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Abstract

Functional full system simulation allows monitoring the internal state of a system,
including its guest operating system, for detailed analysis. Known functional full
system simulators, such as QEMU, have in common that their execution speed
suffers considerably, compared to the execution on real hardware. As a result,
functional full system simulation cannot be used to analyze interactive and long
running workloads.

Rittinghaus et al. propose SimuBoost to speed up full system simulation.
SimuBoost leverages the almost bare-metal execution speed of a hardware-assisted
virtual machine (VM), VM checkpointing, and deterministic record and replay to
allow for concurrent, distributed simulation of execution intervals.

The checkpoint mechanism, which creates continuous, incremental check-
points, is an important component of SimuBoost. We provide an extended analy-
sis of SimuBoost and derive formal requirements for the checkpoint mechanism.
We evaluate the existing checkpoint implementation regarding the performance
of checkpoint creation and checkpoint loading. We further discuss experiments
regarding the working set size of simulation intervals. We find that for a fixed
length execution interval of SimuBoost it is sufficient to only load the working set
of said interval. As a result, we propose sparse checkpointing in order to optimize
continuous checkpoints for deterministic replay. Sparse checkpointing leverages
access information acquired during checkpoint creation to determine the working
set of each checkpoint interval. We use the access information during checkpoint
loading to only restore page frames that are in the working set of the respective
simulation interval.

Our evaluation shows that sparse checkpointing significantly reduces the av-
erage memory footprint of simulations by up to 79 % for a Linux kernel build
and decreases the checkpoint loading time by up to 89 %. As a result, sparse
checkpointing allows for a higher number of concurrent simulations on a single
workstation.
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Deutsche Zusammenfassung

Functional Full System Simulation ermöglicht das Überwachen des internen Zu-
stands einer virtuellen Machine (VM), insbesondere des Gastbetriebssystems. Da-
mit lässt sich eine detailerte Systemanalyse durchführen. Bekannte Functional
Full System Simulators, wie z.B. QEMU, haben alle gemein, dass ihre Ausfüh-
rungsgeschwindigkeit nicht an die Ausführungsgeschwindigkeit auf echter Hard-
ware heranreicht. Aus diesem Grund ist Functional Full System Simulation nicht
geeignet um lang laufende und interaktive Workloads zu analysieren.

Rittinghaus et al. stellen SimuBoost vor um die Ausführungsgeschwindigkeit
von Functional Full System Simulation zu erhöhen. SimuBoost nutzt die fast nati-
ve Ausführungsgeschwindigkeit einer hardware-beschleunigten VM, VM Check-
points, und deterministisches Record und Replay um eine parallele und verteile
Simulation von Ausführungsintervallen zu ermöglichen.

Der fortlaufende, inkrementelle Checkpoint Mechanismus ist eine wichtige
Komponente von SimuBoost. Wir führen eine Analyse seiner Laufzeiteigenschaf-
ten durch und leiten formale Anforderungen an den Checkpoint Mechanismus
her. Wir werten die vorhandenen Implementierungen bezüglich der Checkpoint
Erstellung und des Checkpoints Ladens aus. Außerdem diskutieren wir Ergebnis-
se bezüglich der Working Set Größe von Simulationsintervallen. Es zeigt sich,
dass es für ein Ausführungsintervall von fester Länge ausreicht, wenn wir nur
das Working Set des besagten Intervalls laden. Infolgedessen, führen wir Sparse
Checkpointing ein um die fortlaufenden Checkpoints für den Einsatz in Simu-
Boost zu optimieren. Sparse Checkpointing sammelt während des Checkpointer-
stellens Speicherzugriffsinformationen welche dazu benutzt werden das Working
Set für jeden Intervall zu bestimmen. Wir benutzen die Information über das Wor-
king Set während dem Laden von Checkpoints um nur Page Frames wiederherzu-
stellen, welche im Working Set des entsprechenden Simulationsintervals liegen.

Unsere Auswertung von Sparse Checkpointing zeigt, dass es den Speicherver-
brauch der Simulationen für einen Linux Kernel Build um bis zu 79 % und die
Checkpointladezeit um bis zu 89 % verringert. Infolgedessen ermöglicht Sparse
Checkpointing eine größere Anzahl an parallelen Simulationen auf einer einzele-
nen Workstation.
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Chapter 1

Introduction

Functional full system simulation utilizes interpretation or dynamic binary trans-
lation (DBT) in order to reassemble a complete virtual computer system. It is
possible to leverage interpretation or DBT to monitor the execution of a system
simulation, including the guest operating system, without any functional side ef-
fects on its execution.

Todays computer scientists utilize full system simulation due to its extended
analysis capabilities in order to perform system analysis and computer system
forensics [13, 19, 41, 49]. Known full system simulators are, e.g., QEMU [9],
Simics [24], and Bochs [1]. They all have in common that their execution speed
suffers compared to the execution on bare-metal hardware, depending on the level
of detail of the simulation. For example, QEMU utilizes dynamic binary trans-
lation and trades a good simulation performance for less accurate hardware em-
ulation, yet it slows down execution by a factor of about 33× [40] depending on
enabled analysis extensions. As a result, a workload that is to be analyzed, which
runs for one hour on real hardware, takes at least 33 hours to simulate, not consid-
ering additional analysis overhead. This renders the use of full system simulation
unfeasible for the analysis of long running and interactive workloads.

Rittinghaus et al. [40] propose SimuBoost, a deterministic, heterogeneous
record and replay system that aims to speedup full system simulation. SimuBoost
leverages VM checkpointing to split the execution of a hardware-assisted VM
into intervals of fixed length. SimuBoost concurrently records non-deterministic
events that affect the course of execution of the hardware-assisted VM. The result-
ing execution intervals are distributed to simulation nodes. Each simulation node
utilizes the recording logs to replay non-deterministic events in order to recreate
the exact same execution as in the hardware-assisted VM for each finite simulation
interval.

An important component of SimuBoost is the checkpoint mechanism that cre-
ates continuous, incremental checkpoints of the hardware-assisted VM. There-
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6 CHAPTER 1. INTRODUCTION

fore, a series of theses were concerned with the development and optimization
of the checkpoint mechanism itself and the storage and distribution of check-
points [15, 18, 23, 38].

Pusch [38] encountered high checkpoint loading times in his experiments that
show the potential of further optimization of the checkpoint mechanism. In con-
trast to existing work on the checkpoint mechanism of SimuBoost, which focused
on checkpoint creation [15,18], we focus on the optimization of checkpoint load-
ing regarding the checkpoint data amount that is to be restored and the checkpoint
loading time.

Therefore, we propose sparse checkpointing in order to optimize continuous
checkpoints for deterministic replay. We utilize the accessed bits, which are set in
the hardware-assisted VM’s extended page tables, in order to determine the work-
ing set of each checkpoint interval. Furthermore, we implement a checkpoint
data retrieval mechanism which only fetches those page frames that are contained
in the working set of a specific checkpoint. We found that sparse checkpointing
reduces checkpoint loading times up to 89 % depending on the workload. Further-
more, we are able to cut down the average main memory footprint of a simulation
by up to 79 %.

Chapter 2 discusses related work and introduces concepts needed to follow the
subject matter of this work.

In Chapter 3, we provide an extended analysis of SimuBoost. First of all,
we discuss theoretical models describing its runtime performance. Furthermore,
we examine the effect of performance properties of the checkpoint mechanism,
e.g., downtime, runtime overhead, and checkpoint loading time, on the achievable
speedup. Finally, we derive abstract requirements on the checkpoint mechanism
and evaluate the existing checkpoint implementation regarding checkpoint cre-
ation and checkpoint loading. We continue our analysis arguing about the work-
ing set size of simulation intervals by discussing the work of Werner [47]. We
conclude that the checkpoint mechanism must not load the complete main mem-
ory during checkpoint loading but rather only the working set, which is a fraction
of the complete main memory.

In Chapter 4, we discuss the design and implementation of sparse checkpoint-
ing for KVM and QEMU.

Chapter 5 provides an evaluation of our approach. We have performed ex-
periments showing the correctness of our sparse checkpointing, the performance
of checkpoint creation and checkpoint loading. Furthermore, we have conducted
general tests demonstrating the improved main memory utilization that comes
with sparse checkpointing.

Finally, Chapter 6 concludes this thesis and provides an outlook of future
work.



Chapter 2

Background

This chapter sets the know-how needed to follow the subject matter of the work at
hand. We introduce virtual machines (VMs), their implementation, and their uti-
lization in form of VM checkpointing. We establish the concept of deterministic
record and replay (RR) and its applications. Finally, we induct into SimuBoost, an
acceleration method for functional full system simulation, which leverages check-
pointing and heterogeneous RR. Furthermore, we point out its relevance for the
field of full system simulation.

2.1 Virtual Machines

Modern computing systems and the software running on top of it rest upon mul-
tiple layers of abstraction. Each layer of abstraction hides the complexity of the
underlying implementation. At the hardware level a computer consists of a central
processing unit (CPU), volatile memory, persistent memory, peripheral devices,
and interconnections. The CPU is able to execute a predefined set of instructions
depending on its architecture and its mode of operation. Current CPUs provide
different privilege levels that restrict the set of instructions available to the pro-
gram executing on the CPU. The instruction set of a CPU, the CPU’s registers,
and the way the CPU communicates with devices (memory controllers, peripheral
devices) determines the instruction set architecture (ISA) of a computer system.

The ISA describes a well-defined interface which the operating system (OS)
utilizes. The OS kernel runs with the highest privileges in kernel mode. It manages
the system’s hardware and provides software abstractions, such as virtual memory
and processes, communication facilities, such as inter-process communication,
and resource management, such as task scheduling. Applications run with less
privileges on top of the OS in user mode so they are not able to interfere with
each other or the OS. User mode applications are not allowed to access hardware

7
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Figure 2.1: Illustrating a general monolithic OS, a type-2, and a type-1 hypervisor. In
general, the OS operates in privileged kernel mode and user applications run in unprivi-
leged user mode (left). A type-2 hypervisor depends on a host operating system (middle),
whereas a type-1 hypervisor is a standalone VMM running exclusively in kernel mode
(right).

directly. As a result, the OS exports functionality, for example, to conduct I/O or
allocate memory, to user space through the system call facility.

A virtual machine (VM) allows the execution of an unmodified OS in an en-
capsulated execution environment. Henceforth, we refer to the system that exe-
cutes a VM as the host and to the VM itself as the guest. The hypervisor is an
application that runs directly on the host and implements the runtime environment
for VMs by multiplexing the physical hardware of the host, or emulating devices
and providing virtual counterparts for use by the VMs. Therefore, the hypervisor
inserts an additional layer of abstraction hiding the underlying host system.

Historically, Goldberg [26] depicts the introduction of privilege levels to sys-
tem architecture and the resulting novel problems as the main reason for the emer-
gence of VMs in the 1970s. Goldberg describes the part of the OS that provides
privileged functionality to unprivileged user space software as the privileged soft-
ware nucleus. With the operating system running in privileged mode it was no
longer possible to execute legacy applications or diagnostic software, which re-
quired privileged instructions, since the functionality, previously provided by call-
ing instructions of the bare machine directly, was now exported through the privi-
leged software nucleus. Furthermore, testing and debugging of operating systems
was limited, as only one privileged software nucleus is allowed to execute on the
bare machine. The only solution was time sharing the machine, requiring repeated
shutdown of the computer system and initialization with the desired user software.
VMs resolved this problem, allowing for the execution of multiple privileged soft-
ware nucleuses.

There are different ways to implement a VM. Goldberg [26] defines a vir-
tual machine monitor (VMM) as an application that offers the execution of VMs,
whereat unprivileged instructions are directly executed on the host CPU and priv-
ileged instruction are handled by the VMM, e.g., by emulating them. In todays
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terms, a VMM leverages virtualization technology of modern CPUs to provide
an almost bare-metal execution speed. There are two different types of VMMs:
type-1 and type-2 as depicted in Figure 2.1. A type-1, or bare-metal VMM, im-
plements a small software layer running in privileged mode, that abstracts and
multiplexes the hardware, allowing for VMs to run on top. Type-2 hypervisors,
so-called hosted hypervisors, rely on a host OS in order to provide virtual devices
or multiplex existing devices and to schedule the execution of the VM. For our
work only hosted hypervisors are of interest.

An example for deployment of a hosted hypervisor is full system simulation.
In this case a simulator, running completely in unprivileged user mode of a host
OS, is in control of the VM and modifies its internal state according to the in-
structions it reads from the guest’s main memory. This process goes along with a
vast slowdown of up to 771× compared to native execution [40] which renders it
useless for performance critical applications.

Today, there are many areas of application for VMs. Virtualization technology
is the foundation of cloud computing. Cloud service provider, like Google or
Amazon, deploy several VMs on high performance servers, because VMs offer a
high level of scalability. VM instances can be spawned, migrated, and destroyed
depending on the number of requests that need to be served. VMs offer extended
load balancing facilities depending on respective criteria. Jain et al. [32] provide
a survey of current load balancing methods all of which depend on the flexibility
of VMs.

On the other hand, VMs offer extended analysis capabilities, as their complete
system state is easily observable by utilizing the VMM or a full system simula-
tor. As a result, they are frequently deployed in research. A popular example is
intrusion detection. Often malicious code adapts its behavior if it is being mon-
itored by an intrusion detection software to complicate analysis or in general its
discovery. Garfinkel et al. [25] leverage the VMM and VM introspection in order
to move intrusion detection out of the inspected system itself, so malicious code is
not able to detect the analysis software. Schmidt [43] evaluates VM memory trac-
ing mechanisms based on virtualization and full system simulation. Wilhelm [48]
utilizes VM memory tracing to uncover security vulnerabilities of shared memory
pages that are used for communication between different protection domains of
the Xen hypervisor [14].

Besides cloud computing and research, VMs are deployed on desktop systems
as well. Desktop virtualization solutions like VirtualBox [12], the kernel virtual
machine (KVM) [4] or QubesOS [42] provide VMs for daily use.

The discussed areas of applications of VM’s differ in the requirements they
post on the virtualization technology that is deployed. A VMM that is in use
in a cloud environment needs to fulfill high performance requirements in order
to guarantee an optimal runtime behavior of deployed applications. On the other
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hand, a hypervisor that is applied in research to perform system memory traces has
to allow for a high degree of instrumentation, so researchers gain detailed insight
into the execution behavior of an investigated software. In this case, runtime
performance is subordinate to the objective to gain new insights of a given system.

For the remainder of this section we present different implementations of VMs
that differ in their respective performance and the degree in which they can be
instrumented for system analysis.

2.1.1 Emulation

Emulation is a way to implement a system VM completely in user mode. In gen-
eral, emulation aims to execute an application binary compiled for a source ISA
on a target ISA [22]1. The source ISA corresponds to the guest and the target ISA
corresponds to the host. For the sake of simplicity, we only discuss instruction
set emulation and skip interrupt and exception handling, which is described by
Smith et al. [22]. In case of emulation, a user space component is in control of
the VM’s execution and its complete state, including CPU, main memory, and de-
vices. Smith et al. denote the subcomponent that is control of the VM’s execution
as emulation manager (EM).

Interpretation is a straightforward approach to emulation. The EM repeats a
decode-and-dispatch loop that fetches and decodes an instruction from the guest’s
main memory and modifies the VM’s state according to the instruction. As a
result, the EM advances the execution of the VM step by step. Interpretation
is a simple implementation of emulation, although Smith et al. point out its bad
runtime performance due to the general structure of the decode-and-dispatch loop.
Bellard [16] states that interpretation is up to 30 times slower than dynamic binary
translation (DBT). There are optimizations that increase the runtime performance
of interpretation such as predecoding, which translates source instructions into
a less dense, but easier to interpret format, and direct threaded interpretation,
which reduces overhead due to indirection. All optimizations of interpretation are
described in detail by Smith et al. [22]. He also extensively discusses benefits
and drawbacks regarding runtime performance, memory consumption and code
portability that come with the respective methods.

Dynamic Binary Translation

Emulation utilizing interpretation leads to a VM execution in which each type of
instructions, e.g., basic arithmetic instructions, regardless of the used registers or

1The target and the source ISA may differ. In this particular work we are only interested in
emulation for which source and target ISA are the same.
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Figure 2.2: Structural comparison of direct threaded interpretation with predecoding and
binary translation. (a) The predecoder maps source instructions (gray) to intermediate
code (blue) which in turn maps to interpreter routines implemented by target instructions
(green). (b) The binary translator directly maps source instructions (gray) to target in-
structions (green).

memory addresses, is simulated by a dedicated interpretation routine. A single in-
terpretation routine is a self-contained set of target instructions that alter the state
of the VM according to the given source opcode and operands. In other words,
each dispatch routine for a specific instruction type maps source instructions to a
set of target instructions. The execution itself is an interlinking of dispatch rou-
tines whereat each subsequent call of the next dispatch routine involves repeated
calls to the EM as depicted in Figure 2.2(a).

An alternative approach is binary translation (BT) [22], that directly maps a
set of source instructions to a set of target instructions. In contrast to interpre-
tation, the execution of a set of binary translated target instruction requires no
more interference of the EM as shown in Figure 2.2(b). Therefore BT results in a
contiguous set of target code that emulates given source code.

There are two different approaches to BT – static and dynamic BT. First of
all, static BT [22] aims to translate the complete set of source instructions before
actual system execution. Static translation runs into problems once a jump in-
struction is to be translated. The target of a jump instruction may depend on the
content of one or multiple registers that are not assigned before runtime. Further-
more, ISAs with a variable sized instruction format, e.g., x86, allow for the start
of new instructions at every byte boundary, in contrast to ISAs with a fixed length
instruction format that guarantee word boundaries for instructions. These facts
complicate code discovery as it is not clear whether a byte starts a new instruc-
tion, ends a previous instruction, or if it is data.
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Figure 2.3: Visualizing two cases frequently occurring in dynamic binary translation. (a)
If there is no entry in the mapping table for a given source program counter (1), translate
the dynamic basic block (2), create a mapping from the source program counter to the
target program counter in the table, and execute the translated target code (3). (b) If
there already exists an entry in the table for a given source program counter, return the
mapped target program counter and execute the associated target code block.

Another problem of static translation is the so-called code location problem
[22]. BT maps a single source instruction to multiple target instructions. As a
result, the target requires an additional program counter, since it generally re-
quires more target instructions to express the same semantic as the original source
instruction. Smith et al. [22] refer to the source instruction pointer as source pro-
gram counter (SPC) and to the target instruction pointer as target program counter
(TPC). The EM derives targets of indirect jump instructions at runtime and refer-
ences the SPC in the target instruction stream. Since the SPC is not valid in the
context of translated target instructions, a mapping from SPC to TPC is required.
Establishing this mapping statically, before the execution, is not feasible since
jump targets may not be determined before system execution.

A solution to both, the code discovery and the code location problem, is to dy-
namically read and translate blocks of source instructions. This process is hence-
forth referred to as dynamic binary translation (DBT). In context of DBT, a block
of source instructions that is translated to a set of target instructions at once is
called a dynamic basic block (DBB). A DBB starts with the first instruction after
a jump and ends with the occurrence of a jump or branch in the instruction stream.
DBT solves the code discovery problem since source instructions are revealed in-
crementally block by block. Furthermore, DBT allows for the maintenance of
a data structure, e.g., a hash table, to keep track of SPC to TPC mappings, thus
dealing with the code location problem.
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Figure 2.3(a) visualizes the process of translating a new, unknown DBB of
source instructions. Once the EM discovers a new DBB, the translator generates
the corresponding target instructions and returns the address of the first instruction
of the block of target instructions as TPC to the EM. The EM creates a mapping
from SPC to TPC and executes the newly translated bock of target instructions.
Figure 2.3(b) depicts a case in which there already exists a translation for a given
SPC. Therefore, the EM obtains the TPC from the mapping table and is able to
directly execute the block of target instructions pointed at by the TPC. DBT en-
hances performance of the emulation compared to simple interpretation as block
of target instructions are reused. This is particularly beneficial for recurrent blocks
of source instructions, as found, e.g., in loop constructs.

Memory Virtualization

Besides CPU emulation, an EM has to provide main memory to the VM. From
the VM’s point of view there needs to be a contiguous physical address space.
An EM is a user mode program, hence it operates on a virtual address space that
is constructed by the underlying OS. The OS establishes and destroys mappings
from virtual to physical addresses so dedicated virtual addresses that are actually
accessed by any user software are backed with physical memory. This process is
transparent to the user space software thus an EM may simply assume there is host
main memory of a fixed size available that can even exceed the actual available
physical main memory of the host.

We refer to the notion of what the guest expects to be physical memory as guest
physical memory. The corresponding addresses are referred to as guest physical
addresses (GPAs). Furthermore, virtual addresses used by user mode applications
of a guest are referred to as guest virtual addresses (GVAs). Similarly, we talk
about host physical addresses (HPAs) if we address actual physical memory and
host virtual addresses (HVAs) if we talk about virtual addresses in the context
of a host application. We presume the deployed target ISA implements virtual
memory management using a form of paging, hence the CPU utilizes multiple
linked, hierarchical tables to translate virtual to physical addresses. The actual
process of translating dedicated addresses on a physical machine is performed in
hardware in order to minimize its runtime.

An emulator implements the complete process of address translation in soft-
ware. This means in case of a memory access, the emulator looks up the active
page table given by the page table register (e.g., the CR3 register on x86) and
follows the links in the guest page table entries in order to find the GVA to GPA
mapping. This process is also called a page table walk. Performing page table
walks completely in software degrades the performance of a system since main
memory accesses are a very frequent operation of a computer system. Therefore,
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emulators [16] implement a so-called software translation look-aside buffer that
improves the performance of GVA to HVA lookups by caching recent translations.

QEMU

A practical implementation of DBT is deployed by the QEMU full system simu-
lator [16]2. QEMU utilizes the tiny code generator (TCG) to translate source to
target instructions. The TCG introduces an RISC-like, ISA independent interme-
diate instruction format, that is referred to as microcode by Bellard [16]. As a
result, one only needs to implement a single translation direction in order to add
a new guest or host ISA for all supported guest or host ISAs. For example, if we
want to add RISC-V support for all existing host ISAs it is sufficient to imple-
ment the translation from RISC-V to microcode. Therefore, the TCG enhances
the portability of QEMU. At the moment QEMU supports following guests x86,
x86-64, PowerPC, ARM, Alpha, Sparc and MIPS [9] to name only a few. For
the remainder of this paper, we are only interested in x86-64 guests running on
x86-64 hosts.

Figure 2.3 introduces the concept of a target code cache since the EM main-
tains a mapping of DBBs to corresponding blocks of target instructions. This
mapping is represented by the table that maps SPCs to TPCs. QEMU utilizes
such a code cache as well. In the context of QEMU, a block of target instruc-
tions is referred to as a translation block (TB). A major performance drawback
of the conceptional approach to DBT depicted by Figure 2.3 is the fact that the
execution returns to the EM after each block of target instructions, even if the sub-
sequent block of target instructions already exists and is determined. Therefore,
QEMU implements TB chaining. Whenever the EM identifies contiguous DBBs
it connects the blocks by replacing the return to the EM with a jump to the subse-
quent TB. As a result, QEMU accelerates the emulation since big chunks of target
instructions can be executed without any interference by the EM.

QEMU internally organizes the guest’s main memory as an acyclic graph of
nested memory region objects. A memory region object is of one of five types [10]
– a RAM region, an MMIO region, an IOMMU region, a container simply includ-
ing other regions, or an alias region. A RAM region is a range of directly readable
and writable addresses that appear to a guest like common RAM. A MMIO re-
gion on the other hand is implemented as neither readable nor writable thus every
access to it is handled by a host callback function. Finally, an alias region al-
lows splitting a region into a set of sections as it always points to another memory
region that actually handles accesses made to it.

2Bellard identifies the guest system as target in his paper. Therefore, he uses a reverse nomen-
clature compared to the one we use in this work.
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Figure 2.4: Showing the structure of a simplified memory region graph as deployed by
QEMU. From the VM’s point of view the system memory consists of a contiguous address
range. Internally, the system memory consists of five alias memory regions each pointing
either to a RAM region or an MMIO region. If an access is made to a specific address
(blue), QEMU traverses the nested memory regions in order to determine the target mem-
ory region and trigger the corresponding action.

Figure 2.4 visualizes a memory region graph as deployed by QEMU. In this
example, the VM is configured with 4 GiB of RAM. QEMU maps the first 3.5 GiB
of the VM’s guest physical main memory one-to-one to the respective addresses
starting with address 0x0, with one exception. The VGA window, containing the
frame buffer of the graphics system, overlaps the low memory area at address
range 0xa0000 to 0xbffff. As a result, if the guest accesses this region, those
accesses are handled by the MMIO region. The PCI region is placed at the 3.5 GiB
mark of the guest physical address space. The remaining 512 MiB of RAM are
mapped to guest physical addresses 0x100000000 to 0x11ffffffff. For simplicity,
the MMIO region representing the PCI address range is not shown in detail. GPAs
targeting the PCI memory region would trigger respective callback functions that
manipulate the corresponding virtual device or general VM state. GPAs that in
turn target guest physical memory are mapped to host virtual addresses by simply
shifting the GPAs by a fixed offset.

In summary, QEMU’s implementation of DBT achieves a reasonable perfor-
mance compared to other full system simulators. Rittinghaus et al. [40] compare
the performance of QEMU to the timing accurate full system simulator Simics.
They emulate multiple workloads in VMs provided by QEMU and Simics respec-
tively.



16 CHAPTER 2. BACKGROUND

They found that QEMU tends to induce a slowdown of 22–33 times, whereas
Simics induces a slowdown of 624–771 times, compared to executing the same
workload on a bare machine. Please note, Simics provides additional functionality
such as the usage of timing models that justify its high overhead whereas QEMU
is optimized for maximal performance. Nevertheless, even though QEMU’s per-
formance is reasonably good compared to Simics, it is not feasible to use it for
analysis of long running or interactive workloads nor to deploy it for production
workloads, e.g., in a cloud environment.

2.1.2 Hardware-Assisted Virtualization
In Section 2.1.1, we have introduced emulation as a way to drive VMs. However,
we have noticed the vast overhead that comes with interpretation or even DBT.
Therefore, emulation is not applicable in performance critical environments like
cloud computing or for the analysis of long running or interactive workloads in
research (e.g., memory traces of production systems).

The overhead of DBT stems from the translation of source instructions to tar-
get instructions even if the source and target ISA are the same. Therefore, it
seems obvious to execute as many guest instructions as possible directly on the
host’s CPU in order to reduce the runtime overhead. This approach is referred
to as direct execution. A VMM that implements direct execution processes in-
structions that do not modify system resources, or depend on the state of system
resources, directly on the CPU. All other instructions must trap and being handled
by the VMM for example by emulating them. We refer to this process to handle
privileged instructions as trap-and-emulate.

Smith et al. [22] point out that trap-and-emulate is only feasible as long as
all instructions that directly modify system resources are privileged, thus trap if
they are executed in user mode. This fact was first described in the work of Popek
and Goldberg [37]. They define instructions that directly modify system resources
as control sensitive and instructions whose behavior or result depends on system
resources as behavior sensitive. They propose a theorem stating that a VMM
for an ISA can be constructed, if the set of sensitive instructions is a subset of
the privileged instructions of that ISA. We further refer to instructions that are
sensitive, but not privileged, as critical instructions.

An example for an ISA that does not fulfill the theorem of Popek and Goldberg
is x86. The popf instruction of x86 pops the flags register from a stack in mem-
ory, including the interrupt-enable flag that is only modifiable in privileged mode.
If executed in user mode, the instruction overrides all flags except the interrupt-
enable flag and does not trap. As a result, the VMM does not notice the execution
of a popf instruction that is intended to be a privileged popf and is not able to
emulate it leading to a guest OS behavior that is inconsistent with the behavior on
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real hardware.
Hardware-assisted virtualization aims to solve this problem allowing for the

execution of the majority of instructions directly on the host CPU. As a result,
the performance of VMs almost catches up with native execution depending on
the deployed workload. Hardware vendors, such as Intel or AMD, introduced
hardware-extensions to their ISA implementations in order to enable hardware-
assisted VM execution.

Intel VT-x

Intel provides its VT-x technology [31] for x86 that allows for the native execution
of all instructions. Intel achieves this by introducing a hardware extension called
virtual machine extension (VMX). With VMX the CPU knows two additional
modes of operation, namely VMX root and VMX non-root mode.

In VMX root mode, the CPU is able to use all instructions and to access and
manipulate critical system resources. The VMX root mode relates to the normal
mode of an Intel x86 processor that offers four privilege levels or so-called rings.
Ring 0 corresponds to the highest privilege level and ring 3 to the lowest privilege
level. As a result, a VMM, executing on a system with Intel’s VT-X technology,
runs in VMX root mode in ring 0 so it has full access to all system resources and
is able to multiplex them for VMs. The VMs on the other hand execute in VMX
non-root mode.

VMX non-root mode is fully transparent to a guest. It also provides the famil-
iar four rings to a VM, so the guest OS can run in ring 0, whereas user applications
run in ring 3. Therefore, most instructions of a VM are executed natively. Still,
in VMX non-root mode the CPU is not allowed to read or manipulate critical sys-
tem resources. If a guest tries to access system resources, the VMM interferes
and emulates the requested resource. As a result, the VMM running in VMX root
mode is in full control of the system, ensuring strict isolation of multiple VMs
from each other and the host OS.

Figure 2.5 illustrates the life cycle of a VMM starting a VM that runs a guest
OS. The VMM operates in VMX root mode. Whilst in VMX root mode, the
VMM can start new VMs by issuing a vmlaunch instruction. This triggers a
VMX transition from root to non-root mode. Such a transition is also referred
to as VM enter. On the other hand, a transition from non-root to root mode is
called a VM exit. For example, a vmcall executed in non-root mode or a page
fault occurred in non-root mode triggers a VM exit to VMX root mode, hence the
VMM context.

VM entries as well as VM exits are controlled by a virtual machine control
structure (VMCS) [31]. The VMM uses one VMCS for each VM. The processor
maintains a state variable, called VMCS pointer that points to the memory region
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Figure 2.5: Showing the life cycle of a VMM utilizing Intel’s virtual machine extension
(VMX) [31]. The CPU is already in VMX root mode. The VMM starts a VM by calling
the vmlaunch instruction. A vmcall or critical resource access (e.g., a page fault)
invokes the VMM again. If the execution of a VM was interrupted, the VMM can resume
its execution with the vmresume instruction. A VMX transition describes the change of
VM mode from root to non-root or the other way around.

that contains a VMCS. Besides general VM state information and control fields
the VMCS contains a guest-state area and a host-state area. The guest-state area
includes processor state of the VM, whereas the host-state area includes processor
state of the host, respectively. At the occurrence of a VMX transition, e.g., a VM
entry, the CPU switches to VMX non-root mode and stores the current host state
in the host-state area of the current VMCS and restores the guest’s CPU state from
the guest-state area.

Memory Virtualization

Hardware-assisted VMs execute a large portion of instructions directly on the
host’s CPU. Therefore, they maintain their own sets of page tables since the VMM
is completely transparent. Yet, the CPU never uses the page tables setup by a guest
because this would break the isolation of VMs and the VMM. The VMM rather
maintains its own set of page tables, the so-called shadow page tables (SPTs), for
each VM. The SPTs contain mappings of GVAs to HPAs and are actually used by
the CPU. The VMM must ensure that the SPTs are synchronized with the guest
OSs internal page tables at all times. Therefore, the instructions used to manipu-
late the page tables on an ISA either trap into the VMM or the VMM must write
protect the memory area that contains the guests page tables in order to keep track
of modifications by the guest OS.

The maintenance of SPTs introduces overhead to VM execution since the
VMM traps every time the guest OS manipulates its internal page tables. Hard-
ware vendors introduce a mechanism called second level address translation (SLAT)
to their architectures in order to counter this performance degradation. SLAT ren-
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Figure 2.6: Illustration of Second Layer Address Translation (SLAT) – The CPU uses
both, the internal page tables of the guest and the extended page tables of the VMM for
address translation. In fact, the page table walk of the guest’s internal page tables (green
arrows) triggers second layer address translations since, e.g., page directory entries ref-
erence page tables by GPAs (gray dashed arrows). The GPAs must be translated to HPAs
(blue arrows) in order to find the guest’s internal page table entries which in turn point to
GPAs that are translated to HPAs using the extended page tables.

ders it possible to forgo SPTs and use direct hardware support for guest address
translation.

For this work, we go into detail about Intel’s implementation of SLAT. Intel
introduced extended page tables (EPTs) [31] to their x86 CPUs in order to dimin-
ish the performance degradation of system VMs due to maintenance of SPTs. If
EPTs are enabled the hardware uses both, the internal page tables of the guest OS,
which map GVAs to GPAs, and additional page tables that map GPAs to HPAs as
visualized in Figure 2.6. If the guest accesses a GVA, the CPU reads the address
of the guest’s page tables from the CR3 register and issues a page table walk in
hardware. During this page table walk, each access to a GPA entails a second
layer address translation of GPA to HPA. This mechanism effectively results in an
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address translation process from GVAs to HPAs that is completely implemented
in hardware.

Bhatia [17] provides data regarding the performance gain of Intel’s EPTs com-
pared to memory virtualization via SPTs. He executed several micro and macro
benchmarks in VMs on the VMWare ESX VMM. He showed performance differ-
ences of the VMWare ESX implementation only relying on software-based mem-
ory virtualization, compared to the VMWare ESX implementation that leverages
Intel’s EPT technology. Bhatia found that for memory management unit (MMU)
intensive micro benchmarks the gains in performance of EPTs go up to 600 %
compared to the software-only solution. For other MMU intensive macro bench-
marks the performance gain is still up to 48 %.

Kernel Virtual Machine (KVM)

KVM is a Linux kernel module that provides implementations of Intel’s virtual-
ization technologies VT-x and EPTs, in order to provide hosted VMs on Linux.
KVM is no standalone VMM as it always depends on a user space counterpart that
provides an execution context that is a common process in Linux. This means the
VM is transparent to the Linux host. As a result, the VM is subject to the Linux
scheduler just as every other process.

KVM exports functionality to user space through a well-defined interface
composed of a set of ioctls [5]. These ioctls split into three groups each of which
provide a dedicated functionality to the corresponding user mode component. The
logical structure of the ioctls is hierarchical, from system, over VM specific, to per
virtual CPU (VCPU) ioctls.

In general, the user mode component interfacing with KVM is QEMU. If
QEMU is started with KVM enabled, the CPU emulation capabilities of QEMU,
namely TCG, are disabled and the VM runs in hardware-assisted mode, leverag-
ing the virtualization extensions provided by KVM. Therefore, QEMU only pro-
vides software implementations of certain devices and chipsets depending on the
specific configuration of the VM. The device and chipset interfaces are mapped
into the VM’s address space by QEMU’s guest memory abstraction, effectively
emulating memory mapped I/O.

Figure 2.7 visualizes the VM creation and kickoff of a QEMU/KVM managed
VM. For convenience, the illustration uses slightly altered function names and
we omit some intermediate functions, yet in general it reproduces the essential
course of events of the interaction of QEMU and KVM. The Linux kernel sets
up basic VMX data structures and enables EPT during system initialization. If a
QEMU/KVM process is created, the main thread initializes KVM by calling the
respective ioctl. The kernel serves the ioctl by creating a new VM context and en-
abling VMX, hence transferring the CPU into VMX root mode. The main thread
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Figure 2.7: Illustrating the creation of a new VM using QEMU/KVM. The dashed box
at the bottom left depicts the basic initialization of VMX data structures and activation
of extended page tables by Linux during the host boot process. Once a QEMU main
thread with enabled KVM acceleration is started, the kvm_init function creates a new
VM context and checks for available extensions. Afterward, a new virtual CPU (VCPU)
thread is created. The new thread calls kvm_init_vcpu that creates a new VCPU and
starts VM execution by calling kvm_cpu_exec.

spawns a new thread that serves as VCPU thread once the VM context is created.
The VCPU thread creates and initializes VCPUs by a call to the respective ioctl.
The kernel creates new VCPUs and initializes the VCPU’s VMCSs in response
to the ioctl. The execution continues with the central execution loop. In the loop
there exist checks for queued events that need handling in user space, e.g., device
emulation or I/O. If there is no event waiting, a KVM_RUN ioctl on the VCPU
results in the kernel entering VMX non-root mode, hence the execution context
of the VM. If the VM exits back to VMX root mode due to an event that requires
interference of the VMM, the exit reason is passed back up to QEMU so the VM
exit is handled in user space.

Besides the implementation of Intel’s VT-x, KVM leverages EPTs to speedup
GVA to HVA translation. We have to consider that KVM is not a standalone hy-
pervisor and depends on QEMU as user space component. As discussed in Sec-
tion 2.1.1, QEMU already establishes a GPA to HVA mapping that may conflict
with the EPT mappings created by KVM. Therefore, QEMU must share its guest
memory layout with KVM, so KVM is able to create GPA to HVA mappings in
the EPTs that are consistent with QEMU’s view on guest main memory.

Furthermore, since the QEMU process is a common Linux process, the Linux
host may swap or even free guest main memory if there is high memory pressure
on the system. For this purpose, KVM registers a so-called memory listener. As
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a result, KVM is being notified if Linux reclaims a page frame that is in use by a
VM and KVM invalidates the affected EPT entries.

Rittinghaus et al. [40] performed benchmarks using QEMU/KVM. They found
that the slowdown induced by KVM compared to executing the benchmark on a
bare machine is negligible for the specific benchmarks they deployed3. In contrast,
executing the same benchmarks in QEMU with emulation results in a slowdown of
factor 22 to 33 compared to the bare machine. Therefore, QEMU/KVM is feasible
for applications with severe performance requirements, e.g., cloud computing or
superficial system analysis of long-running production workloads in research.

2.2 Checkpointing
Running production software systems in VMs, in particular hardware-assisted
VMs, provides several advantages compared to the deployment of a single OS
with respective user software on a bare machine. First of all, the VMM is in
full control of the execution of its VMs. The VMs running on a single host are
encapsulated systems that can interact with each other using predefined, VMM
controlled interfaces, yet they cannot interfere with each other or the VMM.

The availability of the complete VM state in the context of the VMM allows
for the creation of VM checkpoints. A VM checkpoint is composed of the VM’s
VCPU state, main memory, disk and device states. VM checkpoints introduce
a certain flexibility and scalability to the application areas of VMs, especially
in the area of cloud computing. Load balancing [32] essentially leverages VM
checkpointing as it allows for the migration of a complete VM from one physical
host to another over a network connection [36].

VM migration as an example for the application of VM checkpointing shows
challenges and problems of the technology. The state of a VM is continuously
changing as long as a VM is allocated to a host CPU. As a result, the VMM must
suspend the CPU allocation of a VM so the VM is in a definite state and the
VMM is able to capture it. Once the VM is stopped, a naive approach to creating
a checkpoint is to copy all relevant data, including CPU state, main memory,
disk image, and device states, to a persistent storage. When the copy process
completes, the VMM resumes the VM.

This simple approach is called stop-and-copy and raises two interlinked prob-
lems. First, the plain amount of data that needs to be copied easily exceeds multi-
ple gigabyte, because of the main memory and the disk image. Secondly, copying
multiple gigabytes of data takes a certain amount of time in which the VM is
not operational. This so-called downtime of the VM is noticeable to end users of

3Rittinghaus et al. deploy single CPU VMs so they restrict the benchmark to a single CPU core
on the bare machine.
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a service which the VM provides. Furthermore, if we do not want to store the
checkpoint on disk, but rather migrate it to another host, the downtime even in-
creases as the complete checkpoint data must be send over a network connection.
The main focus of attention of VM checkpointing is therefore minimization of
VM downtime and reduction of checkpoint data.

For the remainder of this section, we concentrate especially on checkpointing
of guest main memory since the data amount of the VCPU and device states are
negligible. Disk checkpointing is ignored in this work since it is of no relevance
in our analysis and requires additional techniques due to the huge amounts of
persistent data stored on disks.

2.2.1 Pre-Copy
Nelson et al. [36] propose an incremental approach identified as pre-copy. Clark et
al. [20] describe the process of pre-copy in more detail. With pre-copy the VMM
transfers the main memory of a VM to another host over the course of multiple
rounds.

We visualize this process in Figure 2.8(a). The target VM continues running
during the migration process. In the first round the VMM declares the main mem-
ory of the target VM read-only and copies the complete RAM to the destination
host. Given that the target VM is still running, it writes to pages that were al-
ready copied by the VMM. The VMM is notified of this modification in form of
an exception since the complete RAM was marked read-only at the start of the
first round. In the following rounds, the VMM copies only those pages of main
memory that where modified during the previous round, thus the use of the term
incremental checkpointing. After a certain number of rounds, a specific thresh-
old is reached and the VMM stops the target VM and copies the remaining page
frames to the destination host. Finally, the VMM transfers VCPU and device
states and the target VM is resumed on the destination host.

Pre-copy minimizes the downtime by copying a VM’s main memory in multi-
ple rounds. Under the assumption that the page modification rate of a VM is less
than the copy rate of the checkpoint mechanism, each round must transfer less
data to the destination host. As a result, in the final round, when the target VM
is stopped, the downtime is kept to a minimum as there is just a small fraction of
VM state left to transfer.

Clark et al. [20] evaluated their pre-copy migration for Xen with three work-
loads, each with a different requirement profile: (1) SPECweb99, (2) the server of
an online multiplayer game, which requires low latencies, and (3) a memory inten-
sive workload. Their test machines are connected by a switched Gigabit Ethernet.
They measured downtimes of 210 ms, 60 ms and 3.5 s, respectively.

Nelson et al. [36] evaluated their implementation of pre-copy for the VMWare
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Figure 2.8: (a) Shows the pre-copy migration mechanism. In round one the complete RAM
of VM 1 is marked read-only and copied to VM 2. In subsequent rounds the page frames
that have been modified during the previous round are transferred to the destination host.
After n rounds, VM 1 is stopped and the VMM copies the remaining state, including a
small set of page frames, VCPU and devices states, to VM 2. (b) Shows the post-copy
migration mechanism. Post-copy transfers the VCPU and devices states of VM 1 prior
to its main memory. Once the host of VM 2 receives VCPU and devices states, the main
memory is copied sequentially from VM 1 to VM 2 while VM 2 is running concurrently. If
VM 2 accesses a page frame that is not yet available, it is retrieved from VM 1 by issuing a
demand-paging request. (c) Depicts copy-on-write checkpoint creation. In contrast to (a)
and (b), the checkpoint data is not migrated to a different host, but written to a file. The
VM is stopped in order to capture a consistent state of VCPU and devices and to write-
protect the main memory. Afterward, the VM continues running, sequentially copying the
main memory. If the VM writes to a not yet copied page frame, a page-fault occurs and
the VMM saves the page to the checkpoint file before removing the write protection and
granting write access to the VM.

ESX Server. Nelson et al measured similar downtimes like Clark et al. For a mem-
ory intensive workload, they measured downtimes between 400 ms and 800 ms, up
to 6.8 s for different VM main memory sizes, namely 64 MiB, 128 MiB, 256 MiB,
and 512 MiB.

Besides the downtime, we have mentioned the importance of the amount of
data that must be transferred over a network connection. In general, pre-copy al-
ways transfers more data than the actual size of a VM’s main memory due to the
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fact that solely round one transfers the complete guest RAM once. Each subse-
quent incremental round copies already transferred page frames that were altered
by the guest in the mean time. Clark et al. evaluated the total amount of data
transferred via the network connection for the migration during the SPECweb99
workload. The VM was configured with 800 MiB of main memory and their pre-
copy implementation sent 860.7 MiB to the destination host. That is 7.5 % more
than the original VM RAM size.

It is save to say that the low downtime for VM migration using pre-copy is
achieved by accepting an increase in the arising amount of data that must be send
over the network.

2.2.2 Post-Copy
The accumulated amount of data that must be copied to the destination host if
using pre-copy exceeds the raw size of the target VM. Therefore, the total check-
pointing time, hence the time it takes from the beginning of the first round till
resuming the VM on the destination host, is high.

The post-copy approach moves the transmission of the VCPU and device states
to the beginning of the migration. In contrast to pre-copy, which transfers the
main memory of the VM before the VCPU and devices states, post-copy transfers
the main memory of the VM after the transmission of the VCPU and devices
states. As a result, the target VM is stopped at the source host and resumed on
the destination host once the VCPU and devices states are received. The VM
continues executing while the VMM concurrently starts copying the main memory
from the source host to the already running VM on the destination host. If the
target VM tries to access parts of its main memory that are not yet available, the
VMM issues a demand paging request and retrieves the accessed page from the
source host. Demand paging induces a performance penalty on the target VM
since the request is served by a network connection with a high latency compared
to the general paging process occurring on a local system where data is fetched
from storage or a shared memory page is mapped in. The complete process is
visualized in Figure 2.8(b).

Hines et al. [29] describe their post-copy implementation for Xen [14] that
deploys additional optimizations, especially for demand paging. First of all, they
deploy a simple pre-paging algorithm in order to diminish performance loss due to
demand paging. The pre-paging algorithm is based upon the assumption that the
target VM is more likely to sequentially access memory pages than in a random
manner. Therefore, if a demand-paging fault occurs they shift the post-copying
task to continue sequential copying with the unavailable page frame that caused
the demand-paging fault. Furthermore, they extend Xen’s ballooning mechanism
to avoid transferring free or unallocated pages over the network.
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Guest memory ballooning was first introduced by Waldsburger [45] for the
VMWare ESX Server. Waldsburger introduced a small balloon module into the
guest OS that is implemented as a device driver or kernel module. The balloon
component does not interface with the guest OS, but rather with the hypervisor. If
the hypervisor intends to reclaim main memory from a VM it requests the balloon-
ing component to inflate. Inflating means the balloon allocates and pins physical
pages. This increases memory pressure inside the guest, thus triggering the guest
OSs memory management causing the guest OS to return physical pages from its
free list. The physical pages allocated by the balloon are returned to the VMM and
may be utilized for the creation of additional VMs. VM ballooning is an impor-
tant mechanism that enables over-commitment of the actually available physical
memory in order to maximize utilization of a host.

Hines et al. provide an evaluation that directly compares their post-copy im-
plementation with the existing pre-copy implementation of Xen. They execute
various benchmarks in a VM configured with 512 MiB of RAM.

Their measurements show that post-copy significantly reduces total migration
time of a VM running the SPECWeb2005 benchmark. The total migration time
drops from 11 s with pre-copy to 8 s with post-copy. Furthermore, post-copy re-
duces the total number of transferred pages for SPECWeb2005 from 180000 with
pre-copy to 130000 with post-copy. Yet, post-copy suffers from high downtimes
above 1 s compared to Xen’s pre-copy implementation that achieves downtimes
of at max 600 ms. Hines et al. argue that the high downtime of their post-copy
implementation is caused by the page fault tracking mechanism that was deployed
for demand paging.

2.2.3 Copy-on-Write
The approaches that we have discussed up till now have all presumed the use case
of VM migration for their checkpointing mechanisms. Copy-on-write (CoW) is
typically exclusively used for creation of persistent checkpoints. CoW aims to
trade runtime overhead and a higher checkpoint creation time for a low downtime.
The process is depicted in Figure 2.8(c).

For CoW the VMM stops the target VM, and saves VCPU and device states
just as it is the case with post-copy VM migration. Afterward, the VMM write-
protects the target VM’s memory. As the VM continues execution, the VMM
starts copying the VM’s memory concurrently, similar to post-copy. The VMM
removes the write-protection once a page frame is copied to persistent memory. If
the target VM accesses write-protected main memory, the execution traps into the
VMM. The VMM saves the affected page frame and clears the write-protection.

Sun et al. [28] provide a CoW checkpoint implementation for the Xen hyper-
visor. In contrast to Hines et al., who rely on a para-virtualized solution for their
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post-copy VM migration approach, Sun et al. proposed a completely transpar-
ent checkpoint mechanism. They implemented the write-protection required for
CoW in the VMM by leveraging the SPTs of the target VM that are managed by
the hypervisor.

Sun et al. evaluated their solution by comparing it with a modified version
of Xen’s pre-copy migration mechanism that simply dumps checkpoint data to a
file instead of transferring it to another host. They state that CoW decreases the
overall downtime by more than 76 %. Unfortunately, they did not provide any
data regarding the total checkpoint creation time or the overhead induced by the
traps into the hypervisor due to write accesses to protected page frames.

2.2.4 Conclusion
In summary, we notice that the minimization of one of the performance measures
of checkpointing (downtime, total checkpoint/migration time, data amount) al-
ways is a trade-off with the others. Pre-copy trades a low downtime for a raise in
total migration time and the number of page frames transferred over the network.
Post-copy on the other hand achieves shorter total migration time and copies less
page frames at the cost of an increased downtime. The CoW approach proposed
by Sun et al. proofs to significantly reduce the downtime, though it is a checkpoint
mechanism only and therefore cannot be compared with the pre-and post-copy
migration mechanisms that we have discussed in this section.

2.3 Record and Replay
Besides checkpointing, VMs provide the benefit that their execution, including
the behavior of the guest OS, can be observed and analyzed in detail. Therefore,
the execution of a VM can be recorded and replayed at a later point in time in the
exact same way.

This process is referred to as deterministic record and replay (RR). RR is of
special interest for security analysis [44] and debugging since it eases the investi-
gation of the behavior of a potential intruder or a misbehaving software and allows
for debugging of so-called heisenbugs [27]4 or race conditions.

In general, a computer system is composed of deterministic components. The
CPU, for example, always generates the same output given a specific input. As
a result, the repeated execution of a computer program always works out in the
same way, given we provide identical input each time. In practice this is not the
case since non-deterministic events disrupt the deterministic execution on a reg-
ular basis. An obvious example for such non-deterministic events are incoming

4A heisenbug is a bug that does not occur once the developer tries to observe it.
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Figure 2.9: Illustrating the two phases of record and replay. The left side visualizes the
recording phase. The VMM intercepts a non-deterministic event that occurs at t0 and
writes it to the recording log. During replay the VMM blocks non-deterministic events
that do not originate from the log. Once the VM’s execution reaches timestamp t0, the
VMM injects the corresponding event.

network packets that need processing. If a new network packet arrives, the net-
work card issues an interrupt that signals the CPU to suspend its current task and
call the interrupt handler of the OS in order to process the incoming data. Besides
incoming network packets there are other, internal and external, events that cause
a disruption breaking the CPU’s deterministic execution, for example, user input
or reading of time sources like the time stamp counter of the x86 architecture.

The VMM is able to record all non-deterministic events that alter the execution
of a VM. For this purpose, it takes an exact location of the occurrence of an event
in the execution flow, its type, and linked data (e.g., content of incoming network
packets). We further refer to the exact location of an event in the execution flow
as the landmark. The mentioned information allows for the exact reproduction of
the course of execution of a VM. If a VMM starts a replay, it opens the replay
log and starts the execution of the VM. Once the VM hits the landmark of a non-
deterministic event, the VMM reads the event information from the log file and
injects it into the VM. Furthermore, the VMM must intercept and block all non-
deterministic events that do not originate from the replay log. As a result, each
run the VM replicates the exact same sequence of internal states. The process of
recording and replaying non-determinism is schematically shown in Figure 2.9.

Dunlap et al. [44] provide a fully functional RR implementation, called ReVirt,
that bases upon UMLinux [30]. UMLinux is an early trap-and-emulate VMM
for Linux that executes paravirtualized guests and runs on the x86 architecture.
Dunlap et al. deploy ReVirt to analyze attacks. They argue that system loggers
for system analysis that execute within an OS that is under attack are insufficient
due to multiple reasons.

First of all, they lack integrity since an attacker may tamper with the system
logger to cover up the attack. ReVirt is part of a VMM so the integrity of logged
data is save as long as we trust the VMM, which has a much smaller trusted
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code base than a full-size monolithic kernel, since ReVirt is a type-1 hypervisor.
Secondly, system loggers, which are part of an OS, often only record a few types
of events of interest that may not be sufficient to recreate and analyze an attack in
detail. ReVirt on the other hand records every non-deterministic event that affects
the execution of a VM, so it is able to exactly recreate its course of execution
including the malicious behavior of an attacker.

Dunlap et al. conducted several experiments to evaluate various aspects of
ReVirt. They state that logging induces an additional overhead of at max 8 %
whereas replaying results in a runtime overhead of at most 3 %. For workloads
with long idle phases the replay time even decreases since the replay skips over
idle phases. ReVirt proofs that VM record and replay is a feasible approach for
system analysis. Nevertheless, Dunlap et al. depend on an paravirtualized Linux
kernel for their analysis.

Besides system analysis, RR can be deployed to improve VM checkpoint-
ing. The checkpoint mechanisms we have discussed in Section 2.2 all base upon
the idea to transfer the VM’s main memory while the target VM executes concur-
rently. Liu et al. [34] propose a novel approach that utilizes RR in order to migrate
a target VM from one host to another.

First of all, they stop the target VM’s execution and capture its general state,
namely CPU and devices. Next, they continue execution and create a CoW check-
point of the VM’s main memory. Additionally, they record all non-deterministic
events that affect the VM’s course of execution. Once the checkpoint is completed,
they start copying the checkpoint file to the destination host while the VMM keeps
recording non-determinism affecting the VM. Finally, they iteratively transfer the
log file to the destination host, similar to the round-based approach found in pre-
copy. The destination host receives the checkpoint file and restores the VM’s
state.

The VMM on the destination host continuously replays the log files as they
arrive in order to synchronize the new VM on the destination host with the target
VM on the source host. Once the size of the log file created on the source host
falls below a certain threshold the target VM is stopped on the source host. The
last log file is transferred and replayed on the destination host, and the target VM
resumes execution on the destination host.

Liu et al. base their checkpoint mechanism upon two assumptions. First, the
log file growth rate is always less than network transfer rate and secondly the
replay rate is higher than the log growth rate. Their measurements show that both
assumptions hold in their experiments since the log growth rate never exceeds
1 MiB/s and the replay rate, normalized to logging, is at least 1.05×. As a result
it is guaranteed for the VM on the destination host to catch up with the target VM
on the source host.
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2.3.1 Heterogeneous Record and Replay

Dunlap et al. facilitate a single platform for their RR system thus recording as
well as replaying is performed on the same hypervisor. This, so-called homoge-
neous RR, comes with drawbacks. For example, if we choose a hypervisor that is
optimized for performance, it often lacks analysis capabilities such as the ability
to monitor every main memory access. Therefore, it is impossible to conduct, e.g.,
extended memory traces using a RR system that bases upon a hypervisor that was
optimized for performance.

A solution for said issue is the deployment of different hypervisors for the
recording and the replaying phase, so-called heterogeneous RR. With heteroge-
neous RR, we utilize the performance of a hardware-assisted VMM for recording
and the analysis capabilities, e.g., the facilities for memory tracing, of a full sys-
tem simulator.

Chow et al. [19] introduce Aftersight, a heterogeneous RR system that pro-
vides offline and online analysis capabilities including intrusion detection and
prevention. Aftersight uses the DBT of VMWare ESX Server for more time crit-
ical analysis, whereas they utilize QEMU [9] for offline replaying and analysis.
In contrast to ReVirt, which is based on UMLinux, QEMU allows for extended
system analysis without any modifications to the guest OS. This is mainly due to
QEMU’s DBT that can be extended and instrumented for analysis.

Chow et al. provide an extensive evaluation of Aftersight’s online and offline
analysis capabilities. They differentiate three applications for Aftersight – first,
running the analysis synchronous with the analyzed workload. Secondly, run-
ning heavyweight analysis concurrently with the workload and lastly, performing
heavyweight offline analysis. For heavyweight, concurrent analysis they utilize
the DBT of VMWare in order to detect malicious memory accesses. For this pur-
pose, they deployed an instrumented guest Linux kernel for their experiments.
Their system discovered all write violations occurring in the system. Although,
Aftersight’s analysis VM executes with a delay of 0.86 s due to the overhead of
DBT and analysis. Finally, for their offline analysis they deployed a modified
version of QEMU. Their instrumentation of QEMU ensures that every instruction
executed by the guest meets a set of memory safety guarantees. This process is
very costly resulting in a runtime overhead of 100× compared to the execution on
a plain VMWare ESX server.

Chow et al. found safety critical bugs in the VMWare ESX server and the
Linux kernel using the aforementioned heavyweight offline analysis, hence justi-
fying the high runtime overhead. In summary, it is save to say that heterogeneous
RR is a suitable tool for extended system analysis. Although, the high runtime
overhead of about 100× for in-depth analysis using a full system simulator like
QEMU is not feasible for long running or interactive production workloads.
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2.4 SimuBoost

The work of Chow et al. provides a good example of the high runtime overhead
of an instrumented full system simulator. Rittinghaus et al. [40] compare the
runtime of VMs executing various workloads in KVM, QEMU with memory trace
hooks, QEMU with empty hooks, and Simics with empty hooks. First of all,
they state that the slowdown induced by KVM for the evaluated benchmarks is
approximately zero. They find a slowdown of factor 22–33× for QEMU without
hooks and a slowdown of factor 113–207× for QEMU with memory trace hooks.
The slowdown of Simics ranges from 624× to 1036× with empty trace hooks.
This data confirms the results presented by Chow et al. regarding the runtime
overhead of an instrumented QEMU.

This extremely high slowdown renders the application of full system simu-
lation for the purpose of analyzing production workloads infeasible. For exam-
ple, any interactive application cannot be analyzed using full system simulation
since the system seems unresponsive to a human user [35]. This unresponsiveness
weighs even more if we want to create a memory trace of an application that con-
ducts communication over a network, e.g., a web server or a SQL database server,
since its client connections time out. We might argue that the use of heteroge-
neous RR, as introduced in Section 2.3.1, solves the problem of unresponsiveness
and allows for an extensive analysis afterwards. Yet, even with heterogeneous RR
the recording of one hour of any workload takes at least four days to replay and
analyze due to the high slowdown induced by full system simulation.

Rittinghaus et al. [40] introduce SimuBoost, a distributed system to speedup
full system simulation that combines techniques presented in this work. Simu-
Boost as a whole is a classical producer-consumer system as illustrated in Figure
2.10. The system leverages the bare-metal execution speed of a hardware-assisted
VM to precompute a workload running inside the VM, including the behavior
of the guest OS. The VMM on the producer continuously creates checkpoints of
the hardware-assisted VM at a fixed interval length of several hundreds of mil-
liseconds up to multiple seconds. Therefore, each checkpoint marks the start of a
distinct execution interval that ends at the start of the subsequent checkpoint.

Let us assume a consumer receives checkpoint number j and restores it. At this
point the state of the consumer’s simulation exactly matches the original state of
the producer VM at the same point in execution. The consumer resumes execution
starting from the state restored from the checkpoint. In the course of execution,
the simulation drifts apart from the original execution on the producer node, due
to the effects of non-deterministic events as discussed in Section 2.3. As a result,
the state of the VM after the consumer completes the simulation of checkpoint
j does not match the VM state contained in checkpoint j + 1. This breaks our
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Figure 2.10: Illustrating the general setup of SimuBoost. There is a computation node
that serves as single producer. It runs a VMM that executes a hardware-assisted VM. The
VM itself executes a workload of interest that runs for a fixed period of time. The total
runtime of the hardware-assisted VM can be split into a finite number of self-contained
intervals. SimuBoost distributes each interval to a dedicated consumer node. The con-
sumers simulate their respective intervals concurrently.

assumption that the producer VM precomputes the execution for the simulation
nodes.

For this reason, SimuBoost facilitates heterogeneous RR to counteract the di-
vergence of simulations on consumer nodes and the original hardware-assisted
course of execution on the producer. The VMM on the producer node logs non-
deterministic events in addition to creating continuous checkpoints. Therefore, a
simulation interval now consists of a checkpoint and a log of non-deterministic
events. If a consumer node receives a new interval j it restores the checkpoint and
starts to replay the log starting at said checkpoint. Therefore, the state after the
simulation of interval j matches exactly the state contained in checkpoint j + 1,
hence guaranteeing consistency between the course of execution of the VM on the
producer and the simulations on the consumer nodes.

2.4.1 Continuous Checkpointing
In contrast to traditional applications of checkpointing, such as VM migration
or simple backup creation, SimuBoost creates continuous checkpoints with a high
frequency. Continuous checkpointing must meet specific criteria in order to achieve
a maximal speedup of full system simulation using SimuBoost. Baudis [15] ana-
lyzed those requirements and implemented a prototype checkpoint mechanism for
the use in SimuBoost. SimuBoost shares common requirements with traditional
checkpoint mechanisms, which are utilized for VM migration in cloud environ-
ments, as we have discussed in Section 2.2.
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In general, a checkpoint mechanism should induce a minimal downtime so
that the process of migration or rather checkpointing is transparent to the VM.
For the application in SimuBoost, the downtime induced by the checkpointing
mechanism weighs even more since SimuBoost takes checkpoints at a very high
frequency of about one checkpoint per second. For example, if we presume a
checkpoint interval length of one second and hypothesize a runtime of one hour
for the workload, SimuBoost would create n = 1h · 60 · 60 = 3600 checkpoints.
Furthermore, if we take the minimal downtime measured by Clark et al. [20] for
their implementation of pre-copy on the Xen hypervisor as a basis for the down-
time (60 ms), we get an accumulated downtime of t = 3600 · 60ms = 216 s for
the producer VM of SimuBoost. This already implies a runtime overhead of 6 %
under the assumption of a constant downtime. Furthermore, taking checkpoints
with a high frequency implies high data rates. The arising data has to be stored
and distributed to consumer nodes. As a result, another important requirement on
the checkpoint mechanism is the reduction of arising checkpoint data.

Baudis [15] proposes an incremental checkpoint mechanism to meet both re-
quirements. Pre-copy checkpoint approaches already incrementally process data,
thus they only copy data that has changed since the previous round. For the ap-
plication of incremental checkpointing in the context of SimuBoost, Baudis treats
each checkpoint interval as an enclosed round so SimuBoost only saves those
page frames and disk sectors that where modified by the guest during the last
checkpoint interval. Additionally, he implements a deduplication mechanism for
checkpoint data in order to further reduce the accumulating data amount beyond
the boundaries of incremental checkpointing.

Baudis performed an evaluation of his incremental checkpoint mechanism.
He used a checkpoint interval of 2 s, and ran a kernel build as a workload in the
checkpointed VM and took 50 continuous checkpoints. His incremental check-
point mechanism, including deduplication and persisting data using MongoDB
[7], achieves downtimes of on average 1–2 s. One reason for the high downtime
of his implementation is the simple stop-and-copy approach he takes to copy mod-
ified page frame and disk sectors to storage. Baudis further states that 40–60 % of
the checkpoint creation time is spent by MongoDB processing checkpoint data.
Therefore, Baudis approach was not applicable for SimuBoost, especially if we
consider our example that shows that even a hypothetical downtime of 60 ms as
achieved by the pre-copy approach of Clark et al. already would induce a runtime
overhead of 6 %.

Baudis work showed that a storage solution optimized for the use in Simu-
Boost is necessary in order to reduce the downtime. Eicher [23] concentrated
on reducing the downtime of the checkpoint mechanism by implementing a cus-
tom checkpoint store and processing checkpoint data asynchronously. He also
presented a first approach to checkpoint distribution which was later adjusted by
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Pusch [38], leading to the current checkpoint distribution mechanism based on
multicast. Eicher defined an upper bound of 100 ms on the checkpoint downtime,
since the work of Rittinghaus et al. [40] presumed the same value and it is per-
ceived as instantaneous by humans [35]. Eicher found an average downtime of
44 ms for an interval length of 2 s, therefore meeting his requirements of a down-
time less than 100 ms. Yet, the downtime was not constant, but rather varying
depending on the workload and its phase of execution.

As a result, Böhr [18] introduced an incremental copy-on-write checkpoint
mechanism for the deployment in SimuBoost. Böhr uses the asynchronous check-
point processing and storage system implemented by Eicher and replaces the ac-
tual process of how checkpoint data is copied to the storage unit. He found that
CoW further reduces the downtime to on average 26 ms for a checkpoint interval
of 2 s. Additionally, the deployment of CoW results in a relatively constant down-
time since, while the VM is stopped, the main memory of the VM is simply being
write-protected, whereas the actual process of copying checkpoint data to storage
is performed concurrently to the VM’s execution.

To this day the checkpoint mechanism of SimuBoost has been further op-
timized. We have implemented incremental CoW based checkpointing for the
virtual disk in addition to the CoW checkpoint mechanism for creation of main
memory checkpoints. Furthermore, the process of main memory checkpointing
has been divided into two self-contained components that can be combined freely.
On the one hand, there is the already discussed mode of the copy process itself
that is either copy-on-write or stop-and-copy. On the other hand, there is the dirty
logging mechanism (DLM).

We have already discussed incremental checkpointing, which implies the need
to track page frames that where modified, hence dirtied, since the previous check-
point. SimuBoost provides two different DLMs. Dirty logging via write protec-
tion (WP) write-protects the guest’s main memory in the EPTs just as it is the case
with CoW checkpointing. This means, if the guest tries to modify a page frame
the access traps into the hypervisor and the hypervisor is able to update its dirty
bitmap accordingly. Baudis, Eicher, and Böhr used WP as DLM in their respec-
tive work. The second DLM performs a page table walk during the downtime of
the VM and scans the dirty bit of the EPT page table entries that are set by the
CPU if a page frame has been written to. The information is in turn synchronized
to the dirty bitmap for further processing by the actual data copying mechanism
as mentioned before. The dirty bit in the page table entries are cleared before the
VM resumes.

In summary, the checkpoint mechanism we currently deploy in SimuBoost
has evolved over multiple years. It achieves constant, low downtimes of about
5 ms with WP and CoW and induces a low runtime overhead. Nevertheless, the
recent work of Pusch [38] on checkpoint distribution showed that there is further
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optimization potential for the checkpoint mechanism. In the following Chapters,
we will discuss the current state of the art of SimuBoost and perform a detailed
analysis of the introduced checkpoint mechanisms in order to uncover remaining
drawbacks. Furthermore, we are going to propose optimizations based on our
analysis in order to improve the performance of the checkpoint mechanism for the
specific application in SimuBoost.
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Chapter 3

Analysis

SimuBoost [40] utilizes VM checkpoints and heterogeneous RR to achieve a
speedup of full system emulation. Heterogeneous RR deploys a hardware-assisted
hypervisor in the recording phase in order to leverage its almost bare-metal exe-
cution speed and utilizes full system emulation for the replaying phase due to its
extended system analysis capabilities.

The approach of SimuBoost goes a step further as it logically divides the
recording in intervals of fixed execution time by periodically taking VM check-
points. The taken checkpoints are instantly distributed to simulation nodes al-
lowing parallel replay of execution intervals. The speedup that is achievable by
distributed heterogeneous RR depends on the performance of the deployed check-
point mechanism. The checkpoint mechanism should have a minimal impact on
the total execution time of the recording VM as well as the replaying VMs on the
simulation nodes.

This work aims to optimize the checkpoint mechanism for the application in
SimuBoost. Therefore, we further analyze the available checkpoint mechanisms,
including checkpoint creation and checkpoint loading. First of all, we specify a
set of requirements for a checkpoint mechanism that is deployed in the context
of distributed, heterogeneous RR in order to systematically identify room for im-
provement.

3.1 Requirements on the Checkpoint Mechanism

SimuBoost is a multi-component application that, as a whole, runs on either a
computer cluster or a single high-performance workstation. Each particular com-
ponent, namely, (a) the hardware-assisted VM including logging of non-deterministic
events and incremental checkpointing, (b) the checkpoint and recording log distri-
bution, and (c) the emulation on the simulation nodes, must meet definite require-

37
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ments in order to perform optimally.
We recap the functionality of SimuBoost in detail in order to identify the im-

portance of the checkpoint mechanism for the overall performance of SimuBoost.
Furthermore, we determine requirements on the checkpoint mechanism along the
way.

3.1.1 Theoretical Model
Rittinghaus et al. [40] provide an abstract model to argue about the theoretical
performance of SimuBoost and its functionality. They differentiate two types of
computation nodes. One hardware-assisted recording node and a number of sim-
ulation nodes.

The recording node executes a VM for a fixed time period Tvm. During the
execution of the VM, the hypervisor logs non-deterministic events and takes con-
tinuous, incremental checkpoints at a fixed rate rcp = 1

L
, where L is the interval

length, thus splitting the execution time in n distinct intervals of length L. We as-
sume the logging of non-determinism slows down the execution of the hardware-
assisted VM by a factor of srec. Furthermore, we presume the checkpointing
mechanism slows down the hardware-assisted VM by a factor scp.

The slowdown factor of the checkpoint mechanism scp depends on the so-
called dirty logging mechanism, which is used to keep track of dirty page frames,
and the CoW mechanism which causes page faults for write-protected page frames.
Therefore, the overall performance penalty for the runtime Tvm of the VM is
slog = srec · scp, resulting in the runtime of the recording VM slogTvm = n · L.

Additionally, taking a checkpoint provokes a constant downtime tc of the VM.
Note, that the accumulated downtime of each checkpoint adds up to the wall-clock
runtime of the recording VM, but not to the effective runtime Tvm of the VM. The
effective runtime Tvm only describes the time the VM is actively advancing the
execution of the guest system, thus each constant time period tc, which the VM is
stopped in order to capture a consistent checkpoint, is not added to the effective
runtime.

The taken checkpoints and the replay log are instantly distributed to the sim-
ulation nodes. Once a simulation node receives a new, not yet replayed, simula-
tion interval and it has replay capacity left, it loads the corresponding checkpoint
taking a constant time ti and starts the emulation of said interval. Figure 3.1 il-
lustrates the distribution of intervals to emulations. We presume the runtime of
the simulation compared to the runtime of hardware-assisted VM Tvm is slowed
down by a factor ssim = srep · semu, due to replaying non-deterministic events and
the emulation itself. Therefore, the runtime of a conventional (non-parallelized)
simulation is depicted by Tsim = ssim · Tvm = srep · semu · Tvm. Accordingly,
under the assumption that each interval replays equally long, the runtime of the
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Figure 3.1: Illustrating the chronological sequence of the execution in SimuBoost. Emu-
lation intervals 1 to n map to a set of simulation nodes. The runtime of n− 1 emulations
is masked by the execution time of the recording and the replay of the n-th interval on the
recording node itself.

simulation for a single interval is 1
n
Tsim. If we further assume, that the last interval

is replayed on the recording node itself, we get an overall parallel execution time
of

Tps(n) = slogTvm + n · tc + ti +
1

n
Tsim. (3.1)

If we substitute n =
slogTvm

L
, we obtain the parallel execution time Tps as a function

of the interval length L

Tps(L) = slogTvm +
slogTvm
L

· tc + ti +
ssim
slog

L (3.2)

As a result the speedup of the parallel simulation compared to the common se-
quential simulation is given by

S(L) =
Tsim
Tps(L)

=
ssimTvm

slogTvm +
slogTvm

L
· tc + ti +

ssim
slog

L
(3.3)

Rittinghaus uses Formula 3.3 to find an interval length Lopt for which the speedup
S(L) is maximal. The interval length in turn affects the number of simultane-
ously executable simulation jobs. Rittinghaus shows that the number of parallel
simulation jobs is determined by the proportion of the simulation completion time
ti +

ssim
slog

L to the interval arrival time tc + L, under the assumption of an invariant
emulation time ssimTvm, leading to an required number of nodes

N(L) =

⌈
ti +

ssim
slog

L

tc + L
+ 1

⌉
(3.4)
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with L = Lopt.
The maximal number of jobs that can be executed in parallel is determined by

the number of available simulation nodes and their hardware specifications. We
assume a one-to-one mapping of emulations to available CPU cores on a node.

In our experience, the number of CPU cores or rather the extend of parallelism
of the CPU is less of a problem regarding the performance of the simulations than
the limited amount of main memory of the host. Therefore, the number of paral-
lel simulation is primarily bound by the RAM size of the producer VM and the
available main memory of the consumer nodes, since each emulation instantiates a
complete VM, including its complete RAM image. If the recording VM occupies,
e.g., 4 GiB of main memory, a consumer node with 16 GiB of main memory is in
theory able to emulate three VMs, leaving just another 4 GiB for OS structures,
potential analysis software and the checkpoint and recording log storage.

Rittinghaus et al. provide an example scenario with Tvm = 3600 s, ssim = 100,
slog = 1.08, tc = 0.1 s, and ti = 1 s. They obtain an optimal number of simulation
nodes of N = 90 for this scenario. If we presume consumer nodes with 16 GiB of
main memory each, this implies that we need at least 30 consumer nodes in order
to concurrently simulate a VM with 4 GiB of main memory.

Extended Theoretical Model

In practice, we do not have unlimited hardware resources since hardware in gen-
eral is expensive. Therefore, we need a theoretical model that accounts for a
limited number N of consumer nodes. Eicher [23] developed such a model in his
work on improving the checkpoint storage of SimuBoost. He showed in his ex-
periments that his model accurately predicts the speedup of SimuBoost compared
to sequential emulation in his simple approximation of the original scenario. Yet,
Eicher’s model must be adapted for todays version of SimuBoost since the check-
point mechanism has been enhanced since then. In the following, we revise one of
Eicher’s assumptions and recap his considerations regarding the extended runtime
model.

Eicher argues that the accounting of a constant downtime in the unrestricted
model of SimuBoost is insufficient since the stop-and-copy based checkpoint
mechanism that was deployed in SimuBoost at that time did not guarantee a
constant downtime for a fixed checkpoint interval length [15]. Therefore, Eicher
states that it is reasonable to replace constant downtime by a slowdown factor se1

that accounts for the difference of accumulated data during a checkpoint interval
with length L. As a result, the term tc + L would be substituted by seL.

1The slowdown factor se relates to the slowdown factor scp that Eicher uses in his work. We
substituted it in this work in order to avoid confusion with the completely unrelated slowdown
factor scp which we have introduced in Section 3.1.1.
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This substitution of the constant downtime addend is not needed for the current
implementation of the checkpoint mechanism and was not needed back then for
two reasons.

First of all, the downtimes of a set of checkpoints, which were created using
SnC, vary for a fixed interval length. This depends on the arising data amount dur-
ing each checkpoint interval. A more accurate model may introduce a downtime
that depends on the data amount of each individual checkpoint interval in order to
yield a more accurate model. Instead, Eicher substitutes the constant downtime
addend for a fixed interval by a constant downtime slowdown factor for a fixed
interval. This means it would be possible to simply choose a different constant
downtime addend in the original model in order to achieve the same that Eicher
intends to do. As a result, both accounting methods are equivalent and can be
transformed correspondingly se = tc+L

L
.

Second and most importantly, the current checkpoint mechanism of Simu-
Boost deploys CoW to copy data to storage. Measurements by Böhr [18] showed
that the assumption of a constant downtime holds for CoW checkpoints. There-
fore, besides the general misinterpretation by Eicher, today we are save to assume
a constant checkpoint downtime. As a result, for further considerations of Eicher’s
extended runtime model, we disregard his replacement of the downtime addend.

Eicher acts on the assumption expressed in Formula 3.4, namely, that the num-
ber of required simulation nodes depends on the proportion of the interval comple-
tion rate ti + ssim

slog
L and the interval arrival rate tc + L. He provides an inequation

expressing the initial situation in which his extended runtime model is applicable.
The inequality states that the number of available simulation nodes N is less

than needed for an optimal speedup as calculated by Rittinghaus et al.2:

N < N(Lopt) =

⌈
ti +

ssim
slog

Lopt

tc + Lopt

⌉
(3.5)

In the original theoretical model the total runtime of SimuBoost is given by the
sum of the runtime of the recording VM on the producer node and the runtime of
the replay of the last simulation interval as illustrated in Figure 3.1. The runtime
of concurrently executing simulations on the consumer nodes is masked by the
availability of sufficient simulation nodes.

Eicher expresses the total runtime of SimuBoost with a fixed number of sim-
ulation nodes in a similar way. Given a fixed number of simulation nodes N and
a checkpoint interval arrival rate of tc + L the N th checkpoint becomes available
after

Tlast(N,L) = N · (tc + L) (3.6)
2We drop the addend of one in the original model since it is simply accounting for the producer

node. Eicher only considers the simulation nodes.
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time units. Replaying a single checkpoint takes ti + ssim
slog

L time units. The total
runtime of the recording VM is split into n intervals as discussed in Section 3.1.1.
The total replay time n(ti + ssim

slog
L) may be evenly distributed to N simulation

nodes. This results in a busy time of

Tbusy(N,L) =
n(ti +

ssim
slog

L)

N
(3.7)

for each simulation node. Therefore, the total parallel replay time Tps of Simu-
Boost given a fixed number of simulation nodes can be expressed by the sum of
the time period after which the last simulation node is assigned Tlast and the time
the last simulation node executes Tbusy:

Tps(N,L) = Tlast(N,L) + Tbusy(N,L) (3.8)

As a result, similar to Formula 3.3, the speedup given a fixed number of replay
nodes N and a fixed replay interval L is:

S(N,L) =
ssimTvm
Tps(N,L)

=
N · L · ssimTvm

N2L(tc + L) + Tvm(slogti + ssimL)
(3.9)

Eicher derives the optimal interval length given a fixed number of replay nodes by
solving the equation δ

δL
S(N,L) = 0 which results in the following function of N :

Lopt(N) =

√
tislogTvm

N
(3.10)

In comparison to Eicher’s function to calculate the optimal interval length Lopt,
our function does not depend on the value of the downtime which makes sense
since the downtime of the CoW approach used by SimuBoost’s checkpoint mech-
anism is constant.

3.1.2 Conclusion
Eicher’s extended model accounts for a limited number of simulation nodes. For
the purpose of SimuBoost, we presume that a single consumer node hosts multiple
simulations. The exact number depends on the hardware specifications of each
individual consumer. As a result, the number of consumer nodes is less or equal
to the number of simulation nodes.

At the end of Section 3.1.1, we state that the number of parallel simulations
on a single consumer node is primarily bound by the available main memory of
the machine since each simulation consumes the same amount of memory than
the single recording VM running on the producer node. This means, if we were
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able to halve the amount of memory required by a single simulation, we could
double the number of simulations per consumer, as long as there are enough CPU
cores unassigned. Satisfying the requirements on the number of simulation nodes
given by the original model in Section 3.1.1 would even allow us to achieve the
maximal speedup possible with SimuBoost.

The original model as well as the extended model, include the downtime tc
and the slowdown slog of the VM, which is caused by the recording of non-
deterministic events and the dirty logging of the checkpoint mechanism, as a con-
stant factor.

Finally, in Formula 3.4 we notice the effect of the checkpoint loading time on
the required number of simulation nodes. The lower the checkpoint loading time
the less simulation nodes are required. This is especially highlighted by Eicher’s
model that embeds the checkpoint loading time directly in the function for the
achievable speedup. This is due to the fact that Eicher derived his model from the
inequality shown in Formula 3.5.

In summary Formulas 3.3, 3.9 and 3.4 lead to the following abstract require-
ments on the checkpointing mechanisms.

(a) Downtime and logging slowdown The downtime and the logging slowdown
slog = srec + scp directly influence the speed up S(L) of the parallel simulation
using SimuBoost. Therefore, the downtime and the runtime overhead caused by
the DLM should be reduced.

(b) Checkpoint loading time The checkpoint loading time needs to be reduced
since it directly influences the number of required simulation nodes. Furthermore,
the checkpoint loading time directly influences the achievable speedup in case of
a limited number of available simulation nodes as shown by the extended model.

(c) Memory footprint of simulation VMs The number of parallel simulations
on a consumer node is bound by the available main memory on the respective
node. Therefore, minimizing the memory footprint of an emulation would allow
for more simulations per consumer node and improve the performance of Simu-
Boost for a fixed number of simulation nodes.
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3.2 Different Checkpoint Mechanisms in Compari-
son

In Sections 3.1.1 and 3.1.2, we have derived a set of requirements on the check-
point mechanism which is deployed in SimuBoost. In this section, we compare the
available checkpoint mechanisms conceptually. We use the results of our tests to
further argue about the applicability of each checkpoint mechanism in the context
of SimuBoost.

3.2.1 Checkpoint Creation
First of all, we are going to recapitulate the current checkpoint mechanism of
SimuBoost regarding main memory, disk, and devices. The disk checkpoint-
ing mechanism implements an incremental CoW approach. Device states only
represent a small fraction of the complete data amount of a checkpoint so they
are simply copied to storage during the downtime. Main memory checkpointing
leaves more room for discussion. We have already considered the fact that the
main memory checkpoint mechanism itself splits into two distinct components,
the dirty logging mechanism (DLM), and the actual copy mechanism (see Sec-
tions 2.4.1 and 3.1.1 for reference).

The dirty logging mechanism keeps track of dirty page frames by maintain-
ing a dirty bitmap that contains information about which guest page frames were
written to during the last checkpoint interval. SimuBoost provides two DLMs –
scanning and write protection (WP).

Scanning moves the complete work of acquiring the dirty set of a checkpoint
to the downtime of the VM. For that purpose, the VMM performs a page table
walk in software while the VM is stopped and tests whether the dirty bit of the
page table entries are set. If a dirty bit is set, it looks up the GPA mapped by
the corresponding page table entry and synchronizes the information to the dirty
bitmap. In contrast, WP performs less work during the downtime of the VM,
effectively moving the construction of the dirty bitmap to the execution time of the
VM. Therefore, the VMM simply write protects the VM’s main memory while the
VM is stopped. After the VM resumes, each write access to a page frame triggers
a page-fault so the VMM is able to reconstruct the GPA and set the corresponding
bit in the dirty bitmap.

The copy mechanism on the other hand utilizes the information of the dirty
bitmap in order to processes dirty page frames and copy them to storage. Simu-
Boost implements two copy mechanisms – stop-and-copy (SnC) and copy-on-
write (CoW).

SnC results in high downtimes [15] since it copies the checkpoint data while
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the VM is suspended. CoW copies dirty page frames to storage concurrently to
the execution of the VM, thus reducing the downtime. As a result, CoW is the
first choice for the copy mechanism used in SimuBoost.

If we presume the usage of CoW as common copy mechanism and consider
the theoretical performance implications of the aforementioned DLMs, we can
form following hypothesis.

Scanning should induce a higher downtime than WP since scanning performs
more work, namely, walking the EPTs and synchronizing the dirty bitmap during
the VM downtime. In return, using WP as DLM should result in an increased run-
time overhead compared to scanning, given that write accesses to guest memory
trigger VM exits and require handling by the VMM in order to synchronize dirty
page frames to the dirty bitmap.

We test our hypotheses by creating continuous checkpoints of a VM equipped
with 2 GiB of main memory, using CoW as copy mechanism and scanning or WP
as DLM. All tests execute on an Intel(R) Xeon(R) CPU E5-2630 v3 with 64 GiB
of main memory and a 1 TB Samsung SSD 850. We run two different workloads
in the test VM.

First of all, we execute a Linux kernel build using the Phoronix Test Suite [8]
in order to determine the runtime overhead of the respective DLMs. Furthermore,
we deploy SPECjbb [11] as a memory and computation intensive benchmark to
evaluate the downtimes induced by the DLMs under medium to heavy load. We
repeat these measurements for varying interval lengths of 1 s, 2 s, 4 s, and 8 s. The
shown values are the mean of ten independent runs. Before each run we flushed
the Linux page cache in order to minimize cache related side effects.

Figure 3.2 shows the total runtime (RT) of a VM for different DLMs and vary-
ing checkpoint intervals. We consider the RT minus the accumulated downtimes
in order to argue about the raw runtime overhead induced by the DLM during VM
execution. Therefore, the opaque axis on the right-hand side additionally shows
the performance overhead of the respective DLM in percent of the baseline. The
baseline is given by the RT of an identically configured VM without checkpoint-
ing. For a kernel build the baseline is 745.31 s.

We clearly see that scanning induces less performance overhead than WP. Yet,
we notice a convergence of the runtime overhead of both DLMs with increas-
ing checkpoint interval length. Figure 3.3 illustrates the corresponding average
downtimes and accumulated downtimes.

The accumulated downtimes plotted on the right-hand side axis are aforemen-
tioned accumulated downtimes, which we have subtracted from the total runtime
in Figure 3.2, in order to obtain the raw runtime performance overhead of the
DLMs. We notice that scanning leads to average downtimes that are nearly twice
the number of the average downtimes of WP. Considering this rise of the average
downtime the higher the checkpoint interval gets, we may expect the accumu-
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Figure 3.2: The left axis plots the runtime (RT) of a VM executing a Linux kernel build.
The runtime is plotted minus the accumulated downtime caused by checkpointing. This
means the figure compares the raw runtime overheads produced by the different dirty
logging mechanisms. The right axis shows the runtime overhead of the checkpointed
VM compared to the non-checkpointed VM in percent. The runtime of a VM without
continuous checkpointing totals to 745.31 s.

lated downtime to increase as well. Yet, the accumulated downtime of scanning
decreases converging the accumulated downtime of WP.

We explain this effect by the limited growth of the main memory working-set
in relation to the interval length. Werner [47] provides an extended analysis of
VM main memory working-sets in the context of SimuBoost. He states that the
working set in-between two continuous checkpoints grows slower the longer the
checkpoint interval is.

For example, Werner provides measurements of the write working set of a
Linux kernel build executing in a VM configured with 2 GiB of main memory for
interval lengths of 2000 ms, 4000 ms, and 8000 ms. His measurements show an
average write working set of 25859 page frames for an interval length of 2000 ms,
29694 page frames for an interval length of 4000 ms, and a write working set of
33478 page frames for an interval length of 8000 ms. This means doubling the
interval length does add about 4000 distinct page frames to the write working set.
As a result, if we double the interval length, scanning only has to synchronize
additional 4000 page frames to the dirty bitmap during the downtime of the VM.

We have identified this additional work in the increasing average downtime in
Figure 3.3. SimuBoost takes two checkpoints during a time period of 8 s using a
checkpoint interval length of 4000 ms. Therefore, 2×29694 = 59388 page frames
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Figure 3.3: The left axis plots the average downtime (DT) of a VM executing a Linux
kernel build while creating continuous checkpoints. The right axis shows the accumulated
downtime of the checkpointed VM.

are synchronized by the DLM. If we use a checkpoint interval length of 8000 ms
SimuBoost only takes one checkpoint during a time period of 8 s so the DLM only
synchronizes 33478 page frames.

Besides the convergence of the accumulated downtime, the limited growth of
the working set can also explain the convergence of the runtime overhead of WP
illustrated in Figure 3.2, since each additional page frame that has been written to
during a time period triggers only a single write-protection fault that needs to be
handled by the VMM.

In summary, these observations confirm our hypotheses that scanning leads
to a higher average downtime than WP since scanning synchronizes dirty page
frames to the dirty bitmap during the downtime of the VM. At the same time, the
runtime overhead of scanning is less than 9 % for a checkpoint interval of 1000 ms
and even drops to 6.1 % for an interval length of 8000 ms.

In contrast, WP must only write-protect the guest main memory during the
VM downtime, effectively moving the overhead of synchronizing dirty page frames
to the runtime of the VM. As a result, WP achieves a relatively low, constant av-
erage downtime. Yet, it results in a higher runtime overhead between 7.76%̇ and
14 % depending on the length of the checkpoint interval.

We further run SPECjbb in order to test the effects of the DLMs regarding the
induced downtime over the course of execution. In comparison to a Linux kernel
build, which is a workload causing low to medium CPU and memory load and
scattered disk I/O activity, SPECjbb passes through multiple phases of execution
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Figure 3.4: Plots (a), (b), and (c) show the downtime for each individual checkpoint for
interval lengths of 1000 ms, 2000 ms, and 4000 ms respectively. The workload executing
on the test VM was SPECjbb. We deployed write protection and scanning as dirty logging
mechanisms.

each of which increases the memory load, hence the dirty page frames per time
period.

Figure 3.4 plots the downtime over the course of execution of SPECjbb for
checkpoint interval lengths of 1000 ms, 2000 ms, and 4000 ms. We notice oscil-
lating, increasing downtimes for scanning, whereas WP causes relatively constant
downtimes of below 10 ms for all interval lengths.

For an interval length of 1000 ms, we are able to identify the phases of increas-
ing memory load of SPECjbb since the downtime for scanning increases every
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200 s. Besides a continuously raising downtime for scanning, we realize that the
downtime increasingly fluctuates the longer the checkpoint interval is. This ob-
servation is confirmed if we compare the standard error of the average downtime
of the SPECjbb workload for an interval length of 1000 ms and 4000 ms (Ap-
pendix Table A.3). For an interval of 1000 ms the average downtime is 17.36 ms
with a standard error of 0.89. In contrast, for an interval of 4000 ms the average
downtime raises to 24.68 ms with a standard error of 1.1.

Conclusion

In summary, the downtimes that we have measured for SPECjbb confirm our con-
clusions from the observations of the Linux kernel build workload. Scanning
as a DLM trades less runtime overhead for an increased downtime, whereas WP
achieves relatively constant downtimes since synchronization of dirty page frames
to the dirty bitmap is performed during VM execution. Furthermore, we do realize
that scanning is affected by the memory load induced by the deployed workload
compared to WP which achieves constant low downtimes. Additionally, increased
interval lengths leads to a convergence of runtime overheads and accumulated
downtimes in case of both DLMs.

Our test results illustrate the impact of the DLMs on the downtime and the
runtime overhead of the checkpoint mechanism. This allows for further discus-
sion about the preferable DLM for the application in SimuBoost. We find out
that WP has an obvious advantage regarding the induced downtime. In general,
independent of the interval length, WP achieves a constant downtime that is about
half the downtime of scanning. Although, for short interval lengths up to 4000 ms
scanning has a slight runtime performance advantage. For longer interval lengths,
the runtime overhead of both WP and scanning converge rendering the minimal
advantage of scanning negligible.

Nevertheless, Figure 3.3 illustrates that the accumulated downtimes of WP and
scanning also converge for increasing interval lengths. Therefore, we argue that
the choice of the DLM has only a minimal impact on the speedup of full system
simulation that is achievable using SimuBoost.

We reinforce our claim by exemplary applying our measurements of the down-
time and runtime overhead caused by the DLMs on the extended model of Eicher.
This means we substitute the downtime parameter tc and the DLM runtime over-
head parameter scp of the total logging overhead slog = srec · scp. We have further
experimentally determined the missing recording overhead srec by measuring the
runtime of a VM configured with 2 GiB of main memory executing a Linux kernel
build recording non-deterministic events. We have found a negligible recording
overhead of srec = 1.0097 so we set the total logging overhead equals the DLM
runtime overhead slog = scp.
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Next, we calculate the optimal interval length, given a limited number of sim-
ulation nodes, using the adjusted function provided in Formula 3.10. We notice
that the optimal interval length depends on the logging slowdown slog which, with
respect to our experiments, in turn depends on the used interval length.

Therefore, we rearrange Formula 3.10 in order to get a lower bound for the
optimal interval length3:

Lopt(N) =

√
tiTvm
N

· √slog =⇒ Lopt(N) ≥
√
tiTvm
N

(3.11)

We presume the kernel build scenario with Tvm = 960 s and the hardware
setup of Pusch with two simulation jobs per consumer node. This means we have
a total number of N = 12 simulation nodes available. We use the simulation
slowdown ssim = 100 proposed by Rittinghaus et al. and set ti = 3.7 s for the
checkpoint loading time. As a result, we obtain Lopt(12) ≥ 4.967 s for the lower
bound on the optimal checkpoint interval.

In Appendix A.4, we provide tables of DLM slowdown factors for WP and
scanning. Using these tables we substitute slowdown factors swplog for WP and
sscanlog for scanning for an interval length of about 5 s:

swplog ≈ 1.072 and sscanlog ≈ 1.075

Therefore, we are able to approximate an optimal interval length of

Lwpopt(12) ≈ 4.967 · 1.072 = 5.324 s

for WP and

Lscanopt (12) ≈ 4.967 · 1.075 = 5.340 s

for scanning.
For the downtime, we presume a worst case scenario, hence we use the aver-

age downtime of an interval length of 8000 ms for WP and scanning, respectively.
The corresponding data can be found in Appendix Table A.1. With these num-
bers we obtain a theoretical speedup of Swp(12, 5.324s) = 11.818 for WP and
Sscan(12, 5.340s) = 11.817 for scanning.

We realize that in theory the slight difference in logging slowdown of both
DLMs has no significant influence on the optimal checkpoint interval length. Fur-
thermore, even the double average downtime of scanning compared to WP does
not affect the theoretical speedup. As a result, we can conclude that the choice of
the DLM has no considerable effect on SimuBoost’s theoretical speedup.

3Notice that slog > 1 is given since the checkpoint mechanism and recording always induces
at least a slight overhead.
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3.2.2 Checkpoint Loading Times

In Section 3.1.1, we have pointed out that the DLM and the downtime have no sig-
nificant influence on the performance of the checkpoint mechanism for the overall
speedup of SimuBoost. We have discussed that we are able to evaluate the perfor-
mance of the checkpoint mechanism in the context of SimuBoost by examining
the slowdown of its DLM, the constant downtime, and the checkpoint loading time
that directly affects the number of required parallel jobs as illustrated by Formula
3.4. The checkpoint loading times weighs even more if there is a limited num-
ber of simulation nodes as illustrated by the extended theoretical model. In this
section, we focus on the checkpoint loading time. For this purpose, we recap the
work of Pusch [38] on checkpoint distribution, which we have shortly referenced
in Section 2.4.

Pusch compared different approaches to checkpoint data distribution. He in-
vestigated the write and read performance of direct pull access using TCP sockets
and distributed filesystems (FS), such as Ceph FS [2] and GlusterFS [3]. Pusch
found that direct distribution of checkpoint data results in high network load since
each consumer requests checkpoint data at demand from the producer node. Fur-
thermore, the approaches deploying distributed FS tend to cause high, scattered
write delays due to internal reorganization of the distributed FS.

Therefore, Pusch decided to actively push checkpoint data to the consumer
nodes using multicast. As a result, checkpoint data is locally available on all
consumer nodes so in general there is no degradation of checkpoint loading times
caused by network delays.

Nevertheless, Pusch finds checkpoint loading times of 1.5 s to 12 s depending
on the number of simulation jobs per consumer node and the deployed workload.
These checkpoint loading times still seem very high given the fact that all check-
point data is locally available on the respective consumer node. We investigate his
results regarding checkpoint loading times in more detail.

First of all, we shortly sum up his hardware setup and the workloads deployed
on the producer VM. The producer node was equipped with an Intel(R) Xeon(R)
CPU E5-2630 v3, 64 GiB of RAM, and a 1 TB Samsung SSD 850. The six con-
sumer nodes were each equipped with an Intel(R) Xeon(R) CPU E31220, 16 GiB
of RAM, and a 1 TB Samsung SSD 850. The guest executing the workload was a
single core VM with 2 GiB of main memory running Ubuntu 16.04.

Pusch chose a Linux kernel build [8] and SPECjbb [11] as workloads. He used
Eicher’s original theoretical model to calculate the optimal checkpoint interval
length for his hardware setup. However, he deployed the model without adapting
it to the performance characteristics of the current SimuBoost version that we have
discussed earlier.

We have noticed that Eicher’s basic approach to replace the constant downtime
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addend in the original model with a slowdown factor does not hold for the current
version of SimuBoost. Our further discussion of Eicher’s formulas has shown that
the optimal interval length for a limited number of simulation nodes does not de-
pend on the downtime of the checkpoint mechanism. Instead, the optimal interval
length solely depends on the checkpoint loading time and the logging overhead
slog. Pusch could have collected data regarding the checkpoint loading time, the
logging overhead, and the downtime of the current SimuBoost implementation
beforehand and replace the values of the parameters in Eicher’s model in order to
obtain a more accurate runtime prediction and optimal checkpoint interval length.
As a result, Pusch’s results are only in parts suitable to argue about the importance
of the checkpoint loading time for the performance of SimuBoost.

Nevertheless, we discuss Pusch’s measurement results to get an idea of the
issues with checkpoint loading. He measured average checkpoint loading times
of 5 s for a Linux kernel build using a checkpoint interval of 4908 ms and two
simulation jobs per consumer node. Increasing the number of simulation jobs per
consumer node to four and decreasing the checkpoint interval to 2454 ms resulted
in average checkpoint loading time of 12 s.

For further experiments he deployed SPECjbb [11] as a workload on the pro-
ducer VM. Once again he ran tests with two jobs per consumer node and a check-
point interval of 6720 ms. For this configuration he measured loading times of
1.5 s on average. In a second experiment, he increased the number of simula-
tions per consumer to four and accordingly decreased the checkpoint interval to
3360 ms. This resulted in an average checkpoint loading time of 4 s.

These high values for the checkpoint loading time even exceed the value as-
sumed by Eicher in his work. In general, checkpoint loading times of several
seconds degrade the overall theoretically achievable speedup of SimuBoost.

For example, if we consider the configuration executing four simulations per
consumer node and the Linux kernel build workload. Pusch states checkpoint
loading times of 12 s on average. The theoretically achievable speedup using the
adapted extended model derived in Section 3.1.1 is 19.91× compared to sequen-
tial simulation. If we were able to halve the checkpoint loading times in this case,
the theoretically achievable speedup increases by 7 % from 19.91× to 21.3×. This
illustrates that it is worthwhile to optimize the checkpoint loading time. Therefore,
we discuss possible explanations for the high loading times in order to identify po-
tential to optimize the mechanism.

We have to adhere the fact that checkpoint loading times are independent of
the checkpoint interval length. This is because we generally restore the complete
main memory image of a VM on a consumer node. The main memory image
always has the same size that is predefined by the VM running on the producer
node. Pusch hypothesizes that the general raise of checkpoint loading times, if
doubling the number of simulations per node, is caused by the higher memory
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pressure that reduces the amount of main memory that is available for the page
cache which speeds up disk accesses. Yet, Pusch does not provide data to confirm
this hypothesis.

Another possible reason for the high checkpoint loading time, especially in
case of the Linux kernel build, is the process of loading disk checkpoint data. In
contrast to the main memory image, the amount of disk checkpoint data varies de-
pending on the I/O activity of the respective workload. We notice that the loading
times in Pusch’s experiments are significantly lower for SPECjbb compared to the
kernel build. SpecJBB is a memory and CPU intensive workload that does not
cause disk I/O activity, whereas a Linux kernel build constantly reads and writes
files from and to disk. As a result, the higher checkpoint loading times of a kernel
build compared to SPECjbb may be caused by the time it takes to partially restore
the disk image.

We recreate the scenarios of Pusch in order to validate the high checkpoint
loading times measured by him and to check for possible reasons. At the moment
there is no fully functional, reliable implementation of Pusch’s multicast check-
point distribution approach. Furthermore, up to this point SimuBoost as a whole
is still work-in-progress since we have only tested single components, like the RR
or the checkpoint mechanism, independently. As a result, we approximate Pusch’s
scenario to obtain comparable data for the checkpoint loading time. We use the
same machine as Pusch used as consumer node. As a remainder, the worksta-
tions Pusch used in his experiments are equipped with an Intel(R) Xeon(R) CPU
E31220, 16 GiB of RAM and a 1 TB Samsung SSD 850.

We have preliminary created continuous checkpoints of a VM configured with
2 GiB of RAM, which is executing either a Linux kernel build or SPECjbb, us-
ing the same interval lengths as Pusch4. We have copied all checkpoint data to
our consumer node in order to simulate the locality of the checkpoint data that
is achieved by the multicast checkpoint distribution approach. Pusch executed
two or four QEMU emulation instances per consumer node. Correspondingly,
we deploy two and four QEMU instances on our test machine. In case of two
QEMU instances, the first QEMU instance executes the workload that was exe-
cuted during checkpoint creation in order to simulate a comparable utilization of
the machine’s resources. Accordingly, in case of four QEMU instance, the first
three QEMU instances execute the workload that was executed during checkpoint
creation. The second and fourth QEMU instances, are repeatedly restarted in or-
der to guarantee an empty guest state. After each restart we sequentially load the
next checkpoint, which we have copied on the test machine beforehand, on the

4For a Linux kernel build we used an interval length of 4908 ms for two jobs and 2454 ms for
four jobs. For SPECjbb we used an interval length of 6720 ms for two jobs and 3360 ms for four
jobs.
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Figure 3.5: Showing the average checkpoint loading times and the average data amount
out of ten runs for 100 consecutive checkpoints of a Linux kernel build. The left axis plots
the loading time in seconds whereas the right axis plots the data amount that has been
restored. The loading time for devices is below 5 ms for both cases so it is only slightly
recognizable on top of the respective x-axis.

second and fourth QEMU instance.
We perform ten runs and provide the average loading time of these ten runs for

each individual checkpoint. Before each run, we have flushed the page cache of
the test machine to diminish cache related side effects between separate runs. As
mentioned earlier the total checkpoint loading time consists of the guest’s main
memory loading time, the disk loading time, and other device loading time.

Figure 3.5 shows the average total loading time for 100 consecutive check-
points for two and four jobs. The first checkpoint was taken when the VM was
booting. Furthermore, we provide the fractions of main memory, disk, and de-
vices on the total checkpoint loading time and the amount of disk data and RAM
data that has been restored. The workload executing on the checkpointed VM was
a kernel build.

Initially, we notice the aforementioned constant data amount that needs to be
restored for the VM’s main memory whereas the amount of disk data increases
continuously from 700 MiB to about 1 GiB for two and four jobs. Correspond-
ingly, the disk loading time in both cases raises slightly over time as well. Inter-
estingly, for two jobs the disk loading time is significantly higher than the RAM
loading time. For four jobs on the other hand, the disk and the RAM loading
times are approximately the same. In total, we measure an average checkpoint
loading time of 2.4±0.043 s for two jobs, and 7.189±0.21 s for four jobs running
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Figure 3.6: Showing the average loading times and the average data amount out of ten
runs for 100 consecutive checkpoints of SPECjbb. The left axis plots the loading time in
seconds whereas the right axis plots the data amount that has been restored. The loading
time for devices is below 5 ms for both cases so it is only slightly recognizable on top
of the respective x-axis. The amount of disk data per checkpoint is noticeable above the
respective x-axis at about 100 MiB.

concurrently on the test machine.
Figure 3.6 shows the average loading time of ten runs for 100 consecutive

checkpoints of SPECjbb for two and four jobs. The total loading time of SPECjbb
is with 1.331± 0.01 s for two jobs and 2.672± 0.045 s for four jobs about half to
a third of the loading time of the kernel build. Notably, the RAM loading time of
SPECjbb corresponds to the RAM loading time measured for the kernel build for
two parallel simulation jobs. The RAM loading time of SPECjbb for two jobs is
on average 1.063± 0.006 s and the RAM loading time of the kernel build for two
jobs comes to 0.882± 0.014 s. Yet, the total loading time of a kernel build for two
jobs is twice as high as the total loading time of SPECjbb. This is solely due to the
high average disk loading time of 1.515± 0.037 s of the kernel build compared to
on average 0.263± 0.006 for SPECjbb.

These disk loading times are also represented in the amount of disk data per
checkpoint. For SpecJBB only about 100 MiB of disk data is loaded per check-
point, whereas the kernel build causes between 700 MiB and 1 GiB to be restored.
This confirms our hypothesis that the kernel build workload induces more disk
I/O activity than SPECjbb during checkpointing thus increasing the amount of
disk data that needs to be restored during checkpoint loading which in turn signif-
icantly influences the loading time.
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The disk I/O activity provides an explanation for the increasing checkpoint
loading times of a Linux kernel build for four jobs compared to SPECjbb. The disk
I/O of the three load generating VMs requires additional main memory resulting
in increased memory pressure and swapping on the host system. As a result, the
checkpoint loading times of the fourth VM degrade over time.

In summary, our measurements are lower than the loading times measured by
Pusch, however we have only loaded the first 100 consecutive checkpoints. Nev-
ertheless, we already observe the same effect as Pusch thus doubling the number
of simulation jobs per consumer node from two to four increases the checkpoint
loading time significantly.

We have been able to identify the increased amount of disk data that is being
checkpointed during a Linux kernel build to be responsible for the higher total
checkpoint loading time of SPECjbb compared to a kernel build for two simula-
tion jobs running concurrently on the test machine.

We have already discussed the implications of a high checkpoint loading time
for the overall feasible speedup of SimuBoost. In the model of Rittinghaus, the
checkpoint loading time directly affects the number of simulation nodes that are
required to achieve an optimal speedup. Besides, in the extended model, which
describes the likely scenario of a limited number of simulation nodes, the loading
time influences the optimal interval length and with it the speedup of SimuBoost
compared to common full system simulation. Therefore, in the following sections,
we discuss approaches to reduce the data amount that has to be restored during
checkpoint loading in order to reduce the loading time.

3.3 Sparse Checkpointing

In Section 3.2.2, we have recapitulated experiments performed by Pusch in order
to identify reasons for the high checkpoint loading time, which he observed in the
evaluation of his checkpoint distribution approach using multicast.

We found that the checkpoint loading time rises with increasing number of
parallel simulation jobs per consumer node. This is mainly due to the limited
amount of main memory on the test machine. A solution to this problem is simply
equipping the consumer nodes with more main memory so they do not run into
situations of high memory pressure. Yet, RAM is expensive and it is not always
feasible to purchase multiple gigabyte of RAM for several machines. A more
sophisticated solution solves the problem of memory pressure and resulting high
loading times in software.

In general, the time needed to load data, regardless of the type of storage
or the kind of data, has a lower bound given by the amount of data that is to
be loaded and the performance specifications of the hardware, namely, the disk,
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main memory, the bus system, and possibly the CPU. We have already stated
that it is no option to simply purchase better hardware in means of more RAM
or hardware that provides a higher throughput. Therefore, the only adjustable
parameters, which influence the checkpoint loading time, are the SimuBoost store,
which fetches checkpoint data from disk, and the raw amount of data that needs
to be retrieved from disk. This work does not aim to engineer a more efficient
storage system for SimuBoost thus we presume the performance of SimuBoost is
not an issue.

For the remainder of this section, we discuss two approaches to reduce the
amount of data of VM checkpoints in the related field of VM migration in order
to gain insights on how to optimize the checkpoint mechanism of SimuBoost,
especially in regard to the checkpoint loading time.

3.3.1 Checkpoint Data Reduction
In Section 2.2.2, we have shortly discussed the work of Clark et al. [20]. They
performed write working set analysis to identify unused page frames in order to
optimize pre-copy.

They state that pre-copy induces a lot of overhead by frequently transferring
page frames that are repeatedly modified in subsequent copy rounds. Therefore,
they provide a write working set analysis of various benchmarks in order to iden-
tify the subset of page frames that are frequently modified and thus, no good
candidates for pre-copy. They found that the write working set highly depends on
the workload of the VM. Yet, in general there are always page frames that are not
being modified during a certain time period and are thus suitable for pre-copy.

Hines et al. [29] aimed to find unused page frames of a VM in order to im-
prove the performance of post-copy based live migration. They modified Xen’s
ballooning mechanism so it continuously inflates and deflates its balloon depend-
ing on the memory utilization of a VM during its life time. Page frames that are
claimed by the ballooning mechanism are not transmitted during migration since
they are considered to be in the free list of the guest OS, hence not in use by the
VM. Their measurements show that the number of pages transferred during mi-
gration is significantly less with ballooning enabled. As a result, it seems likely
that identifying free or rather unused pages of a checkpoint and skipping them
during checkpoint loading leads to lower loading times.

The work of Liu et al. [33] confirms this assumption. Liu et al. extended
Xen’s checkpoint mechanism to omit free pages during checkpoint creation as
well. They modified Xen’s ballooning mechanism in order to reclaim free page
frames from the checkpointed VM. Yet, in contrast to Hines et al., they did not use
a continuous ballooning mechanism. Instead, their balloon inflates and allocates
unused page frames just once, right before checkpoint creation in order to reduce



58 CHAPTER 3. ANALYSIS

the memory footprint of the VM. They evaluated their checkpoint implementation
by measuring the checkpoint size, checkpoint creation time, and the restart time,
hence the time it takes to load a checkpoint.

Liu et al. found that the checkpoint size for a VM with 1024 MiB of main
memory shrinks from about 1024 MiB to 256 MiB. Accordingly, the checkpoint
loading time is reduced by about 67 % from 24 s to 8 s.

We do notice that all three approaches, which we have discussed so far, have
one thing in common. They all in parts identify the working set of the check-
pointed VM and leverage this information in order to systematically omit page
frames during checkpoint creation so there are less page frames to be restored
during checkpoint loading.

The approach of Liu and Hines et al. depends on a paravirtualized guest ker-
nel that deploys a ballooning module in order to reclaim free page frames from
the checkpointed guest. This interference with the execution behavior of the guest
OS is not acceptable in the context of SimuBoost. SimuBoost aims to speedup
full system simulation in order to render full system analysis of production work-
loads feasible while only taking a fraction of the execution time of common full
system simulation. The deployment of a kernel module to reclaim unused page
frames would tamper with the results of potential analysis, e.g., full system mem-
ory traces. As a result, the techniques proposed by Hines et al. and Liu et al.
are not applicable to improve the checkpoint loading time of SimuBoost. Yet, the
general idea to identify the working set of the checkpointed VM and omit those
page frames that are not in the working set during checkpoint loading is feasible
for SimuBoost.

As a remainder, SimuBoost splits the execution of a VM into simulation in-
tervals of fixed length L by creating continuous checkpoints at a rate of rcp = 1

L

checkpoints per second. SimuBoost further logs non-deterministic events that
affect the course of execution of the VM. Each simulation interval represents a
finite entity that is emulated by a dedicated simulation node. A simulation inter-
val i starts with a checkpoint cpi and ends with the subsequent checkpoint cpi+1.
The emulator avoids divergence of the simulation from the original execution by
replaying non-deterministic events at matching landmarks.

We realize that each simulation interval represents a predefined time interval
of the execution of the original VM. In this context, predefined does not only
mean that the interval boundaries represented by the checkpoints cpi and cpi+1 are
fixed, but also that the complete course of execution of an interval i is determined
as we are replaying all non-deterministic events that have been recorded in the
original VM. Therefore, during each time interval, the VM is only accessing a
predetermined subset of the VM’s total RAM – the working set of the individual
interval as illustrated by Figure 3.7.

We notice that the working set of an interval i is terminated once the VM
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Figure 3.7: Showing a section of the execution of the producer VM. The execution is split
in three intervals by the checkpoints cp0 to cp3. Over time the VM accesses portions of its
mean memory. All memory accesses during a single interval make up the working set of
said execution interval.

is stopped for creation of checkpoint ci+1. As a result, it is possible to acquire
the working set of each simulation interval while the producer VM advances and
stores the working set information of each checkpoint interval with the checkpoint
data. During concurrent simulation and corresponding checkpoint loading, we are
able to access the working set information of the respective checkpoint and only
load those page frames that are in the working set. Henceforth, we refer to the
process of only restoring the main memory working set of a simulation interval
as sparse checkpointing. Analogously, we refer to the checkpoint cpi, that marks
the beginning of simulation interval i and for which we have only restored the
working set of the main memory, as sparse checkpoint.

We discuss the working set analysis performed by Werner [47] in order to esti-
mate the potential reduction of checkpoint data that is feasible for the checkpoint
loading mechanism of SimuBoost.

3.3.2 Working Set Analysis
Werner [47] performed an extensive working set analysis of continuous check-
point intervals for varying interval lengths. We have already shortly discussed
the results of his work in Section 3.2.1 in order to explain the convergence of
the runtime overhead and the accumulated downtime of scanning and WP with
increasing interval lengths. In this section, we further discuss the experimental
results of Werner and its implications for the efficiency of sparse checkpointing.

First of all, we shortly introduce the theoretical model of Denning [21] from
the year 1968 that has been referenced by Werner in his work. Denning proposed
a theoretical model to argue about the resource demands of a computation system
without depending on external hints from the compiler or the user. This allows an
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Figure 3.8: Illustrating the behavior of the working set size ω(t, τ) in dependence of the
execution time interval τ for a fixed t. The working set size growth rate decreases the
longer the execution time interval τ gets [21].

OS to determine program behavior on its own and allocate resources accordingly.
Denning focused on main memory and processor time as the main computation
resources that need to be allocated to programs. He introduced the notion of a
program’s working set to be a model of the behavior of a program over time.
When he talks about the main memory working set he refers to the working set of
information meaning the “smallest collection of information that must be present
in main memory to assure efficient execution” [21]. Denning defines the working
set of information of a process at time t to be the data a process references during
a fixed execution time interval [t − τ, t] with τ > 0. Accordingly, he defines the
working set size, hence the number of page frames contained in the working set to
be ω(t, τ). He provides a simple argument which shows that the working set size
ω(t, τ) is a concave function of the execution time length τ given a fixed point in
time t as illustrated in Figure 3.8.

For further discussion we do not differentiate the terms working set and work-
ing set size as done by Denning. Instead, we derive the respective meaning of the
term working set from the context it is used in.

The model of Denning is directly applicable to theoretically argue about the
behavior of the size of the working set if we increase the checkpoint interval
length. The execution time interval τ simply corresponds to the interval length
L of a simulation interval i. The point in time t, at which the working set is deter-
mined, corresponds to the creation time of checkpoint cpi+1, which in turn ends
the simulation interval. This means that according to the model of Denning, the
working set of the simulation intervals of SimuBoost is supposed to be a concave
function of the interval length.

Werner [47] deployed full system simulation and heterogeneous RR to deter-
mine the working set for a fixed checkpoint interval. He leveraged and modified
the already existing memory trace hooks of SimuBoost’s QEMU version in or-
der to derive the read-only working set, the write working set, and the complete
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Interval length [ms] 500 1000 2000 4000 8000

Working Set abs. 24362 29070 33177 37361 41640
rel. 4.65 5.54 6.33 7.13 7.94

Read Working Set abs. 23434 28234 32389 36429 40512
rel. 4.47 5.39 6.18 6.95 7.73

Write Working Set abs. 17071 21808 25859 29694 33478
rel. 3.26 4.16 4.93 5.66 6.39

Excl. Read Working Set abs. 7290 7261 7317 7667 8161
rel. 30.70 25.54 22.62 21.12 20.03

Table 3.1: Showing the working set sizes for a Linux kernel build as measured by Werner
[47]. The absolute value describes the number of pages frames included in the working
set. The relative value is in percentage of the test VM’s main memory which was 2 GiB.
The relative value of the exclusive read working set is in percentage of the complete work-
ing set.

working set. He performed measurements for varying interval lengths of 500 ms,
1000 ms, 2000 ms, 4000 ms, and 8000 ms. His test VM was equipped with 2 GiB
of main memory.

Unfortunately, he states that the results of his measurements do not meet cen-
tral, invariant criteria. He does not provide any assumption what could have lead
to the inaccuracy of his data. Nevertheless, he argues that his results provide a
valid approximation of the actual working set sizes. For that matter, his mea-
surements of the write working set approximately match the working set mea-
surements performed by Baudis [15] in the course of his work on incremental
checkpointing. Furthermore, Werner’s working set measurements while running
the stress workload generator in the test VM showed concrete results.

He configured stress to allocate 1512 MiB of main memory and touch one byte
per page frame. This process of touching about 75 % of the test VM’s main mem-
ory is observable in the size of the working sets he measured. Yet, some numbers
he provides do not add up considering the fact that for a checkpoint interval of
500 ms there are 20000 page frames completely unaccounted for (Appendix Table
A.6).

Despite this methodical inaccuracy, we suppose his results are adequate to
approximate the actual working set sizes of a simulation interval. For a Linux
kernel build running on the test VM, he found that the complete working set grows
less the longer the checkpoint interval is chosen. He provides the working set size
in percent of the test VM’s main memory size of 2 GiB. His results can be found
in Table 3.1.

We fit a logarithmic linear regression model (LLRM) to the data provided by



62 CHAPTER 3. ANALYSIS

1 2 3 4 5 6 7 8

10000

20000

30000

40000

Interval length [s]

#
Pa

ge
fr

am
es

log. regression experimental values

f(x) = a · ln(x) + b

coefficients estimate std. err p-value

a 6,181.52 82.55 5.25 · 10−7
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multiple r-squared 0.9995

Figure 3.9: Showing the logarithmic linear regression model derived from the results of
Werner [47] for a Linux Kernel build.

Werner in order to predict the working set size for a VM equipped with 2 GiB that
executes a Linux kernel build. This allows us to estimate the working set size for
an arbitrary simulation interval length which in turn enables us to approximate the
potential savings of sparse checkpointing if applied in the scenario of Pusch that
we have recapitulated in Section 3.2.2.

Figure 3.9 shows the plot of the LLRM and the original data points of Werner.
Furthermore, we provide the quality criteria of our model in order to argue about
its validity. First of all, we notice the good visual fit of the model to the original
data points of Werner. This good fit is confirmed by the coefficient of determina-
tion r2 that indicates how well observed values are replicated by the given model.
The low p-values indicate a high significance of the model. Altogether, this con-
firms the validity of our model and allows us to use it to estimate the savings we
can achieve using sparse checkpointing.

For our discussion of potential loading time savings, we refer to the scenario
that we have applied in Section 3.2.2. As a remainder, we were running three
emulation instances in parallel, which were generating load on our test machine,
while we have loaded 100 consecutive checkpoints in an additional emulation
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instance in order to recreate the scenario of Pusch’s experiment. In our setup
we measured total average checkpoint loading times of 7.189 ± 0.21 s, whereat
loading of 2 GiB guest main memory took 3.625± 0.09 s on average.

The checkpoints were created using an interval length of 2454 ms. We can
use our LLRM to estimate the working set size for said interval length and get a
working set size of 6181.52 · ln(2454) − 13863.1 ≈ 34387 page frames relating
to about 134 MiB of main memory that need to be restored. This means sparse
checkpointing could reduce the data amount of main memory that needs to be re-
stored by about 93.5 % from 2 GiB to 134 MiB. If we presume a RAM checkpoint
loading time of 3.625 s for 2 GiB we could therefore reduce the RAM checkpoint
loading time to 237 ms on average. This leaves us with a total checkpoint loading
time of 3.801 s since we still must restore the variable sized disk checkpoint data.

If we recap the functionality of SimuBoost, we notice that a simulation interval
does not even require the write working of a checkpoint interval in order to replay
properly. This is due to the fact that RR must only guarantee the determinism of
the input of the VM. In case of the guest’s main memory, this implies that the
replay mechanism only needs the read working set of a checkpoint interval since
the read working set represents the input to the VM. The write working set on the
other hand does not influence the functionality of the replay of a single interval at
all. Therefore, by only considering the read working set we could further optimize
sparse checkpointing even though the read working set is not significantly smaller
than the complete working set according to Werner.

3.3.3 Disk Checkpointing
In general, disk I/O on real hardware is performed by employing direct memory
access (DMA). DMA enables a device to communicate directly with the memory
subsystem without further involvement of the CPU. The CPU simply has to issue
the DMA for a device by communicating with the DMA controller. Once the
data transfer completes, the DMA controller triggers an interrupt to notify the
CPU. Full system simulators, such as QEMU, emulate DMA in order to be fully
transparent to the guest OS running inside the provided VM.

For the purpose of SimuBoost, this allows for another optimization of the
checkpointing mechanism. We have already discussed that SimuBoost imple-
ments heterogeneous RR hence the producer VM records all non-deterministic
events that affect the execution of the VM in order to replay them in the con-
current simulations. The recorded non-deterministic events include DMA of the
virtual disk. This log of the DMA communication does not only include meta-
data, for example, the landmark of the event, yet also the transferred disk contents
itself.

As a result, it is feasible to completely omit disk checkpointing during check-
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point creation since all read disk contents are recorded by logging DMA in the
producer VM. This in turn means that there is no disk data which we have to
restore during checkpoint loading. The disk data is rather directly injected into
the simulation when the replay mechanism processes a recorded disk DMA event
from the log.

This straightforward approach has only minor effects on checkpoint creation
since disk checkpointing induces an additional downtime of less than 1 ms and the
disk CoW mechanism operates in a separate independent thread.

Nevertheless, its effect on the checkpoint loading times for workloads with
a high disk I/O activity is noticeable if we consider our experiment in Section
3.2.2. We found that the process of restoring disk checkpoint data accounts for
the majority of the time of checkpoint loading for a Linux kernel build executing
in the test VM. We found disk checkpoint loading times of 1.515 ± 0.037 s if the
test machine was executing two simulation jobs in parallel and 3.561±0.123 s for
four parallel simulation jobs.

This means checkpoint loading time shrinks to the sparse checkpoint loading
time that we have discussed in the previous section plus the negligible device load-
ing time. As a result, by omitting disk checkpointing completely due to RR, we
are able to obtain a checkpoint loading time of about 237 ms for a VM equipped
with 2 GiB of RAM and an original checkpoint interval length of 2454 ms. This
results in potential savings of checkpoint loading time between 90.1 % and 96.7 %
compared to the original loading times for a kernel build, depending on the uti-
lization of the consumer node.

3.3.4 Reduction of Main Memory Footprint
At last, we discuss the ramifications that come with the use of sparse checkpoint-
ing and circle back to requirement (c), regarding the memory footprint of our
simulations. At the end of Section 3.3.2, we have approximated the data amount
that would have to be restored if we load a sparse checkpoint. We found that the
RAM checkpoint size shrinks from 2 GiB to about 134 MiB.

As a result, if we load a checkpoint we only have to restore 134 MiB of guest
main memory for the emulation to be operational for the predefined simulation
interval. This could also drastically reduce the memory footprint of a VM since
the emulator maps GPAs to HVAs and host virtual memory must not be backed by
physical memory. Yet, we have to keep in mind that the memory footprint of an
emulation does not only consist of the VM’s main memory, but also of the code
cache of the DBT and general data structures of the emulator. Additionally, the
replay extension of the emulator allocates main memory in order process the event
log and corresponding data.

Nevertheless, even if the actual memory footprint of an emulation is 10× the
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actual sparse checkpoint size, we would be able to deploy more simulations per
consumer node compared to non-sparse checkpointing which is beneficial for
SimuBoost since the number of simulation nodes is critical for the speedup in
Rittinghauses original model.

3.4 Conclusion
In Section 3.1, we have collected three requirements on the checkpoint mechanism
of SimuBoost. In the course of this chapter, we have been discussing experiments
to further argue about said requirements and to find possible optimizations for
continuous checkpointing in the context of SimuBoost.

First of all, we have performed measurements to evaluate the process of check-
point creation in order to identify room for improvement. We have compared the
induced downtimes of the available DLMs, WP and scanning, for different work-
loads and have measured their runtime overhead. We have found that the accumu-
lated downtime and the runtime overhead of WP and scanning converge the higher
the checkpoint interval length is chosen. Furthermore, we have discussed the gen-
eral theoretical performance degradation of SimuBoost caused by the downtime
and the DLM slowdown. We have concluded that their impact on SimuBoost’s
performance is negligible in theory, despite their perturbation of the execution of
the workload.

Furthermore, we have recapitulated the work of Pusch. Pusch observed high
checkpoint loading times even though checkpoint data was locally available on
the respective consumer nodes. We have conducted experiments and were able to
recreate those high checkpoint loading times. We have found that they are mainly
caused by main memory exhaustion of our test machine.

Therefore, we have been discussing methods to reduce the checkpoint data
amount in order to reduce the loading time. As a result, we have introduced sparse
checkpointing as a way to significantly reduce the data amount when restoring the
main memory of a VM.

In Section 3.3.2, we have recapitulated the work of Werner [47] regarding
the working set analysis of simulation intervals. We have utilized his results to
create a logarithmic linear model in order to argue about the savings of checkpoint
data amount and with it checkpoint loading time that are achievable by deploying
sparse checkpointing.

In summary, we find that sparse checkpointing can reduce the checkpoint load-
ing time by up to 96.7 %. Furthermore, sparse checkpointing might even reduce
the memory footprint of SimuBoost’s simulations so we can effectively employ
more simulations per consumer node which drastically increases SimuBoost’s
concurrent simulation performance.
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Chapter 4

Design and Implementation

In Chapter 3, we have provided a detailed analysis of the existing checkpoint
mechanism of SimuBoost. We have identified the checkpoint loading time and
the number of simulation nodes to be critical for the speedup of SimuBoost. We
have found that there is potential to significantly reduce the data amount dur-
ing checkpoint loading by deploying sparse checkpointing. The idea of sparse
checkpointing bases upon the assumption that the availability of working set in-
formation of simulation intervals at the time of checkpoint loading can drastically
reduce the data amount that needs to be restored for a single checkpoint, thus
lowering the checkpoint loading time. Furthermore, the reduced checkpoint data
amount potentially lessens the memory footprint of the emulation of a finite sim-
ulation interval. This allows for the employment of additional simulations on a
single consumer node.

In this chapter, we discuss the design decisions that lead to our implementation
of sparse checkpointing for SimuBoost. Furthermore, we introduce our general
implementation and point out interesting implementation details.

There are three basic components to our sparse checkpointing approach. First
of all, we have to acquire the working set information of each checkpoint interval.
The working set information is composed of the page frames that have been ac-
cessed during a checkpoint interval. Additionally, we must find a convenient way
to store said working set information so it is easily accessible during checkpoint
loading. Lastly, when restoring a certain checkpoint, we have to incorporate the
working set information of the corresponding simulation interval in order to only
restore those page frames that will be accessed during the respective simulation
interval.

Our implementation bases upon the Linux kernel 4.3.0 and the QEMU version
2.6.0. We deploy SimuTrace [39] in version 3.4.1 as a fast and efficient storage
backend. Besides, the implementation has to be compatible with existing func-
tionality of SimuBoost, e.g., the record and replay implementation.
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4.1 Acquiring Working Set Information
Denning [21] defines the working set information as the collection of data which
a process references during a time interval. In case of SimuBoost, we define the
working set as the collection of page frames that have been accessed during a
checkpoint interval. We define a checkpoint interval to be the time between two
consecutive checkpoints cpx and cpx+1.

A page frame has been accessed if data was read from it or written to it. Simu-
Boost already acquires the dirty working set1 for the purpose of logging dirty page
frames for the checkpoint mechanism. As we have already discussed SimuBoost
comes with two DLMs – WP and scanning.

In case of WP, SimuBoost’s fork of KVM write protects the guest’s main mem-
ory by setting the read / write flag of the EPT entries of the guest’s main memory
to read-only access. A write access to a read-only page frame causes a page-fault,
thus the VM exits to KVM. KVM keeps track of write accesses and synchronizes
the page frame number (PFN) of the written page frames to the so-called dirty
bitmap. Each bit of the dirty bitmap represents a PFN. If a bit is set it means the
corresponding page frame is dirty. Later on the dirty bitmap is used to identify
and copy dirty page frames to storage.

In case of scanning on the other hand, KVM walks the guest’s EPTs in soft-
ware. If it reaches a leaf entry, it tests the dirty bit of the page table entry and
synchronizes the dirty information of the page frame to the dirty bitmap. The
dirty bits of the page table entries are sticky [31]. This means the hardware does
not clear them. As a result, after KVM synced the dirty bit to the dirty bitmap it
clears the dirty bit of the respective EPT entry.

We notice that WP is not suited as a mechanism for collection of complete
working set information since a read access to a read-only page frame does not
trap into KVM. Scanning on the other hand leverages the dirty flag of the EPT
entries. Besides a dirty flag, the paging structures of x86 provide an accessed
flag that indicates whether a page frame has been written to and / or read from
by the CPU. We can test the accessed flag of the EPT entries when performing a
page table walk to acquire the complete working set of a VM during a checkpoint
interval.

At the end of Section 3.3.2, we have briefly considered the possibility to fur-
ther optimize sparse checkpointing by only incorporating the read working set,
since it is sufficient to guarantee the correct replay of a single interval. This is

1Note that we have to differentiate between the write and the dirty working set, because the
write working set is a subset of the dirty working set on Intel’s x86 architecture. This is because
Intel’s architecture treats every processor memory access, regardless whether it is a read or write
access, to the guest’s paging-structures as a write hence the dirty bit is set [31]. As a result the
dirty set also contains some page frames that have been read from instead of written to.
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technically not possible when utilizing the accessed and dirty flags of the EPT
entries.

If we want to acquire the read working set, we are supposed to differentiate
whether an accessed page frame has been read and then written or only written to
so we can omit it. Unfortunately, this is not feasible since the modification of a
page frame by the CPU always causes the dirty and the accessed bit to being set in
the respective EPT entry. As a result, we would have to single-step each memory
access in order to determine whether the accessed bit was set before a write access
is performed. This approach induces a significant runtime overhead [47]

As a result, we discard the optimization to only acquire the read working set
and leverage the accessed bit of the EPT entries to determine the complete work-
ing set of each checkpoint interval.

4.1.1 Synchronization of Access Information

We have extended the existing scanning DLM to also create an accessed bitmap
along the way of creating the dirty bitmap for checkpointing. This process in-
cludes the adaption of the shared kernel memory buffer that contains the dirty
bitmap to also include our accessed bitmap and to synchronize the access infor-
mation of the EPT entries to said accessed bitmap.

The synchronization of the dirty and access information is performed when
the VM is stopped in order to acquire a consistent state of the VM. Henceforth,
we refer to dirty and access information as state information. Figure 4.1 shows
the components of QEMU and KVM that have been modified to support sparse
checkpointing.

QEMU is executing the checkpoint code in a dedicated thread. We presume
the dirty and accessed bitmap are already set up. The main memory checkpoint
creation starts with a call to sb_save_ram_sync_cow.

This function initializes the CoW mechanism for a specific checkpoint so
QEMU is able to asynchronously copy dirty page frames once the VM contin-
ues execution. To that end, it performs an ioctl that in turn calls the KVM func-
tion kvm_cow_sync_and_protect, which, in case of scanning, recursively
walks the EPTs of the guest in order to synchronize the dirty information of the
EPT entries to the dirty bitmap that is used by the checkpoint mechanism.

Furthermore, it synchronizes dirty information from QEMU in user space to
the common dirty bitmap. QEMU must maintain its own dirty information in user
space since it emulates DMA which directly modifies guest page frames in the
execution context of the host. We have extended the recursive EPT walk to not
only take into account the dirty bit of an EPT entry but also the accessed bit. We
do not have to synchronize access information of page frames that have been read
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Figure 4.1: Visualizing the functions of QEMU and the Linux kernel that we have adapted
for SimuBoost’s checkpoint mechanism. The figure shows which functions we have mod-
ified to implement sparse checkpointing. The steps marked with numbers from (1) to
(4) depict the creation of a kernel memory buffer containing the dirty and the accessed
bitmap. The kernel memory buffer is mapped to user space by registering the mmap-
handlers kvm_vm_cow_mmap and kvm_vm_cow_fault.

in user mode by QEMU since only data accesses by the virtual CPU are relevant
for the replay which are covered by the EPTs

There is a special case for synchronizing dirty and access information to the
corresponding data structures in which the dirty and accessed bit in the EPT
entries have not been set by the CPU. Just as QEMU emulates certain devices,
there are certain CPU instructions that are not directly executed by the CPU, yet
rather emulated by KVM. In case of these operations KVM accesses guest mem-
ory pages directly in the context of the host so the CPU does not mark affected
page frames in the EPT of the guest. KVM handles these cases by directly setting
the corresponding bits for the affected page frames in the dirty bitmap. Accord-
ingly, we extend the dedicated functions that read and write guest page frames in
the context of the host to directly synchronize access information to our accessed
bitmap.

Optimization In Section 4.1, we have ruled out an optimization that plans to
only restore the read working set of a checkpoint since it is not feasible to distin-
guish between page frames that have been read and written and page frames that
have only been written, if we only have the state information of the EPT entries
available.
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The fact that KVM modifies guest page frames in the execution context of
the host allows us to, at least partly, omit page frames that are only written. For
this purpose, we locate functions KVM uses to directly write to guest memory
and skip the synchronization of the access information to our accessed bitmap in
those cases. Table B.1 in the appendix lists KVM functions for which this applies.

4.1.2 Sharing and Storage of Working Set Information
KVM acquires the state information in the kernel space since it is a Linux kernel
module. As a result, we have to export the state information from kernel space
to user space as the checkpoint mechanism is part of QEMU, which runs in user
mode.

There are two alternatives for sharing kernel space data structures with user
space. We can copy kernel space data to user space or we map the kernel space
data directly into the address space of the user mode process.

The process of transferring the dirty bitmap and the accessed bitmap is per-
formed while the VM is stopped since we require a fixed VM state. This means
the time it takes to transfer said information to user space adds up to the downtime
of the checkpoint mechanism.

As a result, we avoid the copying approach since copying data takes more time
than creating a mapping by adding an entry to the page tables of the QEMU pro-
cess. Note, that in general an access to an unmapped page triggers an expensive
page fault. Yet, we only have to handle the page fault that maps the kernel buffer
the user space once, whereas the copy approach would have to copy the access
and dirty information for each checkpoint. Furthermore, we are able to provoke
the page fault once during initialization of the checkpoint mechanism by access-
ing the buffer in user space, thus avoiding any performance degradation during
checkpoint creation.

The left-hand side of Figure 4.1 depicts the setup process of the kernel memory
mapping. First of all, SimuBoost’s checkpointing thread in QEMU derives the
size of the kernel buffer from the amount of main memory that is assigned to the
VM. A call to mmap issues the kernel to create a memory mapping of the specified
size. We have registered an mmap-handler for KVM with the Linux kernel that
receives and handles the call to mmap. Furthermore, we have registered an mmap
-fault-handler for KVM with the Linux kernel.

The kvm_vm_cow_mmap-handler allocates kernel memory for our dirty and
accessed bitmaps and some extra bytes for control and monitoring variables, such
as the actual size of the dirty bitmap and the accessed bitmap, respectively. If the
buffer is accessed in user space it causes a page fault since the virtual memory
area that we have allocated in user space is not yet backed by a page frame. This
page fault is handled by our mmap-fault-handler that returns the pages that contain
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our kernel buffer so the contained data structures are available in user space.
The accessed bitmap and its size are simply copied to the user data stream

of SimuBoost in user space. SimuBoost extracts the binary access information
and uses the LZ4 [6] compressor to reduce the size of the accessed bitmap. Af-
terward, SimuBoost writes the compressed binary data to a file associated to the
corresponding checkpoint.

Furthermore, we collect metadata that is contained in additional variables in
the kernel memory mapping. This data includes the size of the working set and the
number of page frames that can be omitted due to the optimization that we have
explained in the end of Section 4.1.1. This metadata is inserted into SimuBoost’s
checkpointing log file.

4.2 Loading Sparse Checkpoints

In this section, we introduce the functionality of checkpoint loading in Simu-
Boost. Furthermore, we discuss our design and implementation of the mechanism
that utilizes the access information in order to optimize the process of checkpoint
loading.

First of all, we shortly introduce how SimuBoost persists checkpoint data on
disk. SimuBoost splits data that is relevant for a single checkpoint into two files.
There is one .ckpt-file for each checkpoint that contains metadata describing the
checkpoint. This metadata includes device information and file offsets into a large
.simuboost-file that contains the actual checkpoint data. If QEMU requests a
checkpoint from SimuBoost, SimuBoost reads the corresponding .ckpt-file and
extracts the device specific metadata including the file offsets into the checkpoint
database.

The file offsets are organized in a page-table-like, hierarchical data structure
that consists of a directory of file offset tables. We further refer to this data struc-
ture as device map. The page frame number directly maps to a directory index and
a table index in the device map so SimuBoost is able to quickly return database
file offsets for given page frame numbers.

In general, SimuBoost restores the complete persisted state of a checkpoint.
In case of the guest main memory, this means that SimuBoost reconstructs and re-
turns the complete main memory image. For this purpose, SimuBoost enumerates
all entries of the device map and returns the corresponding page frame number
and the stored file offsets into the checkpoint database. Afterward, the file off-
sets are used to fetch the actual page frame data from the database. The data and
the page frame number are returned to QEMU which restores the respective page
frame to the guest’s main memory.

In case of sparse checkpointing, we have transparently introduced a higher
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level iterator, the so-called device state iterator. It either selects the default iter-
ator, which enumerates page frames of a checkpoint if no access information is
available, or a custom sparse iterator, which incorporates the access information
of a simulation interval and only enumerates such page frames that have been
accessed during this time interval, if access information is available.

4.2.1 Accessed Bitmap Index

We analyze the distribution of main memory accesses during consecutive check-
point intervals in order to argue about a suitable implementation of the sparse it-
erator. Figure 4.2 shows multiple, heatmaps of accessed page frames of randomly
picket checkpoints of a guest executing a Linux kernel build. The heatmaps pro-
vide an overview of the general locality of memory accesses for a set of checkpoint
intervals for this particular workload.

We notice that the more the execution of the kernel build advances the more
similar the main memory access patterns of the checkpoint intervals get. Further-
more, the heatmaps depict sparse access patterns meaning that the memory ac-
cesses during a checkpoint interval focus on certain memory areas whereas other
memory areas, such as parts of high memory, are almost completely omitted.

Nevertheless, we have to consider that we are only examining a sample of the
set of memory access patterns for a particular workload for a specific checkpoint
interval length. Yet, further examination of random samples of memory access
patterns of a Linux kernel build and SPECjbb for varying checkpoint intervals
reinforce our observation that in general the memory access patterns during a
finite execution time interval of a VM focus on self-contained memory areas2.

The sparse iterator is supposed to return the page frame numbers of page
frames whose respective bits are set in the accessed bitmap of the correspond-
ing checkpoint. The returned page frame numbers are in turn used by the device
state iterator to return the corresponding database file offsets.

A naive implementation of the sparse iterator tests each bit of the accessed
bitmap. If a bit is set, the index of the bit in the accessed bitmap represents the
page frame number, which can be used to retrieve the database file offset from the
main memory device map. If a bit is not set, the sparse iterator directly moves on
to test the next bit.

If we consider our observations of the distribution of memory accesses, we
notice that a naive sparse iterator implementation would spend a considerable
amount of time iterating areas of the accessed bitmap that are completely zero.

2In Appendix B.2 we provide additional heatmaps of randomly sampled checkpoints for vary-
ing interval lengths of 1000 ms, 2000 ms, 4000 ms, and 8000 ms for a kernel build and SPECjbb
in order to add weight to our claim.
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(a) Checkpoint interval 18 (b) Checkpoint interval 27 (c) Checkpoint interval 145

(d) Checkpoint interval 354 (e) Checkpoint interval 596 (f) Checkpoint interval 633

Figure 4.2: Showing heatmaps of the memory accesses of a Linux kernel build for a
checkpoint interval length of 1000 ms. The VM was equipped with 2 GiB of main memory.
For the sake of convenience, each cell of the heatmap represents a cluster of eight page
frames with consecutive addresses. For each heatmap the upper left corner represents the
lowest page frame number and the bottom right corner the highest page frame number.
The presented checkpoint intervals were picked randomly.

Our implementation thus generates an index of the accessed bitmap beforehand in
order to enable the sparse iterator to skip zero regions of the accessed bitmap. The
index is organized as a key-value-store. We use the standard C++ std::map and
further refer to it as bitmap index. The bitmap index stores so-called bitmap entry
structs (BES) that hold metadata of fixed, finite regions of the accessed bitmap.

The BES incorporates five attributes whose short description can be found in
Table 4.1. The attribute startBit stores the current bit index. Notice, that
startBit allows us to define an order on the bitmap entries so we use it as the
key for the bitmap index. This allows the sparse iterator to quickly find BESs
that start at a specific bit position. Furthermore, a BES includes attributes that
represent various bit counts. The variable numBitsSetIncl counts the number
of set bits in the accessed bitmap up to, and including, the current entry. The
variable numBitsSetExcl on the other hand counts only the number of set
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Identifier Type Description
startBit word Start bit of this entry
numBits word Total size of this bitmap entry in bits
numBitsSetIncl word Set bits up to this entry (inclusive)
numBitsSetExcl word Set bits of this entry
data pointer Pointer to data in the accessed bitmap

Table 4.1: Short description of the attributes of a bitmap entry struct (BES). The attribute
numBitsSetIncl contains the number of bits that are set in the accessed bitmap up
to, and including, the current BES. The attribute numBitsSetExcl on the other hand
contains the number of set bits of the section of the accessed bitmap that is represented by
the current BES, hence excluding the set bits up to this entry.

bits in the section of the accessed bitmap represented by this particular BES. The
attributes numBitsSetIncl and numBitsSetExcl are important since they
are used by the iterator to fast-forward the bit position of the sparse iterator in the
accessed bitmap. Finally, the data-pointer points to the memory region of the
accessed bitmap where the bit startBit can be found.

For initialization of the index we sequentially iterate the accessed bitmap and
test words of 64 bits thus we do not test single bits. We differentiate three kinds
of areas in the accessed bitmap.

First, we test whether each bit of a word is completely set to one. If this
is the case we instantiate a new BES. We refer to such words as dense BES. If
the subsequent word is also dense, hence all bits are set to one, we extend the
existing BES so it now incorporates two words. This process continues until the
initialization hits a word that is not dense thus it contains zero bits. In this case,
the dense BES is completed and added to the bitmap index. For words that are not
completely zero but contain scattered set bits, we create a new BES instance and
add it directly to the bitmap index. Finally, if we hit a zero word we complete the
current dense BES, if there is one, and move on to the next word.

4.2.2 Sparse Iterator

Our implementation of the sparse iterator leverages the metadata provided by the
bitmap index to quickly find a specific bit in the accessed bitmap that relates to an
element position of the iterator. For example, if a component that uses the sparse
iterator instructs it to return all elements of the accessed bitmap starting at element
100, the sparse iterator is able to fast-forward to the 100 th set bit in the accessed
bitmap by using the metadata of the bitmap index, return the corresponding page
frame number, and iterate the remaining set bits in the bitmap.
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Figure 4.3: Sequence diagram showing the interaction of the components of Simu-
Boost when loading a checkpoint. The SparseIterator is only used if there is
access information available. The deployment of the sparse iterator is transparent
to the device state. If there is no access information available for a checkpoint, the
DeviceStateIterator uses a default iterator that simply returns all entries of the
device map.

Figure 4.3 provides an overview of the components that interact with the
sparse iterator and their control flow. The ContentEncoder retrieves a in-
stance of the main memory device state and instantiates a device state iterator that
returns tuples of page frame numbers and corresponding file offsets. The device
state iterator in turn deploys the default iterator that returns all entries of the device
map or the sparse iterator that only returns entries of the device map, that corre-
spond to the working set of a checkpoint interval, depending on the availability of
access information for a particular checkpoint.

We presume that access information is available and the sparse iterator is used
by the device state iterator. The content encoder then calls the device state, instan-
tiates a DeviceStateIterator, and requires it to return all tuples of page
frame numbers and file offsets starting at a specific position. The device state it-
erator passes this request directly to the sparse iterator. This means that the sparse
iterator has to return the bit indices3 of the accessed bit map starting with the
pos-th set bit.

The sparse iterator leverages the bitmap index to speed up this process. The
sparse iterator goes over the BESs of the bitmap index and tests whether the num-
ber of set bits up to this and including this BES numBitsSetIncl, is bigger
than the requested position pos. If this is the case, this means that the sparse
iterator has found the correct BES that contains the pos-th set bit.

In Section 4.2.1, we have discussed the structure of a BES. A BES may cover
multiple 64 bit words if it is a dense BES. Therefore, the sparse iterator continues
to find the index into the 64 bit words by testing and masking each set bit of a
respective 64 bit word until it hits the requested position of the pos-th set bit.

3Keep in mind that a bit index of the accessed bitmap directly maps to a page frame number.
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The sparse iterator then returns the indices of all set bits beginning at the found
start position. Each call to the increment operator of the iterator results in the
masking of the next set bit, the return of the corresponding page frame number,
and the increment of the index into the BES and, if the end of a BES is reached,
the increment of the current BES itself.

The device state iterator takes the returned page frame numbers and looks up
the corresponding file offsets in the device map. The device state iterator passes
both, the file offsets and the page frame numbers, to the content encoder which
reads the page frame data from the database and passes it to QEMU.

4.3 Conclusion
In this chapter, we have discussed the design and implementation of sparse check-
pointing for SimuBoost. We have examined the implementation of scanning for
dirty logging in the context of checkpointing. We have extended scanning so it
does not only acquire the dirty set but also the accessed set of a VM.

This access information is used during checkpoint loading to only restore the
main memory working set of a VM for a specific simulation interval. We achieve
this by introducing a high level iterator, the so-called device state iterator, that
either deploys a default iterator or a sparse iterator, depending on the availability
of access information.

The sparse iterator only returns those page frame numbers that correspond to
a set bit in the accessed bitmap. The deployment of the sparse iterator is transpar-
ent to the device state that holds the device map and to the content encoder that
fetches the actual page frame data from the database. As a result, if there is no
access information available the device state iterator invokes the default iterator
that simply returns all page frames from the device map.
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Chapter 5

Evaluation

In Chapter 3, we have discussed the theoretical models of Rittinghaus et al. [40]
and Eicher [23] and derived requirements on the checkpoint mechanism of Simu-
Boost. Therefore, we have compared the DLMs, scanning and WP, and found
that the differences in performance during checkpoint creation, regarding the in-
duced downtime and runtime overhead, are negligible for the overall speedup of
full system simulation that is achievable by using SimuBoost.

We have further discussed the work of Pusch [38] who measured high check-
point loading times in his experiments. We were able to approximate Pusch’s
scenarios and confirm his results. We identified the generally high memory pres-
sure on the machine due to multiple simulation jobs to be the main cause for the
high checkpoint loading times. We have concluded that a solution of this problem
would be to reduce the data amount that needs to be restored during checkpoint
loading.

As a result, we have identified sparse checkpointing as an approach to reduce
the data amount during checkpoint loading. We recapitulated the work of Werner
[47] on working set analysis of continuous checkpoints in order to estimate the
effectiveness of sparse checkpointing. We have found that sparse checkpointing
should conceptually be able to reduce the data amount during checkpoint loading
by up to 93.5 %.

In this chapter, we systematically evaluate our implementation of sparse check-
pointing for SimuBoost. First of all, we introduce our methodology and the eval-
uation setup. Next, we verify the correctness of sparse checkpoints, thus whether
they can be used to correctly simulate a finite execution interval. Simultaneously,
we test our hypothesis that sparse checkpointing reduces the memory footprint of
emulations, allowing for the deployment of additional simulations on a single ma-
chine. This would imply a gain for the achievable speedup of SimuBoost since its
simulation performance heavily depends on the number of concurrent simulations
as pointed out in Chapter 3. Afterward, we evaluate the performance implications
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of acquiring the accessed set during checkpoint creation, regarding the induced
downtime and the runtime overhead. Finally, we evaluate the checkpoint loading
times under high utilization of the test machine and compare our results with the
results of the experiments in Chapter 3.

5.1 Methodology

In Chapter 3, we have already discussed the fact that up to now SimuBoost as a
whole is work in progress. We have tested single components of SimuBoost, e.g.,
the checkpoint mechanism, the recording and replay, or the checkpoint distribu-
tion via multicast, yet there is no implementation that combines all components
to a fully functional distributed, heterogeneous recording and replay system that
is SimuBoost.

As a result, we create test scenarios for sparse checkpointing that are as close
as possible to the final application of SimuBoost. Therefore, we reconsider the
experiments that we have deployed in the analysis, regarding checkpoint creation
and checkpoint loading, and argue about their applicability for an evaluation of
sparse checkpointing. There are five areas of sparse checkpointing that we evalu-
ate: (1) the correctness of sparse checkpointing including a definition of correct-
ness, (2) the maximal memory footprint of a simulation, (3) the working set size,
(4) checkpoint creation, and (5) checkpoint loading.

All experiments were performed using our modified Linux kernel version 4.3.01

for checkpoint creation, QEMU version 2.6.0 with recording and replay exten-
sions, and SimuTrace version 3.4.1 with sparse checkpoint extensions. The de-
ployed VMs are all single core VMs equipped with 2 GiB of main memory and
running Ubuntu 16.04 if not stated differently.

5.1.1 Sparse Checkpoint Correctness

First of all, we have to define in which case we call a checkpoint correct. In the
context of SimuBoost, we use checkpoints, regardless if they are sparse or not, to
split the execution of a VM into equally sized execution intervals. A checkpoint
marks the start of an interval and the subsequent checkpoint marks the end of
an interval. We simulate execution intervals concurrently on multiple simulation
nodes. The simulations reenact the execution of the original VM since SimuBoost
leverages deterministic recording and replay. Therefore, the simulation reads and
replays deterministic input data from the recording log at predefined landmarks.
The landmarks depend on the content of registers which in turn may contain data

1SimuBoost extensions – checkpoint mechanism and acquisition of working set.
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read from main memory. The main memory of the VM itself is never replayed but
rather evolves as events from the log manipulate the main memory in a determin-
istic way.

As a result, if the state of those main memory pages that are used by the VM
during simulation is not consistent with the replay, the landmarks of the simulation
and the log do not match and the replay misses events, leading to a simulation
that diverges from the original VM execution. This implies that a checkpoint is
correct in the sense of SimuBoost, if the replay of the corresponding simulation
interval succeeds, thus QEMU is able to replay all events of the interval from the
log without a mismatch of landmarks or subsequent errors. Nevertheless, notice
that this is only a necessary requirement, it is not sufficient to guarantee a correct
replay. This means, if the replay of a checkpoint interval fails it is not given that
the checkpoint was not restored correctly since there is the possibility that the
replay of the recording log is defective.

On the other hand, if a checkpoint, regardless if it is sparse or not, replays
correctly, there is still the possibility that the checkpoint was defective yet the
discrepancy is minor so it does not affect the control flow of the execution. For
example, if data is read from one memory location and written to another, and
there is no further access to the written data in the given interval, it will not cause
the replay to fail even if the read data was defective.

In summary, a checkpoint is correct in the context of SimuBoost, independent
of the employment of sparse checkpointing, if QEMU is able to load the check-
point and replay the corresponding simulation interval. Since this criteria is only
a necessary requirement, we compare the correctness rate of sparse checkpoints
with the correctness rate of non-sparse checkpoints in order to argue about the
validity of sparse checkpointing and our results. If sparse checkpointing achieves
the same correctness rate than non-sparse checkpointing it is safe to assume the
validity of sparse checkpointing. For the remainder of this paper, we refer to non-
sparse checkpoints as full checkpoints or full checkpointing.

We perform the correctness experiments on an Intel(R) Xeon(R) CPU E5-2630
v3 with 64 GiB of main memory and a 1 TB Samung SSD 850. We employ a 4 GiB
VM in order to avoid non-determinism in the setting of accessed and dirty bits
in the guest page tables, which the current recording and replay implementation
does not capture. We only perform a single run per experiment since the sequential
execution of the replay is extremely time consuming.

First of all, we create a complete SimuBoost log, including continuous check-
points and record non-deterministic events. We create logs for a Linux kernel
build using sparse checkpointing and full checkpointing. Afterward, we execute
each simulation interval by sequentially loading the checkpoints and replaying the
non-deterministic events from the log. At the end, we provide and compare the
replay failure rate for sparse and full checkpoints. Additionally, we provide the
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checkpoint loading time for each checkpoint for sparse and full checkpointing.
We omit correctness experiments for SPECjbb at this point since its runtime

is more than twice the runtime of a Linux kernel build. Nevertheless, we per-
form a concurrent replay experiment at the end of this chapter in order to provide
correctness data for SPECjbb. Furthermore, we provide first results of the actual
achievable speedup of parallel simulation on a single workstation using Simu-
Boost.

Note that we do not perform concurrent correctness experiments for the kernel
build since our mechanism of acquiring the main memory footprint of the simula-
tion intervals presumes sequential simulation.

5.1.2 Main Memory Footprint

At the end of Section 3.3.4, we argue that sparse checkpointing may reduce the
main memory footprint of simulation intervals. We evaluate the maximal main
memory footprint of each simulation interval for a Linux kernel build running
inside the VM.

Therefore, we extend the experiment introduced in the previous Section 5.1.1.
After loading and replaying a given execution interval, we additionally measure
the physical main memory consumption of the associated QEMU process. We
argue that the lower limit of the main memory consumption of QEMU is given
by the size of the working set of the VM for this interval. We know that the
working set is maximal at the end of the replay interval since it is a concave
function as shown by Denning [21] and illustrated by the measurements of Werner
[47]. Besides the VM’s main memory, QEMU allocates main memory for the
emulation itself, e.g., DBT, device emulation, and I/O activity. If we presume that
QEMU approximately uses a constant amount of main memory for emulation of
a simulation interval, we can argue that the main memory consumption of QEMU
is maximal at the end of a simulation interval.

We measure the physical main memory using the pmap command and parse
the resident set size. In later experiments, we use the maximal size of the average
main memory footprint in order to estimate the maximal number of simulations
we are able to deploy on our workstation for the concurrent sparse checkpointing
correctness experiment of SPECjbb.

5.1.3 Working Set Size

The working set size of a simulation interval affects the data amount that needs to
be restored during checkpoint loading and is a good measure for the synchroniza-
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tion overhead of sparse checkpointing during checkpoint creation2. We provide
data regarding the size of the complete working set and the dirty set. We acquire
the complete working set size for a checkpoint interval by counting the set bits of
the accessed bitmap. The dirty set size is measured by default by the checkpoint
mechanism. Therefore, data describing the working set size and the dirty set size
are a side product of our checkpoint creation experiments.

In Section 4.1.1, we have presented a simple optimization that allows us to
omit certain page frames thus not adding them to the working set. We provide
data regarding the effectiveness of this optimization. Furthermore, we compare
our results regarding the working set size with the working set measurements of
Werner [47] in order to verify their validity.

5.1.4 Checkpoint Creation

We have already conducted experiments to analyze the performance of Simu-
Boost’s checkpoint mechanisms regarding the induced downtime and the runtime
overhead. In Section 3.2.1, we have compared both DLMs, scanning and WP, in
order to argue whether they are suited for the application with SimuBoost. For this
purpose, we have performed a series of experiments creating continuous check-
points of a VM. We were running two different workloads, a Linux kernel build
and SPECjbb. We have further provided a baseline by executing the same work-
loads without checkpointing enabled.

We evaluate the checkpoint creation of sparse checkpointing by recreating the
experiments of the analysis chapter. Keep in mind that our sparse checkpoint
implementation is an extension of the scanning DLM that we have analyzed in
Section 3.2.1. Therefore, we are able to argue about the performance implications
of sparse checkpointing regarding the induced downtime and the runtime overhead
during checkpoint creation by comparing its results to the results of scanning in
the analysis and to the baseline that we have acquired in the course of Chapter 3.

As a remainder, for the checkpoint creation experiments we have been using
a VM configured with 2 GiB of main memory. The VM is executing either a
Linux kernel build or SPECjbb as a workload. We test varying checkpoint interval
lengths of 1000 ms, 2000 ms, 4000 ms, and 8000 ms. We perform ten independent
runs for each interval length and each workload. Before each run we flush the
page cache of the host in order to avoid cache related side effects. We execute
the sparse checkpoint creation experiments on a host equipped with an Intel(R)
Xeon(R) CPU E5-2630 v3, 64 GiB of main memory, and a 1 TB Samung SSD 850.

2Note that the working set size further is the lower limit for the main memory footprint.
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5.1.5 Checkpoint Loading
During the experiments in Section 5.1.1 we have already obtained data regarding
the checkpoint loading time of sparse checkpoints. Yet, we recreate the exper-
iments of Pusch in order to evaluate sparse checkpoint loading times on a test
machine with very limited hardware resources under high to medium utilization.
This allows us to directly compare the results of sparse checkpoint loading with
the results of Chapter 3.

The checkpoint loading experiments in Chapter 3 induced high load on the
main memory of the test machine. We have claimed that sparse checkpointing
is able to reduce the performance degradation of checkpoint loading due to high
memory pressure. We verify this claim by recreating those experiments.

We preliminary create sparse checkpoint of a VM equipped with 2 GiB of
main memory, executing either a Linux kernel build or SPECjbb. For the Linux
kernel build, we use checkpoint interval lengths of 2454 ms and 4908 ms. For
SPECjbb, we use checkpoint interval lengths of 3360 ms and 6720 ms. Those
interval lengths stem from the scenarios of Pusch and the number of concurrent
simulations that are deployed on the consumer nodes. For each workload and
interval length, we perform ten runs. The resulting checkpoints are copied to the
test machine so the checkpoint data is locally available just as it would be the case
with multicast checkpoint distribution (see Section 3.2.2).

The actual evaluation of checkpoint loading splits into two experiments per
workload. We perform checkpoint loading experiments executing two and four
parallel simulation jobs on the test machine in order to approximate the load on
the machine during an application in the context of SimuBoost. For two parallel
jobs, we load the checkpoints that have been created using an interval length of
4908 ms and 6720 ms, respectively. For four jobs, we load the checkpoints that
have been created using an interval length of 2454 ms and 3360 ms, respectively.
We must pay close attention to interval length that was used to create the check-
points we intend to load since the interval length affects the data amount of a
sparse checkpoint.

We mentioned earlier that we have performed ten checkpoint creation runs.
Therefore we repeat each checkpoint loading experiment ten times. The presented
results are thus the average of those ten runs.

The test machine for checkpoint loading is equipped with an Intel(R) Xeon(R)
CPU E31220, 16 GiB of RAM, and a 1 TB Samsung SSD 850.

5.1.6 Parallel Simulation
Sparse checkpointing reduces the main memory footprint of the simulation of
an execution interval. It enables us to deploy more concurrent simulation on a
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single workstation. As a result, it becomes feasible to use SimuBoost on a single
machine. We utilize the measurements of the main memory footprint of Section
5.1.2 to estimate the maximal number of concurrent simulations on a test machine.

We then create a complete SimuBoost log, including sparse checkpoints and
the recording of non-deterministic events of a VM, executing either a Linux kernel
build or SPECjbb. Once the recording finishes, we concurrently load each check-
point and simulate the corresponding execution interval by replaying the event
log.

This setting is only an approximation of a real SimuBoost use case since we
decouple the execution of the producer VM and the simulations for the sake of
simplicity. Nevertheless, we can argue about the speedup since the runtime of the
producer VM is masked by the concurrent simulations. It allows us to evaluate
the speedup of SimuBoost with sparse checkpointing enabled.

Keep in mind, that SimuBoost without sparse checkpointing is only able to
execute a very limited number of simulations on a machine, since each simula-
tion of a short execution interval instantiates a full-blown VM. Therefore, a ma-
chine, such as the one we use for the correctness experiments, which is equipped
with 64 GiB RAM, has approximately 40 GiB of main memory available for sim-
ulations since the remaining 24 GiB are used by SimuBoost itself and the host
system. This means, we are able to run 10 simulations in parallel at max. In con-
trast, we suppose that sparse checkpointing allows us to deploy significantly more
simulations on the same machine.

We use the test machine, which we have also used for the evaluation of cor-
rectness, maximal main memory footprint, and sparse checkpoint creation, for
both recording and replaying the simulation intervals. The machine is equipped
with an Intel(R) Xeon(R) CPU E5-2630 v3, 64 GiB of main memory, and a 1 TB
Samsung SSD 850. We utilize the measurements of the main memory footprint
that will result from our correctness experiments to estimate the maximal num-
ber of simulations. We realize that SPECjbb generally induces a higher memory
load than a kernel build thus we estimate the maximal number of simulations for
SPECjbb rather conservative.

We calculate the optimal interval length for creation of a full recording for the
maximal number of simulations by applying Formula 3.11. We provide results
regarding the correctness, the actual speedup compared to serial simulation, the
efficiency of the concurrent simulation, and the average checkpoint loading time.
The efficiency of the parallelization is given by the achieved speedup and the
number of used nodes [40]:

E =
S(N,Lopt(N))

N
(5.1)
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5.2 Results

In this section, we present the results of our evaluation. We start with the evalua-
tion of the sparse checkpoint correctness and the maximal main memory footprint.

We continue with the working set size and the evaluation of our sparse check-
point optimization.

Afterward, we present the results of checkpoint creation, and finish with the
results of our checkpoint loading experiments under high system load.

Additionally, we acquire the correctness rate of SPECjbb by concurrently re-
playing a complete recording. This concurrent replay is only feasible since we
assume that sparse checkpointing reduces the main memory footprint of simula-
tions allowing for more concurrent simulation instances on a single machine.

We complete the presentation of the results with a discussion of ramifications
for the applicability of sparse checkpointing in SimuBoost. We only provide a
subset of the plots in this chapter in order to keep the chapter clearly laid out. The
plots and data of all experiments can be found in Appendix C.1.

We do not provide runtime related plots or data for all SPECjbb experiments
since measuring the runtime of SPECjbb makes no sense as the runtime is constant
and the performance is given by specific measures that describe the throughput of
the system.

5.2.1 Correctness and Main Memory Footprint

We present the results of our correctness experiments first, so we are able to pre-
sume the correctness of the sparse checkpoints for the remainder of the evaluation.

We have performed the correctness tests for a Linux kernel build running in
the recorded VM. The recorded VM was configured to use 4 GiB of main memory
and the checkpoints have been taken with an interval length of 2000 ms.

Our experiments show that 395 out of 406 sparse checkpoints of a Linux ker-
nel build fulfill our correctness criteria of Section 5.1.1. This is a sparse check-
point correctness rate of 97.29 %. For full checkpointing, the correctness rate is
100 %. As a result, we have to assume that there are corner cases for which we
miss memory accesses of the VM, leading to incomplete working set information
during checkpoint loading. We summarize the occurred replay failure reasons in
Table C.1 in the appendix.

We have suspected that the sparse checkpointing optimization, which we have
introduced in Section 4.1.1, could falsify the acquired working set if there are
unanticipated cases for which the optimization does not work correctly. There-
fore, we have disabled the optimization and repeated the experiment. In this case,
388 out of 406 sparse checkpoints fulfill the correctness criteria which is 95.57 %.
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Figure 5.1: Showing the checkpoint loading time and the maximal main memory foot-
print for each checkpoint of a Linux kernel build for full checkpointing and for sparse
checkpointing.

This correctness rate is even less than for the optimized sparse checkpointing im-
plementation. As a result, it is save to assume that the sparse checkpoint opti-
mization does not falsify the working set information, yet the acquisition of access
information is incomplete for some basic corner cases.

Besides sparse checkpoint correctness, we have measured the maximal mem-
ory footprint of the emulations and the checkpoint loading times for each check-
point for sparse checkpointing and for full checkpointing. In Figure 5.1, we com-
pare the checkpoint loading times and the maximal memory footprint of sparse
checkpointing and full checkpointing. The average checkpoint loading time for
full checkpoints is 1.956 ± 0.004 s and the average maximal main memory foot-
print is 4.521 ± 0.009GiB. For sparse checkpoints, the average loading time is
0.222 ± 0.002 s and the average maximal main memory footprint is 0.971 ±
0.012GiB.

This means sparse checkpointing reduces the maximal main memory footprint
of each emulation of a Linux kernel build by 78.52 % on average. We use the
average maximal main memory footprint later on to estimate the maximal number
of concurrent simulations on our test machine for parallel SPECjbb correctness
experiment.
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Conclusion

In summary, we do realize that there are some unresolved issues with sparse
checkpointing since the checkpoint correctness rate of sparse checkpointing for a
Linux kernel build is only ≈ 97% compared to 100 % for full checkpointing. We
leave the investigation of why certain simulation intervals fail to replay to future
work and argue that a sparse checkpoint correctness rate of 97 % is still sufficient
in order to illustrate the benefits of sparse checkpointing for the application with
SimuBoost.

Our first measurements show that sparse checkpointing is able to reduce the
average checkpoint loading time of a Linux kernel build by ≈ 89% and the aver-
age maximal main memory footprint by ≈ 79%. As a result, it becomes feasible
to deploy SimuBoost as a whole on a single host.

Let us presume a workstation with 64 GiB of main memory, a CPU with 32
concurrent hardware threads, and an average maximal memory footprint of a sin-
gle simulation of 1 GiB. Furthermore, we assume that the producer VM uses about
4 GiB of main memory and the SimuTrace storage and other common processes
use additional 20 GiB of main memory. This means sparse checkpointing would
allows us to deploy up to 40 concurrent simulations on the workstation, if we just
consider the main memory as a limiting factor. In contrast, for the same hypothet-
ical setting, full checkpointing only allows for 10 concurrent simulations if we
assume an average main memory footprint of 4 GiB.

5.2.2 Working Set Size
In Section 4.1.1, we have discussed the implementation of a simple optimization
of sparse checkpointing that omits page frames which only have been written to
by KVM in the host context.

Table 5.1 and 5.2 show the average working set size for a Linux kernel build
and SPECjbb, respectively. Furthermore, we provide the average number of page
frames that have been omitted due to our optimization. This means the shown
working set sizes minus the number of omitted page frames yields the effective
working set size that is relevant for sparse checkpoint loading. We notice that
our optimization saves between 4.69 % and 7.14 % of the total working set size
depending on the workload and the checkpoint interval length.

These savings do not have any influence on the performance of sparse check-
point creation since we still have to save all page frames that have been written
to in order to guarantee a consistent checkpoint. Nevertheless, those page frames
that have been skipped due to our optimization will not be restored during check-
point loading, therefore reducing the sparse checkpoint loading time and the main
memory footprint of simulation intervals.
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Interval [ms] Avg. working set size Avg. skipped page frames Percentage
1,000 31,102 1,712 5.51
2,000 33,899 1,904 5.62
4,000 39,065 2,130 5.45
8,000 45,504 2,408 5.29

Table 5.1: Showing the average working set size and the number of page frames that could
be skipped due to our optimization for a Linux kernel build for varying interval lengths.

Interval [ms] Avg. working set size Avg. skipped page frames Percentage
1,000 125,356 5,875 4.69
2,000 185,189 11,330 6.12
4,000 199,446 13,516 6.78
8,000 202,848 14,492 7.14

Table 5.2: Showing the average working set size and the number of page frames that could
be skipped due to our optimization for SPECjbb for varying interval lengths.

For the remainder of this chapter, if we refer to the working set size we refer to
the effective working set size minus the page frames that have been skipped due
to our optimization.

If we compare the measurements of the complete working set with the results
of Werner [47], we realize that we find slightly higher working set sizes for all
interval lengths. This is even true for the effective working set size that already
omits a certain number of page frames. We argue that this can be traced back to
the incomplete data acquisition of Werner since he finds that the working set sizes
he measured using full system simulation are too small as they do not fulfill basic
invariants.

5.2.3 Sparse Checkpoint Creation

We present the results of our evaluation of sparse checkpoint creation. We directly
compare the results of sparse checkpoint creation regarding induced downtime
and runtime overhead with the results of checkpoint creation using scanning as
DLM since our sparse checkpoint implementation is an extension of scanning.

In this context, we refer to the implementation of scanning that additionally
synchronizes access information as extended scanning (ext. scanning) and to the
scanning implementation that only synchronizes dirty information as default scan-
ning (def. scanning).

First of all, we present the results for a Linux kernel build running in the
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Figure 5.2: The left axis plots the average downtime (DT) of a VM executing a Linux
kernel build while creating continuous checkpoints using extended scanning. The right
axis shows the accumulated downtime of the checkpointed VM.

checkpointed VM for varying checkpoint interval lengths. Figure 5.2 depicts the
average downtime of ext. scanning compared to def. scanning. We realize that
ext. scanning induces significantly more downtime than def. scanning.

The rise of the downtime for sparse checkpointing can be explained by the
additional work that ext. scanning does by synchronizing accessed bits to the ac-
cessed bitmap during the downtime of the VM. Figure 5.3 compares the average
dirty set and the average complete working set for different checkpoint interval
lengths. The difference between the working set and the dirty set represents the
average number of page frames that sparse checkpointing must synchronize addi-
tionally3.

Furthermore, we observe the convergence of the accumulated downtime of ext.
scanning and def. scanning the longer the checkpoint interval gets. In Chapter 3,
we have observed this convergence of the accumulated downtime when comparing
the DLMs WP and scanning. We have argued that this is caused by the limited
growth of the dirty set. The same argument is applicable for the convergence of
the accumulated downtimes of ext. scanning and def. scanning.

The size of the accessed set is a concave function of the interval length as
shown by Werner [47] and demonstrated theoretically by Denning [21]. Our plot
of the size of the accessed set as shown in Figure 5.3 further supports this argu-
ment. As a result, the additional work for synchronization of access information
decreases the longer the checkpoint interval gets, which in turn leads to a reduced

3For exact values we refer to Table C.2 in the appendix.
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Figure 5.3: Comparing the working set and dirty set measurements for a Linux kernel
build that we have collected during sparse checkpoint creation. The VM was configured
with 2 GiB of main memory. The plotted values are the average of ten independent runs.
See Table C.2 in the appendix for the exact values.

accumulated downtime for sparse checkpointing for longer checkpoint intervals.
Figure 5.4 plots the total runtime overhead minus the accumulated downtime

for ext. scanning and def. scanning on the left axis and the runtime overhead in
percent of the baseline (745.31 s) on the right axis. We notice that ext. scanning
induces only a slightly higher runtime overhead compared to def. scanning. For
an interval length of 1000 ms, sparse checkpointing induces an runtime overhead
of 9.25 %, compared to def. scanning that induces a runtime overhead of 8.41 %.

The slightly higher runtime overhead of ext. scanning compared to def. scan-
ning for interval lengths of 1000 ms and 2000 ms can be explained by the page
frames whose accessed state is not tracked by the accessed and dirty bits of the
EPTs as we have discussed in Section 4.1.1. In these special cases, the main mem-
ory access takes place in the execution context of the host, during the execution
of the host, thus KVM marks the page frames dirty or accessed by setting the
respective bit in the dirty or accessed bitmap directly.

In case of ext. scanning this additionally has to be done for page frames that
have only been read leading to slightly higher runtime overhead of ext. scanning
compared to def. scanning. The effect on the runtime diminishes the longer the
checkpoint interval gets since the working set size and the dirty set size converge,
as depicted in Figure 5.3, resulting in less additional read accesses that must be
synchronized.

Our measurements of the downtime for a kernel build, a workload that induces
low to medium main memory load, already shows almost double as high average
downtimes for ext. scanning as for def. scanning.
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Figure 5.4: The left axis plots the runtime (RT) of a VM executing a Linux kernel build.
The runtime is plotted minus the accumulated downtime caused by checkpointing. This
means the figure compares the raw runtime overheads produced by extended scanning
(ext. scanning) and default scanning (def. scanning). The right axis shows the runtime
overhead of the checkpointed VM compared to the non-checkpointed VM in percent. The
runtime of a VM without continuous checkpointing totals to 745.31 s.

As a result, we have employed SPECjbb as a CPU and memory intensive
workload in order to show the performance of ext. scanning under high load.
Figures 5.5 and 5.6 show the downtime for each checkpoint over the course of
execution for varying checkpoint interval lengths for SPECjbb and a kernel build.
We plot ext. scanning and def. scanning so we are able to compare both mecha-
nisms and visualize the downtime overhead that is induced by ext. scanning.

The downtime plots for each checkpoint confirm our observations of the av-
erage downtimes of ext. scanning and def. scanning. Ext. scanning induces
constantly more downtime of approximately 8 ms than def. scanning. This is true
for a kernel build as well as SPECjbb.

If we compare the respective figures for a Linux kernel build and SPECjbb we
see the different characteristics of the two workloads.

SpecJBB (see Figure 5.5) goes through multiple phases of execution each of
which increases the load on the system. We are able to identify those phases for
both variants of scanning since the downtime raises every 200 s.

A Linux kernel build (see Figure 5.6) on the other hand, induces high memory
load at the beginning of the workload as it reads files from the virtual disk resulting
in peaks of the downtime. For the rest of the workload, the memory load is evenly
distributed leading to relatively constant downtimes.

The exact average downtimes can be found in Table C.3 in the appendix.
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Figure 5.5: Plots (a), (b), (c), and (d) show the downtime for each individual checkpoint
for interval lengths of 1000 ms, 2000 ms, 4000 ms, and 8000 ms. The workload executing
on the test VM was a SPECjbb benchmark. We compare extended scanning (ext. scanning)
with default scanning (def. scanning).
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Figure 5.6: Plots (a), (b), (c), and (d) show the downtime for each individual checkpoint
for interval lengths of 1000 ms, 2000 ms, 4000 ms, and 8000 ms. The workload executing
on the test VM was a Linux kernel build. We compare extended scanning (ext. scanning)
with default scanning (def. scanning). The scattered runaway values for an interval length
of 2000 ms go up to at max 89 ms.
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Conclusion

Our measurements of the sparse checkpoint creation performance regarding the
induced downtime and the runtime overhead are coherent with the findings of
the analysis regarding the general performance of scanning as a DLM. The direct
comparison of ext. scanning and def. scanning illustrates that ext. scanning
induces higher downtimes and a slightly higher runtime overhead.

These results are comprehensible since ext. scanning performs more work
than def. scanning as ext. scanning not only synchronizes dirty information to the
dirty bitmap but also access information to the accessed bitmap.

Our findings of Section 3.4 have shown that the influence of the downtime and
the runtime overhead of the checkpoint mechanism are negligible for the speedup
that is achievable with SimuBoost. Therefore, it is save to assume that the in-
creased downtime does not diminish the benefits of sparse checkpointing regard-
ing checkpoint loading times and a reduced memory footprint.

5.2.4 Sparse Checkpoint Loading
We have performed four experiments that recreate the checkpoint loading exper-
iments of Chapter 3. We have omitted disk checkpoint loading since disk data it
is completely contained in the replay log due to the recording of DMAs. Further-
more, we ignore the constant and low device loading times4 for these experiments
for the sake of simplicity. As a result, all figures show only the main memory
loading time which represents the approximate total loading time of sparse check-
pointing.

Figure 5.7 plots the average checkpoint loading times of a Linux kernel build
for 100 consecutive checkpoints on the left axis and the restored data amount on
the right, opaque axis. We have conducted the experiment for two and four jobs.

We notice that the checkpoint loading time peaks between checkpoints 0 and
20 with a value of about 1000 ms. In case of two jobs, the checkpoint loading
time is henceforth below 250 ms, whereas it increases up to 1000 ms for four
concurrent simulation jobs. The average checkpoint loading time for a kernel
build is 193.111± 9.637ms for two jobs, and 470.051± 24.738ms for four jobs.
The average data amount that is restored for a kernel build is 146± 6MiB for two
jobs, and 133± 5MiB for four jobs.

If we compare these results with the results of the kernel build experiments that
we have conducted in Section 3.2.2, we clearly see the improvement of sparse
checkpointing on checkpoint loading times and the restored data amount. As a
remainder, full checkpoints have resulted in average loading times of 2.4±0.043 s
for two jobs, and 7.189± 0.21 s for four jobs. The average data amount that must

4Device loading times are constantly about 5 ms.
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Figure 5.7: Showing the average checkpoint loading times and the average checkpoint
data amount out of ten runs for 100 consecutive sparse checkpoints of a Linux kernel
build. The left axis plots the loading time in seconds, whereas the right axis plots the data
amount that has been restored. The loading time for devices is not shown since it is about
5 ms in both cases. We completely omit disk restoring so there is no plot for disk either.
As a result, the RAM loading time represents the total checkpoint loading time for sparse
checkpoints.

be restored in case of full checkpoints is 2.857 ± 0.020GiB for two jobs, and
2.779± 0.025GiB for four jobs.

Therefore, the savings of sparse checkpointing regarding the data amount are
about 95 %. This value is very close to the prediction5 that we have provided at the
end of Section 3.3.2. As a result, we save on average about 92 % of the checkpoint
loading time for two jobs, and about 93 % of the checkpoint loading time for four
jobs running concurrently on the test machine.

Nevertheless, we do realize that the average checkpoint loading time for four
jobs is twice as high as for two jobs since the curve of the checkpoint loading time
for four jobs raises up to 1000 ms, yet the data amount for four jobs is actually
slightly lower than for two jobs. For full checkpoint loading in Section 3.2.2, we
also observe a raise of the checkpoint loading time. We have argued that the host
starts swapping page frames to disk due to the limited amount of main memory of
the test machine and the high memory demands of executing four simulations in
parallel.

For our sparse checkpoint loading experiments, we have also deployed full-

5We predicted a data reduction of 2 GiB to 134 MiB (93.5 %) ignoring the size of the disk
checkpoint.
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Figure 5.8: Showing the average loading times and the average data amount out of ten
runs for 100 consecutive sparse checkpoints of SPECjbb. The left axis plots the loading
time in seconds, whereas the right axis plots the data amount that has been restored. The
loading time for devices is not shown since it is below 5 ms for both cases. We completely
omit disk restoring so there is no plot for disk either. As a result, the RAM loading time
represents the total checkpoint loading time for sparse checkpoints.

size QEMU instances to produce load on the test machine that is comparable to
the load of a SimuBoost instance. As a result, in case of four jobs, three of those
four jobs are default, full-blown QEMU instances, each of which taking at least
2 GiB of memory, whereas only the checkpoint loading QEMU instance is sparse
and has a smaller main memory footprint. We argue that the memory footprint of
the three load generating QEMU instances in case of a kernel build increases over
time since they continuously perform I/O, claiming host resources, such as the
host page cache. This leads to displacement of page frames containing checkpoint
data, resulting in steadily increasing loading times as the host starts swapping
page frames to disk. In case of two jobs, we do not observe this performance
degradation for a kernel build due to high memory pressure, since there is only
one load generating QEMU instance running.

Figure 5.8 shows the results of checkpoint loading experiments for SPECjbb.
For SPECjbb we find average checkpoint loading times of 670.835 ± 5.721ms
for two jobs and 694.493 ± 12.681ms for four jobs. The average data amount is
647.495± 14.501MiB for two jobs and 576.88± 9.847MiB for four jobs.

The results of the data amount represent the aforementioned higher memory
load that is generated by SPECjbb. The average data amount of SPECjbb is four to
five times as high as for a Linux kernel build. The same applies to the checkpoint
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loading times of a Linux kernel build and of SPECjbb for two jobs. Yet, in case
of four jobs, we do not notice a raise of the checkpoint loading time for SPECjbb
as we have for a Linux kernel build with four concurrent jobs even though there
is more data to restore for SPECjbb.

This goes with our explanation of the increasing checkpoint loading time for
four jobs for a Linux kernel build. We argue that for a Linux kernel build the load
generating simulations claim additional host resources since a Linux kernel build
causes I/O activity by reading and writing data from and to disk. This I/O activity
passes through to the host I/O subsystem resulting in higher memory pressure on
the host. SPECjbb in contrast, causes very little I/O activity, thus there is less I/O
activity on the host and there is less performance degradation for four concurrent
simulation jobs. As a result, we observe that the checkpoint loading times of
SPECjbb for four jobs do not increase over time.

The improvement of the sparse checkpoint loading times for SPECjbb com-
pared to full checkpoint loading times are not as significant as for a kernel build
since the disk loading time does not weigh as much and more RAM data is re-
stored for SPECjbb. Nevertheless, for two jobs, we are able to decrease the aver-
age checkpoint loading time by 49.6 % from 1.331± 0.01 s for full checkpoints to
670.835 ± 5.721ms for sparse checkpoints. For four jobs, we decrease the aver-
age checkpoint loading time by 74 % from 2.672± 0.045 s for full checkpoints to
694.493 ± 12.681 for sparse checkpoints. The data amount for SPECjbb for two
and four jobs is decreased by about 70 %.

Conclusion

The bottom line of our sparse checkpoint loading experiments has been to demon-
strate its performance advantage compared to full checkpoint loading even under
the premise of high utilization of the test machine.

Sparse checkpointing is able to reduce the average data amount of a checkpoint
by 49.6 % to 93 % of the size of a full checkpoint depending on the deployed
workload. As a result, the average checkpoint loading time in our experiments
drops by up to 74 % for SPECjbb and up to 95 % for a kernel build.

5.2.5 Parallel Simulation

Finally, we demonstrate the achievable speedup of SimuBoost using sparse check-
pointing. The experiment enables us to provide a sparse checkpoint correctness
rate for SPECjbb. Therefore, we utilize the measurements of the average maxi-
mal main memory footprint of a Linux Kernel build to approximate the maximal
number of concurrent simulations on our test machine.
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Our measurements in Section 5.2.1 show an average maximal main memory
footprint of 0.971±0.012GiB for a kernel build. We assume that there are 40 GiB
of main memory available for the execution of simulations on our test machine,
the remaining main memory is used by SimuBoost itself and the host OS. We
use a conservative maximal number of simulations of N = 32 since the CPU of
the test machine only comes with 16 cores and hyperthreading, thus 32 hardware
threads.

We perform replay experiments of SPECjbb in order to obtain the sparse
checkpoint correctness rate for SPECjbb just as in Section 5.2.1. We use Formula
3.11 to determine the interval length. For the logging slowdown slog = 1.076, we
use the def. scanning values in Table A.4 since the slowdown of ext. scanning is
approximately the same6. We set the checkpoint loading time ti = 0.69 s to the
worst-case average value that we have measured during the SPECjbb checkpoint
loading experiments in the previous section. The runtime of the producer VM is
Tvm = 1939.376 s. We obtain an interval length of 1230 ms. Furthermore, we set
the downtime tc = 0.02473 s (Appendix Table C.3) which is the downtime that
we have measured for sparse checkpointing for an interval length of 1000 ms.

Our concurrent replay has shown a correctness rate of 96.05 % for SPECjbb
which confirms the correctness rate of sparse checkpointing for a Linux kernel
build and supports our claim that there are still some unresolved issues with our
sparse checkpointing implementation.

We use statistics regarding the replay time of each simulation interval to es-
timate the simulation slowdown ssim. We derive a value of about ssim = 39 for
SPECjbb. As a result, we get a predicted speedup for N = 32 of 30.99× by
applying Formula 3.9.

In comparison, our concurrent sparse checkpoint correctness experiment, which
utilizes a worker pool for concurrent execution of simulation intervals, achieves
a speedup of 19.06×. This speedup value corresponds to an efficiency of 61.5 %
which is relatively low.

We are not able to collect memory footprint data for concurrent simulation due
to technical restrictions of our measurement method. Nevertheless, we have exe-
cuted the last 100 simulation intervals of SPECjbb sequentially to obtain at least
a rough estimation of the average maximal main memory footprint of a SPECjbb
simulation interval. We chose the last 100 simulation intervals since SPECjbb
generates the most main memory load at the end of its execution time.

We find an average maximal main memory footprint of 0.975±0.027GiB for a
single simulation. This implies an estimated maximal main memory consumption
of about 31.2 GiB for 32 concurrent simulations leaving us with 32.8 GiB of main

6We always round up to the next higher interval length for which we provide a value in the
table.
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memory on the test machine that is free for use by SimuBoost and the host system.
This value matches our approximation of SPECjbb’s main memory footprint using
the data acquired for a Linux kernel build. As a result, we rule out high memory
pressure as a reason for the bad speedup efficiency.

This leaves us with two possible bottlenecks that may degrade the performance
of the concurrent simulation. First, the test machine is equipped with an Intel(R)
Xeon(R) CPU that comes with 16 cores and hyperthreading resulting in an effec-
tive number of parallel execution threads of 32. Yet, Wallace et al. [46] show that
the performance of hyperthreading does not compare to the performance of a real
core. As a result, the simulations alone overload the CPU. SimuBoost’s backend
adds further load to the CPU possibly degrading the system performance. As a
result, we should have used a maximal number of N = 16 simulations for this
experiment.

Another possible bottleneck is the I/O system of the machine since 32 sim-
ulations repeatedly, and in parts concurrently, retrieve considerable amounts of
data from disk. This claim is supported by the bad average sparse checkpoint
loading times of 3.625 ± 0.0484 s. Keep in mind that even the sparse checkpoint
loading experiments of SPECjbb in the previous section, in which case we have
completely utilized the test machines main memory, have not resulted in such high
sparse checkpoint loading times.

Our observations regarding the average loading time and the speedup effi-
ciency in case of concurrent simulation of SPECjbb mitigate the assumption,
which we have made in Section 3.1.1, that the main memory is the primary limit-
ing factor for concurrent simulations. It shows that we must further study the per-
formance implications of SimuBoost in a single machine and a distributed setup
in order to maximize its efficiency. Furthermore, we must carefully choose the
number of simulations in order to achieve an optimal speedup.



Chapter 6

Conclusion

In this work, we have developed an optimization of continuous checkpoints for
the application in SimuBoost – sparse checkpointing. For this purpose, we have
performed an extensive analysis of the formal basis [23, 40] of SimuBoost and
derived a number of abstract requirements.

We have further investigated the implications of those requirements for the
overall performance of SimuBoost by analyzing the existing checkpoint mecha-
nisms of SimuBoost regarding checkpoint creation and checkpoint loading.

We have found that the slowdown of the checkpoint mechanism and the in-
duced downtime have only a minor effect on the speedup of SimuBoost. Yet, we
found that it takes 2 s to 3 s to restore a checkpoint on a machine which is under
low to medium load and up to 9 s to restore a checkpoint on a machine under heavy
load. Furthermore, we have argued that the theoretical models of Rittinghaus et
al. [40] and Eicher [23] imply the importance of the number of concurrent simu-
lation jobs for the achievable speedup of SimuBoost. We have identified the main
memory consumption of a single simulation to be an important limiting factor for
the number of concurrent simulations jobs on a machine.

We have decided to reduce the data amount that needs to be restored dur-
ing checkpoint loading since it directly influences the checkpoint loading time.
Therefore, we have recapitulated the work of Werner [47] on the working set size
and composition of continuous checkpoints. Our discussion of his work lead to
the approach of sparse checkpointing in order to reduce the data amount during
checkpoint loading.

Sparse checkpointing leverages access information in order to only restore
those page frames that are in the working set of the checkpoint that is to be re-
stored. Besides, we have noticed the possibility that sparse checkpointing further
reduces the main memory footprint of each simulation allowing for more concur-
rent simulations per machine.

We have implemented sparse checkpointing for KVM leveraging the access
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information of the EPTs.
The evaluation shows that there are still issues with our implementation of

sparse checkpointing, since only 97 % of sparse checkpoints of a Linux kernel
build replay correctly. Nevertheless, sparse checkpointing proofs to reduce the
average checkpoint loading time by 89 % for a Linux kernel build thus support-
ing its effectiveness and relevance for SimuBoost. Furthermore, we have shown
that sparse checkpointing decreases the performance degradation of checkpoint
loading under medium to high utilization of the test machine by 74 % to 93 %
depending on the workload.

Our evaluation of sparse checkpoint creation shows a slightly higher runtime
overhead for sparse checkpointing compared to full checkpointing. Furthermore,
sparse checkpointing induces an average downtime that is almost double as high
as the average downtime of full checkpointing. This is due to the additional work
of synchronizing access information to the corresponding data structures. Never-
theless, we have shown the minor effect of the checkpoint creation performance on
the achievable speedup of SimuBoost in Chapter 3. As a result, we argue that the
performance degradation of sparse checkpoint creation compared to full check-
pointing is diminished by the performance benefits regarding checkpoint loading.

Finally, sparse checkpointing reduces the average maximal main memory foot-
print of a simulation from 4.5 GiB to 971 MiB for a Linux kernel build. This
allows us to deploy three to four times more concurrent simulations on a single
machine. The fact that SimuBoost with sparse checkpointing can be effectively
deployed on a single machine facilitates its application in research and increases
its practical use since there is no longer the need to setup a cluster of multiple
machines to run an accelerated full system simulation using SimuBoost. Yet, our
concurrent simulation experiment of SPECjbb has shown that the main memory
footprint is not the only limiting factor. The speedup efficiency of SimuBoost
suffers from too many simulations on a single machine even if the main memory
footprint of the simulations is no longer the limiting factor.

6.0.1 Future Work
Our evaluation in Chapter 5 has shown some drawbacks of our sparse checkpoint
implementation that can be tackled in future work. First of all, we have noticed
that there are sparse checkpoints that do not replay correctly. This indicates that
the sparse checkpoint implementation is incomplete and there exist corner cases
in which we miss memory accesses by the guest.

Sparse checkpointing induces higher downtimes than full checkpointing. Fu-
ture work could aim to reduce the downtime by introducing pre-scanning. Pre-
scanning starts with the EPT walk and the synchronization of accessed and dirty
information while the VM is still running. As a result, there are less set dirty and
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accessed bits in the EPTs left to synchronize during the downtime of the VM.
Finally, in our concurrent simulation experiment, we have observed an unsat-

isfactory efficiency of SimuBoost even though the main memory footprint of the
simulations has not been the limiting factor anymore. This is because we have
accounted for hyperthreading as if it provides full cores. Therefore, the concur-
rent simulation suffered from performance degradation due to overutilization of
the CPU. As a result, we propose further investigation of the performance impli-
cations of SimuBoost running on a single machine and distributed on a cluster.
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Appendix A

Analysis

A.1 Different Checkpoint Mechanisms in Compari-
son

A.1.1 Checkpoint Creation

Interval [ms] DLM Avg. downtime [ms] Std. deviation Std. error
1,000 wp 3.62 0.81 0.26
2,000 wp 3.85 0.77 0.24
4,000 wp 4.03 0.99 0.31
8,000 wp 4.36 1.21 0.38
1,000 scan 7.18 1.18 0.37
2,000 scan 7.77 1.33 0.42
4,000 scan 8.13 2.09 0.66
8,000 scan 9.04 2.7 0.85

Table A.1: Showing the average downtimes of a Linux kernel build executing in a VM
configured with 2 GiB of main memory and being checkpointed continuously using vary-
ing interval lengths. We have used write protection (WP) and scanning as dirty logging
mechanisms (DLMs).
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Interval [ms] DLM Avg. runtime excl. downtime [s] Std. deviation Std. error
1,000 wp 849.75 4.48 1.42
2,000 wp 814.34 2.04 0.65
4,000 wp 803.14 2.93 0.93
8,000 wp 797.21 3.64 1.15
1,000 scan 807.98 2.29 0.72
2,000 scan 800.18 2.62 0.83
4,000 scan 796.21 3.78 1.2
8,000 scan 790.74 0.52 0.17

Interval [ms] DLM Avg. runtime incl. downtime [s] Std. deviation Std. error
1,000 wp 852.82 4.48 1.42
2,000 wp 815.91 2.05 0.65
4,000 wp 803.95 2.94 0.93
8,000 wp 797.65 3.63 1.15
1,000 scan 813.77 2.33 0.74
2,000 scan 803.29 2.61 0.82
4,000 scan 797.82 3.8 1.2
8,000 scan 791.63 0.51 0.16

Interval [ms] DLM Avg. acc. downtime [s] Std. deviation Std. error
1,000 wp 3.07 3.38 · 10−2 1.07 · 10−2

2,000 wp 1.57 1.38 · 10−2 4.38 · 10−3

4,000 wp 0.81 1.27 · 10−2 4.01 · 10−3

8,000 wp 0.43 4.15 · 10−2 1.31 · 10−2

1,000 scan 5.79 4.62 · 10−2 1.46 · 10−2

2,000 scan 3.1 5.29 · 10−2 1.67 · 10−2

4,000 scan 1.62 2.68 · 10−2 8.48 · 10−3

8,000 scan 0.89 1.62 · 10−2 5.12 · 10−3

Table A.2: Showing the average runtime of a Linux kernel build executing in a VM con-
figured with 2 GiB of main memory and being checkpointed continuously using varying
interval lengths. We employed write protection (WP) and scanning as dirty logging mech-
anisms (DLMs). The upper table shows the runtime exclusive the accumulated downtime
that is induced by the copy mechanism of checkpointing. The table in the middle shows
the runtime inclusive the accumulated downtime. The difference of the runtime depicted
in both tables is the accumulated downtime listed in the lower table.
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Interval [ms] DLM Avg. downtime [s] Std. deviation Std. error
1,000 wp 5.79 0.65 0.21
2,000 wp 7.78 0.59 0.19
4,000 wp 8.28 0.77 0.24
1,000 scan 17.36 2.81 0.89
2,000 scan 24.07 2.92 0.92
4,000 scan 24.68 3.49 1.1
8,000 scan 24.08 3.93 1.24

Table A.3: Showing the average downtime of SPECjbb executing in a VM configured
with 2 GiB of main memory and being checkpointed continuously using varying interval
lengths. We employed write protection (WP) and scanning as dirty logging mechanisms
(DLMs).

Interval [ms] Slowdown factor
1,000 1.117
2,000 1.096
3,000 1.084
4,000 1.074
5,000 1.072
6,000 1.071
7,000 1.077
8,000 1.067
9,000 1.066
10,000 1.064
11,000 1.063
12,000 1.065
13,000 1.065
14,000 1.063
15,000 1.062
16,000 1.062
17,000 1.059
18,000 1.069
19,000 1.063
20,000 1.069

Interval [ms] Slowdown factor
1,000 1.087
2,000 1.076
3,000 1.071
4,000 1.069
5,000 1.075
6,000 1.063
7,000 1.071
8,000 1.063
9,000 1.062
10,000 1.06
11,000 1.061
12,000 1.06
13,000 1.059
14,000 1.059
15,000 1.06
16,000 1.058
17,000 1.057
18,000 1.068
19,000 1.058
20,000 1.069

Table A.4: Showing the slowdown factor of the both dirty logging mechanisms of Simu-
Boost, write protection (WP) and scanning, for increasing interval lengths. The left table
shows the slowdown factors of WP, whereas the right table shows the slowdown factors
of scanning. The depicted slowdown factors per interval length have been taken by per-
forming a single run thus the runaway values of scanning for e.g., an interval length of
20 s.
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Figure A.1: Plotting the slowdown factor of both dirty logging mechanisms for checkpoint
interval lengths ranging from 1 s to 20 s. The corresponding raw data is illustrated in
Table A.4.

A.1.2 Checkpoint Loading Times

Workload # jobs Avg. total loading time [s] Std. deviation Std. error
kb 2 2.4 0.43 4.29 · 10−2

kb 4 7.19 2.1 0.21
specJBB 2 1.33 9.89 · 10−2 9.89 · 10−3

specJBB 4 2.67 0.45 4.52 · 10−2

Workload # jobs Avg. ram loading time [s] Std. deviation Std. error
kb 2 0.88 0.14 1.44 · 10−2

kb 4 3.62 0.9 8.96 · 10−2

specJBB 2 1.06 5.55 · 10−2 5.55 · 10−3

specJBB 4 2.28 0.37 3.72 · 10−2

Workload # jobs Avg. disk loading time [s] Std. deviation Std. error
kb 2 1.52 0.37 3.68 · 10−2

kb 4 3.56 1.23 0.12
specJBB 2 0.26 6.47 · 10−2 6.47 · 10−3

specJBB 4 0.39 0.11 1.07 · 10−2

Table A.5: Showing the average checkpoint loading time of 100 consecutive checkpoints.
The test machine was executing two or four jobs, respectively. The used workloads run-
ning inside the restored VM and on the load generating VMs was a Linux kernel build
(kb) or SPECjbb. The shown loading times are the average of ten independent runs.
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A.2 Sparse Checkpointing

A.2.1 Working Set Analysis

Interval length [ms] 500 1000 2000 4000 8000

Working Set abs. 395977 395584 395676 395818 395629
rel. 71.71 75.45 75.47 75.50 75.46

Read Working Set abs. 347099 394469 394545 394702 394475
rel. 66.20 75.24 75.25 75.28 75.24

Write Working Set abs. 216467 392478 395268 395303 394967
rel. 41.29 74.86 75.39 75.40 75.33

Excl. Read Working Set abs. 159510 3105 407 515 661
rel. 40.48 0.78 0.1 0.13 0.17

Table A.6: Showing the working set sizes for stress as measured by Werner [47]. The
absolute value describes the number of pages frames included in the working set. The
relative value is in percentage of the test VM’s main memory which was 2 GiB. The relative
value of the exclusive read working set is in percentage of the complete working set.
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Appendix B

Design and Implementation

B.1 Acquiring Working Set Information

B.1.1 Synchronization of Accessed Information

File Function
arch/x86/kvm/mmu.c fast_pf_fix_direct_spte
virt/kvm/kvm_main.c __kvm_write_guest_page
virt/kvm/kvm_main.c kvm_write _guest_cached

Table B.1: Listing the locations in the source code of the Linux kernel that we have mod-
ified to optimize our sparse checkpointing implementation.

B.2 Loading Sparse Checkpoints
Showing heatmaps of the memory accesses of a Linux kernel build and SPECjbb
for various checkpoint intervals. The VM was equipped with 2 GiB of main mem-
ory. For the sake of convenience, each cell of the heatmap represents a cluster of
eight page frames with consecutive addresses. For each heatmap the upper left
corner represents the lowest page frame number and the bottom right corner the
highest page frame number. The presented checkpoint intervals were picked ran-
domly.

113



114 APPENDIX B. DESIGN AND IMPLEMENTATION

(a) Checkpoint interval 59 (b) Checkpoint interval 107 (c) Checkpoint interval 221

(d) Checkpoint interval 236 (e) Checkpoint interval 456 (f) Checkpoint interval 558

(g) Checkpoint interval 558 (h) Checkpoint interval 748 (i) Checkpoint interval 817

Figure B.1: Access patterns of a Linux kernel build with a checkpoint interval length of
1000 ms.
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(a) Checkpoint interval 85 (b) Checkpoint interval 123 (c) Checkpoint interval 153

(d) Checkpoint interval 175 (e) Checkpoint interval 228 (f) Checkpoint interval 242

(g) Checkpoint interval 334 (h) Checkpoint interval 365 (i) Checkpoint interval 387

Figure B.2: Access patterns of a Linux kernel build with a checkpoint interval length of
2000 ms.
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(a) Checkpoint interval 21 (b) Checkpoint interval 49 (c) Checkpoint interval 54

(d) Checkpoint interval 55 (e) Checkpoint interval 88 (f) Checkpoint interval 94

(g) Checkpoint interval 127 (h) Checkpoint interval 175 (i) Checkpoint interval 190

Figure B.3: Access patterns of a Linux kernel build with a checkpoint interval length of
4000 ms.
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(a) Checkpoint interval 2 (b) Checkpoint interval 9 (c) Checkpoint interval 17

(d) Checkpoint interval 21 (e) Checkpoint interval 23 (f) Checkpoint interval 29

(g) Checkpoint interval 81 (h) Checkpoint interval 90 (i) Checkpoint interval 99

Figure B.4: Access patterns of a Linux kernel build with a checkpoint interval length of
8000 ms.



118 APPENDIX B. DESIGN AND IMPLEMENTATION

(a) Checkpoint interval 100 (b) Checkpoint interval 175 (c) Checkpoint interval 698

(d) Checkpoint interval 864 (e) Checkpoint interval 926 (f) Checkpoint interval 1229

(g) Checkpoint interval 1363 (h) Checkpoint interval 1545 (i) Checkpoint interval 1859

Figure B.5: Access patterns of SPECjbb with a checkpoint interval length of 1000 ms.
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(a) Checkpoint interval 61 (b) Checkpoint interval 89 (c) Checkpoint interval 123

(d) Checkpoint interval 216 (e) Checkpoint interval 524 (f) Checkpoint interval 540

(g) Checkpoint interval 743 (h) Checkpoint interval 833 (i) Checkpoint interval 893

Figure B.6: Access patterns of SPECjbb with a checkpoint interval length of 2000 ms.
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(a) Checkpoint interval 10 (b) Checkpoint interval 72 (c) Checkpoint interval 132

(d) Checkpoint interval 162 (e) Checkpoint interval 202 (f) Checkpoint interval 217

(g) Checkpoint interval 354 (h) Checkpoint interval 366 (i) Checkpoint interval 466

Figure B.7: Access patterns of SPECjbb with a checkpoint interval length of 4000 ms.
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(a) Checkpoint interval 8 (b) Checkpoint interval 18 (c) Checkpoint interval 49

(d) Checkpoint interval 68 (e) Checkpoint interval 73 (f) Checkpoint interval 132

(g) Checkpoint interval 164 (h) Checkpoint interval 220 (i) Checkpoint interval 229

Figure B.8: Access patterns of SPECjbb with a checkpoint interval length of 8000 ms.
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Appendix C

Evaluation

C.1 Results

C.1.1 Correctness and Main Memory Footprint

Checkpoint id Replay Failure Reason
149, 248, 309, 320, 342, 381, 383 Landmark missed

343 Replay hang up
371, 394 Unspecified

Table C.1: Summarizing the replay failure reasons of the sparse checkpoint correctness
experiments for a Linux kernel build. The failed simulation intervals that are categorized
as unspecified have not given any indication why the replay failed. In case of a hang up,
the replay execution has been aborted because the replay of the specific interval did not
complete in a predefined maximal time period of 15 minutes.
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C.1.2 Checkpoint Creation
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Figure C.1: The left axis plots the average downtime (DT) of a VM executing SPECjbb
while creating continuous checkpoints. The right axis shows the accumulated downtime
of the checkpointed VM.
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Figure C.2: Comparing the working set (exclusive page frames that have been skipped
due to our optimization) and dirty set measurements for SPECjbb that we have collected
during sparse checkpoint creation. The VM was configured with 2 GiB of main memory.
The plotted values are the average of ten independent runs. See Table C.2 in the appendix
for the exact values.
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Interval [ms] Workload Avg. working set size Std. deviation Std. error
1,000 kb 29,389.411 18,794.741 5,943.419
2,000 kb 31,994.772 9,184.181 2,904.293
4,000 kb 36,934.561 14,285.08 4,517.339
8,000 kb 43,095.839 21,677.983 6,855.18
1,000 specjbb 1.195 · 105 25,941.136 8,203.308
2,000 specjbb 1.739 · 105 30,198.662 9,549.656
4,000 specjbb 1.859 · 105 32,611.859 10,312.775
8,000 specjbb 1.884 · 105 30,353.503 9,598.621

Interval [ms] Workload Avg. dirty set size Std. deviation Std. error
1,000 kb 23,245.89 25,673.56 8,118.69
2,000 kb 26,701.62 26,248.79 8,300.6
4,000 kb 33,291.03 38,706.49 12,240.07
8,000 kb 42,268.02 52,808.21 16,699.42
1,000 specjbb 87,070.58 17,853.75 5,645.85
2,000 specjbb 1.43 · 105 26,214.03 8,289.61
4,000 specjbb 1.58 · 105 27,690.81 8,756.6
8,000 specjbb 1.64 · 105 30,367.38 9,603.01

Table C.2: Showing the working set size (exclusive page frames that have been skipped
due to our optimization) and the dirty set size for a Linux kernel build (kb) and SPECjbb.
The working set size was acquired during sparse checkpoint creation and represents the
accessed set size. The dirty set size is acquired by the checkpoint mechanism.

Interval [ms] Workload Avg. downtime [ms] Std. deviation Std. error
1,000 kb 13.91 9.36 2.96
2,000 kb 14.57 17.95 5.68
4,000 kb 15.45 16.15 5.11
8,000 kb 15.44 3.39 1.07
1,000 specjbb 24.73 4.17 1.32
2,000 specjbb 32.76 5.7 1.8
4,000 specjbb 31.08 4.11 1.3
8,000 specjbb 31.12 3.83 1.21

Table C.3: Showing the average downtime of a Linux kernel build and SPECjbb executing
in a VM configured with 2 GiB of main memory. We created continuous sparse checkpoints
using varying interval lengths.
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Interval [ms] Avg. runtime excl. downtime [s] Std. deviation Std. error
1,000 814.258 1.79 0.566
2,000 802.506 5.192 1.642
4,000 794.812 10.316 3.262
8,000 791.063 3.153 0.997

Interval [ms] Avg. runtime incl. downtime [s] Std. deviation Std. error
1,000 824.285 4.012 1.269
2,000 808.487 5.448 1.723
4,000 797.739 10.993 3.476
8,000 792.631 3.173 1.004

Interval [ms] Avg. acc. downtime [s] Std. deviation Std. error
1,000 10.028 2.918 0.923
2,000 5.981 0.351 0.111
4,000 2.927 0.729 0.23
8,000 1.569 2.307 · 10−2 7.294 · 10−3

Table C.4: Showing the average runtime of a Linux kernel build executing in a VM con-
figured with 2 GiB of main memory. We continuously created sparse checkpoints. The
upper table shows the runtime exclusive the accumulated downtime that is induced by the
copy mechanism of checkpointing. The table in the middle shows the runtime inclusive
the accumulated downtime. The difference of the runtime depicted in both tables is the
accumulated downtime listed in the bottom table.

C.1.3 Checkpoint Loading

Workload # jobs Avg. ram loading time [s] Std. deviation Std. error
kb 2 0.19 9.64 · 10−2 9.64 · 10−3

kb 4 0.47 0.25 2.47 · 10−2

specJBB 2 0.67 5.72 · 10−2 5.72 · 10−3

specJBB 4 0.69 0.13 1.27 · 10−2

Table C.5: Showing the average checkpoint loading time of 100 consecutive sparse check-
points. The test machine was executing two or four jobs, respectively. The deployed work-
loads running inside the restored VM and on the load generating VMs was a Linux kernel
build (kb) or SPECjbb. The shown loading times are the average of ten independent runs.
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