Reducing AVX-Induced Frequency Variation With Core
Specialization

Mathias Gottschlag
Karlsruhe Institute of Technology
os@itec.kit.edu

ABSTRACT

Recent Intel server processors temporarily reduce their frequency
when many AVX2 or AVX-512 SIMD instructions are executed.
The frequency change is only reverted two milliseconds after the
system has stopped executing such instructions. Before this time,
any non-vectorized (and potentially unrelated) code which could
execute at higher frequencies is slowed down. The effect on overall
performance depends on the specific workload and is hard to predict.
We describe a scenario where vectorizing one component with AVX-
512 instructions improves performance by 10% for one workload
and reduces performance by 10% for another workload.

If only some of the cores of a system execute such vectorized
code, the frequency effect is limited to those cores. We propose
a scheduling algorithm as well as a mechanism to intercept prob-
lematic code sections so that threads executing vectorized code
are transparently migrated to a small subset of the cores. While
our work is still in progress, we describe a partial implementation
which is able to reduce the negative performance impact of AVX2
and AVX-512 instructions by over 70%.

1 INTRODUCTION

The end of Dennard Scaling — i.e., constant power density scaling
of transistors [4] - has lead to the current situation where the per-
formance of CPUs is mainly limited by their power consumption.
As a result, the maximum attainable frequency depends on the
amount of silicon area which is actively used [18]. Different instruc-
tions cause different amounts of switching activity and therefore
consume different amounts of energy [15], so the maximum fre-
quency depends on the executed instruction mix. Selecting a single
conservative operating frequency that results in acceptable power
consumption for all different instruction mixes results in wasted
performance for instruction mixes with low power consumption.

Whereas historically this effect did not have any significant im-
pact on CPU performance, the introduction of wider and more com-
plex SIMD instructions has resulted in larger variation of power and
current requirements. Therefore, recent Intel CPUs optimize their
operating frequency depending on the use of AVX2 and AVX-512
vector instructions [3]. For example, the Intel Xeon Silver 4116 CPU
provides a base frequency of 1.1 GHz for a dense mix of AVX-512
floating point or fused-multiply-add instructions and a base fre-
quency of 2.1 GHz for scalar (non-vectorized) code. As these lower
frequencies are required not only due to thermal limits but also for
system stability in the face of increased current requirements [5],
the frequency is reduced instantly when such an instruction mix is
detected.

SFMA’19, March 25, Dresden, Germany
2019.

Frank Bellosa
Karlsruhe Institute of Technology
os@itec.kit.edu

Frequency changes cause overhead [14], though, which limits
the granularity of instruction-mix-based frequency selection. Once
a high rate of AVX instructions has forced a frequency change, the
core waits at least approximately two milliseconds before reverting
to the previous frequency [1], most likely to limit the overhead of
frequent changes. During these two milliseconds, the CPU executes
code which could have been executed at a higher frequency. There-
fore, infrequent phases of vectorized code can reduce overall per-
formance, even if the vectorization locally improves performance.

This negative effect can be observed for real-world applications.
For example, OpenSSL’s implementation of the ChaCha20-Poly1305
encryption algorithm provides encryption speeds of up to 2.89 GB/s,
whereas BoringSSL only achieves 1.6 GB/s [9]. One reason for this
performance difference is that the former uses AVX-512 instruc-
tions with 512-bit wide vector operations whereas the latter only
uses AVX2 instructions with 256-bit wide operations. In a scenario
where an NGINX web server serves dynamic web sites with on-the-
fly compression via HTTPS using these two libraries, the perfor-
mance advantage of AVX-512 turns into an overall disadvantage,
though [9]. The system using OpenSSL performs 10% slower than
the system using BoringSSL.

This example shows that the impact of vectorization depends on
the ratio between time spent in AVX-heavy code and time spent
in other code, as the former benefits from vectorization whereas
the latter suffers from reduced frequencies. We repeated the web
server experiments and indeed found that with just slight configu-
ration changes the 10% disadvantage of AVX-512 turns into a 10%
advantage, which demonstrates a high dependency on the specific
workload. Sections of AVX-heavy code therefore can have — but
do not always have - significant negative impact on completely
unrelated code, which is problematic for a number of reasons:

First, these effects break the assumption that local optimizations
only have local effects, which is especially problematic during the
development of software libraries. As library developers do not
know all situations in which the library is going to be used, they
usually resort to microbenchmarks. Potential performance prob-
lems only show up at the end user’s system, where library updates
can potentially violate real-time requirements and reduce service
quality, even if the updates promise performance improvements.
In particular, the frequency effects make it difficult to develop one
version of the library which works equally well for all potential
workloads.

Second, the frequency changes also affect other processes run-
ning on the same core. Therefore, short sections of AVX-heavy
code are not only a threat to scheduling fairness, as one process
can reduce peak CPU performance for another process with lit-
tle effort. They also allow the construction of a covert channel to
transmit information between otherwise isolated processes, as one

SFMA’19, March 25, Dresden, Germany

process can detect whether another has executed AVX instructions
by monitoring the operating frequency.

Previous work has hinted that placing AVX-heavy code on sepa-
rate cores (core specialization) might be a viable method to reduce
its negative impact on overall system performance [19][12]. In this
paper, we describe an implementation of such core specialization.
Our contributions are as follows:

e We describe an implementation of core specialization which
can reduce the frequency impact of AVX code (Sections 3 and
3.1). Our design restricts code regions accessing large vector
registers to a subset of the cores. Threads are automatically
migrated to those cores by a fault-and-migrate mechanism
whenever they execute wide vector instructions. We describe
a method to make those instructions fault on cores which
are not supposed to execute vectorized code.

e We propose a scheduling policy for core specialization and
we show how an existing Linux scheduler can be modified
to implement the policy (Section 3.2).

e We evaluate whether core specialization can be used to re-
duce the performance variability caused by AVX (Section 4).
Although we have not yet implemented the whole design,
we are able to show that the scheduler implementation has
sufficiently low overhead to be a viable mechanism for core
specialization. Our prototype is able to reduce frequency
variation as well as performance variation of a web server
setup similar to the one above by over 70%.

o Based on our evaluation, we describe how improved software-
hardware interfaces can help the operating system to re-
duce the performance impact of instruction mixes with high
power consumption.

2 FREQUENCY IMPACT OF AVX
INSTRUCTIONS

Recent Intel server processors provide three sets of turbo and base
frequencies (named frequency level 0-2 or non-AVX, AVX2 and AVX-
512 frequencies) depending on the executed instruction mix [1]. The
lowest set of frequencies (frequency level 2) is used for code which
frequently executes AVX-512 floating point instructions or AVX-
512 integer multiplications. The intermediate set of frequencies is
used for code which predominantly executes AVX-2 floating point
instructions, AVX-2 integer multiplications, or other types of AVX-
512 instructions. The highest set of frequencies is used for all other
code which does not make heavy use of these instructions.

On recent Intel processors, each core can select an individual
frequency level [1]. Once a core recognizes an instruction mix which
requires reduced frequencies, it immediately reduces performance
to ensure system stability. The core then requests a new voltage and
frequency level from the central power control unit (PCU), which
requires up to 0.5 ms to determine the cores’ maximum frequencies
based on the number cores at the same frequency level. Once the
request has been processed, all affected cores reduce their frequency
accordingly.

The reduced frequency itself would not be particularly harmful
if the core would immediately revert to the previous frequency
when execution of AVX instructions ends. This is not the case,
though, as every frequency change causes overhead [14]. The core

Mathias Gottschlag and Frank Bellosa

400 ‘ -
= o 0o SSE4
< N
g 2 AVX2
Z 300 2 Inavx-512 ||
&) S +
7 2
Gy Ne)
© 200 = =
X +
3
i)
ap 100 |- R R
3 25 R i
= NS o N
= T aillll=
0 I I y
openssl speed NGINX NGINX+Brotli

Figure 1: Different workloads show different sensitivity to
the frequency reduction caused by wide SIMD instruction
sets (normalized to SSE4 performance).

applies an additional 2 ms delay before it switches back to a higher
frequency level [1], most likely to prevent excessive numbers of fre-
quency changes. During this time, all code executes at the reduced
frequency even if higher frequencies would be possible.

Whether this frequency reduction has significant effects on per-
formance depends on the workload. Figure 1 shows the impact on
different workloads using the ChaCha20-Poly1305 encryption func-
tionality from the OpenSSL library. For each workload, the OpenSSL
library was compiled with support for AVX2, for AVX-512, and with-
out support for either. A simple OpenSSL microbenchmark shows
large speed increases by both instruction sets, which is expected as
the increased parallelism makes up for the reduced frequency.

Workloads which spend the majority of time in non-AVX code,
however, execute larger amounts of non-AVX code at reduced fre-
quencies. For example, an NGINX web server serving uncompressed
static files via TLS using OpenSSL receives a 20% performance boost
from AVX2 OpenSSL, whereas AVX-512 encryption only yields 10%
faster throughput compared to non-AVX OpenSSL. If the web server
additionally compresses the files on-the-fly with the Brotli com-
pression algorithm, both AVX2 and AVX-512 instead reduce per-
formance as even more non-AVX code is affected by the frequency
reduction.

3 CORE SPECIALIZATION

As each core individually determines its own frequency level, the
performance reduction caused by AVX-heavy code only affects a
single core. For the AVX-512-enabled version of the x265 video
encoder, Tiwari et al. [19] therefore suggest restructuring the ap-
plication to concentrate AVX-512 code on a limited subset of the
cores, whereas all other cores only execute non-AVX-heavy code
(core specialization). If the code sections with high frequency im-
pact are restricted to a subset of the system’s cores, the negative
performance impact is limited to code running on these cores.
Restructuring the application, however, requires a significant
engineering effort and might cause overhead in cases where no
problematic frequency reduction is expected. Therefore, we de-
scribe an application-agnostic approach which does not require

Reducing AVX-Induced Frequency Variation With Core Specialization

modifications to the software. Our design takes unmodified ap-
plications and uses migration of their threads as a mechanism to
limit execution of AVX-heavy code to some of the cores. We use
fault-and-migrate [13] to detect AVX-heavy code and we modify
the operating system’s scheduler to implement core specialization.

3.1 Intercepting AVX Instructions

Fault-and-migrate is a technique to automatically migrate threads
to a suitable core in a heterogeneous multiprocessor system [13].
Whenever a thread executes an instruction that is not supported by
its current core, an undefined instruction exception is raised. The
operating system handles this exception by resuming the thread on
a core which supports the instruction. Although this mechanism
allows the operating system to recognize when special instruc-
tions are required, no information is given about how long the
instructions are required. Therefore, after a fixed time period the
operating system simply migrates the thread back to the original
core, assuming that no instructions are required anymore that are
not supported by that core.

To simulate a functionally heterogeneous multiprocessor on an
existing symmetric x86 multiprocessor, the floating point unit can
be completely disabled [13], in which case all floating point and
vector instructions cause exceptions. We modify this mechanism to
identify and trap only AVX2 and AVX-512 instructions. To disable
AVX-512 instructions, we clear the corresponding bits in the XCR0
register (Opmask, Hi16_ZMM and ZMM_H1i256) which govern access
to the registers specific to 512-bit AVX instructions [2]. Similarly,
256-bit register access can be disabled by clearing the AVX bit of
XCRO. The corresponding instructions will then cause an undefined
instruction exception when executed on cores on which these bits
have been cleared.

3.2 Scheduling Algorithm

Whenever an AVX instruction causes an exception, the thread is
temporarily flagged as an AVX task. The system’s cores are divided
into AVX cores and non-AVX cores, and AVX tasks are only scheduled
on AVX cores. To keep system utilization high, the AVX cores can
execute arbitrary tasks, although AVX tasks are strictly prioritized
over non-AVX tasks.

We implement this policy as an extension of the MuQSS out-of-
tree Linux scheduler [8]. We choose this scheduler over the in-tree
CFS scheduler due to its significantly lower code complexity. As
our implementation mostly replicates scheduler data structures
and does not require any major conceptual changes, we expect an
implementation in a different scheduler to be viable as well.

The MuQSS scheduler is built around a queue of runnable tasks
ordered by virtual deadlines calculated based on the tasks’ priority.
We configure MuQSS to maintain one such queue per physical
processor core. Additionally, we modify the scheduler to replicate
the runqueues three times, with each runqueue holding a different
class of tasks. The first runqueue holds tasks which are classified
as AVX tasks. Whenever an AVX task is determined not to require
AVX instructions anymore, it is moved to the second runqueue.
AVX cores never schedule tasks from the second runqueue if any
other runqueue contains runnable tasks, whereas non-AVX cores
never schedule tasks from the first runqueue at all. Finally, the

SFMA’19, March 25, Dresden, Germany

third runqueue holds all tasks which have never executed AVX
instructions. Tasks from this runqueue are taken into consideration
by both AVX cores and non-AVX cores. This policy excludes tasks
from core specialization if they never use AVX. The third runqueue,
in particular, includes all system tasks which might be pinned to
individual cores, which prevents such system tasks from being
starved by AVX tasks. Other approaches integrate a more complex
priority system to prevent such starvation [16] which makes those
algorithms more difficult to integrate into the prioritization schemes
of existing schedulers.

As the MuQSS scheduler implicitly performs load balancing at
every scheduler invocation by (locklessly) checking the runqueues
of all other cores, tasks which cannot be scheduled on their current
core are quickly picked up by a different core. We add additional
inter-processor interrupts where required when tasks are reclassi-
fied in order to enforce a scheduler invocation on a suitable core.

4 EVALUATION

While our work is still in an early stage, we have constructed a
partial prototype to show that the approach can reduce the per-
formance impact of AVX-heavy code sections. In particular, with
our evaluation we want to show that thread migration is a viable
mechanism to specialize cores and that extensive (and expensive)
restructuring of existing applications is not required.

To evaluate the prototype, we mainly use a web server scenario
derived from the setup described in [9]. We configure the NGINX
web server to serve a static file with on-the-fly compression over
an HTTPS connection using the ChaCha20-Poly1305 encryption
algorithm. Encryption is provided by OpenSSL and we compare
performance for versions of OpenSSL which use either AVX-512 or
AVX2 instructions or no AVX instructions at all. All benchmarks are
executed on a system with a 16-core Intel Xeon Gold 6130 processor
and 24 GiB of DDR4 RAM. Four cores execute the wrk2 benchmark
client, whereas the other 12 cores execute the web server.

Our prototype does not yet include the automatic detection of
AVX instructions described in Section 3.1. Instead, for our evalu-
ation, we manually annotate the web server to indicate the parts
which are only allowed to execute on AVX cores by placing a sys-
tem call before and after these parts. For the NGINX web server, we
mark the call into OpenSSL to encrypt or decrypt data as AVX code.
Note that this manual annotation is very pessimistic, as the call
into OpenSSL not only encrypts or decrypts data but also wraps
Linux socket system calls. Therefore, AVX cores not only execute
AVX-heavy code but also large amounts of networking code from
the Linux kernel. Our prototype is therefore not able to show the
full potential of the technique. Automatic detection of AVX code
as described in Section 3.1 most likely arrives at a better estimate
of the AVX code contained in the application and is likely able to
achieve higher average processor frequencies.

4.1 CPU Frequency and Throughput

Figure 2a shows the throughput achieved by NGINX with and with-
out our prototype and with the different versions of OpenSSL. With
an unmodified system, enabling AVX2 instructions in OpenSSL re-
duces performance by 4.2% whereas enabling AVX-512 instructions

SFMA’19, March 25, Dresden, Germany

Frequency (GHz)

»
T 6,000 |- ¥ w2 x|
O 5 — — °
Z ? 7| S
24,000 - - -
E“ 1
bb .
g 2000 0o Unmodified i
= Core Specialization

SSE4 AVX2 AVX-512

(a) Throughput

Mathias Gottschlag and Frank Bellosa

3 [—
I SIS o
8 S x| S
2| < o SIS
LH00 Unmodified]
Core Specialization
SSE4 AVX2 AVX-512

(b) Average frequency of all cores

Figure 2: Benchmark results for NGINX with OpenSSL compiled for different instruction sets: The blue bars show the results
for the unmodified web server, whereas the green bars show results when SSL code is restricted to a subset of the cores.

102? T T T E
T oo ;
§ I -
g (= E
< E E|
[} [|
= L B
g
5 100 E
o F E
1071 7\ | L] |

104 10°
Task type changes per second

Figure 3: Overhead of core specialization in a CPU-intensive
microbenchmark. The horizontal axis shows the task type
changes (AVX vs. non-AVX) per second. For reference, the
web server benchmark described above migrates tasks be-
tween AVX and non-AVX cores up to 55000 times per second.

reduces performance by 11.2%. Our prototype reduces this perfor-
mance loss to 1.1% and 3.2%, respectively, which shows that core
specialization is a viable technique to reduce the negative impact
of AVX code on performance and performance predictability.

As our version of core specialization mainly affects processor
frequency, Figure 2b contains the average processor frequencies
recorded in the experiment. Whereas the performance of the un-
modified web server closely matches the corresponding average
frequency, our prototype shows a slightly better performance than
expected from the frequency results, even though increased migra-
tion of threads between cores should cause additional overhead.

To determine the reason for this anomaly, we perform a perfor-
mance counter analysis for both web server setups with non-AVX
OpenSSL. As expected, the analysis shows a slightly increased
amount of executed instructions (+0.7%), but it also shows an in-
creased amount of instructions per cycle (+0.7%), which makes up
for the overhead. While core specialization causes some additional
stall cycles due to memory accesses, it more importantly reduces
the stall cycles due to mispredicted branches, which is most likely
the cause for the IPC improvement. Other approaches using core
specialization or cohort scheduling have shown similar impact on
cache effectiveness [6][7][11].

4.2 Overhead

As described in the last section, the overhead of frequent thread
migration and of the scheduler modifications required for core
specialization is below one percent for the tested benchmark. The
overhead, however, depends on how often tasks are reclassified as
AVX tasks or non-AVX tasks. We measure the overhead over a wider
range of such task change rates with a benchmark which executes
a varying number of instructions between two task type changes
in order to generate different task change rates. The program is
structured so that 5% of the instructions are annotated as if they
were AVX code so that they are only executed on AVX cores.

Figure 3 shows the resulting overhead for this program if it is
executed in parallel on 12 cores. The graph shows that the overhead
is approximately proportional to the rate of task type changes, with
task type changes costing approximately 400-500 ns over a wide
range of rates!. Although for frequent task type changes the over-
head can be larger than any advantage due to core specialization,
even 100,000 task type changes per second (corresponding to 50,000
invocations of AVX code) only cause 3% overhead, which is less
than the 6% improvement shown in Section 4.1.

Note that this analysis explicitly excludes cache effects, as those
effects highly depend on the application. While possible that ap-
plications suffer from cache line bouncing, many applications can
profit from the use of private caches from multiple cores [7].

4.3 Discussion

These results show that core specialization is able to notably re-
duce the negative impact of AVX-512 and AVX2 on performance.
Therefore, a system with core specialization has increased perfor-
mance predictability. Our prototype does not yet fully implement
our proposed design, which warrants a closer look at the proto-
type’s limitations. Mainly, our prototype does not yet implement
automatic fault-and-migrate for AVX instructions. Automatic fault-
ing would most likely reduce the amount of code executed on the
AVX cores in the scenario described above. As our manual anno-
tation causes large amounts of non-AVX code to be executed on
the AVX cores, a more accurate estimate of the problematic AVX
code sections would likely result in better performance isolation
of the AVX code. On our system, the additional exception required

!For more than 300,000 task type changes per second our prototype shows high lock
contention in the scheduler which reduces CPU utilization. Improved data structures
can likely produce significant performance improvements.

Reducing AVX-Induced Frequency Variation With Core Specialization

for fault-and-migrate only costs 300 ns each time a task is migrated
to an AVX core. Therefore, we expect the improved performance
isolation to compensate for the additional overhead.

The Need for Better Power Management Interfaces. In the case
of AVX-512 and AVX2, fault-and-migrate is not the ideal solution.
Current CPUs only allow the system to be configured to make
all AVX-512 or AVX2 instructions fault — however, single or in-
frequent AVX instructions do not trigger frequency changes. This
type of fault-and-migrate overestimates the impact of individual
instructions and is only a workaround for an insufficient hardware-
software interface. Ideally, the CPU would accurately notify the OS
of impeding frequency changes. Upon notification, the OS could
then migrate problematic tasks to a different core to avert the fre-
quency change. A specialized interface for such notifications would
provide higher accuracy and lower overhead than any mechanism
conceivable on current CPUs.

We predict that the frequency variation and therefore the need
for such an interface will increase in the future. Currently, only
instructions from specific functional units in the core draw so much
power that a frequency reduction is required. As an increased use
of task-specific accelerators is widely accepted as one method to
improve performance in a power-limited environment [18], future
systems will have even higher power variation depending on the
instruction mix and will therefore suffer from greater frequency
variation. On these systems, efficient core specialization could have
even higher benefit.

5 RELATED WORK

Frequency Effects of AVX2 and AVX-512. The introduction of
lower AVX frequencies was first described for Haswell-EP proces-
sors [5]. Later, Skylake-SP processors introduced an even lower
frequency level for AVX-512. In a blog post, Daniel Lemire [12] de-
scribes how this frequency level is, however, only used for limited
types of instruction mixes, so during optimization software engi-
neers have to balance the resulting frequency with the increased
parallelism brought by wider vector instructions. As future work,
Daniel Lemire mentions that a framework or scheduler which limits
execution of problematic code to a subset of the cores can poten-
tially reduce the negative performance impact of AVX-heavy code.
We describe a concrete implementation of this approach and evalu-
ate its effects on overall performance.

A similar conclusion was reached by engineers at Intel who
implemented AVX-512 vectorization for the x265 video encoder [19].
Despite doubled vector sizes, x265 only became less than 10% faster,
so the authors suggest that better performance could be achieved
by restructuring x265 so that only some threads (on a subset of
the cores) use AVX-512. Such restructuring, however, is costly and
we show that migration of unmodified threads already provides
notable performance improvements at low overhead.

OS Support for Heterogeneous Multiprocessors. Extensive research
has been performed in the area of heterogeneous multiprocessors,
where different cores provide different instruction sets [13] or dif-
ferent performance characteristics [10]. Our approach specializes
cores to create software-based heterogeneity.

SFMA’19, March 25, Dresden, Germany

On heterogeneous multiprocessors with varying instruction set,
the choice of cores for a task is limited by the available instructions.
One possible mechanism to automatically move tasks to a suitable
core is fault-and-migrate [13] where execution of an instruction not
supported by the core triggers an exception and causes the task to be
migrated to a different core. We suggest the use of fault-and-migrate
on current server CPUs and describe a mechanism to selectively
make AVX2 and AVX-512 instructions trigger exceptions.

Shen et al. [16] describe scheduling algorithms for heterogeneous
multiprocessors. In particular, they describe how tasks should be
scheduled on the core which most closely matches the required
instruction set and how static priorities can be used to prevent
tasks which require a larger instruction set from starving tasks
with fewer required instructions. Our approach, in contrast, does
not use any specific priority scheme and can therefore be integrated
into a wider range of existing schedulers.

Core Specialization. In the past, limiting parts of the system’s
workload to certain cores has been used with other objectives in
mind. For example, FlexSC [17] executes applications and the oper-
ating system on different cores in order to split the working set. As
a result, FlexSC is able to make more effective use of the cores’ pri-
vate caches. In our scenario, such cache effects are only responsible
for a fraction of the measured performance improvement.

6 CONCLUSION

Current Intel CPUs temporarily reduce their frequencies when AVX-
heavy instruction mixes threaten to violate power and current draw
limits. As any frequency reduction lasts for at least two milliseconds,
it can have a significant negative impact on overall performance
for workloads which intermix short AVX-enabled sections with
sections which could execute at higher frequencies.

We demonstrate that core specialization can be used to reduce
this negative impact and to improve performance predictability. By
limiting execution of AVX-heavy code to a subset of the system’s
cores, our approach limits the frequency reduction to those cores
and improves performance isolation of the AVX-heavy parts of
the workload. We also describe a method to implement fault-and-
migrate for all AVX-512 instructions so that such AVX-512 code is
automatically migrated to AVX cores.

We demonstrate the potential of such an approach with a par-
tial prototype which shows that migration of unmodified threads
provides significant performance advantages while causing only
low overhead. Our prototype reduces the performance impact of
AVX-induced frequency reduction by 70% in a web server scenario.

6.1 Future Work

We have shown that thread migration is a suitable mechanism for
core specialization and have described a mechanism to selectively
make AVX-512 instructions fault. In the future, we will integrate
fault-and-migrate into our prototype in order provide fully auto-
matic core specialization. In addition, we will develop metrics to
estimate in advance whether core specialization results in a net
benefit, as any practical solution needs to balance the overhead of
thread migrations against the resulting frequency improvement.

SFMA’19, March 25, Dresden, Germany

REFERENCES

[1

] Intel® 64 and IA-32 Architectures Optimization Reference Manual, April 2018.

[2] Intel® 64 and IA-32 Architectures Software Developer’s Manual - Volume 2 (2A, 2B,

2C & 2D): Instruction Set Reference, A-Z, May 2018.

[3] Intel® Xeon® Processor Scalable Family — Specification Update. Intel Corporation,

February 2018.

[4] Robert H. Dennard, Fritz H. Gaensslen, V. Leo Rideout, Ernest Bassous, and

(5

[10

[11

[12

[13

[14

[16

Andre R. LeBlanc. Design of ion-implanted mosfet’s with very small physical

dimensions. IEEE Journal of Solid-State Circuits, 9(5):256-268, 1974.

Daniel Hackenberg, Robert Schéne, Thomas Ilsche, Daniel Molka, Joseph

Schuchart, and Robin Geyer. An energy efficiency feature survey of the in-

tel haswell processor. In Proceedings of the 2015 IEEE International Parallel and

Distributed Processing Symposium Workshop, pages 896-904. IEEE, 2015.

] Stavros Harizopoulos and Anastassia Ailamaki. Steps towards cache-resident
transaction processing. In Proceedings of the Thirtieth International Conference on
Very Large Data Bases, volume 30, pages 660-671. VLDB Endowment, 2004.

] Prathmesh Kallurkar and Smruti R Sarangi. Schedtask: a hardware-assisted task
scheduler. In Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 612-624. ACM, 2017.

] Con Kolivas. Mugss - the multiple queue skiplist scheduler. http://ck kolivas.org/
patches/mugqss/sched-MuQSS.txt.

] Vlad Krasnov. On the dangers of intel’s frequency scaling, October 10, 2017.
https://blog.cloudflare.com/on-the-dangers- of-intels-frequency-scaling/.

] Rakesh Kumar, Keith I Farkas, Norman P Jouppi, Parthasarathy Ranganathan, and
Dean M Tullsen. Single-isa heterogeneous multi-core architectures: The potential
for processor power reduction. In Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture, page 81. IEEE Computer Society,
2003.

] James R Larus and Michael Parkes. Using cohort-scheduling to enhance server

performance. In Proceedings of the USENIX 2002 Annual Technical Conference,

pages 103-114. USENIX Association, 2002.

Daniel Lemire. Avx-512: when and how to use these new in-

structions, September 9, 2018. https://lemire.me/blog/2018/09/07/

avx-512-when-and-how-to-use-these-new-instructions/.

] Tong Li, Paul Brett, Rob Knauerhase, David Koufaty, Dheeraj Reddy, and Scott
Hahn. Operating system support for overlapping-isa heterogeneous multi-core
architectures. In 16th International Symposium on High Performance Computer
Architecture, pages 1-12. IEEE, 2010.

] Abdelhafid Mazouz, Alexandre Laurent, Benoit Pradelle, and William Jalby. Eval-

uation of cpu frequency transition latency. Computer Science - Research and

Development, 29(3-4):187-195, 2014.

Daniel Molka, Daniel Hackenberg, Robert Schone, and Matthias S Miiller. Char-

acterizing the energy consumption of data transfers and arithmetic operations

on x86-64 processors. In International Conference on Green Computing, pages

123-133. IEEE, 2010.

] Hao Shen and Frédéric Pétrot. Novel task migration framework on configurable
heterogeneous mpsoc platforms. In Proceedings of the 2009 Asia and South Pacific
Design Automation Conference, pages 733-738. IEEE Press, 2009.

=

[17] Livio Soares and Michael Stumm. FlexSC: Flexible system call scheduling with

exception-less system calls. In Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation, pages 33-46. USENIX Association,
2010.

[18] Michael B Taylor. Is dark silicon useful? harnessing the four horsemen of the

[19

coming dark silicon apocalypse. In 49th ACM/EDAC/IEEE Design Automation
Conference, pages 1131-1136. IEEE, 2012.

Praveen Kumar Tiwari, Vignesh V Menon, Jayashri Murugan, Jayashree Chan-
drasekaran, Gopi Satykrishna Akisetty, Pradeep Ramachandran, Sravanthi Kota
Venkata, Christopher A Bird, and Kevin Cone. Accelerating x265 with Intel®
Advanced Vector Extensions 512. Technical report, Intel, 05 2018.

Online sources last accessed 16th January 2019.

Mathias Gottschlag and Frank Bellosa

http://ck.kolivas.org/patches/muqss/sched-MuQSS.txt
http://ck.kolivas.org/patches/muqss/sched-MuQSS.txt
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://lemire.me/blog/2018/09/07/avx-512-when-and-how-to-use-these-new-instructions/
https://lemire.me/blog/2018/09/07/avx-512-when-and-how-to-use-these-new-instructions/

	Abstract
	1 Introduction
	2 Frequency Impact of AVX Instructions
	3 Core Specialization
	3.1 Intercepting AVX Instructions
	3.2 Scheduling Algorithm

	4 Evaluation
	4.1 CPU Frequency and Throughput
	4.2 Overhead
	4.3 Discussion

	5 Related Work
	6 Conclusion
	6.1 Future Work

	References

