of timing to the guest must also be recorded such as the
occurrence of interrupts or reading a timestamp.

Event Logged data

in, out instructions address, data
cpuid instructions eax, ebx, ecx, edx registers
rdtsc instructions eax, edx
rdmsr, wrmsr instructions ecx, eax, edx
APIC accesses offset within configuration page, length, and value
HPET accesses offset, length, and value

Table 4.1: Synchronous non-deterministic events on x86 processors

Some events happen synchronously to the program execution. Table 4.1 lists these events
for the x86 architecture. Besides port-based I/O using the in and out instructions,
another possibility to communicate with external devices is to use memory-mapped I/O.

21

22 CHAPTER 4. DESIGN

Both the Advanced Programmable Interrupt Controller (APIC) and the High Precision
Event Timer (HPET) use this approach. The HPET provides a timer accessible in a
memory region, which makes it necessary to record the interactions with it. The APIC is
responsible for the interrupt delivery and the configuration can be accessed in a special
memory page. Instead of emulating the APIC, we decided to replay any interactions
with it. This includes accessing the configuration page and also interrupts. This data was
already logged by the original SimuBoost implementation for simplicity reasons, because
the behavior needs to stay consistent on both hardware-assisted virtual machines and full
system simulators.

While cpuid is deterministic and not necessary for the replay on a hardware-assisted
virtual machine if the same processor model is used, it is useful for the following analysis
phase. The values reported by a full system simulator will differ from the ones reported in
the hardware-assisted virtual machine leading to a divergence. By recording the results,
this situation is avoided. The rdmsr and wrmsr instructions, that are used to access the
model specific registers, have the same problem and are also recorded for that reason.

Event Logged data

DMA writes Address and written data
Hardware interrupts Interrupt vector number
System Management Interrupts –

Table 4.2: Asynchronous non-deterministic events on x86 processors

There are also non-deterministic events, which can happen asynchronously to the in-
struction execution. A list of those events is shown in Table 4.2. DMA writes are used
to asynchronously write data to the main memory without the involvement of the CPU.
For instance, this can be used for asynchronously reading data from the hard disk. The
completion of the asynchronous operation can be signaled with a hardware interrupt,
which is another asynchronous event source.

Both DMA writes and interrupts depend on the timing outside the simulated system.
For example, in the hard disk scenario, the hypervisor might have to wait for the data to
arrive from a real hard disk, which can take an unknown amount of time. Additionally,
DMA writes can introduce non-deterministic events into the guest.

The following section gives a short overview of the existing recording implementation
because some mechanisms of it are reused for the replay engine. Section 4.2 describes
the high-level design of the replay engine itself and how it integrates into the existing
SimuBoost architecture.

4.1. RECORDING 23

4.1 Recording

The recording engine was implemented on top of QEMU and KVM to reduce the
execution overhead as described in Section 3.2. This was done as part of SimuBoost and
the implementation will be used for this work.

The port I/O instructions are trapped within KVM because the guest should not be able to
directly communicate with devices of the host. Instead, KVM will forward these requests
to QEMU, which emulates the connected devices.

The cpuid instruction is also trapped, even when the CPU model is passed through
because KVM needs to filter out some features, which cannot be used in a guest sys-
tem [36]. Thus, the existing code only needs to be adjusted to record the return values.
The VMX extension also exposes a way to trap rdtsc instructions, which can be used
to implement recording of timestamp counter accesses. Likewise, accessing the model
specific registers using rdmsr and wrmsr is also trapped for recording or replaying.

As hardware interrupts are already injected by the hypervisor itself, recording them can
be done in the function, which actually injects the interrupt. The same holds true for
DMA writes, which are done by QEMU by writing into the address space of the guest.

To identify the correct location of an event, the recording implementation creates a
landmark each time an event happens. A landmark contains the values of a subset of
registers and the count of the so far executed instructions. While only strictly necessary
for asynchronous events, this landmark is also used for verification purposes to ensure
that the replay progresses correctly.

A peculiarity of the x86 instruction set is the existence of the repeat instruction prefixes,
which can be combined with string instructions. This allows a compact representation of
loops common in string manipulation. Examples of such loops include comparing two
null-terminated strings or filling a memory block with a value [8]. After each iteration
the counter register is decremented and the pointers to the string are moved forward. The
iteration stops when the counter reaches zero. Depending on the used string instruction,
the equality of the current characters or if a zero is encountered, can also be a condition
to stop the iteration.

Because these instructions can run for extended periods, it is important that they can be
interrupted. When an interruption happens, the CPU stores the current iteration in the
input registers. When the control returns to the instruction after the interrupt was handled,
the instruction will continue where it previously stopped. However, these instructions
count as a single instruction for the performance counter. To uniquely identify the correct
time to inject an asynchronous event in a replay, the counter register rcx, string source
register rsi and string destination register rdi are also required.

24 CHAPTER 4. DESIGN

4.2 Replay

The replay implemented as part of this work uses the recorded data to reconstruct the
execution flow and is also based on KVM.

While any additional overhead does not affect the execution anymore, it is still important
to have a low overhead. If replaying entails a considerable slowdown in the checkpointing
run, the parallelization in the analysis phase is negatively affected and the attainable
speedup might decrease notably. To avoid any delay in the parallel simulation, the replay
should also be able to run concurrently to the recording.

KVM KVM

QEMU QEMU

Simutrace

ke
rn

el
 sp

ac
e

us
er

 sp
ac

e

record replay

ioctl run iotctl run

events

events

Figure 4.1: The recording is modified to pass any generated events to the replay. After-
wards, the replay engine writes them into Simutrace.

The high-level architecture of the setup is shown in Figure 4.1. In the current implemen-
tation the checkpointing depends on being able to add special marker events into the
recording log to identify interval boundaries. The new checkpointing phase implementa-
tion should also allow the insertion of these checkpoint events because Simustore streams
are append-only. If the recording phase had passed the events to Simutrace directly, the
checkpointing stage would not be able to insert the markers anymore. By passing all
events through the replay engine, the additional events can be inserted when a checkpoint
is created.

The event transport itself can be adapted depending on the scenario. If the replay runs
on the same machine, the recorded events can be directly shared with some additional
synchronization. Alternatively, the data could be sent over the network if the replay runs
on a separate system.

Chapter 5

Implementation

The replay is implemented on top of the modified Linux 4.3.0 kernel of SimuBoost. This
kernel already contains the KVM patches necessary to record workloads in a hardware-
assisted virtual machine and create continuous checkpoints. Section 5.1 describes the
transport used to move the recorded data to the replay. The implementation of the replay
itself is described in Section 5.2.

5.1 In-kernel Event Transport

The recording, transport, and replay use the same binary representation for the events.
The benefit is that the events can be easily moved around without any conversion involved.
A single event consists of an event type, a landmark, and an optional payload data (see
Section 4.1. While the event itself has the same length across all event types, the payload
can vary in size depending on the event type or in case of DMA writes even vary between
events.

When an event is created while recording a workload, a linked list node is allocated from
a kmem_cache. Because the event structure has a fixed size, it is directly embedded into
the list node. The variable-length payload is stored into a separate allocation, referenced
by a pointer in the node structure. The node is inserted into the local synchronous or
asynchronous event list depending on the event type.

After a certain number of events, the contents of both lists are moved into a queue shared
with the replay process. Figure 5.1 visualizes the resulting structure. The reference-
counted queue is created when a recording is started and is shared with the replay process.
To maintain a low overhead, the transport does not use a normal list protected by a
mutex but rather a wait-free single-producer single-consumer queue. It is implemented

25

26 CHAPTER 5. IMPLEMENTATION

Queue node

Event node
Event

Queue node

Event node
Event

Event node
Event

Event node
Event

async sync

next next

next next

⋮ ⋮

next

async sync

⋮ ⋮

next⋯

Figure 5.1: The events are transported using a queue, which contains a list for synchronous
and asynchronous events. Batches of multiple events are wrapped into a queue node to
reduce the run-time cost using atomic instructions to insert new events into the queue.

using a single-linked list and is based on a design by Vyukov [34]. Pushing an element
with this implementation requires one allocation out of a kmem_cache and one atomic
instruction.

The replay process on the other side of this queue also has two local event lists in addition
to a pointer to the shared queue. Every time an event has been successfully replayed, the
corresponding event will be removed from one of the local lists depending on the whether
the event was asynchronous. When neither a synchronous nor asynchronous event is left
and the recording is still running, new data is fetched from the shared queue. If the queue
is empty, the replay will wait for the availability of more events in a busy-loop. When a
new batch of events was successfully fetched from the shared queue, the events contained
in the queue node are appended to the local replay lists. Because the structure of the lists
stored in the shared queue nodes is the same as the local list, the new batch of events can
be spliced to the local lists by just changing a few pointers.

If only one of the local lists is empty, it is safe to continue the replay and wait until the
other list is also empty. In other words, until the last event of the current event batch
is processed, no event of the empty list’s category can occur. If an event violating this
property would exist, the event would have to have happened before the batch’s last event.
But this event would have been contained in the current batch, as the two lists are flushed
at once.

This is important for asynchronous events because missing one of them could silently
cause a divergence, which would only surface on a later event. Because the event batch
does not have any gaps, it is safe to not schedule any asynchronous events for injection if
only the asynchronous list is empty.

5.2. EVENT REPLAY 27

Finally, the event node is moved into another pair of lists after being replayed. These lists
represent the replayed but not yet permanently stored events. The events in these lists are
moved to user space every time a KVM exit happens.

After every KVM exit, the user space part of SimuBoost collects all accumulated replayed
events using an ioctl on the virtual CPU. This ioctl mechanism was already imple-
mented and previously used for collecting the events from the recording. This collection
procedure is now done in the replay, because the checkpoint markers must be inserted.
The ioctl directly writes into the 64MiB buffers provided by Simutrace. This is also
the point where the list node memory is freed.

The required modifications to inject checkpoint marker events are small because the
already replayed events and the incoming events are stored separately. The user space
only receives events which have already been applied and have contributed to the state,
which is made persistent when a checkpoint is created.

A checkpoint background thread simply pauses the virtual machine, which causes a KVM
exit and triggers the previously mentioned collection of replayed events. The background
task waits until this is done and creates the checkpoint itself. Afterwards, it emits an
event directly to the Simutrace stream and resumes the virtual machine. The emitted
event will be consistent with the surrounding events because the deterministic nature of
the replay.

5.2 Event Replay

The next step is to use the acquired events to recreate the original execution. For the
synchronous events this is straightforward because the event can be replayed at the same
location in the code where it was originally recorded. The general structure of these
locations is shown in Algorithm 1 using the example of rdtsc.

When the CPU encounters an rdtsc instruction and VMX is configured to trap it, the
CPU causes a VMX exit. In this case, if the recording is active, the current timestamp
value will be read, written into a new event, and also into the corresponding registers
with the virtual machine. When the replay is active, the hypervisor fetches the next
synchronous event. If the event type matches, the hypervisor fetches the associated event
data, too. This data is then injected into the virtual machine. If the event type does not
match, something in the replay process went wrong and must be aborted as the state
already differs from the expected state.

In both the recording and replay, the rdtsc instruction is skipped, by using the in-
struction length provided by VMX. Afterwards, the execution of the virtual machine

28 CHAPTER 5. IMPLEMENTATION

Algorithm 1 Handling of a synchronous event using rdtsc as an example
procedure HANDLE_RDTSC

if replay_active then
event← consume_event() . Fetch and check landmark
eax← event.eax
edx← event.edx

else
eax, edx← rdtsc() . Wrapped Operation
add_event(EVENT_RDTSC, eax, edx)

end if
vcpu.eax, vcpu.edx← eax, edx
move_instruction_pointer_forward()

end procedure

continues. If no recording is active the add_event call is a no-op and does not cause
any additional overhead on top of the overhead caused by the VMX exit. The same
process applies to the other synchronous events.

Injecting asynchronous events is more complex than injecting the synchronous events.
Every instruction can be a potential location for an asynchronous event. For the replay
implementation, we attempt to inject the next asynchronous event every time a VMX exit
happens. With this design, it is sufficient to cause a VMX exit to inject an asynchronous
event. When the replay engine attempts to inject an event, the landmark is compared
to the current processor state. A landmark matches the current state, when all registers
values stored in the landmark are equal to the current register values. If the state matches,
the event is injected. This is repeated for the following events, until a non-matching event
is encountered.

The stored instruction count is also compared to the current instruction count. Unlike
the registers the value is not checked for exact equality because the counter can diverge
from the real value in some circumstances [35]. To counteract this symptom, it is tested
whether the current replay instruction count is within a window around the landmark’s
instruction count. This window should be as small as possible to reduce the chance of
early false positives. For instance, these can happen when injecting an interrupt in a busy
loop waiting for that specific interrupt. While the execution can continue in this situation,
it does change the list of executed instructions. However, these false positives can also
cause divergences if the window was too large.

The problem is to cause a VMX exit at the correct location. There are two values
contained in the landmark usable for this task: the instruction pointer and the instruction
count. Accordingly, we considered two methods to trigger VMX exits for event injection:

5.2. EVENT REPLAY 29

Breakpoints The x86 architecture has support for hardware breakpoints. The primary
use of these is for debugging. When one of the configured breakpoints is hit, the processor
jumps to the corresponding exception handler. This mechanism is also available for virtual
machines and VMX can be configured to cause an exit when a breakpoint is hit. They
can be used to debug the code running in virtual machines but it is also possible to use
them to cause the necessary VMX exits for the asynchronous event injection. In both
cases, the delivery of the exception to the virtual machine is suppressed, so the execution
of the guest remains unmodified.

However, there are some problems with this approach. Because the configuration registers
are part of the architectural state and the number of configurable breakpoints is limited
to four, the guest cannot fully use the breakpoint functionality if the host is also using
it. In addition, the debug functionality also interacts with other parts of the processor’s
behavior. For example, the normal x86 flags register contains a resume flag (RF). Before
an instruction is executed, the processor checks whether there is an active breakpoint
at the instruction’s address. The CPU only raises a breakpoint exception if the resume
flag is not set. 1 Using breakpoints to inject asynchronous events is thus problematic:
In some cases, when the processor enters an exception or interrupt handler, it saves the
flags register on stack with RF set [9]. When the interrupt handler returns control to the
interrupted code, the flags register is restored from the value on the stack, which has
the resume flag set. If an asynchronous event happens at this location, the CPU will
ignore the breakpoint due to the set resume flag, thereby preventing asynchronous event
injection and eventually breaking the replay. In addition, there are cases, in which it is
impossible to trigger a breakpoint at a certain instruction. For example, if a pop ss
instruction is executed, the delivery of breakpoint exceptions is inhibited [9].

Performance Monitoring Interrupt (PMI) The recording uses the performance coun-
ters to gather the instruction count for the landmarks. The INST_RETIRED.ANY
counter can be accessed as a model specific registers. Further, the counter can also
be configured to raise an interrupt on a counter overflow. By setting the counter to the
maximum value minus n, a performance monitoring interrupt (PMI) can be scheduled
after the measured event happened n times. This configuration is also commonly used
for sampling profilers to regularly stop the observed program and sample the current
instruction pointer. The PMI will not cause an interrupt handler to be called by itself.
Therefore, the APIC needs to be configured to raise a non-maskable interrupt (NMI)
when a PMI happens and VMX can be configured to exit when a NMI is delivered. Both
VMX and the APIC are already configured this way in KVM because the perf subsystem
of the Linux kernel relies on this configuration.

1Since the flag is cleared after each instruction, it allows debuggers to resume execution without
removing the breakpoint.

30 CHAPTER 5. IMPLEMENTATION

Due to the mentioned shortcomings of breakpoints, we decided to use PMIs to exit
non-root mode at the next landmark. This is done by comparing the current executed
instruction count and the instruction count stored in the next asynchronous event. The
difference between the two is the number of instruction to execute until the event location
is reached. When an asynchronous event is scheduled for injection, the value of the
performance counter is set right before the switch into VMX non-root mode.

However, the delay between the counter overflow and the interrupt arrival can be large [7].
Within this time frame, the processor can retire further instructions because of the out-
of-order nature of modern processors. By the time the hypervisor handles the VMX
exit, it may already be too late to inject the asynchronous event. A workaround for this
problem is to stop the execution before the landmark is anticipated. We determined the
size of this window experimentally to be around 120 instructions (see Section 6.4.1).
The remaining instructions between the PMI interruption and the next landmark can be
single stepped. As already mentioned, using the trap flag in the guest processor flags is
too unreliable for this purpose. But there is a similar flag unaffected by these issues in
the VMX extension, which is called monitor trap flag. It cannot be circumvented with
the resume flag and this flag is not observable within virtual machine. Furthermore, the
flag has another useful property: Whereas the normal trap flag steps over repeated string
operations as if they were a single instruction, the monitor trap flag stops every iteration.
This makes it possible to single-step through these single instruction loops, which is
required to precisely inject asynchronous events.

Chapter 6

Evaluation

In the previous chapters we described our implementation of a replay engine for the
three-stage parallelization approach. In this chapter, we evaluate our implementation.
First, we describe our evaluation methodology in Section 6.1 and the environment in
which all measurements were done in Section 6.2. In Section 6.3, we demonstrate that
the simultaneous replay itself only causes a small run-time overhead on the recorded
workload. Finally, we present the performance of our replay implementation, which is
important for a proper parallelization, in Section 6.4.

6.1 Methodology

To assess the performance of our implementation we used the phoronix test suite [24]
within the guest. The following benchmarks of the test suite were used:

phoronix-apache (v1.7.1) This benchmark starts an Apache web server and uses Apache
Benchmark (ab) to send one million requests to the web server [2]. This benchmark
is classified as system test. A notable observeration of this test is the high frequency
of rdtsc instructions [28].

phoronix-encode-mp3 (v1.7.1) The benchmark encodes a WAV file into an MP3 file
using LAME and measures how long this takes. Because there is only hardly I/O
involved and LAME is mostly processor-bound, the benchmark is considered a
processor test.

phoronix-gnupg (v2.4.0) Encrypts a 2GiB file using GnuPG [16]. This benchmark is
also a processor focused test.

31

32 CHAPTER 6. EVALUATION

phoronix-postmark (v1.1.1) This benchmark attempts to recreate the workload per-
formed by web and mail servers [25]. It is doing I/O operations to 500 files across
25 thousand transactions. While the benchmark is primarily a disk test, it also
modifies large amounts of memory.

phoronix-povray (v1.2.1) The benchmark renders a scene using the povray ray-tracer
and is a processor test.

phoronix-pybench (v1.1.2) This benchmark runs the benchmark suite of the official
Python project [26]. It can give an estimate of the performance of a typical Python
program.

phoronix-sqlite (v2.0.1) This disk benchmark repeatedly inserts rows into a table of an
SQLite database. This represents a light database workload.

phoronix-linux-kernel-build (v1.6.0) The benchmark measures how long it takes to
compile the Linux 4.3 kernel [1]. The compilation involves I/O and the processor.
Thus the benchmark is classified as a system test.

Additionally, we used the following workloads, which are not part of the phoronix test
suite:

SPECjbb2005 (v1.07) This is a benchmark, which emulates a three-tier Java server
commonly used in businesses [10].

Idle For this workload the system is left idle for 60 s. Therefore, the system mostly waits
for interrupts.

We did all measurements using automated tests scripts. Instead of using the score reported
by the benchmarks themselves, we used the wall-clock run-time. The benefit is that it
can be used for measuring the run-time overhead of both the recording and the replay.
Using the benchmark score for evaluating the replay is not possible, because the score is
simply replicated.

To assess the overhead of a configuration, we compare the measured run time to a baseline.
The baseline is, unless stated otherwise, an execution in a VM with the modified KVM,
but without recording and checkpointing. Even if the workload is not recorded, it will
trap instructions such as rdtsc [28]. In comparison to a vanilla kernel this can reduce
the performance of some workloads, which frequently uses the trapped functionality.
Among those workloads are benchmark applications such as SPECjbb2005 or ab, which
assume that rdtsc is a cheap operation.

All run-time overhead measurements were repeated six times. The 25% and 75% per-
centiles are represented as error bars in the plots.

6.2. EVALUATION ENVIRONMENT 33

6.2 Evaluation Environment

The hardware and software configuration, which was used for our measurements is shown
in Table 6.1. Hyper-threading was disabled to avoid any disturbances of the performance
counters, which are used for the record and replay process.

Component Specifications

Processor 2x Intel® Xeon® CPU E5-2630 v3 with 2.40GHz base
frequency

Main Memory 64GiB
Storage Crucial CT256MX1, 256GB

Guest Main Memory 2GiB

Software Version

Host Operating System Ubuntu 16.04.6 LTS
Host Kernel Linux 4.3.0, modified for SimuBoost and three-stage paral-

lelization
Guest Operating System Ubuntu 16.04.5 LTS

Guest Kernel Linux 4.8.10
QEMU 2.6.50, modified for SimuBoost and this work

Table 6.1: The hardware and software used to evaluate the replay engine

Linux has the ability to choose from multiple clock sources to provide the current time.
Among those sources are the High Performance Event Timer (HPET) and the CPU’s
timestamp counter, the latter also being the preferred source on modern x86 hardware.
If Linux deems a clock source as unreliable, it can fall back to another one such as the
HPET. However, these need to be emulated by QEMU. Because of the additional exit
into user space, they can cause a high slowdown. Rittinghaus has observed this switch in
Linux guests when being recorded. Therefore, QEMU was modified to not expose any
clock sources to the guest except the timestamp counter [28].

34 CHAPTER 6. EVALUATION

6.3 Recording

0

5

10

15

apache

encode−mp3
gnupg

linux−kernel−build

postmark
povray

pybench
sqlite

O
ve

rh
ea

d
[%

]

In−kernel
transport
Original

Figure 6.1: We compared the run-time overhead induced by our simultaneous replay
with the in-kernel transport against the original implementation. The in-kernel transport
reduces the recording overhead in all cases. In some benchmarks the overhead halves.

As described in Section 5, the recording was modified to transport the generated events
within the kernel to the replay process. We measured the run-time overhead of the
recording with these changes and compared them with the original version in Figure 6.1.
In both cases the generated events were also stored in Simutrace. The event transport
changes improve the recording overhead in all measured workloads. Some benchmarks
such as SQLite and postmark incur only half of the overhead compared to the original
implementation.

The SQLite database relies on fsync on the guest side to ensure the newly written data
is persistent. This request is passed forward to the emulated disk by the guest kernel.
Because the disk emulation happens in QEMU, a KVM exit is triggered. The original
implementation collects all events after a KVM exit using an ioctl. The collection
procedure copies the data into Simutrace segments and also deallocates the event and the
buffer used for additional data. Because the benchmark involves many small insertions
into a table, this happens very often. While this still occurs when the in-kernel transport
is used, the additional ioctl call is no longer necessary on the recording side. This
results in a lower overhead.

While this approach reduces the overhead of the event transport itself, it now requires a

6.3. RECORDING 35

second task to retrieve the events. In our implementation, the simultaneous replay takes
care of persisting them. To investigate the effect of the additional load, we implemented
two new modes in the recording engine. The first mode frees the event instead of pushing
it into the shared queue. The second mode, starts a worker kernel thread, which merely
fetches any incoming events in a busy loop. Any events received are directly freed.
This approximates the behavior of the replay, without actually doing the replay itself.
Additionally, we evaluate whether there is a difference between running the replay
on the same CPU socket or on a different one. Figure 6.2 shows the results of these
measurements.

0.0

2.5

5.0

7.5

10.0

apache

encode−mp3
gnupg

linux−kernel−build

postmark
povray

pybench
sqlite

O
ve

rh
ea

d
[%

]

recording only dummy consumer

simultaneous replay simultaneous replay (same socket)

Figure 6.2: Probe effect on recording caused by simultaneous replay. The run-time
overhead induced by the replay itself is about 2.5%.

The Apache web server workload is mostly slowed down by the queue, because all
three variants involving the queue are much slower than the recording-only variant. The
overhead caused by the queue is about 5%. The effect is also present in the SQLite
benchmark albeit weaker. Running the replay on a separate CPU socket improves the
performance considerably for the other workloads. This suggests there is a bottleneck
within the processor, which can be avoided on dual socket systems.

36 CHAPTER 6. EVALUATION

6.4 Replay

In Section 3.2, we outlined the necessity of a replay engine based on a hardware-assisted
virtual machine to offload the checkpoint generation. However, the analysis worker pool
now also depends on the replay to produce enough work. If it is too slow, it can be the
bottleneck of the setup. We address the replay performance in Section 6.4.2. It also needs
to work correctly and must not fail, because the analysis cannot continue without the
checkpoints.

6.4.1 Correctness

To verify whether the replay works correctly, we replayed all benchmarks and additionally
SPECjbb2005, which proved to be valuable to expose bugs in the replay engine.

We mentioned previously in Section 5.2, that there is a delay between the performance
counter overflow and interrupt arrival. To counteract this behavior, we schedule the PMI
a certain number of instructions earlier — the PMU window. After the VMX exit, we
continue single-stepping towards the target location using the monitor trap flag, while
trying to inject the asynchronous event.

The single-stepping is very slow, because of the repeated VMX entries and exits. There-
fore, it is important to keep the PMU window small. However, setting it too small can
lead to missed injections. We determined the optimal window size experimentally: First,
we set the window to a large value. Every time a performance counter overflow was
handled, we inspect the value of the counter. In the optimal case, the value in the counter
would be zero after an overflow happens, because then the execution would have stop
immediately. However, as the processor executes further instructions until the overflow
interrupt arrives, the value will be higher. By logging the value, it is possible to quantify
how many instructions the target instruction was overshot.

6.4. REPLAY 37

specjbb sqlite

povray pybench

linux−kernel−build postmark

apache idle

0 30 60 90 120 0 30 60 90 120

0

10000

20000

30000

0
1000
2000
3000
4000

0
1000
2000
3000

0

2000

4000

6000

0
5000

10000
15000
20000

0

20000

40000

60000

0
25000
50000
75000

100000

0
25000
50000
75000

PMU overshoot [instructions]

F
re

qu
en

cy

Figure 6.3: The histogram shows that the delay between performance counter overflow
and interrupt arrival stays below 114 instructions.

Figure 6.3 shows the distribution of the delay in various workloads. All workloads cover a
wide range of values, but none of them passed 120 instructions. We set the PMU window
to this value instead of the actual maximum to include a safety margin. This window is
likely micro-architecture specific and might have to be determined experimentally for
other processor models.

Each of the workload creates a distinctive shape, which could indicate that the out-of-
order execution of modern processors is the cause for the delay. The idle workload
has a uniform instruction mix and does not fill the processor pipeline as much as the
other workloads, because it is mostly waiting for (timer) interrupts. In contrast to other
workloads, idle overshoots the target almost always by about 20 instructions. POV-ray
and pybench, which are purely processor bound, incur a higher interrupt delay than the
other benchmarks. Possibly, the processor pipeline is filled when the counter overflows,
causing this delay.

38 CHAPTER 6. EVALUATION

6.4.2 Replay Overhead

To evaluate whether the replay can keep up with the recording, we measured the run time
of both using the previously determined PMU window. Additionally, we measured some
larger PMU windows to investigate the impact of the window size. The results of our
measurements are shown in Figure 6.4.

0

5

10

15

20

apache

encode−mp3
gnupg idle

linux−kernel−build

postmark
povray

pybench
sqlite

O
ve

rh
ea

d
[%

]
(r

el
at

iv
e

to
 r

ec
or

di
ng

 s
ta

ge
)

PMU Window

120

140

160

180

200

Figure 6.4: Our replay engine has an overhead of about 5% for most workloads compared
to the recorded execution. Only Apache, which produces a large amount of events, incurs
an overhead of 18%.

Idle represents the optimal case of a deterministic replay, because when the guest intents
to wait for interrupts with a halt instruction (e.g., hlt on x86), the next interrupt can
be injected immediately. Therefore, the replay should be able to catch up quickly after
the boot sequence is completed. The measurements confirm this behavior. The Apache
workload, which already had a large impact on the overhead while recording incurs the
largest slowdown for this scenario.

Reducing the PMU window from 200 instructions to 120 instructions reduces the run-
time overhead by about 2.5% for most benchmarks. Some benchmarks such as SQLite
and Postmark are not affected of the window adjustments.

Because moving the event collection out of the recording already has a substantial effect
on the overhead, we also investigated the impact on the replay. For this purpose, we
modified the replay engine to free the events instead of queuing them for the collection
after they have been successfully injected. While this configuration cannot be used for

6.5. CONCLUSION 39

the three-stage approach anymore, it is possible to gauge the performance of the replay in
isolation. Figure 6.5 compares this modification with the normal version, which persists
the events.

0

5

10

15

apache

encode−mp3
gnupg idle

linux−kernel−build

postmark
povray

pybench
sqlite

O
ve

rh
ea

d
[%

]
(r

el
at

iv
e

to
 fi

rs
t s

ta
ge

) Event Collection

Disabled

Enabled

Figure 6.5: The event collection can impose a significant overhead on the replay. In some
cases it more than halves.

The resulting measurements show that the event collection procedure also causes a
considerable overhead on the replay. For example, without the event collection the
SQLite workload is able to catch up with the recording. However, for processor-bound
workloads such as POV-ray or encode-mp3 the modification improves the overhead by
less than a percent.

6.5 Conclusion

While the primary goal of the in-kernel transport was to simplify the data movement for
the replay, it is also beneficial for the overhead and probe effect in the recording. Copying
the data to user space seems to be time-intensive enough that it is worthwhile doing it
outside the recording process. We collect all events in the replay process but it incurs
an additional overhead in the same way the recording previously did. While this does
not result in a probe effect, it can have a detrimental effect on the parallelization of the
simulation phase.

40 CHAPTER 6. EVALUATION

The replay itself affects the recording overhead slightly even if it is running on a separate
processor. It might be beneficial for some workloads to avoid this effect by running the
replay on a different system. But comparing the dummy consumer and the simultaneous
replay on the same systems suggests that the yield of this approach may be only about
1%.

Chapter 7

Conclusion

Full system simulation is a powerful and flexible tool to gain in-depth insight into
a system. The catch is that the simulation adds a large overhead. Depending on the
information logged (e.g., memory accesses), the overhead usually increases even more.
Further, the differences in timing cause a probe effect, which influences the system
behavior and can distort measurements or even render them unusable.

Deterministic record and replay can be used to reduce this probe effect. By creating a
lightweight recording of the non-deterministic events of a workload, enough information
can be gathered to reconstruct the execution. The resulting log can be used to replay the
workload in a full system simulator. This way the large slowdown of a FSS does not
cause a probe effect on the workload.

The analysis speed is largely limited by its naturally single-threaded nature. SimuBoost
tries to address this slowdown by using continuous checkpointing to break the recording
into independent segments. Each of the created checkpoints serves as the starting point
of an analysis by a separate worker.

However, continuous checkpointing introduces a significant additional run-time overhead
on top of the run-time overhead of the lightweight recording, resulting in a probe effect.
A promising approach to remove the checkpointing overhead from the recording is to
use a three-stage setup. The new stage between the record and analysis stage replays the
recording in a hardware-assisted virtual machine and is responsible for the checkpoint
creation. In this stage, the checkpointing does not cause any probe effect. We showed
that this replay has an overhead of less than 5% for many workloads compared to the run
time of the recording itself.

41

42 CHAPTER 7. CONCLUSION

7.1 Future Work

While we implemented the necessary components to use the three-stage approach, we
did not evaluate the full setup. It remains open how much of an effect the replay overhead
has on the parallelization in SimuBoost.

An interesting observation was the noticeable effect of the event collection (see Sec-
tion 6.4.2). This could be improved by using an additional thread to collect the replayed
events. A queue similar to the in-kernel transport queue described in Section 5.1 could
be used for this purpose.

Bibliography

[1] Apache Benchmark 1.6.0. URL: https://openbenchmarking.org/
innhold/dda952e40113b276e205198ef88adb6007eee885 (visited
on 09/09/2019).

[2] Apache Benchmark 1.7.1. URL: https://openbenchmarking.org/
innhold/e506cd77d5e3299aba7157128e0321596d4cf797 (visited
on 09/09/2019).

[3] Fabrice Bellard. „QEMU, a Fast and Portable Dynamic Translator.“ In:
Proceedings of the Annual Conference on USENIX Annual Technical Conference.
ATEC ’05. Anaheim, CA: USENIX Association, 2005, pp. 41–41.
URL: http://dl.acm.org/citation.cfm?id=1247360.1247401.

[4] Dean Michael Berris et al. XRay: A Function Call Tracing System. Tech. rep.
A white paper on XRay, a function call tracing system developed at Google. 2016.

[5] Nico Boehr. „Evaluating Copy-On-Write for High Frequency Checkpoints.“
Bachelor Thesis. Operating Systems Group, Karlsruhe Institute of Technology
(KIT), Germany, Sept. 2015.

[6] K. Buchacker and V. Sieh. „Framework for testing the fault-tolerance of systems
including OS and network aspects.“
In: Proceedings Sixth IEEE International Symposium on High Assurance Systems
Engineering. Special Topic: Impact of Networking. Oct. 2001, pp. 95–105.
DOI: 10.1109/HASE.2001.966811.

[7] Anton Burtsev et al. „Abstractions for Practical Virtual Machine Replay.“
In: Proceedings of the12th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments. VEE ’16. Atlanta, Georgia, USA: ACM, 2016,
pp. 93–106. ISBN: 978-1-4503-3947-6. DOI: 10.1145/2892242.2892257.
URL: http://doi.acm.org/10.1145/2892242.2892257.

[8] Intel Corporation. Intel® 64 and IA-32 Architectures Developer’s Manual.
May 2019. URL: https://software.intel.com/sites/default/
files/managed/a4/60/325383-sdm-vol-2abcd.pdf (visited on
09/10/2019).

43

https://openbenchmarking.org/innhold/dda952e40113b276e205198ef88adb6007eee885
https://openbenchmarking.org/innhold/dda952e40113b276e205198ef88adb6007eee885
https://openbenchmarking.org/innhold/e506cd77d5e3299aba7157128e0321596d4cf797
https://openbenchmarking.org/innhold/e506cd77d5e3299aba7157128e0321596d4cf797
http://dl.acm.org/citation.cfm?id=1247360.1247401
https://doi.org/10.1109/HASE.2001.966811
https://doi.org/10.1145/2892242.2892257
http://doi.acm.org/10.1145/2892242.2892257
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf

44 BIBLIOGRAPHY

[9] Intel Corporation. Intel® 64 and IA-32 Architectures Developer’s Manual.
May 2019. URL: https://software.intel.com/sites/default/
files/managed/a4/60/325384-sdm-vol-3abcd.pdf (visited on
09/09/2019).

[10] Standard Performance Evaluation Corporation. SPEC JBB2005.
URL: https://www.spec.org/jbb2005/ (visited on 09/10/2019).

[11] Brendan Cully et al.
„Remus: High Availability via Asynchronous Virtual Machine Replication.“
In: Proceedings of the 5th USENIX Symposium on Networked Systems Design and
Implementation. NSDI’08. San Francisco, California: USENIX Association, 2008,
pp. 161–174. ISBN: 111-999-5555-22-1.
URL: http://dl.acm.org/citation.cfm?id=1387589.1387601.

[12] Brendan Dolan-Gavitt et al. „Repeatable Reverse Engineering with PANDA.“ In:
Proceedings of the 5th Program Protection and Reverse Engineering Workshop.
PPREW-5. Los Angeles, CA, USA: ACM, 2015, 4:1–4:11.
ISBN: 978-1-4503-3642-0. DOI: 10.1145/2843859.2843867.
URL: http://doi.acm.org/10.1145/2843859.2843867.

[13] Pavel Dovgalyuk. „Deterministic Replay of System’s Execution with Multi-target
QEMU Simulator for Dynamic Analysis and Reverse Debugging.“
In: 2012 16th European Conference on Software Maintenance and Reengineering.
Mar. 2012, pp. 553–556.

[14] George W. Dunlap et al. „Execution Replay of Multiprocessor Virtual Machines.“
In: Proceedings of the Fourth ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments. VEE ’08. Seattle, WA, USA: ACM, 2008,
pp. 121–130. ISBN: 978-1-59593-796-4. DOI: 10.1145/1346256.1346273.
URL: http://doi.acm.org/10.1145/1346256.1346273.

[15] George W. Dunlap et al. „ReVirt: Enabling Intrusion Analysis Through
Virtual-machine Logging and Replay.“ In: vol. 36. SI.
New York, NY, USA: ACM, Dec. 2002, pp. 211–224.
DOI: 10.1145/844128.844148.
URL: http://doi.acm.org/10.1145/844128.844148.

[16] GnuPG Benchmark 2.4.0. URL: https://openbenchmarking.org/
innhold/e5631bf709cafbe64906a764728f235faa2088ed (visited
on 10/07/2019).

[17] Goodbye, Replay Debugging... Sept. 2011.
URL: http://www.replaydebugging.com/2011/09/goodbye-
replay-debugging.html (visited on 09/20/2019).

[18] Advanced Micro Devices Inc. AMD64 Architecture Programmers’s Manual.
July 2019. URL:

https://software.intel.com/sites/default/files/managed/a4/60/325384-sdm-vol-3abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325384-sdm-vol-3abcd.pdf
https://www.spec.org/jbb2005/
http://dl.acm.org/citation.cfm?id=1387589.1387601
https://doi.org/10.1145/2843859.2843867
http://doi.acm.org/10.1145/2843859.2843867
https://doi.org/10.1145/1346256.1346273
http://doi.acm.org/10.1145/1346256.1346273
https://doi.org/10.1145/844128.844148
http://doi.acm.org/10.1145/844128.844148
https://openbenchmarking.org/innhold/e5631bf709cafbe64906a764728f235faa2088ed
https://openbenchmarking.org/innhold/e5631bf709cafbe64906a764728f235faa2088ed
http://www.replaydebugging.com/2011/09/goodbye-replay-debugging.html
http://www.replaydebugging.com/2011/09/goodbye-replay-debugging.html

BIBLIOGRAPHY 45

https://www.amd.com/system/files/TechDocs/24593.pdf
(visited on 09/09/2019).

[19] Samuel T. King, George W. Dunlap, and Peter M. Chen.
„Debugging Operating Systems with Time-traveling Virtual Machines.“ In:
Proceedings of the Annual Conference on USENIX Annual Technical Conference.
ATEC ’05. Anaheim, CA: USENIX Association, 2005, pp. 1–1.
URL: http://dl.acm.org/citation.cfm?id=1247360.1247361.

[20] P. S. Magnusson et al. „Simics: A full system simulation platform.“
In: Computer 35.2 (Feb. 2002), pp. 50–58. DOI: 10.1109/2.982916.

[21] Nicholas Nethercote and Julian Seward.
„Valgrind: A Framework for Heavyweight Dynamic Binary Instrumentation.“
In: SIGPLAN Not. 42.6 (June 2007), pp. 89–100. ISSN: 0362-1340.
DOI: 10.1145/1273442.1250746.
URL: http://doi.acm.org/10.1145/1273442.1250746.

[22] Robert O’Callahan et al. „Engineering Record and Replay for Deployability.“
In: 2017 USENIX Annual Technical Conference (USENIX ATC 17).
Santa Clara, CA: USENIX Association, July 2017, pp. 377–389.
ISBN: 978-1-931971-38-6.
URL: https://www.usenix.org/conference/atc17/technical-
sessions/presentation/ocallahan.

[23] Daniela A. S. de Oliveira et al. „ExecRecorder: VM-based Full-system Replay for
Attack Analysis and System Recovery.“ In: Proceedings of the 1st Workshop on
Architectural and System Support for Improving Software Dependability.
ASID ’06. San Jose, California: ACM, 2006, pp. 66–71. ISBN: 1-59593-576-2.
DOI: 10.1145/1181309.1181320.
URL: http://doi.acm.org/10.1145/1181309.1181320.

[24] Phoronix Test Suite - Linux Testing. URL:
https://www.phoronix-test-suite.com/ (visited on 10/07/2019).

[25] PostMark Benchmark 2.4.0. URL: https://openbenchmarking.org/
innhold/7875f3df74d35e5aa0b08ceb067f31c888c1c624 (visited
on 10/07/2019).

[26] PyBench Benchmark 2.4.0. URL: https://openbenchmarking.org/
innhold/f28e7b617e3c4614a76336ed4097fcf6ce94918b (visited
on 10/07/2019).

[27] QEMU. Oct. 1, 2019. URL: https://www.qemu.org/.
[28] Marc Rittinghaus.

„SimuBoost: Scalable Parallelization of Functional System Simulation.“
PhD thesis. Operating Systems Group, Karlsruhe Institute of Technology (KIT),
Germany, 2019.

https://www.amd.com/system/files/TechDocs/24593.pdf
http://dl.acm.org/citation.cfm?id=1247360.1247361
https://doi.org/10.1109/2.982916
https://doi.org/10.1145/1273442.1250746
http://doi.acm.org/10.1145/1273442.1250746
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ocallahan
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ocallahan
https://doi.org/10.1145/1181309.1181320
http://doi.acm.org/10.1145/1181309.1181320
https://www.phoronix-test-suite.com/
https://openbenchmarking.org/innhold/7875f3df74d35e5aa0b08ceb067f31c888c1c624
https://openbenchmarking.org/innhold/7875f3df74d35e5aa0b08ceb067f31c888c1c624
https://openbenchmarking.org/innhold/f28e7b617e3c4614a76336ed4097fcf6ce94918b
https://openbenchmarking.org/innhold/f28e7b617e3c4614a76336ed4097fcf6ce94918b
https://www.qemu.org/

46 BIBLIOGRAPHY

[29] Marc Rittinghaus, Thorsten Groeninger, and Frank Bellosa.
Simutrace: A Toolkit for Full System Memory Tracing. White Paper.
Karlsruhe Institute of Technology (KIT), Operating Systems Group, May 2015.

[30] Marc Rittinghaus et al.
„SimuBoost: Scalable Parallelization of Functional System Simulation.“
In: Proceedings of the 11th International Workshop on Dynamic Analysis.
Houston, Texas, Mar. 2013.

[31] Deepa Srinivasan and Xuxian Jiang.
„Time-Traveling Forensic Analysis of VM-based High-Interaction Honeypots.“
In: Security and Privacy in Communication Systems.
Springer Berlin Heidelberg, 2012, pp. 209–226.

[32] Michael H Sun and Douglas M Blough.
Fast, lightweight virtual machine checkpointing. Tech. rep.
Georgia Institute of Technology, 2010.

[33] The Definitive KVM (Kernel-based Virtual Machine) API Documentation.
URL: https://www.kernel.org/doc/Documentation/virtual/
kvm/api.txt (visited on 09/09/2019).

[34] Dmitry Vyukov. Unbounded SPSC Queue.
URL: http://www.1024cores.net/home/lock-free-
algorithms/queues/unbounded-spsc-queue (visited on
09/10/2019).

[35] V. M. Weaver, D. Terpstra, and S. Moore. „Non-determinism and overcount on
modern hardware performance counter implementations.“
In: 2013 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). Apr. 2013, pp. 215–224.

[36] Stefan Weil. QEMU version 4.1.0 User Documentation.
URL: https://qemu.weilnetz.de/doc/qemu-doc.html (visited on
08/30/2019).

[37] Min Xu, Rastislav Bodik, and Mark D. Hill. „A "Flight Data Recorder" for
Enabling Full-system Multiprocessor Deterministic Replay.“
In: SIGARCH Comput. Archit. News 31.2 (May 2003), pp. 122–135.
ISSN: 0163-5964. DOI: 10.1145/871656.859633.
URL: http://doi.acm.org/10.1145/871656.859633.

[38] Min Xu et al.
„Retrace: Collecting execution trace with virtual machine deterministic replay.“
In: Proceedings of the Third Annual Workshop on Modeling, Benchmarking and
Simulation. 2007.

https://www.kernel.org/doc/Documentation/virtual/kvm/api.txt
https://www.kernel.org/doc/Documentation/virtual/kvm/api.txt
http://www.1024cores.net/home/lock-free-algorithms/queues/unbounded-spsc-queue
http://www.1024cores.net/home/lock-free-algorithms/queues/unbounded-spsc-queue
https://qemu.weilnetz.de/doc/qemu-doc.html
https://doi.org/10.1145/871656.859633
http://doi.acm.org/10.1145/871656.859633

	Abstract
	Contents
	Introduction
	Background
	Deterministic Record and Replay
	Checkpointing
	QEMU/KVM
	SimuBoost

	Analysis
	Checkpointing Overhead
	Three Stage Parallelization

	Design
	Recording
	Replay

	Implementation
	In-kernel Event Transport
	Event Replay

	Evaluation
	Methodology
	Evaluation Environment
	Recording
	Replay
	Conclusion

	Conclusion
	Future Work

	Bibliography

