
Analysis and Optimization of
Dynamic Voltage and Frequency

Scaling for AVX Workloads Using a
Software-Based Reimplementation

Bachelor’s Thesis
submitted by

cand. inform. Yussuf Khalil
to the KIT Department of Informatics

Reviewer: Prof. Dr. Frank Bellosa
Second Reviewer: Prof. Dr. Wolfgang Karl
Advisor: Mathias Gottschlag, M.Sc.

May 03 – September 02, 2019

KIT – The Research University in the Helmholtz Association www.kit.edu

I hereby declare that the work presented in this thesis is entirely my own and
that I did not use any source or auxiliary means other than these referenced.
This thesis was carried out in accordance with the Rules for Safeguarding Good
Scienti�c Practice at Karlsruhe Institute of Technology (KIT).

Karlsruhe, September 2, 2019

Abstract

While using the Advanced Vector Extensions (AVX) on current Intel x86 pro-
cessors allows for great performance improvements in programs that can be
parallelized by using vectorization, many heterogeneous workloads that use
both vector and scalar instructions expose degraded throughput when mak-
ing use of AVX2 or AVX-512. This e�ect is caused by processor frequency
reductions that are required to maintain system stability while executing AVX
code. Due to the delays incurred by frequency switches, reduced clock speeds
are attained for some additional time after the last demanding instruction has
retired, causing code in scalar phases directly following AVX phases to be
executed at a slower rate than theoretically possible.

We present an analysis of the precise frequency switching behavior of an
Intel Syklake (Server) CPU when AVX instructions are used. Based on the
obtained results, we propose avxfreq, a software reimplementation of the AVX
frequency selection mechanism. avxfreq is designed to enable us to devise and
evaluate alternative algorithms that govern the processor’s frequency smarter
with regard to workloads that mix both AVX and scalar instructions. Using
an oracle mechanism built atop avxfreq, we show that the performance of
scalar phases in heterogeneous workloads can theoretically be improved by up
to 15 % with more intelligent reclocking mechanisms.

v

Contents

Abstract v

Contents 1

1 Introduction 3

2 Background & Related Work 7
2.1 Dark Silicon and AVX . 7
2.2 Dynamic Voltage and Frequency Scaling 10
2.3 Power Management . 11
2.4 Core Specialization . 13

3 Analysis 15
3.1 Methodology . 16
3.2 Design . 16

3.2.1 Performance Monitoring Unit (PMU) 17
3.2.2 Overview . 17
3.2.3 Kernel Component . 18
3.2.4 User-Space Component 20
3.2.5 Measurement Modes 25

3.3 Results . 29
3.3.1 System Setup . 29
3.3.2 Tested Instructions . 30
3.3.3 Downclocking . 32
3.3.4 Upclocking . 39

4 Design 41
4.1 Reimplementation . 41

4.1.1 The intel_pstate Driver 42
4.1.2 AVXFreq . 42

4.2 User-Space-Driven Decisions 45

1

CONTENTS

5 Evaluation 47
5.1 Methodology and Design . 47

5.1.1 AVXFreq . 48
5.1.2 Multi-Phase Execution 50

5.2 Results . 52
5.2.1 AVXFreq . 52
5.2.2 Overhead and Reclocking Optimization Potential . . . 53

5.3 Discussion . 56

6 Conclusion 59
6.1 Future Work . 60

Glossary 65

Bibliography 70

2

Chapter 1

Introduction

Vector instruction sets enable software developers to execute the same opera-
tion on multiple data in parallel and allow for fast and energy-e�cient imple-
mentations in microprocessors as fewer clock cycles and fewer instructions
are required to achieve equal results compared to a purely scalar instruction
set where each operation is only applied to a single datum. Traditionally, 3D
graphics processing is a typical use case for vector instructions – large amounts
of polygons need to be processed and transformed using the very same calcula-
tions, therefore it makes sense to design instruction sets that are inherently
parallel for this purpose. This is why graphics processors (GPUs) were invented
in the �rst place: these chips are speci�cally designed for vector processing and
are thus also categorized as Single Instruction, Multiple Data (SIMD) processors.
However, other use cases exist where vector instructions seem useful but do
not justify the use of a specialized processor. For example, some cryptographic
algorithms or multi-media codecs may be accelerated through vector execution
but are typically not run long enough or do not expose the massive parallelism
of applications like 3D graphics, hence, to some extent, it is desirable to include
vector processing functionality in general-purpose processors.

With the advent of the Multi Media Extension (MMX) in the Pentium MMX
processor in 1997, Intel was the �rst vendor to introduce an SIMD extension
to processors based on the x86 instruction set architecture [21]. However, due
to rapidly increasing computational demands, MMX was quickly superseded
by the Streaming SIMD Extensions (SSE) that added dedicated 128-bit vector
registers and debuted with the Intel Pentium III processor in 1999 [22]. Many
iterations of SSE led up to SSE4, which �nally evolved into the Advanced
Vector Extensions (AVX) that introduced 256-bit vectors and that constitute
the topic of this thesis. After the �rst release of AVX in Intel’s Sandy Bridge
microarchitecture in 2011 [20], Intel quickly published several improvements
in the years to come: AVX2 with many new instructions was introduced with

3

CHAPTER 1. INTRODUCTION

the Haswell microarchitecture in 2013 [16], and �nally, Intel’s Skylake (Server)
microarchitecture in 2017 came with support for AVX-512, which added 512-bit-
wide vector registers and several new instructions [27]. Notably, there is also a
client variant of the Skylake microarchitecture that does not feature AVX-512.
However, AVX-512 is set to be made available to the broad consumer market
with the arrival of the Icelake microarchitecture towards the end of 2019 [3].

For many decades, Moore’s Law [37] and Dennard’s Law [12] have guided
the development of microprocessors: the �rst states that, with evolving process
technology, the integration density (i.e., the amount of transistors per area)
doubles about every two years. The latter declares that, as transistors become
smaller, their voltage and current requirements scale proportionally with the
reduction in size, and thus the power density stays constant over time. In
the recent years, however, development has slowed down as we have nearly
reached the physical limitations of what is theoretically possible with silicon. In
turn, both of the scaling laws that used to be vital for processor evolution have
nearly ended and power density is rising in current generations. This has the
e�ect that it is generally not possible anymore for all transistors within a single
chip to switch at full frequency due to arising electrical and thermal issues
[41]. The amount of transistors that may run at their maximum frequency is, of
course, not only limited for a complete chip but also for any given area within
it. As such, the new capabilities of current AVX implementations come at a
cost: since an arithmetic unit designed for AVX needs to have many adjacent
data paths within a comparatively small area, processors supporting AVX2 and
AVX-512 commonly need to reduce their clock frequency when executing such
instructions in order to maintain stability.

Reducing the frequency while executing AVX code, however, also means
that other instructions executed on the same core will run with a lower fre-
quency, too. Further, since frequency switches need some time and therefore
come at a slight cost, they should not be done more often than necessary. Con-
sequently, current Intel processors will operate at a reduced frequency for a
while even after the last AVX instruction has been executed. For heterogeneous
workloads that consist of both vector and scalar parts, it was shown that this
behavior can have a severe negative impact on a program’s overall perfor-
mance. Using nginx, a wide-spread web server software, with a vectorized
implementation of the ChaCha20 algorithm used for encrypting network tra�c,
Gottschlag et al. [15] have measured an 11.2 % reduction in throughput when
using AVX-512 compared to an implementation with SSE4. To mitigate the
negative e�ects, they propose core specialization as a technique that migrates
programs to speci�c cores when executing AVX code and back again when
they are in a phase with purely scalar instructions. This way, only a few cores

4

of a processor are a�ected by AVX-induced frequency reduction which, in
the case of nginx, yields a vast improvement but does not fully alleviate the
performance drawback.

In this thesis, we want to look at a di�erent optimization approach: instead
of moving workloads between cores, we want to explore possibilities of improv-
ing the reclocking algorithm itself. However, Intel only provides a very vague
description of what precisely they have implemented in their chips. For this
reason, our work began with conducting an analysis of the reclocking behavior
of a current-generation Intel processor. Using the Performance Monitoring Unit
(PMU) of such a processor, we measured the amount of instructions required
to trigger frequency reductions as well as the delays incurred by them, and
how long it takes until the clock speed is raised again. We prove that Intel’s
claims are not only vague, but also wrong in terms of declared delays and
we will provide a more thorough model of the algorithm. Further, as we are
unable to modify the hardware itself, we will describe avxfreq, a reimplemen-
tation of Intel’s AVX reclocking behavior through software means, again by
using the PMU to generate interrupts upon events that indicate a situation
where frequency changes may be required. avxfreq is designed to be able
to act as a foundation for devising, implementing and evaluating alternative
algorithms that potentially improve performance through more intelligent
reclocking that allows scalar phases in a program to be executed at a higher
clock frequency compared to Intel’s implementation. We show that avxfreq
is capable of re�ecting a simpli�ed model of the hardware algorithm with a
performance decrease of about 1 %. To evaluate the potential of our approach,
we will present a reclocking strategy based on avxfreq where we leverage the
user-space program’s knowledge about what it is going to do next to select the
frequency to apply to the processor. For this implementation, we show that it
can yield improved performance for heterogeneous workloads by achieving
up to 15 % higher throughput during a purely scalar phase immediately follow-
ing an AVX phase. Another, more automatic optimization idea that may be
implemented atop avxfreq is to have the operating system measure vector
and scalar execution phases of a process and provide predictions of how long a
scalar phase will last. This may be done as future work.

We start by introducing the original problem as well as previous work
on the topic in a deeper and more thorough fashion in Chapter 2. As our
analysis of Intel’s implementation is a required prerequisite for a software
reimplementation, Chapter 3 describes the design and implementation of the
analysis framework we built and presents the results we obtained. Guided by
the insights from our analysis, we will detail the design of avxfreq and the user-
space-driven reclocking approach outlined above in Chapter 4. Afterwards,

5

CHAPTER 1. INTRODUCTION

in Chapter 5, we evaluate how well avxfreq ful�lls its purpose and what
improvements are achieved when user-space can exercise control over AVX
reclocking. We conclude this work and propose ideas for further research based
on our �ndings in Chapter 6.

6

Chapter 2

Background & Related Work

In this thesis, we present an analysis of the reclocking behavior of a current-
generation Intel processor when executing AVX instructions. We then use the
information obtained from the results of this analysis to build a software proto-
type that tries to accurately reimplement a subset of the algorithm employed
by Intel. This reimplementation is designed to constitute a foundation for ex-
ploring possible optimizations to the algorithm that yield a better performance
in heterogeneous workloads. In this chapter, we will provide an extensive
motivation for our work, describe the technologies we built upon, and talk
about previous and related work.

2.1 Dark Silicon and AVX

In 1975, Gordon Moore, one of the co-founders of Intel Corporation, predicted
that the transistor density of integrated circuits made of silicon would double
roughly every two years [37]. Known today as Moore’s Law, his prediction
held true for several decades with surprising accuracy. However, like every
technology, the advancement of silicon-based microprocessors is con�ned to
physical limitations. About thirty years after his famous prophecy, in 2007,
Moore projected his law to only have about 10 to 15 years left [13]. And
again, he was right: the 14 nm process technology Intel used in 2014 yielded an
integration density of about 37.5 million transistors per mm2, whereas Intel’s
current 10 nm fabrication node from 2018 allows for around 100.8 million
transistors within the same area. This means that, over four years, the density
has increased only by a factor of 2.688, whereas – according to Moore’s Law –
it should have been 4 times [10].

The second large scaling law of microelectronics is known as Dennard’s
Law or Dennardian Scaling and is named after Robert H. Dennard who is one

7

CHAPTER 2. BACKGROUND & RELATED WORK

of the authors of a historically important paper from 1974 on the design of very
small MOSFETs [12]. In their work, Dennard et al. showed that when a silicon
MOSFET is scaled down by a factor κ, its voltage and current requirements
decline proportionally with κ. In turn, this means that as smaller MOSFETs can
be manufactured with evolving chemical process technology, their power den-
sity stays constant, or in other words: as manufacturing possibilities advance,
chips of the same total area can be produced with smaller and more transistors
and no increases in power density. Similar to Moore’s Law, Dennard’s Law has
come to an end in recent years: in the 1970s, current leakage only had very
small and negligible impact on a chip’s power consumption and was therefore
not considered as a component in Dennard’s formulas [6]. However, today
a point is reached in the scaling of MOSFETs where switching current and
threshold voltage are low enough that leakage has become a major source of
energy usage in microprocessors, causing increasing power densities and the
breakdown of Dennardian scaling.

These scaling laws used to be essential for the advancement of micropro-
cessors as they guaranteed the ability to build more complex and at the same
time energy-saving designs over the years. Nowadays, however, doubling the
transistors per area also means about doubled power usage if all transistors are
run at their full frequency [41]. If power consumption were to stay constant,
that would mean that only half of the transistors (in practice, likely half of the
available cores) could be active at the same time, whereas the rest would need
to stay turned o� – dark silicon was coined as a term for this issue. Given the
unpleasant outlook, creativity is required from engineers to come up with new
ways of improving both power consumption and performance of processors.
One approach that has been proposed is the use of dim silicon [18]: instead of
giving up area to dark silicon, the higher the amount of transistors that are
active at the same time, the lower are their frequencies – either all have their
clock speed reduced by the same o�set or at least some run slower and thus,
these transistors are dimmed.

In current Intel x86 processors, we can �nd a dim silicon approach in their
implementation of the AVX instruction set extension: as these instructions
cause higher energy consumption than previous vector instruction sets or
scalar instructions, they may not be executed at full frequency or otherwise
system stability would be at risk due to exceeded electrical and thermal limits
[23]. In turn, whenever a core of these processors is fed with demanding AVX
instructions, it will reduce its clock frequency. From this moment on, everything
executed on that speci�c core runs slower, allowing AVX instructions to run, but
at the cost of reduced performance for other operations. However, frequency
changes need some time: Mazouz et al. [34] have shown them to take between

8

2.1. DARK SILICON AND AVX

25 µs and 52 µs on an Intel Core i7-3770 processor from the Ivy Bridge generation.
To avoid wasting too much time with frequency switches, a core will keep
running at a reduced frequency for a while after the last AVX instruction has
been executed [23].

A practical example where vectorization on the CPU can be bene�cial for
performance is ChaCha20 [5], a stream cipher algorithm for symmetric encryp-
tion presented by Daniel J. Bernstein in 2008 that, in the recent years, quickly
gained traction as various implementations have been developed and employed
in wide-spread commercial products. Google has added support for this algo-
rithm in their Android operating system as well as the Chrome web browser in
2014 [9] and, as of June 2016, a cipher suite based on ChaCha20 has become
a proposed standard for use in the Transport Layer Security (TLS) protocol
that is commonly used to encrypt internet tra�c [28]. Given the rising adop-
tion of Bernstein’s algorithm, it became desirable to create implementations
optimized for speed and energy e�ciency. Goll et al. [14] have presented an
AVX2 implementation of ChaCha20 using 256-bit vectors that provides about
doubled performance on an Intel Haswell processor compared to an implemen-
tation using SSE with 128-bit vectors. However, in practice, engineers from
Cloud�are [26] have benchmarked the nginx web server with a version of the
OpenSSL cryptographic library that contains an implementation of ChaCha20
with support for AVX2 and AVX-512 on an Intel Xeon Silver 4116 processor and
found that nginx’s throughput is reduced by 10.6 % compared to when it runs
with a variant of OpenSSL without AVX. These �ndings were con�rmed by
Gottschlag et al. [15] who measured a 11.4 % decrease in throughput on an Intel
Xeon Gold 6130 processor when comparing nginx with an AVX-512-capable
implementation of OpenSSL versus an SSE4 one.

While at �rst glance it may seem strange that increased vectorization with
AVX reduces performance, this behavior is easily explained by the description of
Intel’s AVX implementation above: nginx in combination with an AVX-capable
build of the OpenSSL library is an example of what we call a heterogeneous
workload – a program where only certain parts bene�t from vector execution,
whereas the rest solely uses scalar instructions. Encryption only takes up a
fraction of a web server’s total processing time, so only this particular fraction
is accelerated through AVX. Now, the performance reduction observed when
enabling AVX originates from the fact that the other part of the program is
slowed down due to the attained frequency reduction after AVX instructions
were executed. This poses a problem for the use of AVX in real-world software:
only programs that can use vectorization for large parts or nearly all of their
code may see bene�ts, whereas there is a large hazard for developers of software
with heterogeneous workloads to cause harm to their program’s performance.

9

CHAPTER 2. BACKGROUND & RELATED WORK

2.2 Dynamic Voltage and Frequency Scaling
Mittal [35] de�nes Dynamic Voltage and Frequency Scaling (DVFS) as a tech-
nique “for altering the voltage and/or frequency of a computing system based
on performance and power requirements.” The required electrical power P for
switching a CMOS gatter can be characterized as P = 1

2 ×C ×U2 × f , where C
is the circuit’s electrical capacitance, U is the voltage, and f is the switching
frequency [17]. Looking at the formula where power increases linear in fre-
quency and quadratic in voltage, it becomes clear that the power consumption
of a processor can be regulated by controlling these two parameters. Therefore,
the idea behind DVFS is to have a microprocessor run at high frequencies when
system load demands for high performance and at lower frequencies when the
system is idling to save energy – the voltage is set according to what is required
to maintain stable execution (i.e., all transistors properly switch within a single
clock cycle) at the respective frequencies.

Modern Intel processors have a DVFS implementation called Enhanced Intel
SpeedStep Technology (EIST) [40]. Using EIST, the operating system may select
a P-state for each core – these performance states govern a core’s frequency
and its voltage. On current-generation processors, P-states simply represent
integer multipliers of the chip’s bus clock.

Further, the Skylake microarchitecture generation introduced in 2015 was
the �rst to support Intel Speed Shift Technology [25], an implementation of
the Collaborative Processor Performance Control (CPPC) interface de�ned by
the ACPI standard [2]. Outside of public marketing, Speed Shift is also called
Hardware-Controlled P-States (HWP) in Intel’s technical documents [40]. As
the name implies, when using HWP, control over the processor’s P-states is
transferred from the operating system to the hardware itself. Precisely, with
HWP, a Power Control Unit (PCU) in the processor constantly monitors load
on di�erent parts of the chip as well as power consumption and accordingly
assigns voltages and frequencies to the di�erent units within the chip. Contrary
to previous possibilities with EIST, the operating system is merely left with
the ability to hint the processor about the desired minimum and maximum
performance as well as the user’s preferences for energy e�ciency.

Notably, starting with the Haswell microarchitecture (a predecessor of
Skylake), Intel implemented physical measurement of the power consumption
in their processors, whereas previous generations only relied on statistical
models. Schuchart et al. [38] have shown these measurements to be very
precise and in turn, the PCU of these chips is capable of limiting a processor’s
power consumption nearly exactly at its speci�ed Thermal Design Power
(TDP). However, as the authors have shown, this introduces deviations in the
performance of di�erent chips of the same model up to 5 % compared to the

10

2.3. POWER MANAGEMENT

average due to production �uctuations where some chips require more or less
power than others. It is plausible that this variance may be carried over to the
results of our analysis when executed on di�erent chips.

In this thesis, we will conduct the AVX reclocking analysis with HWP
enabled as this would be the usual case for real-world systems equipped with
current Intel processors. For our software reimplementation, however, we are
going to disable HWP and make use of the legacy EIST software interface as
we need to be able to control the processor’s clock speed via means of the
operating system.

2.3 Power Management
The issue that motivates our work is, in its essence, related to problems found
in the power management of hardware devices [33]. Here, the overall goal is
to ful�ll a computing system’s tasks with minimal power consumption. For
example, a hard disk drive (HDD) in a system is only required to be active when
there are pending read or write requests, otherwise, hard disks only waste
electricity without serving a useful purpose. Thus, vast amounts of energy may
be saved by turning them o� when they are not needed for a period of time.
However, simply spinning disks down as soon as no requests are pending and
up again when they arrive is not a feasible strategy as hard disks generally
need some time for both operations. In addition, that would potentially waste
more power than not shutting them down at all: during spin-up, the motor
needs to accelerate the disks from zero to thousands of rotations per minute,
which consumes considerable more energy than keeping them running for a
period of time when the motor is already at speed.

To estimate whether energy can be saved by turning a hard disk o� for a
time period, we need to calculate the break-even time tbe, i.e., the amount of
time after which the energy savings from being shut down exceed the energy
drawn during the spin-down and spin-up phases. We can simply formulate the
equation to �nd tbe as follows:

Pa × tbe︸ ︷︷ ︸
energy consumed when disk stays active

= Et + Ps × (tbe − tt)︸ ︷︷ ︸
energy consumed when disk is turned o�

Here, Pa is the electrical power consumed while a disk is active, Ps is the
power consumption while in standby (note that this is not 0 as some parts
of the electronics need to stay active even while the motor is o�), Et is the
energy needed during spin-down and spin-up and tt is the time needed for

11

CHAPTER 2. BACKGROUND & RELATED WORK

these transitions. Thus, tbe − tt is the actual time spent in the standby state.
Transforming the formula yields

tbe =
Et − Ps × tt

Pa − Ps

as a way of directly calculating tbe.
An optimal solution to the original problem, however, would require an

oracle that foresees the future – only then, we can know for what period of
time a hardware device is going to remain unused, and whether this time is
longer than tbe for this speci�c device. So far, no scienti�cally proven way
of precisely predicting the future is known to mankind. Therefore, several
approaches using pro�ling and stochastic models have been proposed in the
past and are implemented in modern operating systems. As we do not want to
dive deeper into this topic here, see Lu et al. [33] for a more thorough overview
of strategies that have previously been studied.

How is this related to the problem statement in this thesis? We do not
want to save power, but rather improve performance. Nevertheless, the same
thoughts as above also apply to our case. For hard disks, energy can be saved by
turning them o� in phases where they are not needed – in our case, performance
can potentially be improved by raising the frequency during phases where
AVX units are not needed. Raising and lowering clock frequencies requires
some time, similar to how spin-downs and spin-ups of hard disks take some
time. Thus, for our needs, a break-even time like described above exists, too.
Further, an oracle would be required for optimal decisions in our case similar to
the way it would be required for optimal power management. This also hints
that strategies used in power management techniques based on pro�ling or
modeling could perhaps also be applicable to the problem we are investigating.

However, unlike power management researchers, we can not simply test
di�erent approaches and algorithms. Power management is generally consid-
ered to be a task of an operating system, whereas – as described in the previous
section – current Intel processors manage frequency scaling (especially AVX
reclocking) solely in hardware. This motivates our reimplementation: without
it, we could only theorize about what could be possible or not when employ-
ing alternative strategies for reclocking. Further, using this reimplementation
allows us to implement what is basically an oracle, albeit not applicable for
practical applications: when the operating system is handed control over fre-
quency reductions needed for AVX, we may also have user-space applications
tell us when they are going to stop using AVX for a while – thus, we achieve
foresighted knowledge about scalar phases.

12

2.4. CORE SPECIALIZATION

2.4 Core Specialization

The idea behind the approach we follow in this thesis is to optimize the re-
clocking behavior itself for heterogeneous workloads. Gottschlag et al. [15]
have proposed an alternative method of mitigating the negative e�ects of fre-
quency reduction during and after AVX execution by using core specialization.
In their work, they categorize both threads and cores into “AVX” and “non-AVX”
ones. Only AVX cores may then execute AVX threads, whereas AVX code is
kept away from the other cores. In turn, only these speci�c cores experience
AVX-induced frequency reduction while other cores can keep running at their
maximum speed. The authors have built a proof-of-concept implementation
using the Multiple Queue Skiplist Scheduler (MuQSS) where they added speci�c
runqueues for each task type to the scheduler and a system call that allows
a thread to communicate to the kernel when it enters and exits AVX phases.
The modi�ed scheduler implementation then migrates tasks between cores
depending on their type.

To evaluate the bene�ts of this approach, they compared the average fre-
quency of all cores as well as the throughput of an nginx web server with a
vectorized implementation of the ChaCha20 algorithm (as previously described
in Section 2.1) on an Intel Xeon Gold 6130 once when run with an unmodi�ed
system and once with enabled core specialization. While unmodi�ed scheduling
saw a reduction of 11.2 % in throughput and 11.4 % in average frequency com-
pared to nginx without vectorized ChaCha20, their core specialization approach
largely alleviated the reductions to a mere 3.2 % and 4.0 %, respectively.

Building upon this work, Brantsch [8] reached a further improvement of the
core specialization approach. Instead of relying on user-space to communicate
execution phases to the kernel via system calls, he implemented a mechanism
called fault-and-migrate: it is possible for an operating system to selectively
disable AVX instructions per core. Then, when a program tries to execute
such an instruction, the processor will generate an exception and trap into
the kernel. This way, the kernel is noti�ed whenever AVX instructions are
to be executed and can then migrate the task to a core designated for AVX
purposes. However, there is no proper noti�cation mechanism available for
when a thread has stopped using AVX, so di�erent ways of estimating this were
implemented. The most promising one turned out to be an approach where
a thread is considered to have returned to a scalar phase whenever it does a
system call, based on the idea that AVX is solely used during phases of numeric
computation where there is no need to call the operating system. In case of the
nginx benchmark outlined above, this decreased the performance degradation
compared to running without AVX to just 1 %. This is a drastic improvement

13

CHAPTER 2. BACKGROUND & RELATED WORK

against the 11.2 % that were originally measured without core specialization,
however, performance is still not on par with the variant without AVX-512.

Contrary to Brantsch’ approach that de�nes system calls as the end of AVX
phases, in this work, we will make estimates by using periodic timer interrupts
and counting the executed AVX instructions during each period. Whenever the
counter is zero, we know that AVX was not used in the previous period. This
gives us an approximation that is o� by one period length in the worst case.

14

Chapter 3

Analysis

In order to be able to evaluate potential means of improving Intel’s AVX reclock-
ing algorithm, we �rst need to obtain thorough knowledge of the algorithm as it
is implemented in current Intel x86 CPUs. We can then use this knowledge for
the software-based reimplementation presented in Chapter 4 and to understand
the hardware-induced constraints Intel needs to keep within, which is in turn
necessary for designing a feasible and implementable improved reclocking
algorithm.

Intel regularly publishes optimization manuals [23] intended for compiler
developers and software engineers which contain a vague description of the
mechanism used for deciding when to lower or raise the processor’s frequency
upon execution of AVX instructions. Precisely, Intel de�nes three turbo license
levels, which designate frequency o�sets for di�erent instruction mix scenarios:

• Level 0: only non-demanding (i.e., scalar, SSE, AVX1 or light AVX2)
instructions are being executed; a core may run at its maximum turbo
frequency. This is the default state.

• Level 1: active during the execution of heavy AVX2 and/or light AVX-512
instructions. The maximum frequency is lowered to a SKU-speci�c value.

• Level 2: used for the execution of heavy AVX-512 instructions. The
maximum frequency is lowered to a SKU-speci�c value that is further
below the frequency used in level 1.

Here, “heavy” instructions are de�ned to be �oating-point, integer multiplica-
tion or integer fused multiply-add (FMA) operations. Given these license levels,
Intel states that it may take up to 500 µs until the new frequency is applied
and about 2ms until a core reverts to level 0 after executing the last “heavy”
instruction. Before the frequency is lowered, a core operates at “a lower peak

15

CHAPTER 3. ANALYSIS

capability,” however, Intel does not further specify what that exactly means. In-
tel hints that the license decisions are not solely bound to the instruction types
as given in the level descriptions, but rather depend on the mix of instructions
executed within a certain time window.

In this chapter we will describe the design of a framework that allows us to
analyze the actual behavior of an x86 processor during the execution of AVX
instructions. Afterwards, we will present and evaluate the results generated
when executed on a system equipped with a modern Intel CPU, and point
out deviations between the actual behavior and what Intel maintains in their
speci�cation.

3.1 Methodology
For our reimplementation, our goal is to create a model of the reclocking behav-
ior of an AVX-512-capable CPU that is as complete as possible and re�ects the
decisions made by the hardware with high accuracy. Therefore, by conducting
this analysis, we want to answer the following aspects:

• When exactly does a CPU core decide to reduce or raise its frequency
during and after AVX execution?

• How much time do turbo license level switches need?

• Do the CPUs switch directly from level 0 to level 2 in case of heavy
AVX-512 instructions or is there a step to level 1 in between?

• What does Intel mean by “lower peak capability” while lowering the
clock?

• How complete is Intel’s description of the reclocking algorithm?

In order to create a precise model we want to analyze these questions in
di�erent scenarios, i.e., for di�erent instruction types, for di�erent global load
situations as well as with and without enabled turbo frequencies. To reach
our goal, we run our analysis framework with synthetic code snippets that are
designed to trigger the behavior to be analyzed.

3.2 Design
Our analysis framework consists of a module for the Linux kernel as well as a
user-space component which interact with each other and make use of the PMU,

16

3.2. DESIGN

a unit commonly found in modern microprocessors that enables software to
measure performance and bottlenecks on the hardware level. In the following
sections, we will present the design and features of these components and
describe how they contribute to our analysis purposes.

3.2.1 Performance Monitoring Unit (PMU)
Modern x86 CPUs commonly feature a Performance Monitoring Unit (PMU)
which exposes a set of performance counters that may be con�gured to count
assertions of a large set of performance events [40].

Precisely, we use version 3 of the x86 Architectural Performance Monitoring
facility, which features three �xed counters per logical core that count retired
instructions, cycles during which the core is not in a halt state, and TSC cycles in
unhalted state, respectively. The time-stamp counter (TSC) is a simple counter
found in current x86 CPUs that increments steadily with a �xed frequency and
independent of the core clock, thus making it suitable for measuring wall-clock
time. In addition to the �xed counters, eight freely con�gurable counters are
available per physical core (four per logical core when Simultaneous Multi-
Threading (SMT) is enabled). These counters may be set to count any of
the performance events available for a speci�c microarchitecture, e.g., most
architectures de�ne events for cache hits/misses, execution stalls or load on
speci�c execution units.

Each counter is represented via a model-speci�c register (MSR) and also
con�gured through one. More speci�cally, software may con�gure the event to
count (non-�xed counters only) and when to count (i.e., in user mode (ring ≥ 1)
and/or kernel mode (ring 0)). Additionally, the counter can be con�gured to
trigger an interrupt when it over�ows. By setting the counter to its maximum
value less an o�set, this can be used as a mechanism to generate noti�cations
when a certain amount of events of a speci�c type has occurred. The interrupt
vector used for delivery can be con�gured in the core’s APIC’s Local Vector
Table (LVT). Optionally, the PMU may be instructed to freeze all counters at
their current values as soon as an interrupt is triggered.

3.2.2 Overview
The analysis tool presented here is made up of a kernel and a user-space
component where the former provides the latter with means to con�gure the
PMU and e�cient handling for interrupts generated by performance counter
over�ows.

As depicted in a simpli�ed way in Figure 3.1, the user-space component
spawns n ∈ N execution threads and w ∈ {1,n} wait threads, each corresponding

17

CHAPTER 3. ANALYSIS

Kernel module

execution

thread

wait

thread

User-space component

1. Configuration instructions

2. Setup PMU

3. Return to user-space

4. Execute

AVX

E 5. Interrupt

6. PMU values

7. Process

results

Figure 3.1: Simpli�ed analysis framework architecture. The kernel module
enables the user-space component to con�gure the PMU and handles interrupts.

to exactly one execution thread. The idea behind having multiple execution
threads is to be able to make measurements on multiple cores simultaneously,
thereby simulating parallel workloads. In pre-throttling mode, only one ex-
ecution thread has an associated wait thread (w = 1): the other execution
threads are started earlier to simulate an environment with pre-existing load,
where global load is merely increased by utilizing one more core. Without
pre-throttling, there is a wait thread for each execution thread (w = n).

Upon startup, each execution thread generates a PMU con�guration de-
signed to produce the desired measurements, which is then applied by the
kernel module. Now, the kernel module jumps back into user-space to an ad-
dress previously de�ned by the execution thread. Then, the thread will execute
AVX instructions until preempted by an over�ow interrupt generated by the
PMU according to its con�guration (as described in Section 3.2.1). Each wait
thread is initially suspended until an interrupt is triggered on its corresponding
execution thread, at which point it is resumed by the kernel component and
provided with the raw performance counter values.

3.2.3 Kernel Component
Our kernel component is not supposed to conduct any analysis tasks by itself,
but is designed to aid the user-space component described later in Section 3.2.4.
We chose to implement it as a module for version 5.1 of the Linux kernel, which
implies that it is written in the C programming language. Existence and design
of this kernel module are motivated by our user-space component’s needs to
con�gure the PMU in order to conduct the measurements required for our
analysis. This can only be done from kernel-space.

18

3.2. DESIGN

During module startup, the PMU is reset to a default state and the per-
formance counter over�ow interrupt vector is set in the LVT of each core’s
APIC. Notably, this degrades the functionality of Linux’s perf subsystem as
perf partially relies on using the PMU.

The module interfaces with user-space by de�ning a custom device class
and then providing a virtual device of the previously de�ned class, exposed
via /dev/reclocking_analysis in the virtual �le system. User-space may then
open() the provided device �le and interact with the module by using several
o�ered ioctl() calls.

Execution threads, on the one hand, initiate their execution by using the
SETUP ioctl() call. A C struct must be passed that contains a set of MSRs
to be written by the kernel module – these are used to con�gure the PMU. In
order to increase the precision of our measurements, it is desirable to cut time
spent in user-space without actually executing the speci�c code to be measured.
Therefore, a value for the instruction pointer (IP) must also be passed that will
be set in the thread’s context before returning to user-space. Thus, the thread
will not directly return at the previous position in the libc’s ioctl() wrapper
but rather be redirected to another location in memory (i.e., where the AVX
code for our measurements lies). Optionally, the r12 x86 architectural register
may also be set so that the code executed in user-space upon returning is able to
access data structures in an easy manner without needing to use the stack. As
described further below, the interrupt action must also be de�ned beforehand
by the execution thread. After applying the con�guration, the ioctl() handler
saves the current TSC value (to be able to measure elapsed time later on) and
returns to user-space.

Wait threads, one the other hand, start with the WAIT_FOR_INTERRUPT ioctl()
call, which takes two arguments: �rst, a pointer to a interrupt_result struc-
ture in the user-space component where the resulting performance counter
values shall be stored later and second, the numeric identi�er of a CPU core
where an interrupt is expected to occur – this is what e�ectively binds a wait
thread to its corresponding execution thread. The calling thread is suspended
by setting it into TASK_UNINTERRUPTIBLE state. This state in Linux’s task state
machine allows a thread to be woken up only by the kernel itself and not via
any user-space mechanisms (e.g., UNIX signals) [31]. Consequently, this way
we ensure the execution �ow is not interrupted unexpectedly.

It is expected that all execution threads that have an associated wait thread
trigger a performance counter over�ow interrupt some time after setup. The
interrupt handler will then proceed with one of multiple actions as instructed
by the SETUP call:

19

CHAPTER 3. ANALYSIS

• WAKE_WAIT_THREAD: this action reads all performance counters and writes
them along with the current TSC value and the recorded TSC value
at SETUP to the interrupt_result structure of the corresponding wake
thread. Then, the wait thread is woken up, so that it may process and
print the results. The execution thread that triggered the interrupt is
returned to its previous instruction pointer (from before the SETUP call).
Notably, from user-space’s view, the original SETUP call returns only now.

• SET_MSRS: this is used for analysis tasks consisting of two consecutive
steps, e.g., when two di�erent AVX phases are to be executed and we are
only interested in performance events from the latter. The TSC value is
recorded and another set of MSRs is con�gured on the thread’s core. For
the next interrupt, the action is unconditionally set to WAKE_WAIT_THREAD.

• GOTO: exactly like SET_MSRS, but also sets a new instruction pointer on
the execution thread.

Each of these actions concludes with resetting the PMU’s over�ow bit and the
APIC’s state in order to be ready for further interrupts.

A practical software engineering issue arises from the fact that wait threads
are suspended in an uninterruptible state after startup: they may easily get stuck
due to programming errors that cause a lack of interrupts. For these cases, a
third ioctl() call was implemented: RESET_WAIT_THREADS, which simply wakes
all suspended wait threads and makes their pending ioctl() calls return with
an error status.

Note that our implementation has a limitation: it does not work properly on
processors with SMT enabled. There are two reasons for this: �rst, as there is
only one PMU per physical core, only four performance counters are available
per logical core with twofold SMT. However, not all performance events we use
are on a per-thread level, some are only per-core (e.g., all events that correspond
to license levels), and thus it would not be required to measure them on both
threads of a physical core. Second, as we will explain in Section 3.2.5, all
events we use to generate interrupts are on a per-core level, thus our interrupt
handling would need to know that an interrupt generated on one thread also
a�ects the other thread on the same physical core (if there are two execution
threads running on one core). Nevertheless, as we do not have implemented
any such SMT awareness, this remains future work.

3.2.4 User-Space Component
The user-space component of our analysis framework is the one that imple-
ments and performs the actual analysis tasks and is aided by the previously

20

3.2. DESIGN

described kernel module by instructing it to con�gure the PMU and handle
performance interrupts. Akin to the kernel module, our user-space program is
written in C with some additional helper tools implemented in the PHP script-
ing language for invocation and monitoring tasks and to generate spreadsheets
containing the results. AVX instructions included in the program are directly
written in x86 assembly.

As brie�y described in Section 3.2.2, the user-space process spawns n ∈ N
execution threads and w ∈ {1,n} wait threads. The execution threads create
the PMU con�gurations to be applied by the kernel and then run the code to
be measured. Wait threads are each associated with an execution thread and
receive and process the raw performance counter values when interrupts are
triggered on their corresponding execution threads. The amount of execution
threads (n) is speci�ed as a command line argument, whereas either all of them
or only just one have an accompanying wait thread. This depends on whether
pre-throttling mode is enabled: the idea of this mode is to create an arti�cial,
pre-existing global load situation across several cores where load is already high
and further increased by utilizing an additional core. Therefore, the startup of
one speci�c execution thread is delayed by a moment, and we also only want to
collect results obtained from this thread, thus just one wait thread is required.
In contrast, without pre-throttling, all execution threads start at precisely the
same time and results are gathered from all of them. The code run on the
threads used for pre-throttling may either be purely scalar or can use AVX,
too. This way we can test whether the load type (i.e., scalar or AVX) on other
cores makes a di�erence to AVX reclocking on one core. Execution threads are
bound to CPU cores 1 to n, respectively; the wait threads to the following cores.
This also implies that at maximum bC

2 c execution threads may be run, where
C is the number of CPU cores installed in the system, and a minimum of two
cores must be available. With pre-throttling enabled, it is theoretically possible
to have C − 1 execution threads running. Note that pre-throttling mode does
not have any e�ect when only one execution thread is used.

We want to be able to run tests with di�erent instruction types. Therefore,
an arbitrary number of ELF sections containing AVX instructions may be
included in the component’s compiled binary executable. The address of one
of these sections and its length must be passed as arguments to the program
(these values are easily obtainable using tools like objdump). On startup, one or
more executable memory areas, each consisting of four pages, are mapped and
�lled with the content of the passed section, repeated until the area is full, or
alternatively, �lled only with a precisely set amount of repeated instructions.
This allows our measurement modes to investigate the CPU’s behavior when
only a very speci�c amount of AVX instructions is executed. For example, this

21

CHAPTER 3. ANALYSIS

can be used to determine how many instructions exactly are required to trigger
a frequency reduction, whereas in�nite loops are useful to measure the time
taken to switch frequencies. In order to ensure the instruction �ow does not
run outside the allocated area, one of two di�erent loop modes is used at the
end of each memory area, depending on the measurement mode:

• LOOP_AVX: a jump instruction to the beginning of the area is added in
order to make the constructed code loop – this allows for in�nite AVX
execution until the executing thread is interrupted.

• LOOP_R12_CMP: a spinlock-style loop is inserted that constantly compares
the value referenced by the pointer stored in the r12 register to 0 and
returns as soon as it isn’t equal to 0 anymore:

loop:

cmp 0x0, (%r12)

je loop

ret

This way, after a speci�c amount of AVX instructions was executed, the
executor may spin using only scalar instructions until it is instructed to
return from outside when another thread updates the value underneath
the pointer in r12. Note that our AVX memory area does not have its
own stack frame in any way, so, assuming that the executing thread
jumped into the memory area by using the SETUP ioctl() described in
Section 3.2.3, we actually return the ioctl()’s stack frame here. This is
a rather fragile and non-portable approach and may not work as desired
with every libc implementation.

Further, some measurement modes need to execute AVX instructions until
interrupted and then want to execute purely scalar code to wait for another
event (e.g., until the clock speed is raised again). For this purpose, we also allow
mapping memory areas that solely consist of an empty loop.

The number of four pages per area was not chosen arbitrarily: on an x86
processor running in 64-bit mode [40], pages have a default size of 4 KiB, thus
four pages equate a total size of 16 KiB. We originally used an area size of 2MiB
(512 pages), based on the idea of achieving a purely homogeneous workload
that does not contain any jumps to increase the precision of our measurements.
However, tests showed that the code would become approximately 20 % faster
when run on multiple cores in parallel. We believe this behavior to be caused
by instruction cache misses – although modern CPUs commonly feature an
instruction prefetcher, there is a caveat: it does not load instructions across page

22

3.2. DESIGN

boundaries, and thus every 4 KiB of instructions we would see a cache miss and
a costly pipeline stall until the next instructions arrive from memory. By using
parallel execution on multiple cores, this e�ect is mitigated as the fastest core
would already have loaded the instructions into its L1 and L2 caches1. Thus,
when other cores try to fetch the instructions from memory, the requests are
instead served by a core that already has them via the cache coherency protocol,
thereby dramatically reducing the latency. We could theoretically verify this
theory by using performance events for measuring cache hits and misses,
however, this is not too interesting for our purposes. It could be worthwhile
to look into huge pages as an alternative solution, though that remains future
work.

In order to avoid inaccuracies caused by preemption, all execution threads
use the SCHED_RR scheduling policy o�ered by Linux’s Completely Fair Sched-
uler (CFS) [39] which is designed for near-real-time execution and selects
real-time threads ordered by their priority; threads of equal priority are exe-
cuted in a round-robin fashion. CFS exposes additional con�guration settings
[44] to control the fraction of time that may be consumed by real-time pro-
cesses, namely sched_rt_period_us and sched_rt_runtime_us. The former
sets a time window (1 s per default) and the latter contains the absolute amount
of time within that window that is available to real-time threads (950ms per
default). In theory, we could con�gure these to allow for in�nite real-time
execution, however, practical tests have shown this leads to unbearable system
hangs that would require further work on our implementation in order to �x.
We settled for a value of 990ms for sched_rt_runtime_us as compromise.

In all measurement modes, we con�gure the following performance events
(as documented by Intel in [36]):

• CORE_POWER.LVL0_TURBO_LICENSE: counts core cycles spent in turbo li-
cense level 0.

• CORE_POWER.LVL1_TURBO_LICENSE: counts core cycles spent in turbo li-
cense level 1.

• CORE_POWER.LVL2_TURBO_LICENSE: counts core cycles spent in turbo li-
cense level 2.

• CORE_POWER.THROTTLE: counts core cycles during which the out-of-order
(OoO) engine is throttled.

1Note that on Skylake (Server) processors the L2 caches are inclusive, whereas L3 is a victim
cache [27].

23

CHAPTER 3. ANALYSIS

• INT_MISC.CLEAR_RESTEER_CYCLES: counts core cycles while the execution
engine is stalled waiting for instructions to be delivered. This is used to
estimate the time spent before the actual execution when switching from
kernel-space to user-space in execution threads.

• FP_ARITH_INST_RETIRED.PACKED: counts retired packed �oating-point
vector instructions. Several variants for 128-bit, 256-bit and 512-bit vec-
tors and single- and double-precision instructions are available which
we select according to the instruction type used in the AVX code section
passed at startup.

• UOPS_DISPATCHED_PORT.PORT_0: counts micro-instructions dispatched by
the processor’s scheduler at execution port 0. The use of this performance
event is motivated by the Skylake (Server) microarchitecture on which
the CPU we used for our analysis is based. These processors have an
AVX-512 unit fused from two 256-bit units at execution ports 0 and 1
[27]. For other microarchitectures, other performance events may be
appropriate.

• UOPS_DISPATCHED_PORT.PORT_5: counts micro-instructions dispatched by
the processor’s scheduler at execution port 5. The motivation here is the
same as for the performance event counting micro-instructions at port 0,
however, only some speci�c Skylake (Server) CPUs have an additional,
dedicated (i.e., non-fused) AVX-512 unit at port 5.

At startup, wait threads simply set their core a�nity and then block at a syn-
chronization barrier. Execution threads, in contrast, need to set their core
a�nity, their scheduling policy and build up the con�guration to pass to the
SETUP ioctl() call provided by our kernel module. Afterwards, they block at
the same synchronization barrier as the wait threads. As soon as all threads
have reached the barrier, in order to ensure their respective cores are ramped
up to their maximum turbo frequency before starting the test run, the execution
threads will enter a 150ms busy-wait loop before calling the SETUP ioctl().
The wait threads directly jump into the WAIT_FOR_INTERRUPT ioctl(). Exe-
cution threads used for the previously described pre-throttling mode are an
exception here, as they do not synchronize with the others but rather start
executing right away, thus giving them a head start of about 150ms. This
re�ects the desired behavior as, again, pre-throttling mode is designed to create
pre-existing load conditions where load is further increased, so that we can
measure the impact the type of load on other cores has on AVX reclocking.

After execution has completed, there is not much to do for the execution
threads: their SETUP ioctl() returns and then they simply exit. Wait threads,

24

3.2. DESIGN

on the other side, will again synchronize at a barrier and then output the results
as provided by the kernel module one after another before they exit, too. As
soon as all threads have completed, the program quits.

3.2.5 Measurement Modes
In order to answer the questions named in Section 3.1, we implemented several
di�erent measurement modes in our user-space component, which are to be
presented hereafter.

DOWNCLOCK

Our �rst measurement mode is designed to measure the downclocking behav-
ior – i.e., how long it takes for a CPU to reduce its frequency and whether there
is a step to turbo license level 1 before switching to level 2 for instructions that
target level 2.

In this mode, we simply map a single memory area with AVX code to be
run by all execution threads and con�gure the PMU to trigger an interrupt
and freeze the performance counters as soon as one cycle is spent in either
level 1 or level 2, depending on the target license level passed as command
line argument to the program. We use the WAKE_WAIT_THREAD interrupt action
provided by the kernel component. Thereby, we can measure the time taken
for the frequency reduction. When running a test case using this measurement
mode with level 2 as target, we will also see whether any cycles were spent
in level 1 from the respective performance counter. Thus, this measurement
mode indeed answers the aforementioned questions.

AVX

E Interrupt

Level 0

Level 1

E
measure

time

(a) Level 1

Level 0

Level 1

Level 2

E
measure

time

(b) Level 2

Figure 3.2: Illustration of the DOWNCLOCK measurement mode. This mode mea-
sures the time until the requested target license level is reached.

UPCLOCK

After analyzing the downclocking times, the next logical step is to look at the
reverse process: the upclocking. Here, we are mainly interested in the time the

25

CHAPTER 3. ANALYSIS

AVX

Scalar

E Interrupt

Level 0

Level 1

E E
measure

time

(a) Level 1

Level 0

Level 1

Level 2

E E
measure

time

(b) Level 2

Figure 3.3: The UPCLOCK mode measures how long it takes a core to return to
its level 0 frequency after an AVX-induced reduction.

CPU takes before returning back to its non-throttled frequency after the last
AVX instruction has retired.

Like in the DOWNCLOCK mode, we map an AVX memory area into which the
execution threads jump after startup, however, we also map an additional page
with an in�nite loop. In the �rst step, we con�gure an interrupt to be �red
after switching to either level 1 or level 2, depending on the input, in order
to be able to measure upclocking from both throttle levels. Then, using the
GOTO interrupt action, we move the execution thread to the in�nite loop page,
reset our performance counters and con�gure the PMU to trigger an interrupt
for when level 0 is reached again and to freeze the performance counters at
this point. It is important to not simply leave the core in a completely idle
state, as the kernel would then eventually run the MWAIT [19] instruction on
the core, causing it to enter a halt state, and thus our measurements would be
useless given that it would not re�ect real-world heterogeneous applications,
and because the clock is disabled when the core is halted (i.e., there is no
frequency anymore whatsoever).

Using the described procedure, we measure only the time spent after reach-
ing a turbo license level with reduced frequency until returning to nominal
frequency, which is exactly what we are interested in. Notably, in this mode,
we instruct the PMU to also count cycles while running in kernel-space (i.e.,
ring 0) as this is also time spent without executing AVX instructions, and thus
must be measured to retrieve precise results.

PRE_THROTTLE_TIME

As cited at the beginning of this chapter, Intel talks in their optimization manual
[23] about the CPUs operating at a “lower peak capability” before the switch
to a turbo license level with lower frequency is completed. Early experimenta-
tion showed this state is seemingly represented by the CORE_POWER.THROTTLE

performance event which is described to count cycles where the OoO engine is

26

3.2. DESIGN

throttled [40]. We want to �nd out when exactly this throttle state is activated
and what instruction throughput the CPU achieves before throttling to get an
idea of the theoretically possible performance if the frequency reduction did
not exist.

For this purpose, the PRE_THROTTLE_TIME mode conceptually works very
much the same way as the DOWNCLOCK mode: we con�gure an interrupt that �res
and freezes the performance counters as soon as the �rst cycle was spent in
throttled mode and run our AVX code using the WAIT_FOR_INTERRUPT interrupt
action. Thereby, we obtain the desired information about the behavior during
the time between starting execution and OoO engine throttling.

AVX

E Interrupt

Level 0

Thro�le

E
measure

instructions

Figure 3.4: After starting to execute demanding AVX instructions, a core enters
a state where the OoO engine is throttled. The PRE_THROTTLE_TIME mode
measures the time it takes until the throttling takes place.

REQUIRED_INSTRUCTIONS

To obtain a model of the reclocking algorithm that is as complete as possible,
we are not only interested in the time it takes for a CPU to switch turbo license
levels, but we also want to know how many instructions are precisely required
to eventually trigger a frequency reduction.

The implementation of this measurement mode is more complex compared
to the other modes and also partially depends on the license level transition to
be examined. For this mode, the idea is to run multiple iterations where the
amount of executed AVX instructions is incremented in every iteration until
executing the generated code triggers an interrupt on each execution thread
due to license level switches after some time.

In every case, we map an AVX memory area in LOOP_R12_CMP mode which
initially contains only just one copy of the AVX code in the selected ELF section.
As a reminder, this loop mode executes all AVX instructions and then spins
in purely scalar code until the r12 register is set to a value other than zero.
When license level 2 was chosen as target, we additionally map an area in
LOOP_AVX mode that is executed until level 1 is reached, as in this case, we
are interested in the amount of instructions required to cause a switch from
level 1 to level 2. Unlike LOOP_R12_CMP, LOOP_AVX keeps executing AVX code
forever until interrupted. In AVX pre-throttling mode, another area is created

27

CHAPTER 3. ANALYSIS

AVX

Scalar

E Interrupt

Level 0

Level 1

E
LOOP_R12_CMP

measure

instructions

(a) Level 1

Level 0

Level 1

Level 2

LOOP_AVX

LOOP_R12_CMP
E

E
measure

instructions

(b) Level 2

Figure 3.5: A certain amount of AVX instructions is required to actually trigger
frequency switches. The REQUIRED_INSTRUCTIONS mode measures precisely
how many are needed.

in LOOP_AVX mode to be run by all execution threads used for pre-throttling.
This allows them to execute AVX code in�nitely as required to ful�ll their
purpose of creating an arti�cial, pre-existing load.

In case level 1 is targeted, all (non-pre-throttling) execution threads directly
jump into the LOOP_R12_CMP area and use the WAKE_WAIT_THREAD interrupt ac-
tion mode. For level 2 as target, we select the GOTO interrupt action and �rst
jump into the aforementioned LOOP_AVX area and con�gure an interrupt to
be triggered as soon as one cycle in level 1 was completed. Afterwards, the
execution threads are also moved to the LOOP_R12_CMP area, hence we used the
GOTO action.

As we only want to see whether the number of repeated instructions in
the LOOP_R12_CMP area is su�cient to eventually cause a frequency reduction,
execution threads instruct the kernel module to �ll the r12 register with a
pointer to a global variable that is set to a non-zero value by the main thread
after a delay of 1ms, thereby making all (again, non-pre-throttling) execution
threads return after this time – generally assuming that 1ms is enough time for a
turbo license level change to happen. Then, the main thread checks whether an
interrupt was triggered on all expected cores. If yes, the test run has completed
and the program quits. Otherwise, we remap the LOOP_R12_CMP memory with
one more copy of the AVX code than in the previous iteration. Wait threads
that completed because an interrupt was triggered on their corresponding
execution thread are respawned, afterwards we reset the variable used for
the pointer in r12 and start all execution threads again. Unlike in the �rst
iteration, where execution threads generally spin for 150ms to ramp up the
core frequency (as described in Section 3.2.4), we only have them spin for
3ms in further iterations as their respective cores are already running at their
maximum frequency but possibly need to return from an attained turbo license
level. Leaving them spinning again for 150ms would incur an unnecessary
prolongation of the test run. This procedure repeats until we have enough AVX

28

3.3. RESULTS

code in our LOOP_R12_CMP area to trigger interrupts on all desired cores. Note
that execution threads used for pre-throttling are started once at the beginning
and keep running without disruptions until the program exits.

At the end, the number of copies of the AVX code in the LOOP_R12_CMP

memory re�ects the amount of instructions needed to cause a frequency tran-
sition.

3.3 Results
We use the described analysis framework to conduct measurements with several
di�erent AVX instructions using all available combinations of modes, i.e., with
and without pre-throttling, di�erent target turbo license levels, with turbo
frequencies enabled and disabled, and with 1, 2, 3, and 4 execution threads. All
measurements are executed 1000 times in order to obtain statistical certainty.
In this section, we present our system setup, describe the precise instructions
we used for testing, and present as well as discuss the results.

3.3.1 System Setup
We performed our analysis on an Intel Core i9-7940X processor which features
14 physical cores with twofold SMT, running at a nominal base frequency2 of
3.1GHz with a maximum turbo frequency of 4.3GHz [24]. Additionally, the
chip supports Intel Turbo Boost Max Technology 3.0, essentially meaning that
two speci�c cores may operate at a higher turbo frequency, in this case 4.4GHz.
These cores are selected based on their electrical and thermal properties during
the manufacturing process [27] – this technique is otherwise also known as
speed binning [32]. The chip’s nominal TDP is speci�ed at 165W, which is the
maximum power consumption the chip will sustain over long time periods.
Note that, as our analysis framework does not currently support running with
SMT enabled (as explained in Section 3.2.3), we have disabled SMT in our
system, and thus each physical core exposes only one logical core. Further,
whereas our analysis tool theoretically would allow running with 7 execution
threads on this CPU (as described in Section 3.2.4), we only tested with a
maximum of 4 due to the limited time that was available. Nevertheless, we
believe this is enough to generate representative results.

This CPU is based on the Skylake (Server) microarchitecture, the �rst x86
implementation featuring support for the AVX-512 extension [27], making it one
of the oldest processors that expose the AVX reclocking issue for heterogeneous
workloads. However, not all CPUs built with this microarchitecture feature the

2Note that the base frequency equals the TSC’s frequency [40].

29

CHAPTER 3. ANALYSIS

same number of 512-bit vector execution units: some have two, others only
one. The i9-7940X used here has two.

The processor was installed on an ASUS TUF X299 MARK 2 mother-
board along with 32GiB of DDR4 system memory operating at a frequency
of 2666MHz and a NVMe solid-state drive. The motherboard was not chosen
arbitrarily: being designed for the needs of the overclocking community, it –
unlike most other motherboards for this platform – allows to customize the
frequency targets for AVX-induced reclocking in its UEFI’s con�guration menu.
For this analysis, the frequency o�sets were con�gured to 3 and 7 for turbo
license levels 1 and 2, respectively, resulting in target frequencies of 3.4GHz
and 2.8GHz.

We opted to use Fedora 29 (Server Edition) as the operating system with a
custom-built Linux 5.1.0 kernel and glibc version 2.28-33. The kernel and all of
our own code were compiled using GCC 8.3.1-2 with the default -O2 optimiza-
tion level. To minimize overhead and latencies caused by context switches from
user-space to kernel-space and vice versa, we disabled all mitigations provided
by the Linux kernel for hardware vulnerabilities found in recent CPUs (e.g.,
Spectre and Meltdown) as well as Kernel Address Space Layout Randomization
(KASLR). This improves the quality of our results as we only want to measure
hardware behavior, and therefore want to avoid software overhead as much as
possible.

3.3.2 Tested Instructions
Di�erent instructions cause di�erent switching activity and therefore need
di�erent amounts of energy. In order to create a precise model of the AVX
reclocking algorithm as it was implemented by Intel, we want to conduct
our measurements with di�erent kinds of AVX instructions to �nd possible
di�erences in the behavior – especially with regard to what is documented.
Note that we only tested homogeneous loads and did not run any tests with
heterogeneous mixtures of di�erent instruction classes. Characterizing the
frequency scaling behavior for these remains future work.

We tried to select both �oating-point and integer operations that re�ect
the “heavy” and “light” instruction types as de�ned in Intel’s optimization
manual [23] as well as instructions we guess to be implemented di�erently in
the hardware’s execution units. Consequently, we chose the following subset
of AVX instructions for our measurements (as obtained from Intel’s manual for
software developers [19]):

• vfmaddsub132pd (double-precision) and vfmaddsub132ps (single-precision)
are �oating-point FMA instructions that alternatingly add and subtract

30

3.3. RESULTS

the values from a third vector after multiplying the values from two other
vectors. I.e., for input vectors a, b and c, they calculate the result vector
r according to the following rule:

©«
r1
r2
r3
. . .

ª®®®¬ B
©«
a1 × b1 + c1
a2 × b2 − c2
a3 × b3 + c3

. . .

ª®®®¬
• vmulpd (double-precision) and vmulps (single-precision) simply calculate

the products of all corresponding �oating-point members from two input
vectors.

• vpmullq multiplies corresponding 64-bit integers from two input vectors
into 128-bit intermediate results and stores the lower 64 bits of every
intermediate result in the target result vector.

• vpackssdw merges two vectors with signed 32-bit integers into one vector
consisting of signed 16-bit integers by handling over�ow conditions via
saturation arithmetic, i.e., for values larger than 32767 (= 215 − 1) or
smaller than −32768 (= −215), the conversion results in these extreme
values. In mathematical terms, the operation may be described as follows
for input vectors a, b and result vector r :

∀i ∈ {1, . . . , |a|} ∩ N : ri B saturate(ai),r|a|+i B saturate(bi)

where saturate is de�ned as

saturate :
{
{−231, . . . ,231 − 1} ∩ Z −→ {−215, . . . ,215 − 1} ∩ Z,
x 7→ min(215 − 1,max(x,−215)).

Note that |a| = |b| and |r | = |a| + |b|.

• vpaddsw adds signed 16-bit integers from two input vectors using satura-
tion arithmetic as described above.

• vpmaddwd is an FMA-style operation that �rst multiplies corresponding
signed 16-bit integers from two input vectors, thereby creating an equal
amount of 32-bit temporary results. Afterwards, the adjacent results are
added together to generate the result vector. For input vectors a and b,
this is the operation executed to obtain the result vector r :

©«
r1
r2
. . .

ª®¬ B ©«
(a1 × b1) + (a2 × b2)
(a3 × b3) + (a4 × b4)

. . .

ª®¬
31

CHAPTER 3. ANALYSIS

We wrote ELF sections for our user-space component (as described in
Section 3.2.4) containing assembly code for all of these instructions in two
variants with 256-bit YMM and 512-bit ZMM registers, respectively. Additionally,
for each variant, there are two versions: an “unrolled” one and another non-
“unrolled” version. The non-unrolled ones simply contain a single instruction
using the �rst three registers, e.g.:

vfmaddsub132pd %zmm0, %zmm1, %zmm2

By constantly executing the same instruction with the same operands, we
create some arti�cial register pressure that prevents a core’s scheduler from
maximizing utilization of the two 512-bit vector units available in the execution
engine. The unrolled versions, on the other side, alleviate this pressure by
repeating the same instruction, but with di�erent register operands:

vfmaddsub132pd %zmm0, %zmm0, %zmm1

vfmaddsub132pd %zmm0, %zmm0, %zmm2

vfmaddsub132pd %zmm0, %zmm0, %zmm3

...

Every unrolled section contains the same instruction repeated 31 times, al-
ways using %zmm0/%ymm0 for the �rst two operands and %zmm{1-31}/%ymm{1-31}
as last operand. Thereby, we exhaustively make use of all 32 ZMM/YMM architec-
tural registers available on AVX-512-capable processors [4].

3.3.3 Downclocking
For our model of Intel’s AVX reclocking algorithm, the downclocking behavior
– i.e., the process of frequency reduction when executing AVX instructions – is
an important puzzle piece. Here, we want to answer questions such as “How
long does it take a CPU to switch to its reduced frequency?” and “When is a
frequency reduction triggered?”. We obtained the results to be presented in this
section using the DOWNCLOCK, PRE_THROTTLE_TIME and REQUIRED_INSTRUCTIONS

modes provided by our measurement system as described in Section 3.2.
Coarsely, we found the CPU to generally run through the following steps

for its frequency reduction:

1. Throttle the out-of-order engine

2. Switch to turbo license level 1 and alleviate OoO engine throttling

3. Switch to turbo license level 2 (for AVX-512 “heavy” instructions)

32

3.3. RESULTS

0

0.2

0.4

non-unrolled

unrolled

Runs (n = 1000)

I
n

s
t
r
u

c
t
i
o
n

s
p

e
r

C
y
c
l
e

Figure 3.6: Throughput of the vfmaddsub132pd instruction before switching
from level 0 to level 1 is doubled when unrolled.

This already contains our �rst insight: even for AVX-512 instructions that
Intel de�nes to be “heavy”, the processor will �rst switch to license level 1 and
spend some time in that mode before performing another frequency shift to
level 2 – Intel does not mention this in their optimization manual [23]. This
information is easily obtained by executing the DOWNCLOCK mode twice with
both levels as targets – if the CPUs did not make this intermediate step, the test
would simply hang when executed with level 1 as target as this level would
never be reached.

Similarly, we can con�rm an observation previously made by Lemire et
al. [29]: even AVX-512 heavy instructions do not always trigger a switch to
level 2. We observed this behavior with the vfmaddsub132pd instruction, for
which only the unrolled version (i.e., the one without register pressure) will
ever reach level 2. The very same behavior exists with the 256-bit version of
this instruction, too: the core only switches to level 1 when unrolled. We can
imagine two di�erent factors that could potentially in�uence this decision: the
load on the core’s AVX units and the register utilization itself.

Before the �rst frequency reduction from level 0 to level 1 happens, we
�nd that the instruction throughput (instructions per cycle, IPC) of the 512-bit
variant is precisely doubled from 0.21 to 0.42 on average with the unrolled
version compared to the non-unrolled implementation, as depicted in Figure 3.6.

This is expected: as described in Section 3.3.2, the CPU we used for our tests
features two AVX-512 units per core, and as such, when no register pressure
prevents a core from parallelizing consecutive instructions, it can make full
utilization of both units. However, we also found that the cores always run
roughly equal amounts of instructions through both units, even in the non-
unrolled case. Most likely, Intel’s scheduler uses a simple round-robin algorithm
to assign micro-instructions to the units. This is a sign that the load on the

33

CHAPTER 3. ANALYSIS

units is not the determining factor: in the non-unrolled case the units take
turns and each one stays unloaded only for a few cycles at a time.

In addition, the theory of the register pressure being the culprit here is
supported by a patent on local power gating in processors published by Intel
[7]: here, Intel describes a technique to dynamically cut and restore power to
vector units as well as vector registers upon demand to save energy, which
our system’s processor likely implements as described. Notably, execution
units and registers are controlled independent of each other and it is also noted
that the vzeroupper instruction directly impacts the power gating behavior.
This instruction zeroes the upper 384 bits of each architectural 512-bit vector
register [19]. Indeed, if we explicitly set the 512-bit register ZMM0 to a non-
zero value before starting execution, we �nd that heavy 256-bit (i.e., AVX2)
vector instructions – which would normally only cause switches to level 1
– suddenly trigger frequency switches to level 2, too, but only if we do not
additionally execute vzeroupper after setting ZMM0. This is not documented in
Intel’s description of the reclocking algorithm, but hints that register usage
directly impacts the turbo license level selection in addition to the types of the
executed instructions.

Apart from this discrepancy, we found that Intel’s description of the in-
struction types and their associated turbo license levels holds true for the
instructions we selected for testing. Now that we know the steps for frequency
reductions, the next logical step is to �nd out when each of them occurs, what
is required to trigger them and how much time a core spends in each state.

In Section 3.2.5, we described the implementation of the PRE_THROTTLE_TIME
measurement mode, designed to �nd out how many AVX instructions may be
executed before the out-of-order engine is throttled. Additionally, we wanted
to use it to measure what throughput could theoretically be achieved if there
was no frequency reduction at all.

The answer here, however, is very simple: in all tested cases, the throttling
occurs immediately after execution of the �rst instruction has completed –
no matter what instruction is tested, how many cores are used or whether
pre-throttling and turbo frequencies are enabled. This also means that we
are unable to measure the theoretically achievable throughput here: with a
duration of just one instruction, no reliable numbers may be obtained.

Next, we are interested in the amount of instructions required to eventually
trigger a switch to level 1. This is what the REQUIRED_INSTRUCTIONS measure-
ment mode was built for: it incrementally builds and executes AVX code with
more instructions until a license level switch can be observed within a time
window after an execution iteration.

Here, we indeed found interesting di�erences between di�erent instruction

34

3.3. RESULTS

0

1

2

3
·104

Runs (n = 1000)

I
n

s
t
r
u

c
t
i
o
n

s

Figure 3.7: Required 256-bit vfmaddsub132pd instructions to trigger a turbo
license switch to level 1. Unlike with 512-bit instructions, the amount varies a
lot.

0 3,200 6,400 9,600 12,800 16,000 19,200 22,400 25,600 28,800 32,000
0

100

200

median = 12431

Instructions

Figure 3.8: Histogram of the data depicted in Figure 3.7. The distance between
median and maximum is much larger than between median and minimum.

types: all 512-bit instructions trigger a switch to level 1 after exactly one
executed instruction. For 256-bit instructions, however, a quite di�erent picture
emerges: Figure 3.7 depicts the required amount of instructions exemplary for
the 256-bit vfmaddsub132pd unrolled case, without pre-throttling and with one
core executing AVX instructions. The result varies between a minimum of 3317
and a maximum of 30845 instructions while the average and the median are set
rather near each other, at 12982.8 and 12431, respectively. Figure 3.8 shows the
same data, plotted as a histogram. It becomes clearly visible that the median is
far nearer to the minimum than it is to the maximum.

We �nd that average and median values rise when executing the test with
more cores. While this may seem surprising at �rst glance, it is expected: when

35

CHAPTER 3. ANALYSIS

20

30

40

50

Runs (n = 1000)

D
o
w

n
c
l
o

c
k

i
n

g
T

i
m

e
(
µs

)

median = 24.59 µs

Figure 3.9: Downclocking time to level 1 for the 512-bit vfmaddsub132pd in-
struction. The results are very homogeneous around a median of 24.59 µs.

run with multiple cores, the test only ends if a frequency switch is triggered
on all cores. Therefore, given the high variance of the results, it becomes less
likely that all cores reach a frequency switch with less instructions.

We implemented pre-throttling mode to be able to test what happens when
additional load is created when a further core is utilized in an environment
where other cores are already loaded, contrary to the default mode where the
AVX workload is started on all cores at the same time. However, pre-throttling
does not seem to have any e�ect that can not be attributed to statistical noise.
Nevertheless, disabling turbo frequencies does have one: we can still observe
a high variance within the results, but all statistic measures are lower : with a
single core, we �nd a minimum of 527, a maximum of 21793, 8642.49 on average,
and a median of 8137.5. This is intriguing as one would expect a frequency
drop to be less necessary when starting o� a lower base frequency. We can
not be sure of an explanation for this, however, this observation may hint that
voltage stability is a crucial factor here: in the previously cited patent [7], Intel
notes that a voltage drop may occur due to falling electrical resistance (and in
turn, rising current) upon powering the vector units and that a detector for
this situation is in place. Given that, at a lower frequency, the core also runs
at a lower voltage, it seems plausible that the voltage drops below the critical
threshold earlier as the subtracted resistance is the same regardless of voltage
and frequency.

As with these results we have fully established all conditions required for
AVX-induced frequency reductions to level 1, we are now interested in the
time required for the actual switch (i.e., the time between starting execution
and the moment the new frequency is applied). Again, we �nd 512-bit and
256-bit instructions to have noticeable di�erences. For example, with 512-
bit vfmaddsub132pd instructions executed on a single core, all results are very

36

3.3. RESULTS

20

30

40

50

Runs (n = 1000)

D
o
w

n
c
l
o

c
k

i
n

g
T

i
m

e
(
µs

)

Figure 3.10: Downclocking time to level 1 for the 512-bit vfmaddsub132pd
instruction when executed on three cores (each color represents a speci�c core).
Compared to Figure 3.9, median and standard deviation are higher.

homogeneously distributed around a median of 24.59 µswith only a few outliers,
as depicted in Figure 3.9. There is no statistically relevant di�erence with other
512-bit instructions. However, median and deviation both rise with multiple
cores: for example, with three cores (Figure 3.10), we �nd the average of the
median across all three cores to be at 27.39 µs – an increase of nearly three
microseconds. Whereas the standard deviation with only one core is very low at
0.0025 µs, it quintuples with three cores and amounts to an average of 0.013 µs.
Notably, this increase only happens with pre-throttling mode disabled, i.e.,
when only one core switches its license level, whereas the others are already
running in a level with reduced frequency. This is interesting because it tells
us that the frequency is not the determining factor here: the maximum turbo
frequency of a single core depends on the available electrical power budget
as well as on how many cores are under load, and thus with three cores each
core runs at a lower frequency, compared to when only one core is active. If,
however, the increase is not visible with pre-throttling – i.e., when two cores
are already at level 1 – the lower frequency can not be at fault for the increased
latency. A simple and plausible explanation could be that the PCU requires
more time to make its decision when more license requests are pending.

Looking at 256-bit instructions, we �nd that the downclocking time to
level 1 is still very homogeneous across all runs, albeit a lot higher than in the
512-bit case. As shown in Figure 3.11, with 256-bit vfmaddsub132pd instructions
executed on one core, the median is at 51.52 µs – more than doubled compared
to the 24.59 µs of the 512-bit variant. The results do not correlate with the
amount of instructions required to cause the frequency reduction previously
depicted in Figures 3.7 and 3.8, which makes it seem likely that the di�erence
in timing is induced by an algorithmic di�erence in the implementation.

37

CHAPTER 3. ANALYSIS

40

60

Runs (n = 1000)

D
o
w

n
c
l
o

c
k

i
n

g
T

i
m

e
(
µs

)

median = 51.52 µs

Figure 3.11: Downclocking time to level 1 for the 256-bit vfmaddsub132pd
instruction. This takes a lot longer than with the 512-bit version.

50

60

70

80

Runs (n = 1000)

D
o
w

n
c
l
o

c
k

i
n

g
T

i
m

e
(
µs

)

median = 51.43 µs

Figure 3.12: Time taken from level 0 to level 2 with the vfmaddsub132pd instruc-
tion. Again, the results are very homogeneous.

So far we have described the frequency reduction process until level 1 is
reached. For cases that target this level (i.e., everything apart from AVX-512
heavy instructions with the notable exceptions outlined above), nothing further
happens until the load that induced the license level switch ceases and the
frequency is brought back to its previous level again, as described later in
Section 3.3.4.

Our �ndings about the second turbo license switch from level 1 to level 2
(where applicable) did not yield any surprises: in general, the behavior is similar
to what happens during the switch from level 0 to level 1.

Figure 3.12 shows the time needed to reach level 2 using the unrolled
vfmaddsub132pd instruction as an example. We �nd the data to be homogeneous
with only a few outliers, similar to previous results. The median is located at
51.43 µs, however, note that this also includes the time taken from level 0 to

38

3.3. RESULTS

0.66

0.68

0.7

0.72

Runs (n = 1000)

U
p

c
l
o

c
k

i
n

g
D

e
l
a
y

(
m
s)

median = 0.675ms

Figure 3.13: Upclocking times after executing 256-bit vfmaddsub132pd instruc-
tions until level 1 is reached. Results show the upclocking delay to uniformly
be around 2

3 ms.

level 1. By subtracting the median of the transition to level 1 (24.59 µs), we can
deduce it takes 26.9 µs from level 1 to level 2, which is only slightly longer. For
multiple cores and pre-throttling mode, the general behavior and the increases
with multiple cores are about the same. This �ts our theory that the PCU takes
longer to make decisions with multiple license transition requests pending.

3.3.4 Upclocking
After a core’s clock is reduced due to a license level transition, it runs at
the lower frequency until no more heavy instructions are being executed.
However, the frequency can not be raised immediately in order to avoid wasting
time with too many frequency switches, and thus the core keeps executing
further instructions at a lower speed for a while – this is what essentially
causes the performance issue for heterogeneous workloads that motivated
this work. Further, the upclocking part of the reclocking algorithm is the one
where it is most likely to �nd room for possible optimizations. Therefore, the
process of raising the frequency (actually, reverting the reduction) deserves
particular attention. According to Intel, as cited in this chapter’s introduction,
the processor generally delays increasing the frequency again by about 2ms.
To verify this claim, we used our framework’s UPCLOCK measurement mode,
which executes AVX instructions until a license level transition occurs on a
given core and then keeps the core spinning in a scalar loop until it switches
back to level 0.

Again using the results from the vfmaddsub132pd instruction as example,
we �nd that the upclocking behavior di�ers between several test con�gurations.
For the 256-bit unrolled version executed on a single core with pre-throttling

39

CHAPTER 3. ANALYSIS

0.6

0.8

1

1.2

Runs (n = 1000)

U
p

c
l
o

c
k

i
n

g
D

e
l
a
y

(
m
s)

median = 0.674ms

Figure 3.14: Upclocking times after executing 512-bit vfmaddsub132pd instruc-
tions until level 1 is reached. While most runs still yield a time of 2

3 ms, some
are scattered within a range up to 4

3 ms.

0.6

0.8

1

1.2

Runs (n = 1000)

U
p

c
l
o

c
k

i
n

g
D

e
l
a
y

(
m
s)

Figure 3.15: Upclocking times after executing 512-bit instructions until level 1
is reached with two cores in AVX pre-throttling mode. Compared to Figure 3.14,
where only one core was active, the variance is a lot smaller.

disabled and targeting level 1, we get the results depicted in Figure 3.13. These
are very uniformly distributed around a median of 0.675ms. Notably, this is
suspiciously near to 2

3 ms. Most likely this is the value Intel tried to approximate.
Looking at the very same instruction in its 512-bit variant under the same

test conditions in Figure 3.14, a di�erent picture emerges: while the median
is still nearly the same at 0.674ms, the maximum is at 1.333ms – about 4

3 ms.
However, when going to level 2, all runs are again homogeneously distributed
around 2

3 ms. The results are mostly the same when executed with multiple
cores, save the notable exception of pre-throttling mode: in Figure 3.14, 69.4 %
of the results are below 0.7ms. With two cores and AVX pre-throttling enabled,
as graphed in Figure 3.15, this applies to 94.7 % of the runs. Similar results are
obtained with more cores.

40

Chapter 4

Design

The ultimate goal of this work is to �nd optimizations to the reclocking algo-
rithm implemented in Intel CPUs for AVX-induced frequency reductions. In
Chapter 3 we have conducted a thorough analysis of the implementation in
order to be able to conceive possible optimizations. Concretely, ideas for such
algorithms may be derived from what is done in power management: we have
described how the problems and possible gains of AVX reclocking resemble
the ones of power management in Section 2.3. The strategies employed there,
such as pro�ling and the use of statistic models, and previous research on
these approaches may be useful to develop a AVX reclocking mechanism that
can improve performance for heterogeneous workloads. Any ideas, however,
would remain purely theoretical unless we are able to implement and experi-
mentally test them. In this chapter, we present avxfreq, a modi�ed version of
the Linux kernel’s DVFS driver for Intel processors that tries to mimic Intel’s
hardware-based reclocking behavior. We can then use this reimplementation to
explore, implement and evaluate optimization approaches.

4.1 Reimplementation

To be able to implement alternative AVX algorithms, we want to reproduce
Intel’s AVX reclocking mechanism in software. This means that we want to
take over control over AVX-induced frequency reductions from the hardware.
To achieve this goal, we have built avxfreq, a reimplementation based on a
model obtained through the results of the analysis we performed in Chapter 3.
Avxfreq counts retired AVX instructions over time periods to govern the
frequency, therefore, akin to our analysis framework, avxfreq makes use of
the processor’s PMU, the features of which we outlined in Section 3.2.1. This
section describes the pre-existing kernel driver our reimplementation is based

41

CHAPTER 4. DESIGN

on, the modi�cations we made to it and how exactly we use the PMU to reach
our goals.

4.1.1 The intel_pstate Driver
Avxfreq was implemented by modifying Linux’s intel_pstate module as it is
found in version 5.1.0 of the kernel. This driver is part of the cpufreq subsystem
which contains all of the kernel’s DVFS drivers and provides generic policies
that govern the frequency selection based on system load and the user’s wishes
[42].

On modern Intel CPUs with support for Hardware-Controlled Performance
States (HWP) (as described in Section 2.2), the intel_pstate driver usually
does not do much: it enables HWP using the processor’s IA32_PM_ENABLE MSR,
reads the IA32_HWP_CAPABILITIES MSR to determine the available P-states
on each core and then only manages the IA32_HWP_REQUEST MSR to hint the
hardware about changes of the user’s preferences on, for example, minimum
and maximum performance [40] [43]. When HWP is enabled, the operating
system loses its ability to precisely manage the processor’s frequency. However,
using HWP is not a strict requirement – as long as HWP is not explicitly
activated by the computer’s UEFI or the operating system, traditional software-
based performance scaling remains entirely possible. For users desiring to
retain the pre-HWP behavior, the intel_pstate=no_hwp �ag exists. When this
�ag is passed to the Linux kernel’s command line during startup, intel_pstate
will not enable HWP, and thus is still able to exercise complete control over
the processor’s speed. This is an important corner stone for avxfreq: we need
to be able to fully govern P-state selection in order to switch frequencies by
ourselves in response to changing AVX load conditions.

4.1.2 AVXFreq
To obtain a minimal working prototype that allows us to evaluate the general
feasibility of a software-based approach to AVX reclocking optimization, we
chose to implement a simpli�ed version of Intel’s algorithm that we derived
from the CPU’s behavior when executing 512-bit vfmaddsub132pd instructions
on a single core, as obtained from the analysis in Chapter 3. For this instruction
type, we found that a single instruction is su�cient to trigger a frequency
reduction. After approximately 25 µs, level 1 is reached, and – in the case of the
unrolled version – about 27 µs later, the core runs at level 2. As soon as no heavy
AVX instructions have been executed anymore for 2

3 ms, the processor reverts
the frequency reduction and returns to level 0. The instruction type we want
to support was not chosen arbitrarily: avxfreq relies on using performance

42

4.1. REIMPLEMENTATION

events for measuring executed AVX instructions and Intel processors currently
only o�er such events exclusively for �oating-point vector instructions [36].

For reasons of practical convenience, avxfreq was implemented to be opt-
in: the intel_pstate=avxfreq �ag must be passed on Linux’s command line,
otherwise intel_pstate behaves just like it normally would in its unmodi�ed
version. Note that this �ag also implies intel_pstate=no_hwp, i.e., it also
disables HWP for the reasons explained above.

To manage license levels, we added a per-core state variable that contains the
virtual license level and adapted the method that communicates the selected P-
state to the processor to o�set the P-state according to the frequency reduction
that would be induced by the hardware in this license level. This way, the
driver’s frequency selection mechanism stays unmodi�ed and ful�lls its tasks
unaware of and una�ected by our AVX reclocking. To ensure that changes
to the virtual license level immediately take e�ect, we invoke a recalculation
every time, and thereby an update of the target P-state.

During the boot process, Linux’s perf subsystem con�gures performance
interrupts to be delivered as non-maskable interrupts (NMIs) [30]. In our
analysis framework, we wanted to minimize overhead caused by interrupt
handling to keep our workload as free from non-AVX code as possible, and
therefore implemented a custom interrupt handler. Here, however, we consider
the latency and overhead induced by Linux’s NMI handling process negligible,
hence we opted to keep the NMI con�guration here, but override perf’s handler
and register our own during module initialization. This implies that, in the same
way as when using our analysis framework, perf’s functionality is degraded
when avxfreq is enabled.

Further, during initialization we con�gure a performance counter on each of
the CPU’s cores to count FP_ARITH_INST_RETIRED.512B_PACKED_DOUBLE events
in both user-mode and kernel-mode and to trigger an interrupt as soon as a
single assertion has occurred. These events are asserted every time a 512-bit
packed double-precision vector micro-instruction has completed execution
[40].

When our NMI handler is called, and thus as soon as a vector instruction as
selected above was executed, the handler sets the virtual license to level 1 and re-
con�gures the PMU to count further assertions of the previously selected event
without triggering more interrupts. Secondly, a 100 µs timer is con�gured using
Linux’s hrtimer subsystem which provides precise timers with nanosecond
resolution for kernel-internal purposes. After the timer has elapsed, we read
the previously con�gured performance counter to check whether any of the
instructions we are looking for have been executed since the timer was started.
If yes, and if the average throughput equals at least 1 operation per cycle, we

43

CHAPTER 4. DESIGN

switch to virtual license level 2 – this is to approximate the di�ering behaviors
of the unrolled and non-unrolled versions as described in Section 3.3.3. The
performance counter is then reset and the timer is restarted to trigger again
after another 100 µs. Otherwise, as long as none of the monitored 512-bit vector
instructions were executed, we start counting the total elapsed time without
them, again in 100 µs steps, and we reset the counter as soon as the performance
counter rises above zero. Like in the �rst case, we reset the timer for another
100 µs unless 600 µs have already been elapsed – then, we only wait for 66 µs to
resemble the upclocking results from our analysis. As soon as this last timer is
over we revert back to level 0 and reset to our initial state as con�gured during
system boot so that we can run through the same procedure again when heavy
instructions are being executed once more.

This way, avxfreq is capable of ful�lling what we outlined at the beginning
of this section: we switch to frequencies equivalent to turbo license levels 1
and 2 according to the load and revert back to level 0 as soon as the load
situation was alleviated for a continuous time period of about 2

3 ms. Note that
we did not implement any arti�cial delays during the downclocking as we
assume the delays we observed in our analysis to equal the time required by
the hardware to complete the frequency reduction. Furthermore, the switch
from level 1 to level 2 only occurs after a delay of 100 µs and not immediately as
implemented in the hardware. This is because we use the throughput to decide
whether to transition into level 2 – and that requires some time for a meaningful
measurement. We probably could achieve an improved approximation by using
shorter delays at the expense of system performance. A possible trade-o� could
be to only make the �rst delay shorter. However, that remains future work for
now.

In general, it should not be forgotten that this implementation only tries to
re�ect a subset of the results from our analysis in Chapter 3. Some parts are not
possible to reimplement, e.g., because there are no performance events available
speci�cally for integer vector instructions [40]. For other parts, we deliberately
decided not to implement them for now in order to reduce complexity – what
we built should be enough for a basic evaluation of our approach.

Note that for avxfreq to work properly, disabling or at least reducing AVX
reclocking in hardware is a necessary prerequisite as the processor will forcibly
reduce the frequency when executing demanding AVX instructions even when
HWP is not enabled. Certain motherboards allow controlling the frequency
o�sets used for the di�erent license levels via their UEFI con�guration, and
thus the use of such a motherboard is a strict requirement for avxfreq.

44

4.2. USER-SPACE-DRIVEN DECISIONS

avxfreq User-space

1. Setup PMU

2. Execute single

AVX instruction

E 3. PMU interrupt

Switch to level 1

4. Keep executing

AVX instructions

�
100 µs

5. Timer interrupt

Switch to level 2

6. Execute AVX,

then scalar

�
100 µs

7. Timer interrupt

Nothing happens

8. Keep executing

scalar instructions

�
666 µs

9. Timer interrupt

Revert to level 0

Figure 4.1: Simpli�ed exemplary license level switching process with avxfreq
and a user-space process that executes AVX instructions for a while before
continuing with purely scalar instructions.

4.2 User-Space-Driven Decisions
In the previous section we have described avxfreq, our reimplementation that
implements a subset of the AVX reclocking algorithm employed by Intel CPUs.
This work is intended to lay a foundation that may be used for building and
evaluating possible optimizations of the DVFS mechanism without needing to
modify the hardware itself. In this section, we present the implementation of a
simple approach where user-space is given control over the license levels, based
on the idea that a program with a heterogeneous workload knows best when it
is going to execute AVX instructions and when it is in a scalar-only stage. This
approach is especially useful as it is presumably capable of providing us with a
theoretically optimal baseline for AVX reclocking that can be used to evaluate
the quality of other algorithms. For this purpose, we have extended avxfreq
with a user-space interface consisting of multiple system calls:

• int avxfreq_is_enabled(void)

Returns 1 if avxfreq was enabled during system boot, 0 otherwise. Only
when avxfreq is enabled, user-space may use the other system calls for
managing software-based reclocking and license levels.

• int avxfreq_set_reclocking(bool reclock)

Can be used to enable and disable avxfreq’s own reclocking mechanism.

45

CHAPTER 4. DESIGN

When disabled, user-space must take caution to always reduce frequency
when required. Otherwise, system stability may be at risk. Note that it is
enabled by default when avxfreq is enabled.

• int avxfreq_set_license(unsigned char license)

Invokes a license level transition to the level passed in the license pa-
rameter (either 0, 1, or 2).

While this interface is very simple, it allows to do exactly what we wanted
to: a user-space program may use these methods to change the applied license
level at will, and thus choose appropriate license levels when it knows what
instructions it is going to use over periods of time.

46

Chapter 5

Evaluation

We have presented the design of avxfreq, a software-based reimplementation
of a partial model of Intel’s AVX reclocking algorithm, in the previous chapter.
Further, we have described how avxfreq can be leveraged to allow user-space
programs to choose the applied turbo license levels themselves. In this chapter,
we will evaluate these implementations and measure how well our prototype
re�ects Intel’s hardware implementation. For this purpose, we want to leverage
the analysis framework we presented in Chapter 3. However, both avxfreq
and our analysis framework need to make use of the PMU and can not do
so concurrently. Further, to evaluate avxfreq, the analysis system needs to
obtain the virtual license levels from avxfreq instead of reading the license
levels via the PMU. For this reason, we will present modi�cations to avxfreq
itself as well as the analysis tool that allow us to use the latter in order to
compare avxfreq’s behavior to what Intel does and to the simpli�ed algorithm
we wanted to re�ect. For the user-space-driven decisions we will describe the
design of a simple program that simulates heterogeneous workloads with both
scalar and AVX instructions. Finally, we will present and discuss the results
obtained from executing tests with these tools.

5.1 Methodology and Design

One of the aims of this chapter is to show how well avxfreq implements the
model it is supposed to re�ect. First, we want to verify whether frequency
reductions are triggered in the right situations, i.e., a switch to license level 1
happens when a single 512-bit �oating-point vector instruction was executed,
and a second switch to level 2 is triggered when, on average, at least one
of these instructions is executed over a period of 100 µs. Second, as soon as
none of the monitored vector instructions were executed over period of 2

3 ms,

47

CHAPTER 5. EVALUATION

avxfreq should revert to license level 0. As described in Section 3.2.5, the
DOWNCLOCK, UPCLOCK, and REQUIRED_INSTRUCTIONS measurement modes of our
analysis framework are capable of measuring these values. For this reason, we
will modify our analysis framework and avxfreq to talk to each other, so that,
in turn, we can leverage the analysis system.

The second aim of this evaluation is to measure the performance penalty
incurred by avxfreq compared to Intel’s hardware and implementation and
to explore whether an improvement for heterogeneous workloads is gener-
ally possible with alternative AVX reclocking governors. For this reason, we
presented an interface in Section 4.2 that allows for optimal reclocking by
handing control over license levels to user-space. To conduct our evaluation,
we will build a tool that alternates between phases of con�gurable time periods
consisting of either AVX or scalar code. Using this tool, we will measure the
throughput in an AVX phase as well as an immediately following scalar phase
with a length of 666 µs – this is approximately the delay applied before switch-
ing from license levels 1 or 2 to 0 as shown in our analysis, hence this should
generate worst-case results with hardware reclocking. We then compare results
obtained with the hardware implementation, with avxfreq reclocking, and
with user-space-governed license level switches.

5.1.1 AVXFreq
We want to compare performance counter values using our analysis framework
from Chapter 3 – in the best case, running it with avxfreq should deliver similar
results to what is seen with hardware reclocking. However, our framework
relies on using the processor’s PMU (as described in Section 3.2.1) just like
avxfreq does, and due to the limited amount of available performance counters
they may not use the PMU concurrently. Further, hardware-side performance
events that count cycles a processor’s core spends in a speci�c turbo license
level do not make sense anymore when avxfreq is enabled as the license levels
are now emulated by software.

To circumvent these obstacles, we adapted avxfreq and our analysis frame-
work to work together to emulate the most important performance events
in software: the idea is that avxfreq already uses some of the performance
events that the analysis system would need anyway and that it is perfectly
capable of counting cycles spent in di�erent states. Therefore, we let avxfreq
do the bookkeeping and provide our framework’s kernel component with
software-generated events instead of interrupts in a manner that is completely
transparent to the user-space part.

avxfreq in itself only needs one programmable performance counter to
count retired 512-bit �oating-point double-precision packed vector operations

48

5.1. METHODOLOGY AND DESIGN

in addition to a �xed counter to count core cycles. For this purpose, avxfreq
keeps raw counters in software that are updated using the values provided by
the PMU whenever any event triggers avxfreq code to be run. As avxfreq
exclusively manages these counters, it needs to provide them to the analysis
framework’s kernel module – other counters may be managed by the module
itself. To enable interaction between the analysis framework’s kernel mod-
ule and avxfreq, we de�ned and implemented the following kernel-internal
interface:

• bool avxfreq_is_enabled(void)

Returns true if avxfreq was enabled during system boot, false oth-
erwise. Only if avxfreq is enabled, the analysis framework needs to
behave di�erently than in Chapter 3.

• avxfreq_counters *avxfreq_get_counters(int cpu)

avxfreq_counters is a C language struct that contains the raw counters
for the values de�ned above. One instance is de�ned for every core in
the system. Given a core number, this method returns a pointer to the
instance for the respective core.

• void avxfreq_reset_cycle_counter(void)

This method resets the current core’s cycle �xed counter.

• void avxfreq_set_license_transition_listener

(void (*listener)(u8 from, u8 to))

Using this method, the analysis kernel module can hook into avxfreq and
receive noti�cations whenever the applied virtual license level changes.
The argument provided is a pointer to a function that takes two argu-
ments: the previous virtual license level and the new one.

Using this interface, we modify our kernel component as follows: when
loaded, it calls avxfreq_is_enabled() to check whether avxfreq is active. If
so, it will not recon�gure the APIC to take over handling of PMU interrupts, but
rather call avxfreq_set_license_transition_listener() to receive updates
from avxfreq about license level switches and avxfreq_get_counters() once
for every CPU core in the system to locally store pointers to all counters
provided by avxfreq. In addition to the raw counters, we added a local structure
that contains derived counters, e.g., avxfreq only counts core cycles since they
were last reset, but we also need to be able to distinguish cycles spent in the
di�erent license levels.

Whenever the module needs to write to PMU MSRs after being instructed
to do so by the user-space component (e.g., during the SETUP ioctl()), it stores

49

CHAPTER 5. EVALUATION

updated performance counter con�gurations in an array, so that it can later
map them to software counters from avxfreq. Direct writes to performance
counters are remapped to the corresponding software counters, unless there is
no software counter available for them – in this case, they are routed to the
MSRs just like when avxfreq is disabled. Similar action is taken when trying
to read performance counters. This way, PMU con�guration remains fully
transparent to user-space and hardware counters are automatically remapped
to software counters when required without need for further intervention.

Interrupt handling is, as previously mentioned, disabled in case avxfreq is
enabled. Instead, when the avxfreq_license_transition_listener is called, it
will update all local software counters with the values currently set in avxfreq’s
counters and trigger the interrupt handler if the license level transition re�ects
one for which user-space requested an interrupt. Again, using this mechanism,
we substitute hardware interrupts with software-based events in a manner that
is transparent to user-space.

The interrupt handler itself (which now does not necessarily handle inter-
rupts) only needs a very small modi�cation to work in this scenario: it must not
reset the interrupt state in hardware, both for the PMU and the APIC. Apart
from that, all interrupt actions we de�ned in Section 3.2.3 work the same way
as before.

As shown, these modi�cations allow us to fully employ our analysis frame-
work with all its features and without drawbacks in combination with avxfreq
enabled.

5.1.2 Multi-Phase Execution
In this section, to create worst-case scenarios that we can use to measure the
maximum negative impact of AVX reclocking on heterogeneous workloads, we
will present a tool that allows to arbitrarily simulate such workloads. Further,
we can use it to evaluate any improvements achieved with modi�ed reclocking
algorithms, e.g., the user-space-driven decisions we presented in Section 4.2
– note that the worst case scenario for hardware reclocking would equal the
best case for user-space-governed reclocking in terms of theoretically possible
improvements. In addition, the tool may be employed to measure the impact
of avxfreq on performance in comparison with the hardware implementation
in Intel processors. We can not use real-life workloads as they would most
certainly make use of instruction types that are not considered by avxfreq’s
reclocking mechanism, and second, because likely none of them would expose
worst-case behavior.

The idea is to executes multiple phases of arbitrary duration, where each
phase represents a di�erent load type: scalar, AVX instructions targeting turbo

50

5.1. METHODOLOGY AND DESIGN

0 100 200 300 400 500 600 700 800 900 1,000
µs

Heavy 512-bit AVX

Light 512-bit AVX

Scalar

Figure 5.1: Exemplary run of our multi-phase execution tool when called with
200 150 400 0 100 as command line. Heavy 512-bit AVX instructions are
executed for a duration of 200 µs, then light ones for 150 µs, then purely scalar
instructions for 400 µs, and �nally a last phase with heavy 512-bit AVX again
for another 100 µs.

license level 1, and AVX targeting level 2. We use 512-bit FMA instructions
(vfmaddsub132pd, precisely) for the two latter phase types, where the level 1
variant uses code that exhibits register pressure to limit throughput, whereas
the level 2 variant is designed to achieve full utilization of the available AVX
execution units. Scalar phase only use simple increment and jump instructions.
This was not an arbitrary choice: avxfreq, by design, only tries to resemble
the hardware’s implementation for 512-bit FMA instructions.

The user may pass an arbitrary amount of arguments to the program, each
representing a phase and how long it should be executed in µs. For example,
the �rst argument represents a run of a scalar phase, the second one a level 1
phase, the third one a level 2 phase, the fourth one a scalar phase again, and
so on. Our implementation then runs each of the passed phases one after
another for the given duration. During startup, the program spawns a separate
thread and binds it to a speci�c core to ensure the process scheduler does not
migrate the thread between cores and enables the SCHED_RR scheduling policy
to engange real-time execution – just like our analysis framework’s user-space
component (see Section 3.2.4). This thread then executes each phase by running
a loop where each iteration contains a single instruction corresponding to the
phase type as described above. We enforce the con�gured time windows for
each phase by having the main thread sleep for this duration and notify the
executing thread after it has passed. Performance is then measured by counting
how many iterations of the loop are executed within the phase’s time window.

Additionally, in order to implement the user-space-driven decisions as
mentioned above, we have added a command line option which instructs the
tool to make use of the interface we presented in Section 4.2 to set license levels
according to the phase that is to be executed.

51

CHAPTER 5. EVALUATION

5.2 Results
For our evaluation we used the same system that we previously described in
Section 3.3.1 with an Intel Core i9-7940X processor installed on an ASUS TUF
X299 MARK 2 motherboard. However, to make avxfreq work correctly, we
needed to modify some settings in the system’s UEFI con�guration: �rst, we
had to disable Intel HWP as the �rmware enables it by default, whereas it
is necessary to have HWP disabled for avxfreq to allow it to exercise full
control over the processor’s P-states as outlined in Section 4.1.1. Second, while
it is not possible to disable AVX-induced reclocking entirely, we have set the
reclocking o�sets to 1 for both license levels to minimize the impact by the
hardware’s implementation – as pointed out in Section 4.1.2, this is necessary
for avxfreq to work properly and this is the reason we chose that speci�c
motherboard. This, though, also means that with avxfreq enabled, there are
two reclocking responses to the execution of AVX code: by the processor itself
and by avxfreq. While the resulting �nal frequencies still equal the ones
reached with unmodi�ed hardware reclocking (i.e., 3.4GHz for level 1, and
2.8GHz for level 2), frequency changes potentially happen twice.

In this section, we will present the results obtained by executing tests using
the modi�ed avxfreq and analysis framework implementations as well as the
multi-phase execution tool we presented in the previous section.

5.2.1 AVXFreq
As discussed in Section 3.2.5, our analysis framework provides multiple mea-
surement modes: DOWNCLOCK to measure the time taken until a frequency re-
duction is completed, UPCLOCK for the reverse process, PRE_THROTTLE_TIME to
determine the time before a core is throttled after AVX execution has begun,
and REQUIRED_INSTRUCTIONS to �nd out how many instructions exactly are
required to trigger the reclocking. To verify how well avxfreq implements the
simpli�ed reclocking algorithm we wanted to re�ect, we executed tests using
all these modes with avxfreq and the above-mentioned system con�guration,
with the exception of the PRE_THROTTLE_TIME mode: as the throttling is purely
controlled by the hardware itself and not a�ected by any system con�guration
or avxfreq, it makes no sense to run this mode again here. Further, avxfreq
is designed to only resemble the CPU’s behavior when executing 512-bit FMA
instructions, with turbo frequencies enabled, and with only one active core,
and as such, we only ran tests under these speci�c conditions.

In the case of transitions from level 0 to level 1 measured using the DOWNCLOCK
and REQUIRED_INSTRUCTIONS modes, there are no surprises: avxfreq was de-
signed to immediately switch to level 1 as soon as a single 512-bit double-

52

5.2. RESULTS

precision �oating point vector instruction is retired and we �nd this to essen-
tially hold true. The amount of completed operations in the DOWNCLOCK test
for the unrolled case (i.e., when both AVX-512 units of the core are utilized
in parallel) varies between 18 and 34 (equaling 9 and 17 instructions, respec-
tively, as a FMA instruction consists of two operations) before avxfreq invokes
and reports the transition to level 1. Given that the hardware implementa-
tion reacts precisely after the �rst instruction there is a small deviation here,
however, we believe this is caused by PMU interrupts being slightly delayed
and consider it to be negligible. This assumption is supported by the fact that
the REQUIRED_INSTRUCTIONS test generally shows one single instruction to be
su�cient to trigger a level transition.

Transitions to level 2 examined using the same measurement modes, how-
ever, show a larger deviation between the hardware’s behavior and the our
results: the median of the time needed here lies at 103.8 µs, whereas Intel’s
implementation will immediately start a switch to level 2 after the �rst heavy
instruction was executed in level 1. Looking at how avxfreq was implemented,
though, this is not surprising: after having moved to level 1, avxfreq will
trigger interrupts every 100 µs to check whether any of the measured instruc-
tions were executed in meantime and then either triggers a switch to level 2
if the throughput is high enough or counts towards the upclocking timer if
no instructions were executed. Thus, a transition from level 1 to level 2 may
only occur at least 100 µs after the transition from level 0 to level 1. Delays
caused through context switches and kernel code could provide a plausible
explanation for the remaining ∼4 µs.

Tests using the UPCLOCK mode show that avxfreq behaves as designed: the
average and median times taken to revert a frequency reduction lie at about
665 µs, which is slightly below the 666 µs we were aiming at. All results are
distributed very homogeneously around this value. Again, we attribute the
small deviation to time taken by context switches and code executed within
the kernel.

5.2.2 Overhead and Reclocking Optimization Potential
We designed our multi-phase execution tool with the goal of being able to
determine a baseline for what optimized reclocking algorithms could achieve in
the best case by using user-space-driven decisions as we described in Section 4.2.
Further, this tool allows us additional comparisons between avxfreq and
Intel’s hardware implementation – in the previous section, we essentially
measured how well our reimplementation re�ects the model we wanted to
achieve, whereas here, we can verify that avxfreq provides similar performance
to the hardware implementation.

53

CHAPTER 5. EVALUATION

3.52

3.54

3.56

3.58

3.6

3.62 ·10
7

Runs (n = 1000)

A
V

X
-
5
1
2

F
M

A
L

o
o
p

I
t
e
r
a
t
i
o
n

s

Hardware

User-space

avxfreq

Figure 5.2: Completed AVX-512 FMA loop iterations within 200ms when core
frequency is controlled by the hardware, by the user-space program itself, and
by our reimplementation avxfreq. Hardware as well as user-space reclock-
ing yield the best performance, while avxfreq is only slightly slower with a
di�erence of ∼1 %.

To obtain the following results, we ran our multi-phase execution tool using
0 0 2000000 200000 0 666 as command line. This means that it �rst runs a
scalar loop for 2 s, then an AVX-512 FMA loop for 200ms, and �nally another
scalar loop for 666 µs. The last scalar loop’s length is motivated by the fact
that the hardware reclocking algorithm usually takes 2

3 ms to return a core to
its level 0 frequency as we found out through the analysis we conducted in
Chapter 3, thus, this should expose worst-case behavior when using hardware
reclocking. The other durations were selected mostly arbitrarily – we only
wanted to ensure that there is enough time for a core to reach its maximum
frequency within the �rst scalar loop. We ran our tool with three con�gurations,
each executed 1000 times: with hardware reclocking, with avxfreq reclocking,
and with user-space-driven manual reclocking through avxfreq.

The �rst scalar loop achieves approximately similar median performance
with all three con�gurations: 1261.4 × 106 iterations with hardware reclocking,
1265.3 × 106 with avxfreq (approx. 0.31 % faster), and 1262.4 × 106 with
user-space-driven reclocking (approx. 0.08 % faster). These deviations seem
negligible and we consider them to be statistical noise as avxfreq is only
waiting for an interrupt and does not actively do anything.

For the following heavy AVX-512 loop, we �nd more interesting di�erences:
as shown in Figure 5.2, avxfreq performs about 0.9 % worse than hardware
reclocking, yet it does so in a very consistent manner across all runs. User-

54

5.2. RESULTS

3

4

5

·105

Runs (n = 1000)

S
c
a
l
a
r

L
o

o
p

I
t
e
r
a
t
i
o
n

s

Hardware

User-space

avxfreq

Figure 5.3: Completed scalar loop iterations within 666 µs after previous AVX-
512 FMA execution when core frequency is controlled by the hardware, by
the user-space program itself, and by our reimplementation avxfreq. Again,
hardware is faster than avxfreq, but in the median case user-space reclocking
outperforms both, with the caveat of exhibiting high variance.

space-driven decisions yield a performance increase of around 1 % compared to
avxfreq and reach similar performance as hardware reclocking – surprisingly,
with lower variance.

The overhead incurred by avxfreq is easily explained: unlike the hardware
algorithm, avxfreq requires two interrupts for conducting a switch from turbo
license level 0 to level 2. Further, since we can not disable hardware reclocking
entirely on our test system, the hardware will still induce a single additional
frequency switch (but only one, since the o�sets for both levels are the same).
User-space decisions being faster than avxfreq is not surprising, given that
they do not require any interrupts, but only a single system call that directly
switches from level 0 to level 2 without a step to level 1 in between.

Figure 5.3 �nally depicts the completed iterations of the last scalar loop
for the three di�erent setups. The hardware implementation reaches a median
of 299004 iterations, avxfreq is again about 1.8 % slower with a median of
293518.5. Compared to these results, user-space manual reclocking shows ex-
tremely varying performance. However, in most runs it outperforms hardware
reclocking with a median of 323083.5, equaling an 8 % performance increase.
Looking at the 99th percentile throughput of both cases, the improvement is
even larger with about 14.9 %. We are unsure about the precise source of the
high variance, but it is intriguing that we only experience this variance when
upclocking, but not when downclocking. However, looking at it from the PCU’s

55

CHAPTER 5. EVALUATION

perspective might yield an explanation: downclocking can only reduce the
chip’s power consumption, whereas upclocking will most certainly increase it.
Thus, it is likely that a requested frequency reduction may be granted instan-
taneously, whereas a frequency increase requires the PCU to reevaluate the
global load situation as it must ensure at all times that the processor’s power
consumption never exceeds its TDP. This issue would not occur with hardware
reclocking as the hardware merely applies a negative o�set to a frequency that
was previously deemed to be in line with the electrical limitations, so it is clear
that upon reverting a frequency reduction, the raised frequency can not incur
a problem.

5.3 Discussion
In this thesis, our primary goal is to evaluate whether the idea of a software-
based reimplementation of Intel’s AVX reclocking algorithm is a feasible and
useful approach to �nding ways of optimizing the frequency scaling behavior
to achieve improved performance for heterogeneous workloads consisting of
both scalar and vector parts. For this purpose, we have conducted a thorough
analysis of the frequency scaling behavior of a current Intel processor while
executing AVX instructions in Chapter 3 and then used the obtained information
in Chapter 4 to build avxfreq, our Linux-based reimplementation, on top of
which we implemented a way for user-space programs to use their knowledge
of what they are going to do next in order to control AVX reclocking themselves
as a simple optimization approach. We then compared avxfreq’s behavior
to the hardware’s and tested the performance of user-space-based reclocking.
Putting it all together, our answer to the question “Is reimplementation in
software a sensible approach for optimizing DVFS?” is “maybe.”

The achievable quality of a reimplementation is limited by several factors:
�rst, it can neither determine nor control the power gating status of vector
registers and vector execution units which, on the one hand, seems to be a
relevant factor in the downclocking behavior and, on the other hand, would be
necessary to do manual upclocking without incurring an unnecessary waste of
energy as the units remain powered even after raising the frequency through
software means. Second, it is impossible to start measuring time as soon as the
processor’s pipeline is free of AVX instructions, albeit that would be necessary
for a precise replication of the observed upclocking behavior. Third, by using
the available performance events, we can only measure executed vector �oating-
point instructions but not integer ones. And �nally, with the hardware in our
test system, we were unable to completely disable the processor’s own AVX-
induced reclocking, but rather had it reduced to a minimum.

56

5.3. DISCUSSION

However, some of these issues do not seem too bad: for the purpose of
testing alternative algorithms that solely impact when and how the frequency
is changed, it is not important to control power gating as long as execution does
not become unstable and the chip’s total power consumption is below its TDP –
otherwise, unnecessarily powered units may have an impact on the achievable
frequency. Nevertheless, this issue can be circumvented by not utilizing all
cores or by raising the applied TDP (on modern Intel CPUs, the TDP can be
con�gured through an MSR [40]). Further, while missing hardware support
for measuring executed integer vector instructions hinders us from being able
to test real-world workloads, it is still possible to conduct tests with synthetic
programs. It is conceivable that, with some work, a synthetic workload may
re�ect a real-world one very accurately with respect to all factors relevant for
AVX reclocking (i.e., when are AVX instructions executed and when not).

The other two remaining issues are the biggest ones in our view: any
conceivable automatic (i.e., when decisions are not simply made by user-space)
reclocking algorithm would need precise information about when a vector
execution streak has ended. While approximations as used in avxfreq are
certainly possible, they incur a trade-o� between accuracy and performance due
to the need for short timer interrupts and remain a major source of inaccuracy.
However, an improvement may be achievable here using the upcoming Icelake
processor generation from Intel: these chips will feature an extended Processor
Event-Based Sampling (PEBS) interface compared to Skylake [40]. Using PEBS,
it is already possible on current generations to collect samples containing
register states, TSC values and other data every n assertions of a performance
event. However, on pre-Icelake processors, PEBS is only supported for a few
speci�c performance events – the ones required for counting vector instructions
not among them. Starting with Icelake, PEBS will be made available for all
de�ned events. Then, it would be possible to con�gure PEBS to store the TSC
value every time a certain number of �oating-point vector instructions has
retired. This way, we could create approximations that are o� by only up to a
few hundred nanoseconds without incurring further overhead.

Further, while it is not possible to disable the hardware’s AVX reclocking in
our current test setup, it could be worthwhile to put some reverse engineering
e�ort into how the motherboard con�gures the processor’s reclocking o�sets. It
seems plausible that this happens via an undocumented MSR or a register of the
PCIe host bridge. Intel has not published a datasheet containing descriptions
of the host bridge’s registers for the processor we used in our system, however,
such datasheets exist for other Intel processors (e.g., [11]). Although these do
not seem to contain a register that controls AVX reclocking, again, it may be
there but not publicly documented. By modifying the UEFI’s settings, then

57

CHAPTER 5. EVALUATION

dumping undocumented MSR and host bridge register addresses and looking for
di�erences it may be possible to �nd out how the UEFI applies the con�guration
to the CPU. In turn, it is conceivable there is a way to actually disable reclocking
in hardware entirely. However, as long as we do not manage to achieve that,
hardware reclocking even with minimal o�sets remains another large obstacle
for accurate evaluations of alternative algorithms.

Looking at our evaluation results from the previous section in this chap-
ter, however, we have proven that improved performance for heterogeneous
workloads by using better reclocking is indeed possible. Using a con�guration
where we exposed the worst-case behavior of the hardware (which is, in turn,
the best case for user-space reclocking), we have reached a performance in-
crease of nearly 15 % in the 99th percentile (8 % median) for a scalar workload
directly following an AVX-512 FMA one. Unfortunately, we have also seen that
software-controlled upclocking causes a high variance in performance, presum-
ably because the PCU can not grant requests for frequency raises immediately.
Assuming that this theory is correct though, the 99th percentile improvement
likely represents the performance that would be reached if implemented in
hardware as this should re�ect the case where upclocking had the smallest
delay.

We therefore believe that, despite the aforementioned issues, it still seems
plausible that an automatic reclocking algorithm for AVX workloads with
better performance than what is currently achieved using hardware-controlled
reclocking may be implemented using the software approach we presented in
this work. However, to prove this, we would need to actually build and evaluate
such an implementation, but for now, this remains future work.

58

Chapter 6

Conclusion

Contemporary Intel processors need to reduce their frequency when executing
AVX code in order to maintain stability. This has the e�ect that the perfor-
mance of heterogeneous workloads with only some speci�c vectorizable code
paths can su�er from these frequency reductions when using AVX on these
chips. In this work, we wanted to explore the possibility of optimizing Intel’s
frequency scaling behavior by designing a software-based reimplementation
that is supposed to allow us to test alternate algorithms without needing to
modify the hardware itself. To be able to do this, we �rst needed to perform an
analysis of the reclocking implementation found in the hardware as there is
only very little documentation by Intel available.

In said analysis we found that, for most demanding AVX instructions,
downclocking is triggered as soon as a single operation was executed and takes
about 25 – 50 µs, depending on the heaviness of the executed instructions. As
soon as the last instruction has retired, a processor will wait for around 2

3 ms
before reverting an AVX-induced frequency reduction. We used a simpli�ed
model based on these results to construct our reimplementation avxfreq,
which proved to re�ect the model reasonably well. We also were able to show
that exploiting an application’s knowledge about what it is going to do next can
improve performance in a heterogeneous program by 15 % during scalar phases.
However, we also experienced several drawbacks with our reimplementation
approach. These include unpredictable delays when raising the frequency, the
lack of ways to fully disable the reclocking done by the hardware itself and the
impossibility to precisely measure time starting from the point when the last
AVX instruction in a consecutive streak was executed. Some of these issues may
be alleviated or circumvented with further work. As of now, we can not provide
a conclusive answer to the feasibility of our idea, as more exploration would
be required through implementations of alternative reclocking governors.

59

CHAPTER 6. CONCLUSION

6.1 Future Work
Although we were able to show that improved performance in heterogeneous
workloads through better reclocking is theoretically possible, research on this
topic is nowhere complete. In this section, we will present several ideas and
open issues that may pose interesting topics for future work.

Alternative Reclocking Algorithms

We designed our reimplementation avxfreq with the goal of being able to test
alternative reclocking algorithms. So far we implemented a simple design which
uses oracle-style foresight to switch frequencies by having user-space programs
tell the kernel whenever a phase with AVX-512 heavy instructions starts or
ends. This approach allowed us to estimate what performance improvement
may be possible in theoretical best case. However, of course this is not feasible
for real-world application as one of the main tasks of an operating system
is to hide hardware implementation details such as the need for reclocking
from software. We have outlined an approach where the operating system may
pro�le durations of di�erent execution phases in user-space threads to make
predictions about the future length of AVX and scalar phases that may be used
to estimate whether immediately raising the processor’s frequency after an
AVX phase would have a positive impact on overall performance.

Analysis on Other Processors

Our analysis in Chapter 3 was conducted using an Intel Core i9-7940X processor
from the Skylake (Server) generation. However, even though older chips from
the Haswell and Broadwell generations only supported AVX2 and no AVX-
512 [1] [27], they still reduced their frequency when executing demanding
AVX2 instructions, albeit to a smaller extent. Given that we found several
discrepancies in the reclocking behavior between what Intel claims in their
manuals and what we saw in our analysis results, it may be plausible that
Intel’s implementation has changed between Haswell and Skylake and their
documentation is simply outdated. Running our tests with a Haswell processor
could therefore yield interesting insights on why Intel has chosen to implement
reclocking the way they did in Skylake.

Further, not all Skylake (Server) cores are equally equipped with the same
amount of AVX-512 execution units. Our processor had two units per core,
whereas other processors from this generation only have one [27]. As more
units incur larger power consumption and higher energy density, it is possible
that chips which only have one unit per core may behave di�erently. For the

60

6.1. FUTURE WORK

sake of completeness in our analysis and because of potentially di�erent re-
quirements to alternative reclocking algorithms, we should run our framework
again on such a processor.

Finally, towards the end of 2019, Icelake processors will be the �rst in the
consumer desktop and mobile markets to have AVX-512 [3]. As Intel makes this
instruction set available to a broader range of customers and given that Icelake
will be the �rst large microarchitectural overhaul since Skylake along with a
leap in process technology, they possibly have made changes to their reclocking
algorithm. Again, it may be interesting to test our analysis framework on an
Icelake chip to �nd potential di�erences that may have an impact on our and
other approaches to optimizing the performance of heterogeneous workloads.

SMT Support in Our Analysis Framework

As described in Section 3.2.3, our analysis framework does not support running
on processors with Simultaneous Multi-Threading (SMT) enabled. Although
we can not conceive of a reason why a processor should behave di�erently with
respect to reclocking when SMT is enabled, it is still possible that deviations
exist. Given that in nearly all real-world scenarios SMT would be enabled, we
should implement SMT support and verify that there are indeed no di�erences.

Huge Pages in the Analysis User-Space Component

In Section 3.2.4 we described how cache coherency e�ects impacted the results
of our analysis framework when run on multiple cores with many pages, each
4 KiB in size. We alleviated the impact by using less pages and instead having
a jump at the end to make them loop. However, this theoretically introduces
small inaccuracies to the results as the instruction stream becomes slightly
heterogeneous. Modern x86 processors alternatively also support pages that
are 2MiB large [40], which may be a viable alternative to improve the accuracy
of our results.

Instruction Mixtures

For our analysis, we ran each test using just one speci�c instruction, repeated
many times. However, as Intel hints in their optimization manual [23], the
reclocking is actually triggered depending on the instruction mix executed over
a window of several clock cycles. Using data science and machine learning
techniques, it may be possible to create a model that can very precisely predict
what mixtures will cause a frequency reduction.

61

CHAPTER 6. CONCLUSION

Compiler Optimizations Using Analysis Results

Due to the dangers of possible performance degradation for heterogeneous
workloads, most compilers do not generate AVX-512 code unless explicitly
instructed to do so [29]. Even Intel’s own C and C++ compiler that previously
used to generate AVX-512 instructions aggressively whenever possible has
become very conservative in this regard. With a deeper understanding about
when and under what circumstances AVX-induced reclocking happens, it may
be possible for compilers to make use of AVX more often without needing to
worry about negative impacts. Thanks to the analysis we have done, much
of the required knowledge is now available, while the rest may be achieved
through further work as outlined in this chapter.

Reverse Engineering of AVX Frequency O�sets

In our discussion in Section 5.3 we have identi�ed the impossibility to com-
pletely disable AVX reclocking in hardware as a major drawback for our reim-
plementation approach. However, it is unknown how our motherboard’s UEFI
con�gures AVX frequency o�sets in the processor. It may be possible to �nd out
through some reverse engineering e�orts though, and this could theoretically
reveal a way to achieve full suppression of the processor’s own reclocking
mechanism.

Hardware Limitations

On Intel Skylake CPUs it is possible to measure executed �oating-point vector
instructions, however, no similar performance events exist for other vector
instructions. Although this is not within our scope of control, we would like to
see event types for all possible types of vector instructions in future processors.
It might even make sense to have events that count executed instructions per
instruction set. Being able to count all instruction types would be necessary
for building a complete reimplementation that can be tested with real-world
programs.

Another obstacle preventing a precise software reimplementation of Intel’s
reclocking algorithm is that we are not able to start measuring time immediately
after the last AVX instruction has retired. As outlined in Section 5.3, a vast
improvement here is likely possible with future Icelake processors by using
improved capabilities of the PEBS facility. However, for our purposes it would
be optimal if the PMU would simply record the TSC time-stamp on every
assertion of a performance event.

Further, although this is not too much of a problem for us, we are unable
to control the power gating of vector registers and vector execution units. In

62

6.1. FUTURE WORK

Section 5.3 we have discussed that the worst conceivable impact are slightly
reduced frequencies due to exceeded power budgets. However, it may be
interesting to measure the implications of alternative reclocking algorithms for
power consumption, which is only inaccurately possible without being able to
disable power supply to the gated units upon reverting a frequency reduction.

63

Glossary

Advanced Con�guration and Power Interface (ACPI) ACPI is a standard
that de�nes means for discovery and con�guration of hardware devices
as well as system power management. ACPI is commonly implemented
by all modern UEFIs and operating systems. 10

Advanced Programmable Interrupt Controller (APIC) One of the inter-
rupt controllers found in modern x86 CPUs. 17, 19, 20, 49, 50, 67

Advanced Vector Extensions (AVX) An instruction set extension for x86
CPUs which adds complex vector instructions. v, 3–9, 11–16, 18–22,
24–30, 32–36, 39–45, 47, 48, 50–52, 56–60, 62, 65

AVX-512 The third iteration of the AVX instruction set with support for 512-
bit-wide vectors. v, 4, 9, 14–16, 24, 29, 32, 33, 38, 53–55, 58, 60–62

AVX1 The initial version of AVX with 256-bit-wide vectors. 15, 65

AVX2 AVX version 2, which extended the previous AVX1 with new instruc-
tions. v, 3, 4, 9, 15, 34, 60

Basic Input/Output System (BIOS) The �rst software loaded upon starting
a legacy x86-based computer system, which conducts early initialization
work before booting the operating system. Today, however, BIOSes are
considered deprecated and have mostly been replaced with UEFIs. 70

Central Processing Unit (CPU) The main execution unit (processor) of a
computer. v, 9, 15–17, 19, 21, 22, 24–27, 29, 30, 32, 33, 41–43, 45, 49, 52,
57, 58, 62, 65–67, 69

Complementary Metal-Oxide-Semiconductor (CMOS) CMOS technology
implements digital logic gatters by using pairs of positively charged
(pMOS) and negatively charged (nMOS) MOSFETs and is commonly used
to construct integrated circuits. 10

65

GLOSSARY

Completely Fair Scheduler (CFS) The default scheduler used in current
Linux kernels. Designed to o�er both low latency for interactive systems
and high throughput for servers. 23

Dennard’s Law Dennard’s Law was devised by Robert Dennard and states
that the power density of transistors stays constant as they become
smaller. 4, 7, 8

Dynamic Voltage and Frequency Scaling (DVFS) A generic term for tech-
niques that seek to maximize both energy e�ciency and performance by
dynamically selecting frequencies along with appropriate voltages for
di�erent components of a microprocessor. 10, 41, 42, 45, 56

Executable and Linkable Format (ELF) The standard �le format for exe-
cutable binary �les commonly used by many UNIX systems, including
Linux. 21, 27, 32

fused multiply-add (FMA) An instruction that multiplies two values and
adds (or subtracts) a third one, i.e., a ∗ b + c. 15, 30, 31, 51–55, 58

Graphics Processing Unit (GPU) A kind of processor that is speci�cally
designed for 3D graphics purposes. Nowadays, GPUs are often also
employed for scienti�c computing and arti�cial intelligence. 3

hard disk drive (HDD) Hard disks are mass storage devices that use magne-
tization to store data on rotating disks. Nowadays, HDDs increasingly
vanish from all kinds of computers and are more commonly replaced by
SSDs. 11, 69

Hardware-Controlled Performance States (HWP) A feature of modern
Intel CPUs where a PCU in the chip completely takes over P-state man-
agement. 10, 11, 42–44, 52

instruction pointer (IP) The instruction pointer of a thread contains the
memory address of the instruction that is currently being executed. 19,
20

instruction prefetcher A unit in a microprocessor that predictively loads
instructions from system memory before they are executed in order to
prevent pipeline stalls. 22

66

GLOSSARY

instructions per cycle (IPC) Average amount of instructions executed by a
processor per cycle for a given workload. 33

Kernel Address Space Layout Randomization (KASLR) In general, ASLR
is a technique that tries to prevent malicious code from being able to guess
the memory locations of symbols or data in a process by randomizing
their positions. KASLR implements this for the Linux kernel. 30

L1 cache Level 1 caches are the fastest caches in modern processors. Com-
monly, each core has its own. L1 caches are often organized in Harvard
architecture, i.e., there are two separate stores for data and instructions.
23, 67

L2 cache Like L1 caches, level 2 caches are private to each core in most current
CPUs, albeit a little slower, but larger in return. 23

L3 cache Level 3 cache, usually the last cache in the hierarchy on most modern
CPUs. Typically several Megabytes large and shared between all cores.
23

libc libc is the name of the standard library of the C programming language.
19, 22

Linux Linux is an operating system kernel originally published by Linus Tor-
valds in 1991. Today it dominates many markets, including smartphones,
servers, and high-performance computing and has become the world’s
most widely used kernel. It even runs on cars, airplanes, and trains. 16,
18, 19, 23, 30, 42, 43, 56, 66–68

Local Vector Table (LVT) An APIC’s LVT stores the interrupt vectors to use
for certain purposes, e.g., interrupts from the PMU. 17, 19

macro-instruction A macro-instruction is an instruction as de�ned by the
instruction set architecture and may be split up into several micro-
instructions for execution by a speci�c implementation (i.e., a processor).
68

Metal-Oxide-Semiconductor Field-E�ect Transistor (MOSFET) MOSFETs
are an important type of semiconductor transistors that are capable of
changing their conductivity depending on the voltage applied to their
gate. Silicon MOSFETs are commonly used in micro- and nanoprocessors.
8, 65

67

GLOSSARY

micro-instruction Micro-instructions are the instructions passed into the
execution engine of a processor after being split up from the macro-
instructions that make up the program that is being executed. 24, 33, 43,
67

model-speci�c register (MSR) A special register, usually for con�guration
or measurement purposes, that isn’t de�ned by the instruction set archi-
tecture but is speci�c to a microarchitecture or SKU. 17, 19, 20, 42, 49, 50,
57, 58

Moore’s Law Moore’s Law is named after Gordon Moore, one of the co-
founders of Intel. It states that the integration density of integrated
circuits doubles every two years. 4, 7, 8

Multi Media Extension (MMX) A very early vector instruction set exten-
sion to x86, introduced by Intel in 1997. 3

Multiple Queue Skiplist Scheduler (MuQSS) MuQSS is an alternative sched-
uler developed by Con Kolivas for the Linux kernel that is not part of
the o�cial Linux packages. One of its primary aims is to provide strong
latency guarantees for interactive workloads. 13

non-maskable interrupt (NMI) An interrupt that can not be disabled and
is always immediately delivered. 43

Non-Volatile Memory Express (NVMe) NVMe is a modern device interface
speci�cation designed speci�cally for SSDs attached via PCIe, crafted
to reach lower latencies and higher throughput compared to earlier
interfaces. 30

out-of-order (OoO) A processor featuring out-of-order support is capable of
executing instructions in a di�erent order than given in the program
while maintaining correct and consistent results in order to achieve
higher utilization of a superscalar pipeline. 23, 26, 27, 32, 34

Performance Monitoring Unit (PMU) A unit found in many modern micro-
processors that enables software to measure performance and bottlenecks
on the hardware level. 5, 16–21, 25, 26, 41–43, 47–50, 53, 62, 67, 69

performance state (P-state) A performance state describes at the very least
a speci�c frequency. Depending on the speci�c hardware, it may also
include a voltage corresponding to the frequency. 10, 42, 43, 52, 66

68

GLOSSARY

Peripheral Component Interconnect Express (PCIe) PCIe is a high-speed
bus for connecting peripheral devices (e.g., storage, graphics processors,
. . .) with the rest of a computer system. 57, 68

Power Control Unit (PCU) A unit in current Intel processors that monitors
load and power consumption of di�erent components within the chip
and dynamically assigns frequencies and voltages as needed. 10, 37, 39,
55, 56, 58, 66

Processor Event-Based Sampling (PEBS) PEBS is a feature of current In-
tel processors that builds atop the PMU and allows to record precise
data including register states and time-stamps upon the assertion of
performance events. 57, 62

Simultaneous Multi-Threading (SMT) SMT-capable processors feed the ex-
ecution pipeline of a single physical core simultaneously with instruction
streams from multiple threads to achieve better execution unit utilization
by presenting the core in the form of multiple logical cores. x86 CPUs
often support twofold SMT. 17, 20, 29, 61

Single Instruction, Multiple Data (SIMD) See vector instruction. 3

solid-state drive (SSD) A solid state drive uses �ash memory for persistent
data storage. Modern SSDs commonly beat the performance of HDDs
by several orders of magnitude with only a fraction of their energy
consumption. 30, 66, 68

stock-keeping unit (SKU) A speci�c processor model brought to market. 15,
68

Streaming SIMD Extensions (SSE) Various early vector instruction sets for
the x86 architecture, which are still commonly supported by modern
CPUs but do not require frequency reduction for stable execution. 3, 4, 9,
15

superscalar pipeline Processors featuring a superscalar pipeline are capable
of executing multiple instruction of the same thread in parallel by having
duplicates of all necessary ressources (e.g., decode and execution units).
68

Thermal Design Power (TDP) Di�erent manufacturers have used di�erent
de�nitions over time. For current-generation Intel processors, this value
is a hard cap for the chip’s power consumption. 10, 29, 56, 57

69

GLOSSARY

time-stamp counter (TSC) A simple counter on current x86 processors that
increments steadily with a �xed frequency and that can thus be used to
measure wall-clock time. 17, 19, 20, 29, 57, 62

Transport Layer Security (TLS) TLS is a wide-spread network protocol used
for the secure encryption and authentication of internet tra�c. 9

Uni�ed Extensible Firmware Interface (UEFI) The modern successor of
the classical BIOS with features like more thorough graphics and net-
working support and a cryptographically secured operating system boot
process. 30, 42, 44, 52, 57, 58, 62, 65

UNIX signal Signals de�ned by the UNIX operating system speci�cation that
may be sent to a process either by another process or by the kernel itself.
Most signals terminate a process by default, unless the process opted to
use custom handling. 19

vector instruction A vector instruction is an instruction for a microprocessor
which executes an operation not on only just one value, but on a vector
consisting of several values. 24, 65, 68, 69

x86 x86 is an instruction set architecture introduced by Intel in 1978. Today,
x86-based processors are commonly found in workstations, servers, and
laptops. v, 3, 8, 17, 19, 21, 22, 29, 61

70

Bibliography

[1] 4th Generation Intel® Core™ Ushers New Wave of 2-in-1 Devices. Intel
Corporation. url: https://newsroom.intel.com/news-releases/4th-
generation-intel-core-ushers-new-wave-of-2-in-1-devices/.

[2] Advanced Con�guration and Power Interface (ACPI) Speci�cation. Jan.
2019. url: https://uefi.org/sites/default/files/resources/ACPI_
6_3_final_Jan30.pdf.

[3] P. Alcorn. Intel Unveils 10th-Gen Core Chips, 10nm Ice Lake, 18% IPC
Improvement, Sunny Cove Cores, Gen11 Graphics, Thunderbolt 3. url:
https://www.tomshardware.com/news/intel-10th-generation-core-

10nm-ice-lake-gen11-graphics-sunny-cove-thunderbolt-3-usb-

c,39477.html.
[4] Intel® 64 and IA-32 Architectures Software Developer’s Manual. Vol. 1:

Basic Architecture. May 2019.
[5] D. J. Bernstein. “ChaCha, a variant of Salsa20.” In: Workshop Record of

SASC. Vol. 8. 2008, pp. 3–5.
[6] M. Bohr. “A 30 year retrospective on Dennard’s MOSFET scaling paper.”

In: IEEE Solid-State Circuits Society Newsletter 12.1 (2007), pp. 11–13.
[7] N. Bonen et al. Performing local power gating in a processor. US Patent

9,229,524. Jan. 2016.
[8] P. Brantsch. Core Specialization for AVX-512 Using Fault-and-Migrate.

Master Thesis. July 2019.
[9] E. Bursztein. Speeding up and strengthening HTTPS connections for Chrome

onAndroid.url: https://security.googleblog.com/2014/04/speeding-
up-and-strengthening-https.html.

[10] R. Courtland. “Intel now packs 100 million transistors in each square
millimeter.” In: IEEE Spectrum 30 (2017).

71

https://newsroom.intel.com/news-releases/4th-generation-intel-core-ushers-new-wave-of-2-in-1-devices/
https://newsroom.intel.com/news-releases/4th-generation-intel-core-ushers-new-wave-of-2-in-1-devices/
https://uefi.org/sites/default/files/resources/ACPI_6_3_final_Jan30.pdf
https://uefi.org/sites/default/files/resources/ACPI_6_3_final_Jan30.pdf
https://www.tomshardware.com/news/intel-10th-generation-core-10nm-ice-lake-gen11-graphics-sunny-cove-thunderbolt-3-usb-c,39477.html
https://www.tomshardware.com/news/intel-10th-generation-core-10nm-ice-lake-gen11-graphics-sunny-cove-thunderbolt-3-usb-c,39477.html
https://www.tomshardware.com/news/intel-10th-generation-core-10nm-ice-lake-gen11-graphics-sunny-cove-thunderbolt-3-usb-c,39477.html
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html

BIBLIOGRAPHY

[11] Datasheet, Vol. 2: 7th Gen Intel® Processor Family for S Platforms and
Intel® Core™ X-Series Processor Family. Intel Corporation. url: https:
//www.intel.de/content/www/de/de/processors/core/7th- gen-

core-family-desktop-s-processor-lines-datasheet-vol-2.html.
[12] R. H. Dennard et al. “Design of Ion-Implanted MOSFET’s with Very Small

Physical Dimensions.” In: IEEE Journal of Solid-State Circuits 9.5 (1974),
pp. 256–268.

[13] P. Glaskowsky. IDF Fall 2007, part 3 – Gordon Moore interview. Sept. 2007.
url: https://www.cnet.com/news/idf-fall-2007-part-3-gordon-
moore-interview/.

[14] M. Goll and S. Gueron. “Vectorization on ChaCha stream cipher.” In: 2014
11th International Conference on Information Technology: New Generations.
IEEE. 2014, pp. 612–615.

[15] M. Gottschlag and F. Bellosa. “Reducing AVX-Induced Frequency Vari-
ation With Core Specialization.” In: The 9th Workshop on Systems for
Multi-core and Heterogeneous Architectures. Dresden, Germany, Mar. 2019.

[16] P. Hammarlund et al. “Haswell: The fourth-generation Intel Core proces-
sor.” In: IEEE Micro 34.2 (2014), pp. 6–20.

[17] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. 6th. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2017. isbn: 0128119055, 9780128119051.

[18] W. Huang et al. “Scaling with design constraints: Predicting the future
of big chips.” In: IEEE Micro 31.4 (2011), pp. 16–29.

[19] Intel® 64 and IA-32 Architectures Software Developer’s Manual. Vol. 2:
Instruction Set Reference. May 2019.

[20] Intel Details 2011 Processor Features, O�ers Stunning Visuals Built-in. In-
tel Corporation. url: https://newsroom.intel.com/news-releases/
intel-details-2011-processor-features-offers-stunning-visuals-

built-in/.
[21] Intel Introduces The Pentium® Processor With MMX™ Technology. In-

tel Corporation. url: https://www.intel.com/pressroom/archive/
releases/1997/dp010897.htm.

[22] Intel Launches the Pentium® III Processor. Intel Corporation. url: https:
//www.intel.com/pressroom/archive/releases/1999/dp022699.htm.

[23] Intel® 64 and IA-32 Architectures Optimization Reference Manual. Intel
Corporation. Apr. 2019.

72

https://www.intel.de/content/www/de/de/processors/core/7th-gen-core-family-desktop-s-processor-lines-datasheet-vol-2.html
https://www.intel.de/content/www/de/de/processors/core/7th-gen-core-family-desktop-s-processor-lines-datasheet-vol-2.html
https://www.intel.de/content/www/de/de/processors/core/7th-gen-core-family-desktop-s-processor-lines-datasheet-vol-2.html
https://www.cnet.com/news/idf-fall-2007-part-3-gordon-moore-interview/
https://www.cnet.com/news/idf-fall-2007-part-3-gordon-moore-interview/
https://newsroom.intel.com/news-releases/intel-details-2011-processor-features-offers-stunning-visuals-built-in/
https://newsroom.intel.com/news-releases/intel-details-2011-processor-features-offers-stunning-visuals-built-in/
https://newsroom.intel.com/news-releases/intel-details-2011-processor-features-offers-stunning-visuals-built-in/
https://www.intel.com/pressroom/archive/releases/1997/dp010897.htm
https://www.intel.com/pressroom/archive/releases/1997/dp010897.htm
https://www.intel.com/pressroom/archive/releases/1999/dp022699.htm
https://www.intel.com/pressroom/archive/releases/1999/dp022699.htm

BIBLIOGRAPHY

[24] Intel® Core™ i9-7940X X-series Processor Product Speci�cations. Intel Cor-
poration. url: https://ark.intel.com/content/www/us/en/ark/
products/126695/intel-core-i9-7940x-x-series-processor-19-

25m-cache-up-to-4-30-ghz.html.
[25] Introducing 6th Generation Intel® Core™, Intel’s Best Processor Ever. Intel

Corporation. Sept. 2015.
[26] V. Krasnov. On the dangers of Intel’s frequency scaling. 2017. url: https:

//blog.cloudflare.com/on- the- dangers- of- intels- frequency-

scaling/.
[27] A. Kumar and M. Trivedi. Intel® Xeon® Scalable Processor Architecture

Deep Dive. url: https://en.wikichip.org/w/images/0/0d/intel_
xeon_scalable_processor_architecture_deep_dive.pdf.

[28] A. Langley et al. ChaCha20-Poly1305 Cipher Suites for Transport Layer
Security (TLS). RFC 7905. June 2016. doi: 10.17487/RFC7905. url: https:
//rfc-editor.org/rfc/rfc7905.txt.

[29] D. Lemire and T. Downs. AVX-512: when and how to use these new in-
structions. Sept. 2018. url: https://lemire.me/blog/2018/09/07/avx-
512-when-and-how-to-use-these-new-instructions/.

[30] Linux kernel source code: arch/x86/events/core.c. Version 5.1. url: https:
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/

tree/arch/x86/events/core.c?h=v5.1.
[31] Linux kernel source code: include/linux/sched.h. Version 5.1. url: https:

//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/

tree/include/linux/sched.h?h=v5.1.
[32] D. D. Lopata. Speed binning for dynamic and adaptive power control. US

Patent 8,234,511. July 2012.
[33] Y.-H. Lu and G. De Micheli. “Comparing system level power management

policies.” In: IEEE Design & test of Computers 18.2 (2001), pp. 10–19.
[34] A. Mazouz et al. “Evaluation of CPU frequency transition latency.” In:

Computer Science-Research and Development 29.3-4 (2014), pp. 187–195.
[35] S. Mittal. “A survey of techniques for improving energy e�ciency in

embedded computing systems.” In: arXiv preprint arXiv:1401.0765 (2014).
[36] Intel® 64 and IA-32 Architectures Software Developer’s Manual. Vol. 4:

Model-Speci�c Registers. May 2019.
[37] G. E. Moore et al. “Progress in Digital Integrated Electronics.” In: Electron

Devices Meeting. Vol. 21. 1975, pp. 11–13.

73

https://ark.intel.com/content/www/us/en/ark/products/126695/intel-core-i9-7940x-x-series-processor-19-25m-cache-up-to-4-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/126695/intel-core-i9-7940x-x-series-processor-19-25m-cache-up-to-4-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/126695/intel-core-i9-7940x-x-series-processor-19-25m-cache-up-to-4-30-ghz.html
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://en.wikichip.org/w/images/0/0d/intel_xeon_scalable_processor_architecture_deep_dive.pdf
https://en.wikichip.org/w/images/0/0d/intel_xeon_scalable_processor_architecture_deep_dive.pdf
https://doi.org/10.17487/RFC7905
https://rfc-editor.org/rfc/rfc7905.txt
https://rfc-editor.org/rfc/rfc7905.txt
https://lemire.me/blog/2018/09/07/avx-512-when-and-how-to-use-these-new-instructions/
https://lemire.me/blog/2018/09/07/avx-512-when-and-how-to-use-these-new-instructions/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/events/core.c?h=v5.1
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/events/core.c?h=v5.1
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/x86/events/core.c?h=v5.1
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/sched.h?h=v5.1
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/sched.h?h=v5.1
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/linux/sched.h?h=v5.1

BIBLIOGRAPHY

[38] J. Schuchart et al. “The shift from processor power consumption to
performance variations: fundamental implications at scale.” In: Computer
Science-Research and Development 31.4 (2016), pp. 197–205.

[39] C. Scordino and I. Molnár. CFS Scheduler. url: https://www.kernel.
org/doc/html/latest/scheduler/sched-design-CFS.html.

[40] Intel® 64 and IA-32 Architectures Software Developer’s Manual. Vol. 3:
System Programming Guide. May 2019.

[41] M. B. Taylor. “Is dark silicon useful? Harnessing the four horsemen of the
coming dark silicon apocalypse.” In: DAC Design Automation Conference
2012. IEEE. 2012, pp. 1131–1136.

[42] R. J. Wysocki. CPU Performance Scaling. url: https://www.kernel.org/
doc/html/latest/admin-guide/pm/cpufreq.html.

[43] R. J. Wysocki. intel_pstate CPU Performance Scaling Driver. url: https:
//www.kernel.org/doc/html/latest/admin-guide/pm/intel_pstate.

html.
[44] P. Ziljstra, V. Radnai, and I. Molnár. Real-time group scheduling. url:

https://www.kernel.org/doc/html/latest/scheduler/sched-rt-

group.html.

74

https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/html/latest/admin-guide/pm/cpufreq.html
https://www.kernel.org/doc/html/latest/admin-guide/pm/cpufreq.html
https://www.kernel.org/doc/html/latest/admin-guide/pm/intel_pstate.html
https://www.kernel.org/doc/html/latest/admin-guide/pm/intel_pstate.html
https://www.kernel.org/doc/html/latest/admin-guide/pm/intel_pstate.html
https://www.kernel.org/doc/html/latest/scheduler/sched-rt-group.html
https://www.kernel.org/doc/html/latest/scheduler/sched-rt-group.html

	Abstract
	Contents
	Introduction
	Background & Related Work
	Dark Silicon and AVX
	Dynamic Voltage and Frequency Scaling
	Power Management
	Core Specialization

	Analysis
	Methodology
	Design
	Performance Monitoring Unit (PMU)
	Overview
	Kernel Component
	User-Space Component
	Measurement Modes

	Results
	System Setup
	Tested Instructions
	Downclocking
	Upclocking

	Design
	Reimplementation
	The intel_pstate Driver
	AVXFreq

	User-Space-Driven Decisions

	Evaluation
	Methodology and Design
	AVXFreq
	Multi-Phase Execution

	Results
	AVXFreq
	Overhead and Reclocking Optimization Potential

	Discussion

	Conclusion
	Future Work

	Glossary
	Bibliography

