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Abstract

Scalable high-performance network servers are a requirement in today’s dis-
tributed infrastructure. Event-driven concurrency models often provide bet-
ter scalability properties than multi-threaded servers but many legacy ap-
plications still follow the multi-threaded model where each request is han-
dled by a dedicated operating system thread. Recent profiling at Google
suggests that the instruction working set of many server applications does
not fit into the private i-caches of contemporary processors, causing under-
utilization of their super-scalar out-of-order pipeline. In a multi-threaded
server with an oversized instruction working set, context switches between
two request-handler threads are thus likely to cause i-cache misses and sub-
sequent pipeline stalls.

We start by analyzing existing approaches to optimize the cache behavior of
network servers. One technique applicable to multi-core systems is execut-
ing different parts of an application’s code on different cores. By migrating
threads to those cores whose caches contain the threads’ current instruction
working set, the application’s code is effectively spread over the system’s pri-
vate i-caches and code misses are greatly reduced. Proof-of-concept work at
the KIT OS group shows the potential of this technique, but the implemen-
tation does not scale to multiple clients and cores. In this thesis, we therefore
propose that the spreading technique described above must be tightly inte-
grated with the OS thread scheduler. We present an unintrusive user-space
API that allows partitioning a multi-threaded server’s request handler code
path into stages. Our scheduler then dynamically assigns cores to stages and
dispatches threads on their current stages’ cores.

We evaluate our design and its implementation in the OSv library operat-
ing system by adapting the MySQL database management system to our
solution. We achieve up to 22% higher throughput caused by a 65% reduc-
tion of L2 i-cache misses without having to sacrifice request latency for this
improvement.
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Chapter 1

Introduction

Network servers are of ever-increasing importance in today’s infrastructure,
handling requests from clients at high degrees of concurrency. A common
implementation pattern is a sequential handler routine that processes each
request, consisting of logical stages such as protocol handling, decoding/en-
coding and actual business logic. Concurrency is achieved by executing the
handler code per connection in separate operating system thread – either by
spawning a thread per request or by using a thread pool. The sequential
handler implementation is simple to follow for programmers and abstrac-
tions for the aforementioned threading models are available in virtually any
programming language and operating system. [PDZ99; Keg99]

Given the increasing CPU-memory-performance gap, it is paramount that the
request handler’s working set fits into the private CPU caches. The code-part
of the working set is of particular importance to avoid stalling the execution
pipeline of contemporary super-scalar out-of-order processors. The dominant
CPUs in the server market are x86-64 based Intel processors featuring sepa-
rate 32KiB L1-d and L1-i caches and a unified 256KiB L2 cache per core, as
well as a shared inclusive L3 cache that is significantly larger. [NehAnand]
Recent profiling at Google shows that this memory hierarchy fails to meet
the demands of contemporary server applications: Request handling code ex-
hibits little spacial locality and thrashes the private CPU caches, leading to
frequent pipeline stalls and sub-optimal application performance.[Kan+15]

Previous work in this field includes techniques such as cohort scheduling :
Threads that execute the same working set are grouped into cohorts and
dispatched in series, thereby amortizing instruction cache misses among all
threads in the cohort. Staged Computation expands this concept to general
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4 CHAPTER 1. INTRODUCTION

software architecture and staged event-driven architectures (SEDA) general-
izes it further: Request processing state is encapsulated into an object which
is passed through a pipeline of stages interconnected by queues. Each stage
controls the concurrency model used to perform its work, allowing cohort
scheduling to be employed. A derivative of cohort scheduling has been im-
plemented in a research DBMS under them term STEPS, yielding an overall
speedup of 40% in the TPC-C benchmark.[LP01; WCB01; HA04; Har05]

Despite the promising results of the research presented above, the concepts
have found little practical adoption. For example, the popular database man-
agement systems MySQL still uses thread-based concurrency (one handler
per request) with a pre-spawned pool of handler threads. [MySQL]. Apart
from the required software-engineering effort do adapt an existing project
to SEDA, we must also consider that the solutions mentioned so far were
designed for uniprocessors. However, given the ubiquity of SMP systems,
techniques such as computation spreading propose a different approach to
mitigate i-cache thrashing: With computation spreading, OS code is exe-
cuted on different cores than user-level code, thereby effectively splitting
the application’s working set at the user-kernel-boundary, resulting in bet-
ter use of the private caches per core. Experimental work at the KIT OS
group generalizes computation spreading to support migration points at ar-
bitrary positions in the application code: Application developers manually
partition their code into stages and insert one-line stage switching calls into
the request handling code path. By dedicating CPU cores to stages and
migrating threads between the cores on stage switch, the request handler’s
instruction working set is spread over the private caches of these cores. A
proof-of-concept implementation in Linux and the MySQL database manage-
ment system shows that for a single concurrent client, L2 cache misses can
be reduced by up to 40%, correlating with up to 17% increased throughput.
However, for more than one client and for increased core counts, the achieved
throughput is up to 40% lower compared to running on standard Linux. The
proof-of-concept is thus clearly not work-conserving, but shows the potential
gains achievable by the technique.

In this thesis, we present a stage-aware thread scheduler that sustains the
performance improvements achieved by instruction working set spreading at
a high number of concurrent clients and multiple CPU cores. Our solution
requires minimal customization effort for adoption in multi-threaded servers,
making it particularly attractive for large legacy codebases that cannot be
easily refactored to support more efficient concurrency models. Specifically,
our contributions are as follows:
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• We analyze the design aspects that make the early 2000’s approaches
of cohort scheduling and STEPS inapplicable to SMP systems.

• We analyze the design and implementation of the aforementioned proof-
of-concept implementation at the KIT OS group and point out why it
is not work-conserving.

• We present a user-space C++ API for applications to manually define
stages and stage switching points in the request-handling code path.

• We present the design and implementation of a work-conserving sched-
uler that allocates CPUs to stages and migrates threads as necessary
to preserve warm instruction-caches.

• We show the practical applicability of our solution by adopting it in
MySQL, resulting in 22% increased throughput and a 65% reduction
in L2 i-cache misses.

The remainder of this thesis is structured accordingly. In Chapter 2, we
examine preceding work in the area of high-performance network server de-
sign. Chapter 3 describes the design of the KIT OS group’s proof-of-concept,
pointing out why it is not work-conserving. Subsequently, Chapter 4 presents
the design and implementation of our solution in the OSv library operating
system. Finally, we evaluate our implementation in Chapter 5 by applying it
to MySQL and showing that our design decisions have their intended effects.
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Chapter 2

Related Work

High-performance network servers must handle requests at a degree of con-
currency that exceeds the parallelism provided by hardware in the form of
CPU cores. Much research has gone into techniques to handle this problem,
further constrained by additional requirements such as predictable response
times and fairness among clients. This chapter starts with an overview of
the prevalent concurrency models in the early 2000s’ software landscape. We
proceed with an introduction to cohort scheduling, staged computation and
staged event-driven architecture which stem from the same time period and
present STEPS, which applies above concepts to a research database manage-
ment system, showing that these software-only solutions lead to performance
improvements due to reduced i-cache misses and better branch prediction.
Despite these in research systems, large-scale profiling at Google from 2015
shows that the memory hierarchy in contemporary processors is still sub-
optimal for typical datacenter applications. Given that the approaches above
targeted single-core machines from the early 2000s, we take a step back and
analyze their applicability to today’s multi-core systems and memory hier-
archies, coming to the conclusion that major redesigns are required to pro-
vide work-conserving solutions. Motivated by the ongoing relevance of the
topic and a changed hardware landscape, we explore computation spreading,
a technique that explicitly targets SMP systems and uses thread migration
to spread the instruction working set of a thread over multiple CPU cores.
We conclude with a proof-of-concept implementation at the KIT OS group
which extends computation spreading to arbitrary split points within user-
level code, forming the basis for this thesis.

7



8 CHAPTER 2. RELATED WORK

2.1 Network Servers & Concurrency

Network server software is generally concerned with receiving requests from
clients over a network connection, acting upon them and returning a re-
sponse. In addition to the network I/O, disk access is very common, for
example within file servers. The request handlers are thus commonly I/O
bound. [WCB01]

I/O hardware interfaces are asynchronous, allowing the CPU to perform
useful work while the slow I/O operation completes. However, the tradi-
tional software abstractions exposed by UNIX-like operating systems are syn-
chronous: Processes or threads that block on I/O operations are preempted
from the CPU and only resume execution once the result of the operation is
available. Out of this situation, the following type of software architecture
emerged: Multi-process and multi-threaded servers handle requests by follow-
ing a sequential description of the steps involved to fulfill the requested task.
Concurrency is then achieved by having multiple threads (either spawned
on demand or from a pre-spawned pool) execute the same request-handling
function for different connections and to interleave these control flows by
time-multiplexing the CPU. This interleaving happens each time an I/O ac-
tivity blocks or at the end of the scheduler-assigned time slice. Canonical
scalability problems with this approach are the context switching overhead
and the minimal amount of memory each thread requires, e.g., for its TCB
and stack. Furthermore, synchronizing request handlers on shared resources
without busy waiting requires kernel-supported synchronization primitives,
implying syscall overhead. [PDZ99; Keg99; ALL89; WCB01]

One alternative to the above are event-driven architectures where the server
consists of a loop that allocates a state object per request and implements a
finite state machine driven by those objects. Each thread of the server acts
on one state object at a time, but does not perform blocking operations. In-
stead, the operations are merely initiated and the state machine immediately
switches to the next state object. The server loop picks up the completion
events of these asynchronous I/O operations and changes the corresponding
state object accordingly. This change in turn eventually triggers the state
machine to perform the next logical request-handling step for the request
represented by the state object. [PDZ99; WCB01; Keg99]

For this thesis, the most relevant difference between multi-threaded and
event-driven architecture lies in the representation of request-handling state:
Multi-threaded servers encode it implicitly in the thread’s execution state,
consisting mostly of its stack, registers and instruction-pointer. In contrast,
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event-driven servers explicitly define the finite-state machine and have a ded-
icated representation of the processing state in the state objects.

Although the above description focuses on the role of I/O, nothing stops ap-
plication developers from partitioning their CPU-bound or memory-intensive
request-handling steps using the same mechanism. The next sections give
an introduction to staged computation and staged event-driven architectures
which build on top of the event-driven model.

2.2 Cohort Scheduling & Staged Computation

In the early 2000s, Larus et al. investigated the cache behavior of I/O inten-
sive online-transaction processing workloads (OLTP) in servers implementing
the multi-process or multi-threaded architecture. They observe high cache
miss rates and instruction stalls, attributing it to the large amount of sys-
tem calls made by the request handler threads: System calls themselves have
a large working set disjoint from the application code and might bring an
entirely different working set into the cache when blocking and switching to
another thread. [LP01]

Cohort scheduling is then proposed as a scheduling policy to dispatch threads
that are currently executing the same code segment in batches (cohorts):
The first thread in a cohort may incur instruction / data cache misses but
all successors of the same cohort benefit from a warm cache. Naturally, the
threads must yield the CPU before leaving this shared code segment and
the segment size must not exceed the i-cache size to avoid thrashing the
cache. The number of threads per cohort represents the central trade-off in
the scheduling policy: Large cohorts yield fewer amortized cache misses but
cause higher response time due to progress only being made once enough
threads have reached the synchronisation point required for batch dispatch.
Furthermore, since the amortization only reduces the execution time but does
not eliminate it, the minimum response time is necessarily increased. [LP01]

For immediate application, the authors suggest systems calls as pre-existing
synchronisation points because they do not require modifying user-space
code. However, to increase cache locality in arbitrary parts of an applica-
tion, the authors propose staged computation: In this programming model,
instead of synchronous calls to subroutines, the request-handling stage posts
asynchronous operation requests to other stages, each encapsulating a partic-
ular functionality and state. A stage has scheduling autonomy, which means
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it is free to choose the concurrency model that suits the type of provided
operation best — cohort scheduling being just one of several options. [LP01].

Cohort scheduling at the syscall boundary is non-invasive with regards to
application code bases and will we revisited by computation spreading (Sec-
tion 2.8). In contrast, staged computation requires non-trivial refactorings in
existing applications, in particular if they already follow the multi-threaded
model: Synchronous, blocking operations must be converted to asynchronous
operations and continuations, and the scheduling autonomy granted to each
stage must actually be addressed in code.

2.3 Staged Event-Driven Architecture

Staged event-driven architecture (SEDA) is a software architecture generaliz-
ing the idea of staged computation. The primary motivation for its inception
was the construction of network servers whose performance should degrade
linearly under an increasing number of concurrent requests. SEDA provides
a framework for application developers to implement an event-driven server
by only defining event handlers. Each event handler represents a stage and
is invoked by its stage controller, which executes the event handler on the
stage’s thread pool with input from the stage’s incoming event queue. The
event handler can enqueue additional work into other stages’ queues, but
cannot call into their code directly, enforcing an explicit boundary in the
application’s control flow. The stage controller works in a feedback loop to
ensure a stage’s performance requirements are met, for example by adjusting
the thread pool / cohort size to meet a certain response time goal.1 Stage
controllers can be further customized to the application’s unique require-
ments, providing an opportunity for developers to take full control of each
stage’s concurrency-model. [WCB01]

The authors evaluate SEDA by implementing an HTTP server and measur-
ing the performance metrics total concurrent throughput and response time
over a varying number of concurrent clients. Additionally, they measure
the amount of requests each client completes, defining an equal distribution
of service among clients as ideally fair. The results show 16–20% higher
throughput at little-varying response times and high fairness among clients
in comparison to the the multi-threaded Apache web server. The authors’

1SEDA terminology for a resource controller implementing cohort scheduling is “batch-
ing controller”.
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explanation for these results is that the SEDA server queues all requests in-
side the application whereas the multi-threaded Apache web server will not
accept new client connections when reaching the maximum size of its thread
pool, causing exponentially increasing response times for non-accepted clients
due to exponential back-off algorithm employed in TCP. [WCB01]

SEDA shows the software-engineering and performance benefits of staged
computation but requires adapting the application to use the provided frame-
work of event handlers and stage controllers. In contrast, our solution re-
quires minimal effort for adoption in multi-threaded servers, for which we
expect non-trivial amounts of refactoring work to be required for SEDA. No-
tably, the SEDA authors suggest operating system support for their model,
emphasized by their need to implement asynchronous I/O abstractions for
their resource controllers. Although async I/O may facilitate the implemen-
tation of SEDA itself, it does not address the hurdle of refactoring existing
code bases.

2.4 STEPS

The Synchronized Transactions through Explicit Processor Scheduling project
(STEPS) implements a derivative of cohort scheduling in the SHORE re-
search database system. [Reg12]

The authors reproduce the observations already made by the authors of co-
hort scheduling [LP01] for database systems: The execution flow in databases
exhibits low spatial locality and the instruction working set does not fit into
the CPU caches, leading to pipeline stalls and a high amount of mispredicted
branches. In contrast to cohort scheduling, STEPS groups threads into team
lists organized by the high-level application-specific operation they currently
execute, for example insert or update queries. The code path of the op-
eration then contains context-switching points (CTX calls) at which the cur-
rently executing thread yields control to the next member of its team list,
which amounts to user-mode round-robin scheduling within a team. Context-
switching points are placed such that the working set between two of them
fits into the CPU’s L1 i-cache. The schema described above leads to a step-
by-step progression of the entire team that is depicted in Figure 2.1. As an
example, let us imagine three context-switching points A, B and C and a
team of ten threads executing between A and B. After the last thread reaches
B, the team moves forward to the next step B to C. Although the first thread
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executing this step will incur capacity i-cache misses, it pre-warms i-cache
and branch predictors for the remaining nine threads. [HA04]

Figure 2.1: Idealized scenario of three threads (different colors) executing
the same code path that does not fit into the L1 cache. Left: Each thread
passes through the code completely before yielding CPU to the next thread.
Right: A team of threads trickles down the code path in code segments that
do not exceed the L1 i-cache size.

Blocking threads or those that abort the operation would fall behind in this
trickle-down schema and thus no longer share their ex-team members’ code.
The solution is to remove blocking or aborting threads from the team list
and track them as stray threads. The publications on STEPS describe that
the thread package in SHORE required modification to support this schema,
but falls short on implementation details. For this thesis, though, blocking is
a highly relevant topic because it is a major problem in the proof of concept
implementation at the KIT OS group (see Section 2.9 and Chapter 3). By
examining the 6.0 release of SHORE which was published after STEPS, we
can identify a base class for all DBMS threads called sthread_t which pro-
vides wrappers for basic blocking I/O functions such as the read or write
syscalls. Under the assumption that these abstractions existed in the ver-
sion of SHORE that STEPS was based on, we are confident that the STEPS
authors used these wrappers to get notified about potentially blocking I/O
requests by a thread to remove it from its team list. [Reg10; Reg12]

Regardless of the exact implementation details, we are not convinced that
the adoption of STEPS in arbitrary applications requires as few code mod-
ifications as claimed by the authors: SHORE already comes with a custom
thread abstraction around the POSIX threads API (pthreads) and central-
ized wrappers around blocking I/O. In contrast, arbitrary applications will
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use the pthreads and C standard libraries directly, in which case either sub-
stantial modifications to the code base are necessary to establish a situation
as found in SHORE or runtime-patching via ld_preload would be required.

Lastly, STEPS’s handling of stray threads should be considered: Recall
that stray threads are removed from their team when performing potentially
blocking syscalls, and only re-join a team when re-starting a new high-level
operation. [HA04] This means that STEPS does not account for the instruc-
tion footprint of the operating system at all. However, Agarwal et al. show
that the operating system has a significant cache footprint and should thus be
considered when trying to optimize the i-cache footprint. [AHH88; CWS06]
Stray thread will further continue to compete for CPU time for the time until
they finally block. Since the OS scheduler is unaware of the team lists, it may
schedule a stray thread in the midst of a team, evicting its cache state inad-
vertently. STEPS tries to prevent such situations by giving a “hint” to the
scheduler to prioritize the next thread that remained in the team, but does
not elaborate on the additional syscall overhead. In this thesis, we propose
an implementation that is implemented in the OS scheduler, thus avoid the
information loss and implementation complexities associated with STEPS’s
user-space approach.

2.5 Top-Down Performance Analysis

For the upcoming Section 2.6 and the evaluation in Chapter 5, we require
some basic understanding of modern out-of-order processors and the top-
down performance analysis method.

Modern high-performance microprocessors employ various techniques to ex-
ploit instruction-level parallelism (ILP) and to keep all functional units of
the system busy. Pipelining is a very basic solution that splits the execu-
tion of an instruction into multiple phases. An instruction passes through
an N -staged pipeline in N ∗ Cmax clock cycles where Cmax is the number
of clock cycles required for the slowest pipeline stage. More sophisticated
superscalar processors replicate the functional units of individual stages, en-
abling multiple instructions to be completed (retired) per clock cycle. The
state-of-the-art technique to manage this pipeline is called dynamic pipeline
scheduling where it is the job of the hardware instead of the software and
compiler to optimally supply functional units with work. Further techniques
to exploit ILP are branch prediction and speculative execution. [PH05].
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In any way, the above architecture is barely comparable to the classical model
of a single-issue pipeline. Thus, Intel describe their contemporary micro-
architectures as being split into 3 main parts: An instruction fetch unit that
decodes the incoming instruction stream into micro-operations (uops), an
out-of-order execution engine that executes those uops on functional units
and an in-order retirement unit that ensures that the effects of the issued
instructions appear in program order. [Cor16].

Yasin [Yas14] further simplify this view by only differentiating between fron-
tend and backend : The frontend is responsible for fetching instructions, de-
coding them to uops and supplying them to the backend, which in turn is in
charge of fetching operands, scheduling uops on the functional units and re-
tiring instructions in program-order. The authors present the top-down per-
formance analysis method, which helps to identify micro-architectural bottle-
necks by classifying CPU time into categories that are organized in a nested
tree. When applying the method, one traverses the tree top-down, usually
following those categories marked with the highest percentage of spent CPU
time. The data source for the classification are performance counters which
are built into to the CPU and are accessible by software.

For this thesis, we will focus on the top-down top-level breakdown, i.e., the
highest level of the category tree. The categories at this level are retiring,
bad speculation, backend-bound and frontend-bound. The first two categories
indicate that actually or at least potentially useful work was done whereas
the latter two categories classify those pipeline slots lost due to microar-
chitectural bottlenecks: Backend-bound cycles do not perform useful work
because operations in the backend take exceptionally long, thereby introduc-
ing bubbles into the execution pipeline. Examples for this category may be a
sub-optimal instruction mix or d-cache misses on uop-operands. In contrast,
frontend-bound cycles do not perform useful work because the backend is un-
dersupplied with uops. For example, i-cache misses will cause no instructions
to be decoded and thus no uops to be issued for execution. [Yas14; Cor17;
Cor16]

In this thesis, we optimize i-cache behavior by partitioning the instruction
working set. Reducing the percentage of frontend-bound cycles is thus used
as a success metric in our evaluation.
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2.6 Profiling Datacenter Applications

Although the micro-architectural performance problems caused by large i-
cache footprints were already observed in [LP01] and [HA04] in the early
2000s, recent profiling work at Google shows that computer architecture is
still not able to satisfy the requirements of contemporary scale-out appli-
cations. However, the potential performance gains and cost savings due to
improved cache behavior become relevant at scale, motivating a re-assessment
of the situation.

Kanev et al. identify a significantly higher amount of pipeline stalls in real-
world datacenter applications when compared to the SPEC CPU2006 bench-
mark. Apart from the overhead associated with distributed software archi-
tecture (datacenter tax ), a large cache footprint (both code and data) reveals
the major performance bottleneck on today’s processors for typical datacen-
ter applications: The authors observe 60% of µop slots to be backend-bound,
and 15 – 30% to be frontend-bound. In particular, the authors find that more
than 5% of cycles are wasted due to empty front-end buffers, which is at-
tributed to instruction read misses in the private L2 cache, resulting in slow
accesses to the CPU’s shared last level cache. Additionally, the observations
confirm that applications under active development grow in their instruction
working set, worsening the situation.2 The authors do not explicitly investi-
gate why datacenter applications have such large instruction working sets but
mention lukewarm code and static linking as possible contributors. [Kan+15]

In comparison to the work published a decade earlier (see Section 2.2 and 2.4),
Kanev et al. focus on computer-architecture and only pay brief attention to
the operating system: Approximately 20% of CPU time is spent in the ker-
nel with more than 5% in the scheduler alone. Additionally, it is notewor-
thy that the 90-th percentile of the observed machines handles more than
4500 concurrent threads. Given that at least a portion of these threads
will be part of network servers, the question of the concurrency model thus
stays very relevant although not explicitly stated as a source of performance-
optimizations. [Kan+15]

Looking at the related work presented so far, we conclude that for more than
15 years, typical datacenter applications have been observed to exhibit high
i-cache-miss and branch-misprediction rates, resulting in sub-optimal use of
the available CPU resources and motivating continued research in this field.

2The authors present exemplary results of up to 27% per year.
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2.7 Interim: Applicability to SMP Systems

Cohort scheduling, SEDA and STEPS were all evaluated on single-core ma-
chines. Adaption to multi-core systems is not mentioned at all or stays the-
oretical. [HA04; HA03] Given today’s ubiquitous multi-core systems and the
ongoing relevance of high i-cache footprints, re-examining the applicability
of the above approaches seems appropriate.

2.7.1 Private Caches

The uniprocessor machines used to evaluate cohort scheduling, SEDA and
STEPS feature a small L1 cache and a larger, higher-latency L2 cache. How-
ever, contemporary symmetric multi-core systems typically have a private L1
and L2 caches per core and a shared L3 cache. The capacities of the per-core
L1 and L2 are comparable to the early 2000s’ uniprocessors’ caches. The
access latency between L1, L2 and L3 increases by a factor of 3 – 4 between
each level. Beyond the L2 level, instruction cache misses can typically not
be compensated by out-of-order processing. [HP02; 7cp]

Given these hardware constraints, an adaption of cohort scheduling and
STEPS to multiprocessors must target the private caches of each core to ben-
efit from warm i-caches. More importantly, the existence of private caches
per hardware thread adds the problem and opportunity to allocate this re-
source: In terms of STEPS, multiple steps can now be spread over different
cores instead of time-multiplexing only one cache. We will come back to this
observation when assessing computation spreading in Section 2.8.

2.7.2 Real Parallelism

We recall from Section 2.2 that the scheduling trade-off in both SEDA and
STEPS consists of reduced cache misses vs. increased response time due to
batching. However, the real parallelism available on SMP systems brings with
it another scheduling dimension that STEPS and cohort scheduling do not
address: To utilize the available hardware threads, load must be balanced
among them to maximize resource utilization, which generally surpasses re-
sponse time as the primary scheduling goal. All relevant operating systems
abstract CPU cores through threads, and the OS scheduler implements load
balancing by migrating threads between cores, often directed by metrics such
as the length of each core’s the ready queue (load). [MN04]
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Cohort scheduling and STEPS were not designed for this situation because
batching is inherently not work-conserving on SMP systems: All
threads in a cohort or team must run on the same core to benefit from the
warm i-cache, implying that only one thread per team can run at any given
time. Furthermore, STEPS and the OS scheduler work actively against each
other because the latter will see all threads in a cohort as runnable and
actively spread the cohort over all (presumably idle) cores.

An easy fix would be a mechanism for STEPS to influence the load balancing
to favor threads of the same team to stay on the same core, e.g., through
thread pinning. Thread-pinning is obviously not work-conserving on multi-
core systems and requires additional mechanisms and communication be-
tween STEPS and the OS scheduler, thus complicating the implementation.
On a busy system, one could further argue that enough runnable threads are
available to simply employ cohort-scheduling per core. However, in contrast
to the approach of computation spreading presented in the next section, per-
core cohort scheduling replicates to each core the repeated capacity misses
when a team moves to the next step.

The above assessment shows that cohort scheduling, SEDA and STEPS can-
not be directly applied to today’s multi-core systems. The availability of
private caches per core must be accounted for and new requirements such as
load balancing between cores must be addressed. However, given the ongo-
ing relevance of the problems identified more than 15 years ago, we continue
this chapter by investigating publications that explicitly target multi-core
systems.

2.8 Computation Spreading

Computation spreading (CSP) in its most general form is a technique to
spread the instruction working set of a process more effectively on SMP
systems which commonly feature private caches per core. Chakraborty et
al. [CWS06] show that this cache hierarchy leads to redundantly stored code.
For example, in a traditional thread-based concurrency model, each request-
handling thread may interact with the file system through system calls which
leads to redundantly stored file system code in each core’s private cache. The
authors present a solution that dedicates CPU cores to either OS code or
user-level code. Threads entering or leaving the OS synchronously through
syscalls, exceptions or page faults are then migrated between compatible
cores. [CWS06]
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A central aspect of the implementation is the thread migration mechanism,
which is based on hardware virtualization features: All synchronous ker-
nel entries are intercepted and used to trigger the thread migration, allow-
ing adoption of CSP without any modifications to guest OS and user-space
software. [CWS06] However, since hardware-based thread migration is only
available in hypervisor mode, cooperation from the software executing in
this mode is required. Deployment in public clouds based on hardware-
virtualization is thus only possible with explicit support by the cloud provider
and would require further work in the hypervisor scheduler. Our solution does
require hardware virtualization only due to limited driver support but im-
plements thread migration in software and can thus be deployed to existing
infrastructure.

The authors evaluate their solution using full-system simulation of an eight-
core machine with private L1 and L2 cache and a shared L3 cache. Server
applications, which are of primary interest for this thesis, exhibit 25 – 58%
fewer L2 instruction misses and 9 – 25% improved branch misprediction rates.
Data read misses are less affected, with only 13 – 19% decrease for Apache
web server and an online transaction processing (OLTP) application. The
approach leads to a speedup of up to 20% in Apache and 9.4% for OLTP,
measured by comparing total runtime of a full-system simulation. [CWS06]

Despite the very specific implementation, it should be noted that the con-
cept presented by the authors is more general and not limited to the syscall
interface: They suggest migration points at arbitrary positions in the ap-
plication code and corresponding core allocation policies. [CWS06] However,
we cannot find a concrete proposal ready for implementation.

2.9 Prototype in Linux at the KIT OS Group

At the KIT OS group, a Linux-based proof-of-concept implementation com-
bines the idea of staged execution, cohort scheduling and computation spread-
ing into a C API that allows for intuitive conversion of existing code bases
to staged execution: The application developer manually identifies stages
and inserts library calls into application code for switching the current stage.
Each CPU core is assigned one or more stages and each time a thread switches
to a new stage, it is migrated to a core assigned to that stage, benefit-
ing from a warm i-cache. This approach targets applications that employ
thread-based concurrency, i.e., the multi-threaded server architecture outline
in Section 2.1, since the stage-switching is embedded into the control flow
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of the request handler and thus not explicitly modeled like in SEDA (see
Section 2.3).

Fast thread migration mechanism is required for this technique to succeed.
Otherwise, the performance benefits of always-warm caches per stage are
destroyed by the migration time. The Linux built-in facility for this purpose,
sched_setaffinity, is impractical because it uses expensive inter-processor-
interrupts to implement this syscall, resulting in 9µs – 14µs of migration
time. As a consequence, thread migration was implemented in user-space:
For each user-level thread (ult), there still exists exists a kernel-level thread
(klt), but klts are pinned once to a specific core and stage. ults run on a
klt of the stage they are currently in and migrate to a different klt when
switching stages. [KST10]

When a ult makes a call to switch stages, its context is saved and enqueued
into the next stage’s incoming migrations queue. The source klt now waits
for new ults on its own stage’s incoming migrations queue. If it is empty,
the klt makes a blocking syscall sys_dequeue to a kernel component to
wait for incoming migrations. The kernel component must ensure that there
is always one klt per core either doing work or actively dequeuing ults to
utilize the CPU. To accomplish the availability of a dequeuing klt per core, a
callback from the Linux scheduler informs the kernel component of task state
changes. For example, if the currently dequeuing klt K1 executes a ult,
and that ult blocks on a mutex, K1 transitions from running to blocked.
The kernel component must then wake up another klt K2 that is currently
waiting for incoming migrations of that stage on that core. Otherwise, the
core does not perform any work (for the application) until K1 acquires the
mutex and becomes runnable. Figure 2.2 visualizes this situation.

Figure 2.2: When a ult issues a blocking syscall, the current klt blocks.
Another klt must take over executing ults from the core’s queue. Note
that although there is a klt for each ult, the relationship is not fixed.
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The authors evaluate their system using the TPC-C benchmark, comparing
throughput and cache behavior of a modified version of MySQL 5.6.38 against
an unmodified version as a baseline. For a single client and low core counts,
they observe the expected 40% reduction in L2 cache misses, correlating with
a 17% speedup in throughput. However, for both an increased number of
concurrent clients and a higher number of CPU cores, throughput is 10 – 40%
below baseline. Additionally, L2 miss rates and achieved throughput do not
correlate with more than one concurrent client. In the next chapter, we
present our analysis of the reason behind this behavior.



Chapter 3

Analysis

Related work has shown that the instruction working set of datacenter-class
server applications often exceeds the size of modern processors’ private i-
caches. Computation spreading is proposed as a technique to spread the in-
struction working set of such servers over the available private caches through
thread migration. The authors provide an implementation based on hardware
virtualization instructions to separate OS kernel code from the application
(see Section 2.8).

In contrast to computation spreading, the proof-of-concept implementation
at the KIT OS group proposes a software-only solution that allows split-
ting the instruction working set of an application at arbitrary positions in
its code. Multi-threaded servers can be adapted to use the technique with-
out significant refactoring. The MySQL DBMS shows a speedup of up to
17% in throughput in the TPC-C benchmark with a single client. However,
with multiple clients and cores, the solution performs worse than unmodified
MySQL. This chapter provides an explanation of the inherent design prob-
lems in the proof-of-concept which lead to the behavior described above and
motive the work presented in this thesis.

Let us imagine a system as depicted in Figure 3.1, starting with a ult U1 in
stage S executing on a klt K1. As described in Section 2.9, K1 is pinned
to core C1. When U1 performs a blocking syscall, for example when trying
to acquire a lock, K1 blocks. The Linux scheduler now dispatches another
task T on C1 to maximize CPU utilization, where T is not a Ki of our
application. In fact, all Ki are blocked in sys_dequeue. When K1 finally
acquires the mutex and is ready again, it is still pinned to C1 because the
solution needs pinning to perform thread migration in user-space. However,
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C1 is still executing T , not K1, and thus K1 must be put into C1’s ready
queue.

On a single-core system, the situation described above would be acceptable
because T is also performing useful work. However, we have another CPU
C2 where a klt K2 is dequeuing ults for the same stage S: If K2 does not
have any ults to execute, K1 should be migrated to C2 immediately when it
is woken up and continue execution there, benefiting from the warm on-core
caches. But the implementation only performs thread migration when a ult
calls the stage switching API. There is no mechanism in place to save K1’s
state and enqueue it to K2’s incoming migration queue on wake-up. One
might assume it is possible to enqueue U1 to K2 since we saved its register
state on kernel entry via pthread_mutex_lock: This is not possible because
there might still be kernel code that needs to run after the mutex is acquired,
before returning to U1.

Figure 3.1: The proof-of-concept implementation is not work-conserving.
When K1 becomes ready it should be dispatched to C2 immediately. But
K1 is pinned to C1 due to the implementation of thread migration.

We identify several fundamental problems in the approach taken by the proof-
of-concept implementation: The requirement for fast thread migration drove
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the design toward a user-space solution which decouples the threads known
by the application (ults) from the threads known by the kernel (klts). How-
ever, the kernel scheduler still only handles klts and assumes a 1:1 threading
model, which leads to an ambiguous role of klts in the proof-of-concept:
When switching between stages, the user space thread migration code views
klts as the CPUs they are pinned to. But when a ult running on a klt
interacts with the Linux kernel, the kernel sees a normal task_struct and
continues to assume the 1:1 threading model where tasks can just block. The
proof-of-concept works around this schizophreny by introducing a callback
from the scheduler to react to blocking klts, but fails to handle asynchronous
events like wake-ups, which we expect to require further integration into the
scheduler.

We conclude that the proof-of-concept does not model the situation correctly:
The association of stages and CPU cores is piggybacked onto the klts using
sched_setaffinity, leading to an ambiguous role of klts. We thus propose
the following guidelines for a proper design:

• Stages must be modeled as kernel objects, separate from CPUs and
threads.

• The association of stages and CPU cores must be represented explicitly.

• Threads must carry the information in which stage they are executing.

• The scheduler must honor this information by scheduling threads onto
cores that are associated with their respective stage.

• The scheduler must trade off the potential gains of always-warm caches
against existing scheduling goals such as resource utilization, fairness
and response time.

These guidelines revert the complex situation of ults and klts to a simple
1:1 threading model and remove the special-case of blocking kernel activity.
The remainder of this thesis presents our design which follows the proposal
above.
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Chapter 4

Design & Implementation

Certain classes of datacenter applications exhibit large instruction work-
ing sets that do not fit into the private cache of commodity processors.
On a micro-architectural level, the large instruction working set leads to
i-cache thrashing and thus underutilization of the cores’ functional units,
which in turn degrades application performance. This chapter presents our
operating-system-based solution to mitigate these micro-architectural prob-
lems in multi-threaded servers using a software-only solution.

Multi-threaded servers handle client connections in threads, each following
the same, sequential, potentially blocking, code path. For example, in a
database management system that is accessed over TCP, a request-handling
thread will

(a) read the request data from a socket, using the network stack,

(b) deserialize & parse it,

(c) perform the requested operation,

(d) serialize the response and

(e) send it back to the client.

Database systems exhibit a significant i-cache footprint in step (c) per high-
level SQL operation (see Section 2.4). The code footprint of the network
stack is also significant, as is the filesystem and potentially the serialization
library.

All these steps combined will execute more code than fits in the private
i-cache, leading to capacity i-cache misses when executed on a single core.
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Additionally, some code will be executed twice, but with another i-cache sized
working set being used inbetween: For example, steps (a) and (e) share parts
of the network stack but steps (b), (c) and (d) will execute before (e). Step
(e) will thus likely incur i-cache misses for code that step (a) had brought into
the cache at the beginning of the procedure. Furthermore, we must consider
the situation where a request-handler thread A blocks, for example on I/O
in steps (a), (c) or (e): The scheduler will dispatch another request-handler
B on the same core, which may be in a different step than A. At worst, B
will evict all of A’s cache state. Looking at multi-core systems, the above
behavior can be observed on each core because contemporary OS schedulers
balance threads based on load of the cores, not on cache state. [MN04]

We solve above problems on modern multi-core systems by implementing
a suitable scheduling policy in the OS scheduler. We define a stage as
a span in the request-handling code path that has an instruction
working set smaller than the private i-cache size. Ideally, different
stages’ instruction and data working sets are fully disjoint. Given the exam-
ple database system, one would define the following stages: Sn for network
stack, Sser for serialization and one per SQL operation (Sins for insert, Ssel

for select, . . . ). It is important to emphasize that stages do not necessar-
ily form a pipeline: Reading from and writing to the network socket form
one stage because these operations share the network stack code, as do re-
quest deserialization and response serialization because they both use the
serialization library.

Once the stages are defined, a request-handler thread must switch to the
appropriate stage before performing the next step of request-handling. In
concrete terms, this means that developers must call a system API in the
request-handling code path. In the example above, a select request would
result in the following switch series: Sn, Sser, Ssel, Sser, Sn. For the rest of
this thesis, we will refer to an application that uses the stage API as described
above as a stagified application.

Our scheduler tracks a thread’s association to its current stage in the thread’s
TCB. Additionally, it tracks per stage the number of runnable threads as-
sociated with it. We then use this information to periodically compute the
current core allocation, which assigns CPU cores to stages proportional to
the stages’ load. A core is thus always allocated to exactly one stage. The
scheduler then implements the following guiding principle: A thread is
only dispatched on cores that are allocated to the thread’s cur-
rent stage. When a thread uses the system API to switch to a stage S, we
choose the least-loaded core C among the cores allocated to S and enqueue
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the switching thread into C’s runqueue. When a thread blocks, it no longer
counts toward the load of stage but does not lose the association to it. Thus,
when a blocked thread is woken up again, the waker simply uses the current
core allocation to choose a suitable core for the woken thread and enqueue
the still-sleeping thread into that core’s runqueue.

The promise behind the approach described above is the same as in com-
putation spreading and the proof-of-concept implementation at the KIT OS
group (Chapter 2): By dedicating CPU cores and hence their private
caches to a stage and by scheduling threads exclusively on the cores
of their current stages, the i-cache always contains the instruction
working set of all threads in the CPU’s runqueue. This reduces in-
struction cache misses, pipeline stalls and mispredicted branches, resulting
in faster execution of the stage’s code and cheaper context switches on the
CPU.

Our solution is specific to certain types of server applications and thus not
suitable as a general-purpose scheduling policy. Ideally, we would thus extend
an existing scheduler such as the Linux completely fair scheduler. However,
extending the Linux scheduler is out of scope of this thesis due to the expected
design and implementation complexity. Instead, we implement our solution
in the OSv library operating system, a small kernel that is bundled with an
application into an appliance-like virtual machine image.

The remainder of this chapter presents our design and its implementation
in detail: Section 4.1 gives an introduction to the OSv library operating
system, providing the knowledge required to understand the implementa-
tion constraints we faced. We proceed with details on the user-space API
illustrated with examples (Section 4.2), followed by the design of our thread
migration mechanism (Section 4.3). In Section 4.4, we explain the details
involved in implementing thread-migration on wake-up, which required sig-
nificant refactoring of OSv’s thread state tracking and timer implementation.
Section 4.5 then presents the CPU core allocation policy. Where appropriate,
we refer to the relevant commits in the Git repository of our modified version
of OSv which can be obtained from the the appendix.
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4.1 The OSv Library Operating System

We implement our stage-aware scheduling solution in the OSv library op-
erating system, which breaks up the traditional divide between the kernel
and applications: Traditionally, an operating system provides abstractions
from the physical hardware and multiplexes it among multiple untrusting
users and applications, providing protection and isolation at various levels.
With the rise of hardware virtualization, it has become common practice to
deploy a traditional OS running a single application in a virtual machine
running on top of a hypervisor. In this situation, both the hypervisor and
the guest kernel implement protection mechanisms, but because each VM
only runs a single application, the protection efforts of the guest kernel may
be considered duplicate. [Mad+13; KCE14]

OSv addresses this situation by delegating all resource abstraction and pro-
tection responsibilities to the hypervisor. It confines itself to providing a
familiar execution environment for a single trust domain, providing facili-
ties for multi-threading, scheduling, a network stack and filesystems. To
run an application on OSv, it is bundled with the OSv kernel into a vir-
tual machine image. When the VM starts, OSv establishes a single virtual
address space and dynamically links the application against OSv’s own C
standard library, in which system calls are merely calls to OSv-internal func-
tions. This technique allows dynamically linked applications built on Linux
to execute unmodified on OSv, unless they depend on facilities intentionally
not provided by OSv such as forking new processes. The single trust domain
property furthermore allows omitting all privilege level switching between
OSv and the application. In summary, the removed user-kernel-boundary
and syscall overhead improves application performance significantly without
any application code changes required. However, if application developers
choose to specifically target OSv, more efficient system APIs provide further
optimization, e.g., zero-copy networking as opposed to the traditional socket
API. [KCE14]

Although OSv incorporates pre-existing components for ACPI, the filesystem
and originally the network stack, the core system is implemented in C++11.
The codebase of ca. 400000 lines of code is very small compared to the
20 million lines of Linux 4.13, which can be attributed to both the use of
a more expressive programming language and the comfort of only providing
device drivers for typical hypervisor-emulated devices and paravirtualization.
The OSv scheduler in particular amounts to less than 3000 lines, making OSv
particularly attractive for this thesis. [KCE14]



4.1. THE OSV LIBRARY OPERATING SYSTEM 29

4.1.1 The OSv Scheduler

The solution presented in this chapter must be implemented in the sched-
uler. To understand the design and implementation constraints we faced, this
section gives a summary of the upstream OSv scheduler implementation.

The OSv developers state that the “thread scheduler [. . . ] should be lock-free,
preemptive, tick-less, fair, scalable and efficient.” As such, it features CPU-
local runqueues containing runnable threads, which are sorted in ascending
order by the threads’ recent average runtimes. Load-balancing is imple-
mented by a periodically-invoked per-core load-balancer thread that migrates
threads from its runqueue to other cores if these are less loaded. [KCE14]

OSv implements thread migration through a set of lock-free single-producer-
single-consumer queues: Given N CPUs, each CPU has N incoming_wakeup
queues, one per source CPU, containing pointers to the TCBs of the threads
being migrated. At every reschedule, a CPU then drains all incoming queues
into its runqueue. Each CPU is guaranteed to have an always runnable idle
thread that spins for a short time and halts the CPU if no other runnable
threads are in the runqueue. Thus, a source CPU may need to send an inter-
processor-interrupt (IPIs) to the target CPU after enqueuing the migrated
thread. For this purpose, each CPU has a bitmask, each bit representing one
source CPU / wake-up queue: The source CPU will atomically set its bit in
the target CPU’s bitmask and only send the IPI if the bit was not set before,
avoiding unnecessary flooding the target CPU with IPIs. [Sys17; KCE14]

Migrating runnable but not currently running threads is easy in this model:
The source CPU removes the runnable thread from its runqueue and puts
it into the incoming queue of the target CPU. However, threads may also
migrate themselves to another CPU while still running, for example through
the pthread_set_affinity API. Let us call this case synchronous thread migra-
tion: In OSv, the migrating thread spawns a short-lived helper thread and
immediately schedules out. The helper thread will then put the migrating
thread’s TCB into the correct incoming_wakeup queue. [Sys17]

One complication of the above procedure are timers: Apart from CPU-local
timers such as the preemption timer, a thread can program timers as well,
for example for use with sigalarm. Per CPU, a list of active timers is
kept, sorted in ascending order by their expiration time. The OSv timer
implementation then programs a single hardware-timer (clock_event driver)
such that it fires at the nearest expiration time. On x86-64, the CPU-local
Advanced Programmable Interrupt Controller (LAPIC) timer is used for this
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purpose. [SDM105] In the timer interrupt handler, the expired timers are
removed from the sorted list and the LAPIC timer is reprogrammed. Threads
whose timer fired are then woken, i.e., marked as runnable and put into the
CPU’s ready queue. It is crucial to observe that the upstream OSv timer
abstraction does not allow a thread to have timers set on multiple CPUs: All
data structures related to timer management are only protected by masking
interrupts because they are only manipulated by the thread itself or from the
timer interrupt context. For thread migration, this timer-locality means that
timers must be removed from the source CPU’s timer list before enqueuing
the thread into the target CPU’s incoming_wakeup queue. On the target CPU,
after adding the migrated timers to its timer list, the LAPIC may need to
be reprogrammed if any of the migrated timers’ expiration dates are earlier
than the previous head of the list. [Sys17]

In addition to synchronous thread migration, upstream OSv also supports
remote asynchronous thread migration, i.e., the situation where a thread
Ti executing on CPU C1 initiates the migration of a thread Tm currently
executing on a CPU C2 to CPU C3. As outlined in the previous para-
graph, Tm’s timers must be migrated, which can only be initiated from the
source CPU itself. Upstream OSv only requires this feature for implementing
pthread_attr_setaffinity_np and uses a helper thread Th that chases Tm until
Th can successfully mask all interrupts on the same CPU as Tm and suspend
Ti’s timers. The remaining steps are the same as in synchronous thread
migration. [Sys17]

4.2 The Stage API

Our scheduling policy spreads an application’s working set over the private
caches of all available CPU cores by scheduling threads only on those cores
that have its current stage’s code in their private cache. We require devel-
opers to manually stagify their applications by defining stages and inserting
switching calls into the request-handling code path. To facilitate adoption,
our primary design goal for the stage API is to be non-invasive, allowing
maintenance of private patches to an existing open source code base.

In OSv, we implement stages as a C++ class with public member functions
for stage definition and switching. Without the syscall boundary, we can
simply export the corresponding headers to the application, which receives
pointers to the kernel objects representing stages and invokes methods on
them. However, applications for OSv must be built on the Linux host where
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#include <osv/ stagesched . h>

stage ∗s_net , ∗ s_ser , ∗s_db ;

int main ( ) {
s_net = stage: :def ine ( " net " ) ;
s_ser = stage: :def ine ( " s e r i a l i z a t i o n " ) ;
s_db = stage: :def ine ( "db" ) ;
// s t a r t t h reads . . .

}

void request_handler ( database db , n e t : : c onn c ) {
s_net−>enqueue ( ) ;
buf b = c . recv ( ) ;
s_ser−>enqueue ( ) ;
req req = s q l : : p a r s e (b ) ;
s_db−>enqueue ( ) ;
r e sponse resp = db . handle_request ( req ) ;
s_ser−>enqueue ( ) ;
buf b = s q l : : r e s p o nd ( resp ) ;
s_net−>enqueue ( ) ;
c . send (b ) ;

}

Figure 4.1: Example for a stagified application using the stage API in pseudo
C++. Because we implement our solution in OSv, we can simply use pointers
to the kernel objects representing stages.

the stage API header and implementation are not available. To avoid build
and linker failures, we provide a no-op implementation of the API as a shared
library, enabling us to produce application binaries that work on both Linux
and OSv.1 Figure 4.1 gives an impression of how the stage API could be
used in an existing application.

In addition to the direct invocation of the switching API, we provide a data-
structure similar to C++11 lock guards: Following the resource acquisition
is initialization (RAII) paradigm, the structure allows switching to a stage
for the lifetime of a block and to automatically switch back to the previous
stage when the guard object goes out of scope. The guard objects can also be
used to shift the responsibility of switching stages from the function caller to
the callee, which is particularly useful when a piece of code is large enough to

1The OSv linker ignores missing libraries, and the app does not crash because the OSv
implementation of the stage class provides the required functions.
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have its own stage but is called from more than one other stage. Figure 4.2
shows how the above example looks like with the RAII-style API.

The commits in the Git repository corresponding to the changes presented
in this section are 439b5501 and 9eaf3a8b.

4.3 Fast Thread Migration

Once an application has been stagified by the application developer, our
solution must act on the stage switching calls made during request handling.
Specifically, we must find a core whose private caches contain the next stage’s
code and migrate the calling thread to that core. We defer discussion of the
core allocation policy to Section 4.5 and focus on the migration mechanism
for now.

For a net benefit from spreading the instruction working set, the performance
gained through always warm i-caches must outweigh the cost of thread mi-
gration. One significant contributor to the latter is migration latency, which
is the reason why we require a low-latency mechanism. Upstream OSv’s
uses short-lived helper-threads for synchronous thread migration and inter-
processor interrupts (IPIs) to notify the target CPU about incoming migra-
tions. The IPIs are necessary because the target CPU may be temporarily
halted in the idle thread. We state that the upstream mechanism is
unsuitable for our use-case of frequent stage-switching: At first, re-
cent measurements on AMD systems have shown that IPI propagation on
bare-metal systems is 1700ns. For OSv, we assume significant overhead due
to virtualization, which we will further investigate in Section 5.4.2. The IPI
propagation time puts a lower bound on the achievable migration latency
but additionally, the impact of IPIs on the target CPU’s pipeline must be
considered: An arriving interrupt will flush the pipeline or at least obsolete
the instructions it currently executes. [She13] At last, on the source CPU,
the use of helper threads implies memory allocation for the new TCB and
an invocation of the OSv scheduler, which does not run in constant time.

As a consequence of the above, we choose to implement a lower-
latency alternative for thread migration that neither uses IPIs nor
helper threads: When a thread switches to another stage, the switching
thread queries the core allocation policy for a target CPU that has the target
stage’s code in its private caches. The thread then puts its TCB into the in-
coming migrations queue of the target CPU while running and subsequently

https://github.com/problame/ba-osv/commit/439b55014ea8d3285db7523c4c1ba02b4948cd41
https://github.com/problame/ba-osv/commit/9eaf3a8b9aa5a18a5a79920066803a5a84d3b6c5
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#include <osv/ stagesched . h>

class thread {
stage_stack s t age s t a ck ;
. . .

} ;

stage ∗s_net , ∗ s_ser , ∗s_db ;

int main ( ) {
s_net = stage: :def ine ( " net " ) ;
s_ser = stage: :def ine ( " s e r i a l i z a t i o n " ) ;
s_db = stage: :def ine ( "db" ) ;
// s t a r t t h reads . . .

}

void th r ead : : r eque s t_hand l e r ( database db , n e t : : c onn c ) {
buf b = c . recv ( ) ;
req rq = s q l : : p a r s e (b ) ;
r e sponse r s = db . handle_request ( rq ) ;
buf b = s q l : : r e s p o nd ( r s ) ;
c . send (b ) ;

}

// Use s t a g e_s tac k : : gua rd in a l l f unc t i on s
req s q l : : p a r s e ( buf& b) {

stage_stack::guard g ( t h r e ad : : c u r r e n t ()−>stages tack , s_ser ) ;
. . .

}

Figure 4.2: stage_stack keeps previous stages in a stack. The stage_stack::guard
constructor pushes the stage pointer onto the stage_stack and switches to the
stage. The corresponding destructor pops the current stage’s pointer from
the stack and switches back to the previous stage.
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schedules out. The target CPU’s reschedule routine and its idle thread even-
tually dequeue the TCB pointer from the incoming migrations queue into
the runqueue, thereby completing the migration.

Although the above paragraph gives a good overview of our mechanism, we
omitted two important details: First, there is a race condition between the
point where a migrating thread T puts its TCB pointer into the incoming
migrations queue and the point at which it schedules out: If the target CPU
dequeues T ’s TCB before T has scheduled out, the TCB contains will invalid
register state or the state from the last time T scheduled out. If T now starts
running on the target CPU, we have the hazardous situation of T running
on both CPUs simultaneously, primarily visible through a corrupted stack.
We solve this problem by representing the stage-switch as a two-step thread
state transition, visualized in Figure 4.3: Before the migrating thread puts
its TCB into the target CPU’s incoming migrations queue, it sets its state
to stagemig_run. The target CPU will not put threads in that state into its
runqueue but instead enqueue it back into the incoming migrations queue
because the migration is not yet finished. On the source CPU, after T has
scheduled out, we then set T ’s state to stagemig_sto. Eventually, the target
CPU will dequeue T again, observe from its state that it is not running
anymore and enqueue it into its runqueue.

The other issue we face with our migration mechanism is that in upstream
OSv, the idle thread halts CPUs using the hlt instruction. This works in
upstream due to the use of IPIs which wake the CPU up again, but we want
to avoid IPIs in our solution and therefore provide two boot-time config-
urable alternatives: First, the idle thread can busy-wait for changes to the
incoming migrations queue. Alternatively, it can use the monitor and mwait
instructions to wait for changes to the queue while keeping the core in a low
power state. Both options have benefits and downsides: Busy-waiting offers
16% lower migration latency (see Section 5.4.2) but consumes more power,
which is undesirable for technical (dark silicon), economical (increased cost)
and ecological reasons. mwait in combination with simultaneous multithread-
ing (SMT) in contrast allows the core to switch to another hardware thread,
which also opens a window for increased performance. [SDM810; Har+11]
Neither of the alternatives cause an exit to the hypervisor, to which the VM
will appear 100% busy.

At last, we want to provide some implementation details that we omitted
for easier understanding of the design: We implemented above mechanism in
the early course of this thesis with a limited understanding of the upstream
OSv migration mechanism. Therefore, instead of replacing the upstream
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(a) T is running on core2 and wants
to migrate to core1.

(b) T switches to stagemig_run and
puts a pointer to its TCB into the
incoming migrations queue at core1.
Core1’s idle thread does not dequeue
TCBs with state 6= stagemig_sto.

(c) T schedules out. The context
switching routine sets its state to
stagemig_sto after T has stopped
running on core2.

(d) The idle thread on core1 ob-
serves T in state stagemig_sto and
admits it to the ready queue.

(e) T starts executing on the core1.

Figure 4.3: Fast thread migration without helper threads.
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mechanism and extending the OSv scheduler’s incoming_wakeups dequeuing
routine, we implemented above solution as a supplement. As such, in our
implementation, the incoming migrations queue referred to above is differ-
ent from the incoming_wakeups queues from Section 4.1.1: We currently use a
lock-free multi-producer-single-consumer queue which we originally used to
poll for changes in the idle thread. The addition of mwait however required
waiting for changes to the upstream incoming wake-ups queue and our queue
simultaneously. We solved this problem by also setting upstream mecha-
nism’s bitmask from the stage-switching code path and by using mwait on
its address. Combined with the changes we present in the next Section, we
want to merge the two mechanisms in the future, thereby de-duplicating the
dequeuing code in the idle thread.

The commits in the Git repository corresponding to this section are 439b5501
and f00b5872.

4.4 Thread Migration on Wake-Up

In Chapter 3, we analyzed that the proof-of-concept implementation in Linux
at the KIT OS group is not work conserving: It only allows thread migration
to be initiated from user-space and thus prohibits migrating threads to idle
cores at the time the thread unblocks. In contrast, our solution models
stages explicitly and tracks a thread’s association with its current stage in
the thread’s TCB. Utilizing all cores of a multi-core system is thus trivial in
theory: When a blocked thread is woken up, we find a CPU that has that
thread’s current stage’s code in its cache and enqueue the woken-up thread’s
TCB into that CPU’s runqueue.

However, in practice, this simple concept is complicated by the realities of the
OSv scheduler implementation. Let us first look at the wake-up-related state
transitions that a thread might go through in upstream OSv, as depicted
in Figure 4.4: The most common case will be that a thread goes to sleep,
waiting for some predicate to become true, for example that a timer has
expired or that it acquired a mutex. The running thread will then transition
synchronously to the waiting state and schedule out. Let us now imagine
that another thread makes the predicate become true. That waker knows the
threads waiting for this condition and wakes them using the wake() function,
which puts the woken thread’s TCBs into their last core’s incoming_wakeups,
which is in turn eventually drained into the core’s runqueue.

https://github.com/problame/ba-osv/commit/439b55014ea8d3285db7523c4c1ba02b4948cd41
https://github.com/problame/ba-osv/commit/f00b587267797a0bc887243d8cbca661426c8e0b


4.4. THREAD MIGRATION ON WAKE-UP 37

Figure 4.4: Upstream OSv wake-up-related thread state transitions: States
waiting, sending_lock and waking are ambiguous with regard to whether the
thread is still scheduling out whether it has fully stopped executing. Dashed
lines represent events asynchronous to thread execution, solid lines represent
synchronous events.

The crucial observation in this section is that the corresponding OSv thread
states do not precisely encode whether the a thread has stopped ex-
ecuting. In fact, only threads in state queued are guaranteed to be stopped
and only threads in state running are guaranteed to be running. The remain-
ing waiting, sending_lock and waking states are ambiguous: In each of these
states, the thread can either have completed scheduling out or it can still be
on the way to do that. In the latter case, the thread may even observe that
it has already been woken up again by some other thread and move itself
from waking back to running.

Upstream OSv can afford the ambiguous state representation because its
wake-up mechanism is limited to ensuring that the woken thread is made
runnable again on its current CPU. Our solution however requires pre-
cise knowledge of whether the woken thread is still running or
whether it has actually stopped executing on its current CPU. In
the former case, we do not want to migrate it because its current CPU still
has a hot cache. However, in the far more common case of waking up a
stopped thread, we want to use the opportunity for load balancing, thereby
maximizing CPU resource usage: Among the cores that have the to-be-woken
thread’s stage’s instruction working set in their private cache, the least loaded
core is chosen as a migration target. And because the woken-thread is not
running at the time of wake-up, we can implement remote asynchronous
thread migration that works without a chasing helper thread.
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Figure 4.5: Modified OSv wake-up-related thread state transitions: All states
are unambiguous about whether the thread is still running or completed
scheduling out. Dashed lines represent events asynchronous to thread execu-
tion, solid lines represent synchronous events.

The first pillar of our work-conserving scheduler implementation is therefore
a significant refactoring of the OSv thread states, the result being depicted
in Figure 4.5. As we already did with the stagemig_run and stagemig_sto
states in Section 4.3, we spread the three waiting, sending_lock and waking
states into ?_run and ?_sto sub-states; the the former suffix represents a
still-running thread whereas the latter represents a stopped thread. The
context switching routine then implements the switch from ?_run
to ?_sto after saving the register state of the thread to its TCB.2

An asynchronous waker can thus always distinguish between running and
stopped threads.

With the refactoring of the thread states done, we can now discuss our faster
alternative for remote asynchronous thread migration. Let us recall some
details on upstream OSv from Section 4.1.1:

(a) The waker may run on another CPU than the woken-up thread.
2The implementation in the context switching routine is a generalization of the two-step

migration mechanism presented in Section 4.3.
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(b) The timer implementation requires all timers of a thread to be in the
timer list of one CPU.

(c) Remote asynchronous thread migration relies on a short-lived helper
thread that chases the to-be-migrated thread and eventually performs
the same steps required for synchronous thread migration in the name
of the to-be-migrated thread.

The helper thread is necessary because the timer implementation only allows
suspending timers on the core they would fire on. Looking at the version con-
trol history of upstream OSv, we see that the current timer implementation
(commit 786a576e0, 2013) predates asynchronous thread migration support
(commit 6bb95442c, 2016). Furthermore, upstream only requires the lat-
ter for the POSIX pthread_attr_setaffinity_np syscall. Therefore, we assume
that the helper-thread-based solution was considered good enough by the
upstream developers. However, we require remote asynchronous thread mi-
gration to be fast and thus do not want to pay the price of the helper thread.
Also, we cannot afford a remote function call to reprogram the source CPU’s
LAPIC timer.

Let us therefore reconsider the minimal requirements to make remote asyn-
chronous migration work: We need a waker Tw on CPU C1 be able to migrate
a stopped thread Ts from a remote source CPU C2 to a remote destination
CPU C3. Tw must

1. remove Ts’s timers from C2’s timer list,

2. put Ts’s TCB into the incoming migrations queue of C3 that corre-
sponds to CPU C1 and

3. set the corresponding bit in C3’s incoming migrations bitmask.

We observe that the timers in step 1 only need to be removed remotely and
that resuming them on CPU C3 is the job of the CPU-local dequeue opera-
tion. We recall that the CPU-local timer lists are sorted in ascending order
by expiration date and that the underlying hardware timer is programmed
to the expiration date closest in the future. However, it is not a problem if
the hardware timer fires and the corresponding timer object is no longer in
the list: The implementation will simply re-program the hardware timer to
the closest timer in the future, i.e., the list head timer’s expiration date. Our
solution for remotely suspending timers exploits this property: We protect
each CPU’s timer list with a recursive spinlock and extend the timer imple-
mentation accordingly. The waker can then follow the steps described above.
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The source CPU may incur a spurious timer interrupt, but our technique
avoids all overhead associated with the original helper thread.

After these substantial refactorings, we finally have an efficient way to per-
form remote asynchronous thread migration in the context of the waker and
thus immediately dispatch a woken thread on a suitable CPU core according
to the current core allocation.

The relevant commits for this section are 80d619a8 and 7df1b22f (state
spreading), 13fbe674 (remotely suspend timers) and ed043e94 (thread mi-
gration on wake-up).

4.5 Core Allocation Policy

Up to this point, we have discussed the two main mechanisms of our design:
We use synchronous thread migration for stage switching and asynchronous
remote thread migration for load-balancing thread migration on wake-up.
Also remember that the principal rule of our scheduler is to only dispatch
threads on cores that are allocated to the thread’s current stage. Both mech-
anisms therefore migrate a thread to the least-loaded core in the set of cores
allocated to the thread’s current stage. This section now presents the policy
used to periodically compute the core allocation.

The basic concept of our allocation policy is simple: We define stage load
as the number of runnable threads in a given stage and dedicate
CPU cores to stages proportional to the stages’ load. After comput-
ing a core allocation, we use it to select a target CPU on stage switch and
wake-ups (see Sections 4.3 and 4.4). If a stage has been assigned multiple
CPUs, the CPU with the shortest runqueue is chosen. Each CPU schedules
its runqueue using non-preemptive round robin. After a given core allocation
has exceeded the boot-time-configurable maximum assignment age (default:
20ms), we re-evaluate the core-allocation policy using the then up-to-date
stage load distribution. It is crucial to observe that this setup creates a
feedback-loop: The number of cores available to a stage increases the CPU
time available to its runnable threads, thereby avoiding that a single stage
becomes a point of congestion. Among the cores of a stage, the load is
evenly distributed by always choosing the CPU with the shortest runqueue
for migrations.

For a more detailed description of the implementation, let us first summarize
the requirements of the rest of the system: When a thread synchronously

https://github.com/problame/ba-osv/commit/80d619a810b1e768c49c1acb89ebfbb8a31ecacd
https://github.com/problame/ba-osv/commit/7df1b22f57b8ba90abb4658117599d06620c900a
https://github.com/problame/ba-osv/commit/13fbe6743921d9c8308b823a2bb8e21584a09df1
https://github.com/problame/ba-osv/commit/ed043e94efee8dc4a532f51a46c4a86e7f28778b
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switches stages, we need to find a target CPU that is assigned to the target
stage. When waking up a stopped thread, we need to find a CPU that is
assigned to that thread’s current stage. We expect wake-ups and thread
switches to be very frequent in a loaded system, mandating that using the
current core allocation should be in O(1). Additionally, all cores will use
the same core allocation concurrently, but at the same time, our design also
involves periodic updating of the assignment. The update mechanism must
therefore be designed to allow all cores to make progress during an update.
Lastly, an update should be minimal in the number of cores that switch to
another stage to minimize the sum of capacity misses incurred due to the
update.

Our implementation is based around the assignment vector which represents
a concrete mapping of CPU cores to stages, and the requirement vector, which
only specifies the number of cores to be assigned to each stage. On a system
with C cores and S stages, a requirement is a vector

r =
(
r1 r2 . . . rS

)
where ri ∈ N0 and

S∑
i=1

ri = C.

It is important to emphasize that the components of r must be integers,
because CPU cores can only be assigned in integer quantities. A valid as-
signment ar derived from r is then a functional mapping of each of the C
cores to exactly one stage:

ar =
(
a1 a2 . . . aC

)
, ai ∈ 1 . . . C ∧ ∀s ∈ 1 . . . S : |{ i : ai = s }| = rs

When requirements change to r′ and we need to update the assignment to a′r′ ,
our goal must then be to minimize |{ i : a′i 6= ai }| because this is the number
of cores that incurs capacity i-cache misses due to change of the executed
instruction working set partition.

We compute the requirements vector following the algorithm in Figure 4.6:
At first, we collect the current stage load of every stage in the stage-load-
vector. To smoothen out spikes due to frequent switching of threads be-
tween blocked and runnable state, we then feed this vector through an
exponentially-decaying moving average filter. We compute the requirements
vector proportional to the load distribution of the smoothened stage-load-
vector. By normalizing the filter result vector to the number of available
CPU cores, we get an ideal floating point count of cores to be assigned to
each stage. However, since cores can only be assigned at integer quantities,
we perform element-wise integer division on the normalized vector, the di-
visor being the number of assignable cores. The integer quotient is then a
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vector that contains the numbers of directly assignable cores, which we add
to the new requirements vector. The remainders vector in turn contains the
left-over fractions of CPU per stage. We distribute the still unassigned CPU
cores by repeating the above procedure with the remainders vector until all
cores are assigned. To ensure that this loop terminates, we prioritize cores
with higher fractions of CPU cores.

The minimal transition from ar to a′r′ is then implemented by building a
delta vector ∆r = r′ − r: Negative components represent stages with excess
cores whereas positive components represent need for cores. A simple nested
loop then re-assigns cores between components of ∆r and updates the assign-
ment accordingly. Note that the constraints on requirement and assignment
vectors imply that

∑S
i=1 ∆ri = 0, guaranteeing that a full transfer is always

possible. The core re-assignment loop prefers to re-assign cores with a lower
index in the global list of cores over those with a higher index, which implies
that cores with a higher-index switch stages less often given a stable system
load. The current asymptotic runtime complexity of the loop currently is in
O(S2∗C2). However, we did not spend time on searching lower-runtime algo-
rithms and we do expect most applications to have S ≤ 8 and C ≤ 32, which
interpolates to ≈ 200us runtime, based on the results of the evaluation (see
Figure 5.7c, Section 5.4.3). More importantly, the time spent on the compu-
tation is amortized because the result is re-used for the time specified via the
max_assignment_age boot-time parameter. For future work, it might be worth
to investigating more efficient assignment transition algorithms or to consider
auto-tuning the max_assignment_age based on detected system configuration.

The last problem of the updating procedure is to support concurrent use
of the old assignment while computing a new one. We use OSv’s version
of read-copy-update [MS98] (RCU) for this purpose: When accessing the
current assignment through its public getter, we compare the timestamp of
the assignment’s creation against the current time. If the max_assignment_age
is exceeded and there is no other thread already computing a new assignment,
the calling thread becomes the updater. RCU allows all other threads to
safely use the old assignment until the new one has been computed.

An important detail of the above algorithm is that a core assignment vector
that assigns 0 cores to a given stage is valid. For example, another stage may
be assigned all available cores. However, our stage switching implementation
requires a target CPU at the time the thread calls the stage switching API.
In other words: We do not have a mechanism to queue up threads whose
stage has not been assigned a dedicated core. Our solution is to choose the
core with the highest index in the global list of cores as the victim core Cv
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Require: l =
(
l1 l2 . . . lC

)
, current stage load vector

l̃ =
(
l̃1 l̃2 . . . l̃C

)
, exp.-dec. avg. stage load vector

Ensure: r, valid requirements vector
1: l̃← α ∗ l + (1− α) ∗ l̃ . exp.-dec. average
2: p← l̃

/
‖l̃‖1 . norm. load, becomes first priority vector p

3: c← C . number of cores left to assign
4: r ←

(
0 0 . . . 0

)
5: while c > 0 do
6: assert ‖p‖1 == 1.0

7: f ← p ∗ c . floating-point core count
8: if ∀i ∈ 1 . . . S : fi < 1.0 then . priority shifting
9: imin ← argmin

s∈ 1...S
fs

10: imax ← argmax
s∈ 1...S

fs

11: pimax ← pimax + pimin

12: pimin
← 0

13: continue
14: end if
15: r ← r + bfc . assign integer core counts
16: c← c− ‖bfc‖1 . account for assigned cores above
17: p← (f − bfc)

/
‖f − bfc‖1 . priority based on remainders

18: end while

Figure 4.6: The algorithm to compute the requirement vector proportional
to stage load. From the second iteration on, we distribute cores propor-
tional to the remainders of the previous iteration. Note that because li ≥ 0,
‖ · ‖1 =

∑S
i=1 |li| =

∑S
i=1 li.
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which must incur the i-cache miss for the underloaded stages’ threads. The
reasoning behind this decision is that the described situation should be rare
in the first place: If a stage is constantly underloaded, the stage-switching
points were likely not chosen for a representative workload. The idea behind
choosing Cv and not, for example, C0, is that the core with the highest
index is already advantaged in the minimal transition algorithm: Cv will
least frequently switch stages and is therefore best-suited to be penalized
with cache-thrashing threads from the underloaded stage. Validating and
improving this workaround is subject for future work.

The initial implementation of the allocation algorithm was committed in
revision 2f2a8628 and refined in cf16063b. The requirements vector is com-
puted as described above since revision 1d3b2595.

4.5.1 OSv’s Page Access Scanner

During the implementation of the core allocation policy we found that an OSv
system thread called page access scanner (PAS) consumes significant CPU
time. OSv’s main filesystem is a port of the Zettabyte File System (ZFS)
which includes its own Adaptive Replacement Cache (ARC). The OSv page
cache uses the PAS thread to inform the ARC about recent usage of file-
backed pages by checking and subsequently clearing the page table entries’
accessed bits. The PAS consists of an infinite loop that self-tunes the CPU
time it consumes through a target value t ∈ [0.1, 20]: It scans pages for
t% and then sleeps for 100 − t% of the time it runs, where t depends on a
decaying average of the page access rate. The frequency at which the PAS
activates is hard-coded to 1000Hz.

The PAS is not pinned to a specific core and would thus be subject to
load-balancing in upstream OSv. However, we removed the upstream load-
balancer in our solution, which implies that the PAS always executes on
cpu0 because it does not use the stage API. As such, it is also invisible
in the stage load vector because we track stage load in the stage switch-
ing and the reschedule routines, not by summing up the length of a stage’s
cores’ runqueues. Thus, whenever the core allocation policy assigns cpu0 to
a stage, that stage’s threads will compete with the PAS for CPU-time and
cache-residency. Given that a stage’s threads’ working set is (a) disjoint from
the PAS and (b) chosen to barely fit the private cache of a core, increased
instruction cache misses are to be expected.

https://github.com/problame/ba-osv/commit/2f2a8628bc927e41d1e194b8495c84eda82b55ef
https://github.com/problame/ba-osv/commit/cf16063beef7573026a543e0ad68dace6a3eff89
https://github.com/problame/ba-osv/commit/1d3b25957985eb929e26dd956fb038ca6ec71073
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throughput L2 code miss rate
Build Our Solution Upstream OSv Our Solution Upstream OSv
PAS freq

10 643.69 549.50 0.39 0.75
1000 552.06 498.22 0.42 0.74

Figure 4.7: The effect of 10Hz vs. 1000Hz PAS frequency on TPC-C through-
put and L2 code misses. Reducing the PAS frequency reduces code misses for
our solution, resulting in increased throughput. The results were produced
with enabled mwait in the idle thread and 12 TPC-C terminals.

We can quantify the problem outlined above by measuring the effect of re-
ducing the frequency at which the PAS runs from 1000Hz to 10Hz. The
results for this experiment are shown in Figure 4.7: With 10Hz, our solution
achieves 17% higher throughput compared to 1000Hz. Upstream in contrast
is much less affected with only 10% higher throughput at 10Hz PAS fre-
quency. The differences in throughput are visible in the i-cache miss ratios:
Whereas our solution incurs 3 percent points fewer code misses with 10Hz,
upstream OSv’s code misses increase by 1 percent point.

It is important to emphasize that the change to 10Hz causes the PAS to
perform less work in both upstream and our solution: By adding additional
tracepoints, we found that at 10Hz, the 100x longer time slice available to
the PAS is sufficient to scan the entire page table, causing the PAS to go to
sleep early. However, as seen in the results above, the 100x less frequent but
longer-running invocations of the PAS mitigate the impact on i-cache and
throughput for our solution.

We have considered several approaches to handle the default 1000Hz PAS
frequency because implementation details of the page cache are technically
out of scope for this thesis. At first, one could model cpu0 as a 50 – 80%
CPU. However, this solution is not very general since we lack a precise model
for the impact of the cache trashing caused by the PAS. Furthermore, the
current implementation would require many special cases to support CPUs
in non-integer quantities.

Another idea is to declare one core as the thrashing core, exclude it from
the core allocation and use it to run the PAS. The natural downside of
this approach is that, if the PAS does not run 100% of the time, we waste
resources on that core. A mitigation would be to change the dispatch policy
for underloaded stages, i.e., those stages that do not have enough relative
load to win a single dedicated CPU core: In contrast to distributing threads
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of underloaded stages equally over all cores, one could dispatch them all on
the thrashing core.

Finally, we considered defining a dedicated stage for the PAS. The main
problem with this approach is that our concept is designed for many requests
per stage. The fictional PAS-stage however would only ever have zero or one
runnable thread, thus likely never win a dedicated core. Instead, it would be
frequently dispatched on a random core and evict that core’s stage’s working
set. Experiments showed that this option is not worth pursuing without the
concept of a thrashing core, at which point one could fully fall back to the
proposal in the previous paragraph.

Reducing the PAS Frequency to 10Hz

The primary goal of this thesis is to show that it is possible to implement
work-conserving, stage-aware scheduling policy by choosing the right abstrac-
tions and mechanisms. Ideally, the corresponding scheduling policy should
be competitive without further modifications to the remaining operating sys-
tem. However, our approach and time constraints did not allow us to solve
the problems that the page access scanner poses to our scheduling policy in a
general way. Therefore, for the entire evaluation, we set the PAS fre-
quency to 10Hz in both upstream OSv and our modified version.
Despite the modifications to upstream OSv being technically unnecessary,
we consider the comparison between the 10Hz-versions of upstream and our
version of OSv to be fair with regards to available CPU time, since both con-
figurations benefit equally from the removed impact of the PAS. The design
of a general-purpose solution for the PAS is thus left open to future work.



Chapter 5

Evaluation

In Chapter 4, we presented our operating-system-based solution to mitigate
the sub-optimal cache behavior of multi-threaded server applications: We
provide a system API to define stages which represent spans in the request-
handling code path whose instruction working set is smaller than the size of a
CPU core’s private cache. The OS scheduling policy is aware of these stages
and migrates threads to different cores when they switch stages using fast
thread migration mechanisms. By dedicating CPU cores to stages, threads
always execute code that is in the private cache, thus avoiding expensive
off-core cache or memory accesses.

In this chapter, we evaluate our implementation in the OSv library operating
system to validate the following theses:

1. Existing applications can adopt our solution with minimal changes re-
quired to the existing codebase. We show this by documenting the
adoption of the stage API in MySQL 5.6.

2. Our solution improves relevant performance metrics for these applica-
tions compared to upstream OSv and virtualized Linux. We show this
with the industry-standard TPC-C benchmark.

3. Above performance improvements are due to the stage-aware schedul-
ing technique presented in this thesis:

(a) Our solution spreads an application’s instruction working set over
multiple cores. We show this using the top-down performance
analysis method and other performance-counter-based metrics.

47
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(b) Our fast thread migration mechanism and migration on wake-
up are required for improving net application performance. We
show this by implementing the stage API in upstream OSv based
on the upstream thread migration mechanisms and by comparing
performance of both sides using fixed core allocation.

(c) Our core allocation policy allocates CPUs proportional to stage
load. We show this by instrumenting the corresponding code with
OSv tracepoints.

(d) Our core allocation policy improves application performance com-
pared to fixed core allocation. We show this using TPC-C with a
varying the number of concurrent client connections.

The remainder of this chapter is structured accordingly: Section 5.1 de-
scribes the hardware and software setup common to all measurements pre-
sented in this thesis. Subsequently, we show the adoption of the stage API in
MySQL 5.6 in Section 5.2. Section 5.3 then presents the MySQL performance
comparison using TPC-C. The remaining sections cover the validation of our
design assumptions: In Section 5.4.1, we show that we successfully spread
MySQL’s instruction working set over multiple cores. We show the advan-
tages of our thread migration mechanisms in Section 5.4.2 isolated from the
influence of the core allocation policy. The core allocation algorithm and its
influence on performance is then validated separately in Section 5.4.3 and
5.4.4. We conclude with a discussion of the results in Section 5.5.

5.1 Evaluation Setup

We evaluate our solution on a single-socket Intel Xeon E5-2618L v3 CPU, a
Simultaneous multithreading (SMT) system with with 8 cores, 2 hardware
threads each. The system is equipped with 32 GiB of memory consisting of
4 ∗ 8 GiB DDR4 DIMMs clocked at 2133Mhz. The CPU’s cache hierarchy
consists of a 20MiB shared, inclusive, 20-way set associative L3 cache, private
unified 256KiB L2 caches and private separate 32KiB L1-d and L1-i caches.
All private caches are 8-way set-associative. Via the BIOS, we disable SMT
because the core allocation policy does not support it (see Section 6.1). We
also disable automatic switching to lower C-states to reduce latency jitter due
to increased wake-up time from low-power states. A more detailed dump of
the hardware configuration is available in the appendix (Chapter 6.1).
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We use the Fedora 27 Linux distribution with Linux kernel version 4.13.9
(Fedora package 4.13.9−300.fc27.x86_64) as the machine operating system. We
remove the measurement noise caused by dynamic voltage and frequency
scaling by setting the scaling governor to performance mode and disabling
the turbo frequency range.

Due to the nature of OSv targeting only virtual machines, our evaluation is
done using VMs. For all experiments, we use the Fedora-packaged QEMU
2.10.0-1 software, which in turn uses Linux KVM and thus Intel VT-x for
hardware virtualization. We use the virtio network and disk paravirtualiza-
tion drivers in OSv. Disk images are in raw format, located in the host’s
tmpfs and emulated without caching using pthread-based disk I/O. We ob-
served heavy cache thrashing when allowing QEMU helper threads on the
same cores as the vCPU threads. To be able to show the changes in cache
behavior that can be achieved with stage-aware scheduling, we thus use the
following CPU configuration: We isolate physical cores 2 – 7 from the Linux
scheduler using the isolcpus=2−7 kernel command line parameter. The VM
is then started with 6 virtual CPU cores (vCPUs) and we map each of the
QEMU vCPU threads to one of the isolated cores in range 2 – 7. The re-
maining QEMU threads which are used for timers, async-I/O, etc., continue
to be dispatched by the Linux scheduler on cores 0 and 1.

The goal of the above setup is to give the guest operating system control of the
cache state of its vCPUs. Our solution requires dedicated cores and caches
because all performance benefits are achieved by optimizing cache behavior.
However, we are also unaware how dedicated vCPUs could disadvantage
Linux or upstream OSv in the comparisons made in this chapter.

When using Linux as a baseline, we refer to an installation of Debian 9
in a virtual machine that starts the MySQL 5.6.38 Docker image on boot.
The MySQL data directory is bind-mounted from the ext4-formatted root
partition on the emulated HDD to avoid the overhead of unionfs. For all
other aspects, the QEMU configuration described above applies.

With regards to OSv, we emphasize again we had to reduce the frequency
of the page access scanner (PAS) system thread from 1000Hz to 10Hz (see
Chapter 4.5.1). To maintain a fair comparison between our solution and
upstream OSv with regards the metrics presented in this chapter, we use the
10Hz frequency on both sides. For all other aspects of the VM configuration,
the QEMU configuration described above applies.

For evaluating MySQL, we use the industry-standard TPC-C online trans-
action processing benchmark. TPC-C simulates an online transaction pro-
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cessing workload by modelling a retail company with warehouses and dis-
tribution districts that handles sales transactions at sales terminals. The
number of warehouses controls the amount of data stored in the database
and the number of terminals controls the the number of concurrent clients
to the database system. [Cou] We use the TPC-C implementation provided
by the open source OLTP Benchmark project at Git revision 019d9cf from
February 2018 [OLTP]. The process of provisioning the database with test
data is very time-consuming and not relevant to the benchmarks in this the-
sis. Therefore, we re-use a one-time-generated pre-seed with two warehouses.
For the weights of the different TPC-C request types„ we use the default set-
tings in OLTP.

We run the TPC-C benchmark driver from a separate benchmark machine
connected to the main machine using direct 10 Gbit/s ethernet. A dedicated
benchmark machine allows us to use high numbers of concurrent benchmark
clients without influencing the CPU time available to the QEMU helper
threads on the main machine’s core 0 and 1. We further use a Linux layer 2
bridge device to enable direct connections from the benchmark machine to
the virtual machine, thus avoiding most of the overhead of packet filtering
on the main machine.

For capturing performance counter data, we use the Linux perf facility in
global-monitoring mode on the main machine for CPUs 2-7. We use the ukHG
event modifiers to capture all events that happen on these cores, regardless
of whether they execute code of the main-machine’s user-space, kernel or in
the guest. We found that without these modifiers, the OSv caused by the
application in OSv are not visible because unlike the Linux VM, OSv does
not need to change the privilege level when executing application code. For
recording more event types than physical PMUs available on the CPU, we use
perf’s time-multiplexing feature, which re-programs the PMUs at the host
kernel’s compile-time configurable config_hz frequency (config_hz=1000
on our system). [Aut]

For orchestrating the execution of VMs, the OLTP benchmark tool and perf,
and for collecting the benchmark results, we use a self-written wrapper tool
called doltp which we make available in the appendix.

We process the result data using Python 3.6, using the the pandas 0.22
package in combination with numpy 1.14.0, matplotlib 2.1.2 and seaborn
0.8.1. All graphs and figures in this chapter are rendered reproducibly from
the raw data using code in an IPython notebook, which we make available
in the appendix.



5.2. ADOPTING THE STAGE API IN MYSQL 51

5.1.1 Configurable Idle Strategy in Upstream OSv

For the upcoming sections, we require further customizations to the idle
thread implementation of upstream OSv. Specifically, we add a kernel com-
mand line parameter that allows to select the action taken by the idle thread
when there are no other runnable threads in the runqueue. We provide the
following alternatives and will refer to them by name for the rest of this
chapter:

busy Busy-waiting for incoming thread migrations in the incoming_wakeups
queue as part of the upstream thread migration mechanism (see Sec-
tion 4.1.1).

halt The default behavior in upstream OSv: Spin for a short time, then
issue the hlt instruction.

mwait Instead of using hlt, use monitor and mwait to wait for changes to
the incoming wake-ups bitmask. Do not spin before mwait.

The difference between mwait and halt is that the latter causes an exit to
the hypervisor whereas the former does not. To the hypervisor, mwait will
thus appear to consume 100% of CPU time.

Furthermore, only mwait can be used to measure an undistorted top-down
top-level breakdown: Spinning in a tight loop is neither frontend nor backend-
bound and will thus inevitably blow up the retired fraction in the breakdown.
An example for the impact of spinning can be seen in Figure 5.1a.

When referring to upstream OSv without further qualifiers, we mean up-
stream OSv with the halt configuration. For top-down comparison, we use
mwait in both our solution and upstream.

5.2 Adopting the Stage API in MySQL

MySQL is a widely-used open source relational database management system
written primarily in C/C++. The project started in 1994 but continues to
evolve until today. The MySQL server provides its services over a custom
TCP protocol and supports concurrent clients through thread-based concur-
rency: A pool of pre-spawned threads is used to handle incoming connections
and additional threads are spawned on demand if the number of concurrent
clients exceeds the pool size. For this evaluation, we use MySQL 5.6.38 which
consists of more than 1.5 million lines of code. [IW; MySQL; Gmb]
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(a) Top-down analysis top-level breakdown. The true frontend-boundedness of
MySQL on upstream OSv is only visible when removing spinning in the idle thread,
which we did with the mwait configuration. The break-down corresponds to the
observations made by Kanev et al. (Section 2.6).
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(b) L2 cache misses. Although MySQL on OSv incurs fewer L2 misses, the break-
down between code and data misses is similar to Linux: More than 66% of all L2
cache misses are code misses, confirming the assumption that MySQL’s instruction
working set does not fit into the private cache of contemporary processor cores.

Figure 5.1: MySQL on Linux and upstream OSv during a TPC-C benchmark
run.

Furthermore, MySQL exhibits the micro-architectural profile of data-center
applications observed by Kanev et al. at Google (see Section 2.6): As shown
in Figure 5.1a, 58% of pipeline slots during a TPC-C benchmark run are
frontend-bound, 18% backend-bound and 5% lost to bad speculation, leav-
ing merely 20% of pipeline slots to be actually retired. Since Kanev et al.
attribute the frontend-boundedness to i-cache thrashing, we also measured
L2 cache misses (Figure 5.1b): More than 66% of private L2 cache misses in
both Linux and Upstream OSv are due to code reads.

All of the above makes MySQL a prime example application that could ben-
efit from our solution: We expose stages to applications via a C++ interface,
the existing MySQL codebase is large and thus not trivially refactorable
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to the application architectures presented in Chapter 2, and the threading
model is compatible with our solution. The L2 metrics further support the
assumption that MySQL can benefit from spreading its instruction working
set over multiple cores. At last, given the recent trend of deploying applica-
tions as virtual appliances, we expect that OSv’s strong requirement for this
type of deployment is acceptable due to the performance improvements that
our solution delivers.

As described in Section 4.2, the stage API requires developers to insert stage
switching calls into the request-handling code path such that the underlying
thread migration spreads the instruction working set over the available CPU
cores. Our initial approach for this task was to read the MySQL source code,
starting at the connection handler and figuring out which of the called code
modules are large enough to become separate stages. As a result, we used
the RAII-style switching to separate

• the code interfacing with the network stack
(function do_handle_one_connection),

• the SQL parser (function dispatch_command) and

• the code path handling insert queries (function mysql_insert).

The above process was very time-consuming because we were not familiar
with the MySQL code base and the resulting throughput measured by TPC-
C was too unstable to make it worth pursuing the approach any further.

In parallel to this thesis, staff at the KIT OS group worked on a simulation-
based approach to automatically find optimal stage switching points. At
first, a memory access trace is recorded using a full-system simulator while
running a representative workload. In addition to the access trace, a log of the
function calls made during each incoming request is made. The second step is
then responsible for finding the optimal position of N stage switching points:
For every combination of N different functions, it replays the memory access
trace in a cache simulator and counts the cache misses. The combination of
functions with the minimal number of misses is then chosen as stage switching
points under the assumption that they represent an optimal working set
partitioning. A developer then manually inserts the switching calls directly
before the function call. [Got+18]

For this thesis, we used the above approach to find an optimal partitioning
for 3 stages. A larger number of stages was impractical due to the runtime
of the above algorithm. The resulting diff statistics are printed in Figure 5.2:
The changes amount to 54 insertions and two deletions throughout nine files,
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g i t d i f f −−s t a t 38 e2b4d1fe7564b8e1a0d0f0eeb7f542d0d534b6
CMakeLists . txt | 5 ++++−
s q l /CMakeLists . txt | 5 ++++−
s q l /my_osv_stagesched . cc | 18 ++++++++++++++++++
sq l /my_osv_stagesched . h | 14 ++++++++++++++
sq l /mysqld . cc | 5 +++++
sq l / sq l_c l a s s . h | 1 +
sq l / sq l_lex . cc | 3 +++
sq l / sq l_parse . cc | 2 ++
sto rage /perfschema/ p f s . cc | 3 +++
9 f i l e s changed , 54 i n s e r t i o n s (+) , 2 d e l e t i o n s (−)

Figure 5.2: The Git diff statistics of all changes to upstream MySQL required
to insert the stage-switching points computed by the simulation approach.
They amount to only 0.0036% of the MySQL codebase.

and 32 lines of these insertions are isolated in two new files prefixed with
my_osv that contain the declaration and definition of stage pointers as global
variables. This change amounts to only 0.0036% of the lines of code present
in MySQL and is simple to maintain across patch-level changes. The design
goal of a slim stage API can therefore be considered fulfilled.

However, there are a number of obvious points for criticism in the above
approach: First, the cache-simulator-based switching points are located at
semantically unintuitive positions in the source code. Thus, although the
patch is small in size, a human developer can only port it across patch-levels
of a given version of MySQL, hoping that the instruction working set does
not change significantly. We expect new major versions to require a one-
time re-run of the simulation process. Second, the patches are specific to
the simulated cache hierarchy, which implies that different patches and thus
different builds may be required for deployment on a fragmented hardware
infrastructure. However, it should be noted that the very popular Intel x86-
64 micro-architectures since Nehalem (2008) have used the same cache sizes
and associativity per core, although Skylake server processors have moved
form 256KiB to 1MiB L2 cache in 2017 [NehAnand; SkyWch]. At last, one
can argue that the promised ease-of-use is actually limited by the requirement
to use the cache simulator to find switching points. Indeed, we can imagine
a lot of improvements to the tooling but leave this subject to future work.
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5.3 Whole-System Benchmark with MySQL

In this section, we show that stage-aware scheduling is able to improve per-
formance of real-world applications by the example of MySQL, which we
adapted to use the stage API in the previous section. We use the TPC-C
benchmark setup as described in Section 5.1 to compare the performance of
MySQL running on our solution vs. upstream OSv vs. the Linux VM.

For the purpose of this thesis, the aspects of multi-client and multi-core
scalability are of particular interest: MySQL implements thread-based con-
currency, i.e., it uses one operating system thread per client connection and
relies on the OS scheduler to utilize multiple CPUs effectively. In Chapter 2,
we have presented related work showing this model’s negative effect on cache
behavior: A request handler’s instruction working set does not fit into the
private cache of an individual core, thus causing cache thrashing and lost
performance. As laid out in Chapter 4, our solution avoids this problem,
expecting performance gains due to always-warm instruction caches.

The most important performance metrics for a database system under OLTP
workloads are throughput, measured in completed requests/second, and the
request latency. To show the effectiveness of our solution, we measure these
metrics over a varying number concurrent client connections (terminals). For
each data-point, we perform 8 40s TPC-C benchmark runs with identical pa-
rameters. We discard the result data of the first and last two seconds to ex-
clude warm-up and tear-down effects of the benchmark implementation. We
also vary the max_assignment_age parameter to experiment with its influence
on application performance.

With regards to throughput (Figure 5.3a), our solution achieves a speedup
of up to 22% at 50 TPC-Terminals. Whereas upstream OSv throughput
is stagnant after the number of terminals exceeds the number of available
hardware threads (6 vCPUs), our solution’s maximum throughput is achieved
at 20 terminals. The influence of the max_assignment_age is negligible. In
contrast, the influence of mwait vs. busy-waiting is significant: We achieve
more than 2x the speedup with busy-waiting compared compared to mwait.

Response time is much less affected by our solution than throughput, as is
shown in Figure 5.3b. Only at very high numbers of concurrent clients do we
observe lower response times with our solution compared to upstream OSv.
However, even at 60 terminals, the difference amounts to merely 15ms at
mean latencies of 1110ms vs. 1095ms.
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terminals 1 2 6 10 15 20 25 30 40 50 60
build

Our solution (20ms, busy) 1.11 1.11 1.16 1.19 1.20 1.20 1.20 1.21 1.21 1.22 1.21
Our solution (20ms, mwait) 0.98 0.98 1.05 1.08 1.09 1.09 1.08 1.09 1.09 1.09 1.07
Upstream OSv (busy) 1.04 1.02 1.01 1.02 1.01 1.01 1.01 1.02 1.02 1.02 1.01
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(a) TPC-C throughput and corresponding speedup with upstream OSv as the base-
line. Our solution is 22% faster than upstream with busy-waiting 9% faster when
using mwait in the idle thread. The max_assignment_age parameter (left in paren-
theses) does not significantly affect the performance of our solution.
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(b) TPC-C request latency. Our solution achieves up to 15ms lower request latency
at 60 terminals. Note however that this is only 1.5% faster than upstream and that
the y-axis in the diagram starts at 850msec.

Figure 5.3: Whole-system benchmark of MySQL on upstream OSv vs. our
solution using the TPC-C benchmark. The error bars indicate the standard
deviation over the 8 benchmark runs per configuration. The legend entries
in top-to-bottom order correspond to the bars in left-to-right order.
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5.4 Validation of Design Assumptions

Although the results above show that our solution achieves up to 22% higher
throughput in the TPC-C benchmark, we must still validate that our design
decisions are responsible for these improvements.

In the following subsections, we thus isolate individual aspects of our design
and show that they have the intended effect. In Section 5.4.1, we show that
our solution actually spreads MySQL’s instruction working set over multiple
cores. Subsequently, in Section 5.4.2, we show the influence of fast thread
migration and thread migration on wake-up. Lastly, we validate the behav-
ior of the core allocation policy and evaluate it’s influence on application
performance.

Given the observation that the max_assignment_age parameter has negligible
impact on throughput, we use the default value of 20ms. However, we con-
tinue to perform measurements with both busy-waiting and mwait in the
idle thread to find the reason for this parameter’s significant influence on
throughput.

5.4.1 Instruction Working Set Spreading

To validate our primary design goal of spreading the application’s instruction
working set over multiple cores, we use hardware performance counters and
the Linux perf utility to capture events on the vCPUs while executing the
TPC-C benchmark. Specifically, we record L2 cache events as well as those
events required to compute the top-down analysis top-level breakdown (see
Section 2.5).

Figure 5.4a and 5.4b visualize the results of the run described above. We
observe a reduction of L2 code misses per request by up to 65% while in-
creasing data misses by at most 2%. mwait vs. busy-waiting does not affect
the cache behavior of our solution significantly. However, we see increased
code misses in upstream when using hlt vs. mwait and busy-waiting. Our
explanation for this observation is that calling hlt in the VM causes an exit
to the hypervisor and thus additional code misses. With regards to single vs.
multiple terminals, we see that our solution only shows increased data misses
with unchanged code misses. Increased data misses are to be expected given
that more requests are likely to touch more (different) data in the same time
interval, thus inducing capacity misses. Upstream shows a reduction in code
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(a) L2 cache misses with 1 and 50 TPC-C terminals. The table below shows the
relative amount of code and data misses for 50 terminals with Upstream OSv (halt)
as a baseline. The 65% reduction of L2 code misses shows the effectiveness of
instruction working set spreading.
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(b) Top-down analysis top-level breakdown at 15 terminals using mwait in the idle
thread. Our solution shifts 27 percent points from frontend-bound to backend-bound
and retiring.

Figure 5.4: Validation of instruction working set spreading using CPU per-
formance counters during the TPC-C benchmark.
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misses with multiple terminals, which is likely due to code sharing between
threads scheduled on the same core.

For the top-down top-level breakdown, we compare the mwait versions of
upstream and our solution, which is necessary because spinning blows up
the retiring fraction because a tight loop is neither frontend nor backend-
bound. The results are depicted in Figure 5.4b: Up to 27 percent points
from frontend-bound and 1 percent point from bad speculation shift to the
backend-bound and retiring category. As explained in Section 2.5, this shift
is expected given the reduction in L2 code misses.

We interpret the above results as confirmation that we successfully spread
the instruction working set of MySQL over multiple cores. The use of mwait
does not correlate with the cache behavior of our solution, i.e., the quality
of instruction working set spreading is independent of the sleeping strategy.

5.4.2 Changes to Thread Migration

The analysis in the previous section shows that we are successfully spreading
the instruction working set of MySQL, which we accomplish through thread
migration. In Section 4.3, we have presented a thread migration mechanism
that we claim to be faster than the upstream OSv facility. Additionally,
we refactored the wake-up mechanism to allow thread migration on wake-
up, enabling immediate dispatch of a woken-up thread to any of its current
stage’s cores (see Section 4.4). In this section, we validate that we reduced
migration latency with our migration mechanism, its effect on throughput
and the additional speedup achieved through thread migration on wake-up.

As a baseline for comparison, we implement the stage API in upstream OSv
using the upstream thread migration primitives: Specifically, we disable the
load balancing mechanism and implement thread migration on stage switch
using the thread::pin(thread∗, cpu∗) remote asynchronous thread migration API
(see Section 4.1.1 and file core/sched.cc in [Sys17]). We cannot not use the
synchronous API (thread::pin(cpu∗)) for this purpose because it reproducibly
crashes with failed assertions in the upstream timer implementation when
invoked at high frequency [Sch]. We configure both upstream and our solu-
tion to use fixed core allocation with two dedicated cores per stage. Both
implementations choose the core with the shorter runqueue length as migra-
tion target. In addition to the configurable idle strategies in Section 5.1.1,
we also implement an option to disable pre-halt spinning in the idle thread
to avoid distortions to the top-down top-level breakdown. For brevity, we
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will refer to the pre-hlt or pre-mwait spinning as prespin and for direct hlt
or mwait as nospin.

We measure stage switching latency using a self-written micro-benchmark
(hopper). We configure the benchmark to define 3 stages and perform 100000
round-robin stage migrations. hopper discards the first 1000 iterations and
collects the remaining results in a histogram with 200ns buckets. Figure 5.5
shows the results: Our solution achieves a mean latency of 1300ns with more
than 97% of migrations under 1400ns. The influence of mwait is visible in
form of a slightly wider-spread distribution and an increased mean value
1660ns, amounting to 360ns additional mean latency.

Upstream OSv achieves 6146ns mean latency in the mwait-nospin config-
uration and 6528ns in halt-nospin configuration. As can be seen in the
histogram, mwait-prespin and busy achieve practically equivalent latencies
at ≈ 4300ns whereas the halt-prespin configuration has approximately the
same offset to mwait in the nospin case. For the micro-benchmark, the small
difference between the prespin configurations is unsurprising: The bench-
mark does not perform any work in a stage and switches immediately to the
next one. Therefore, it reaches the first stage again before both of its cores
went to sleep.

We were unable to find an explanation for the different penalties of mwait
for our solution vs. upstream (+360ns vs. +1800ns). However, the more
important observation is that even with busy waiting, our solution achieves
more than 70% lower latency: The mean value of 1660ns with mwait is
comparable to the bare-metal IPI propagation of 1700ns measured in [She13],
which is exceeded by more than 4800ns by upstream OSv. At last, since busy-
waiting in upstream and our solution have the same propagation time through
the cache coherence protocol, we can be certain that all additional migration
latency with busy-waiting in upstream OSv is due to interrupt virtualization
and the performance implications of helper threads in upstream OSv.

Despite the insights presented above, we must still investigate whether our
improvements to thread migration have any practical effect on application
performance. We use the TPC-C benchmark and our stagified version of
MySQL to compare the throughput achieved with the stage API implemen-
tation on upstream OSv vs. our solution.

The results are presented in Figure 5.6. With a single terminal and busy-
waiting, our solution achieves 8 – 9% higher throughput. At 15 terminals in
contrast, we achieve 18% increased throughput, which is further sustained
for higher terminal counts. We interpret the single-terminal speedup as the



5.4. VALIDATION OF DESIGN ASSUMPTIONS 61

0 1000 2000 3000 4000 5000 6000

R
el

at
iv

e
B

uc
ke

tC
ou

nt
[2

00
ns

bu
ck

et
s]

Migration Latency [ns]

Our Solution, busy
Our Solution, mwait
Upstream, mwait-nospin
Upstream, mwait-prespin
Upstream, busy
Upstream, halt-prespin
Upstream, halt-nospin

Figure 5.5: Histogram of hopper migration latencies with 200ns buckets,
bars drawn at the center of each bucket. The last row shows the exact mean
values. Our solution shows more than 70% lower migration latency and is
less affected by mwait than upstream.
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influence of reduced migration latency: With a single client, there is always
at most one runnable request-handler thread in the system, hence no need for
thread-migration on wake-up. For multiple terminals, the additional 10 per-
cent points in throughput can consequently be attributed to thread-migration
on wake-up.

Looking at the effect of mwait vs. busy-waiting, the 90% higher throughput
of upstream prespin and upstream busy-waiting vs. upstream nospin
is very prominent. In contrast, our solution is only 10 – 14% faster with
busy-waiting vs. mwait. These effects correlate with the different migration
latency increases observed with the micro-benchmark (+1800ns vs +360ns)
for which we do not have a plausible explanation. Since the migration la-
tency increases are not the same, we cannot clearly attribute the throughput
differences between upstream and our solution to either thread-migration on
wake-up or absolutely lower migration latency.

Given the results presented in this section, we can conclude that our changes
to thread migration are the most relevant contributor to the total 22% in-
crease of throughput achieved by our solution (see Section 5.3). Although
both migration latency and thread-migration on wake-up have been shown to
provide performance improvements in the busy-waiting case, the relationship
of mwait to migration latency and throughput requires further investigation
in future work.
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build Our Solution Upstream nospin Upstream prespin
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idle_strategy

busy 195.0 640.0 617.0 N/A N/A N/A 180.0 543.0 518.0
mwait 172.0 581.0 558.0 157.0 282.0 302.0 159.0 529.0 513.0

Figure 5.6: TPC-C throughput achieved with fixed core allocation over vary-
ing number of terminals. The error bars represent standard deviation over 8
benchmark runs. Our solution increases single-terminal throughput by 8 – 9%
and up to 18% for multi-terminal with busy-waiting. upstream pre-spin
is very similar to upstream busy-waiting, whereas upstream nospin is
almost 50% slower, showing that upstream pre-spin practically never ac-
tually halts the CPU.
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5.4.3 Core Allocation: Validation of Implementation

The last major component of our design is the core allocation policy. We
validate that it works as designed by instrumenting the allocation code with
OSv tracepoints, recording the momentary stage load vector, the new core
assignment and the total execution time of the core allocation algorithm in
nanoseconds. We use the default max_assignment_age of 20ms while executing
the TPC-C benchmark with 1, 3, 6 and 12 terminals. The figures referred
to in this paragraph present a 1000ms window of a manually captured trace,
which amounts to 50 invocations of the core allocation routine. We check rel-
evant data structure invariants at runtime and will thus rely on visualizations
to validate that the overall idea works as intended.

As can be seen in Figure 5.7a, the raw stage load (number of runnable threads
per stage) is very spiky and only grows slowly with the number of TPC-
C terminals. As explained in Section 2.1, this pattern is typical for I/O
bound servers: We assume that MySQL’s request handlers frequently switch
between runnable and blocked state. The spiky load profile is smoothened
by the exponentially-decaying average filter, which can can be well observed
in the first column: Stage 0 load rises shortly before the 400ms mark but its
corresponding entry in the requirements vector only rises from 2 to 3 cores at
about 420ms. Also, we see that the number of cores assigned to a stage only
rarely drops to 0, which — combined with the L2 metrics from Section 5.4.1
— confirms that our stage switching points were well chosen: All stages are
used sufficiently to be assigned at least one core most of the time.

The decisions of the minimal transition algorithm are visualized in Fig-
ure 5.7b: As designed, we only see the cores with a lower index switch stages
frequently whereas cores with a higher index clearly tend to keep the same
stage. Since we do not have a precise model of the opportunity costs of
thread migration vs. cache thrashing, we consider avoiding flapping of cores
a positive result.

At last, we take a look at the runtime of the entire core allocation algo-
rithm in Figure 5.7c: The runtime is obviously independent of the number
of threads in the system (around 1µs) but exhibits a very high standard de-
viation. Given the fact that the runtime is amortized over 20ms, less than
0.1% of CPU time will be spent on the scheduling algorithm. However, we
want to emphasize that we did not show the critical O(S2 ∗ C2) asymptotic
runtime complexity of minimal transition algorithm in this section, since the
evaluation setup is fixed to S = 3 stages and C = 6 cores.
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mean runtime [ns] stddev runtime [ns]
terminals

1 872.825261 432.738347
6 1128.008584 992.392119
12 1093.613082 612.995302

(c) Runtime of the algorithm, independent of the terminal count.

Figure 5.7: Visualization of the core allocation policy decisions.
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5.4.4 Core Allocation: Performance Evaluation

After having validated that the core allocation policy works as designed in the
previous section, we will now evaluate its effect on application performance.
As a baseline, we use our version of OSv with fixed core allocation and two
dedicated cores per stage. We continue to use the length of the runqueue
to decide on which core within a stage a thread should be dispatched. We
use the TPC-C benchmark with a varying number of terminals to evaluate
MySQL performance and concurrently capture L2 metrics on the vCPUs.
Additionally, we perform two separate runs with mwait vs. busy-waiting in
the idle thread. The comparison between fixed core allocation and the core
allocation policy is fair with regards to available CPU resources because we
define exactly 3 stages for MySQL, resulting in two dedicated cores per stage.

As is visible in Figure 5.8b, the maximum increase in throughput achieved
by the core allocation policy is only 3%, starting at 25 TPC-C terminals and
higher. Additionally, these 3% are only reached when using busy-waiting
— the speedup with mwait is at most 2%. Further, especially for mwait,
the improvement lies within the standard deviation and is thus not very
relevant. The L2 cache metrics show that the core allocation policy reduces
codes misses per request by up to 5%. However, data misses are increased
by 1 – 2%. The impact of dynamic core allocation on request latency is
negligible (not shown in the figure).

Since these improvements are very minor compared to what we observed in
Section 5.4.2, it would be rather easy to dismiss dynamic core allocation as
unnecessary. However, the evaluation setup we used in this section is very
beneficial to fixed core allocation: The fixed core allocation is equivalent
to the core allocation policy if (a) the stage switching points are perfectly
placed with regards to stage load and instruction working set and (b) the
number of vCPUs is a multiple of the number of stages. If these two criteria
are true, the core allocation proportional to stage load will always result in
2 cores per stage, which is equivalent to the fixed core allocation presented
in this example. We have already shown in Section 5.4.3 that our stage
switching points are very close to an ideal placement, which is likely due to
the simulation-based approach that was used to find them (see Section 5.2).
Because we use 6 vCPUs for 3 stages in MySQL, condition (b) is also true.
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Terminals 1 2 6 10 15 20 25 30 40 50 60
Idle Strategy

TPC-C Throughput MWAIT 0.98 0.98 1.01 1.01 1.02 1.01 1.02 1.01 1.02 1.01 1.00
busy 0.98 0.98 1.01 1.02 1.01 1.01 1.03 1.03 1.03 1.03 1.02

TPC-C Request Latency MWAIT 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
busy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

L2 code misses / request MWAIT 1.00 0.96 0.97 0.99 0.97 1.00 1.00 0.99 0.97 0.96 1.00
busy 0.97 0.96 0.96 0.99 0.99 0.98 0.98 0.95 0.98 1.00 0.97

L2 data misses / request MWAIT 1.03 1.01 1.01 1.00 1.01 1.02 1.01 1.01 1.02 1.01 1.01
busy 1.05 1.01 1.01 0.99 0.98 1.01 1.01 1.01 1.02 1.02 1.00

(b) Speedups.

Figure 5.8: Comparison of the core allocation policy vs. fixed core allocation
with varying number of terminals and idle thread strategy. The throughput
improvement of dynamic core allocation is very minor (2 – 3%). However,
the evaluation setup is optimal for the baseline, thus mandating future work
to evaluate the true effectiveness of dynamic core allocation.
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5.5 Discussion

As shown in in the previous section, our stage-aware scheduling solution
is able to improve the throughput of the multi-threaded MySQL database
server by up to 22%. The speedup is sustained at a high number of concurrent
clients. In contrast to previous work in the field, we do not sacrifice request
latency for improved throughput.

By stagifying MySQL, we have shown that our solution requires very lit-
tle modifications to an existing legacy code base to reap the provided per-
formance benefits. However, we have learned that a simulation-based ap-
proach [Got+18] for finding stage switching points is preferable over manual
placement by a human developer.

Our thread migration mechanism achieves ≈ 1700ns migration latency which
is more than more than 70% lower than the corresponding upstream OSv
primitive. The lower overhead of our mechanism is responsible for an 8 – 10%
speedup in throughput with a single client compared to an implementation
based on upstream thread migration. Additionally, we achieve another 10
percent points in throughput improvement by implementing thread migration
on wake-up and using it in our scheduling policy, thereby overcoming the
limitations of the KIT OS group’s proof of concept implementation in Linux.

We have shown that our dynamic core allocation policy works as designed
by analyzing traces of the allocation algorithm. The performance evaluation
has shown that for our benchmark scenario the contribution of dynamic core
allocation to the total speedup is only 2 – 3% percent points.

Although this chapter has shown that our design works as intended and that
it improves net application performance, the core allocation policy requires
further evaluation. For future work, we plan to conduct experiments using
different load profiles and less-optimal stages switching points. Additionally,
a mathematical model of the opportunity cost of thread migration vs. in-
curring i-cache misses would help to define an optimal core allocation policy.
The optimal policy would then serve as a scale for evaluating real policies. At
last, further experiments with both lower and higher CPU core counts as well
as different cache hierarchies are required to show the general applicability
of our solution.
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Conclusion

In this thesis, we have presented a scheduler design that leverages fast thread
migration to spread a multi-threaded server’s instruction working set over the
private caches of an SMP system. Instruction working set spreading improves
application performance because datacenter applications have been shown to
thrash the private i-caches of contemporary processors. Our implementation
in the OSv library operating system and the evaluation with the MySQL
database management system show that our solution increases throughput
by up to 22% and reduces i-cache misses by 65%.

Previous work in the field from the early 2000s unnecessarily trades off re-
quest latency for throughput by batching requests to achieve the re-use of
warm i-caches. We argue that these designs are outdated due to the ubiq-
uitous availability of SMP systems which enable techniques such as compu-
tation spreading. We have presented the groundwork for our thesis done
at the KIT OS group: A software-only approach for computation spreading
implemented as a prototype in Linux that allows applications to partition a
thread’s instruction working set at arbitrary points in the application code.
By migrating threads to different cores at these points, the instruction work-
ing set is spread over the private i-caches of all cores and i-cache misses are
reduced.

Our contribution is an analysis of the root cause for the lack of multi-core
and multi-client scalability in the Linux prototype, the definition of clean OS
abstractions for the concept of computation spreading and a work-conserving
thread scheduler design implemented in the OSv library operating system.
We define stages as operating system objects that represent spans in the
code path of a server application’s request handler threads. Each stage is
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smaller than the private i-cache of a single core. We further track a thread’s
current stage in its TCB, enabling the implementation of a scheduler that
takes cache-residency of a thread’s instruction working set into account. Our
scheduling policy time-multiplexes cache-residency by dedicating cores to
stages for certain time intervals. The scheduler dispatches a thread in a
particular stage only onto those cores that are assigned to its current stage,
which causes all threads to execute on pre-warmed i-caches.

The evaluation has shown that we achieve 22% increased throughput in an
optimal configuration and 9% increased throughput when using the power-
saving mwait instruction when waiting for incoming threads in the thread
migration mechanism. Both configurations reduce L2 code misses by 65%.
Request latency is also slightly reduced, confirming our thesis that an SMP-
oriented design can avoid the penalties on request latency of the early 2000’s
proposals. We have shown that fast thread migration and the integration of
our policy into the scheduler’s wake-up mechanism are necessary to achieve
the performance improvements described above. At last, we have confirmed
that our core allocation policy works as designed and that its contribution
to the overall throughput speedup is at most 2 – 3 % compared to fixed core
allocation. However, we provide arguments to show that fixed core allocation
is not a suitable baseline for evaluating the contribution of dynamic core
allocation to the observed performance improvements.

6.1 Future Work

We have already discussed the limitations of the evaluation in Section 5.5:
Due to lack of a known optimal allocation policy, we chose fixed core alloca-
tion as a baseline for evaluating our dynamic core allocation policy. However,
the choice of migration points and the fixed evaluation setup of 3 stages and
6 cores advantages fixed core allocation, leaving little room for improvement
with dynamic core allocation. Future work should thus include a known op-
timal allocation policy and a re-evaluation of our core allocation policy with
regards to sub-optimal stage-switching points, responsivity to varying load
profiles as well as different core and stage counts.

Apart from the limitations of the evaluation, there is also room for improve-
ment in the general design. First, the evaluation setup with pinned QEMU
helper threads is not representative of the current offerings of public cloud
hosting providers. Apart from evaluating other virtualization technologies,
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we can imagine a hypercall interface to pin QEMU helper threads to specific
dedicated vCPUs from within the guest VM.

Second, integration of our solution into other languages can be simplified
by providing a C-version of our stage API. A particularly interesting candi-
date is Java because the standard library encourages traditional thread-based
concurrency [Ora], to which our solution is applicable.

Third, our scheduler could be extended to program performance-counters
during runtime to measure the net-effect of thread migration, e.g., by mon-
itoring L2 i-cache misses. Additionally, server applications could inform the
scheduler about request completions. Given a mathematical model of the op-
portunity cost of thread migration, the scheduler could then use the feedback
from above data sources as input to the core allocation algorithm.

Finally, the core allocation policy should be extended to support simultane-
ous multithreading (SMT): The hardware threads of an SMT-enabled CPU
are commonly exposed to the operating system as separate logical CPU cores.
The corresponding topology information, i.e., which of these logical cores
belong to which physical cores, can be obtained through instructions such
as CPUID. [SDM87a] Logical cores share the private cache of the physical
core. [SDM87b] The core allocation policy would need to assert that all logi-
cal cores of a physical core are assigned to the same stage to prevent i-cache
thrashing. We expect the performance-degrading effect of mwait to be miti-
gated by using SMT because the logical cores that are not idling can continue
to perform useful work. [SDM87b]
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Appendix

This thesis was submitted with a digital copy of our implementation, bench-
marking tools and supplemental utility scripts. Furthermore, we make this
material available via GitHub: All repositories referenced below are pub-
lished under the github.com/problame account. To facilitate orientation in
the codebase, we provide the the following overview.

• OSv versions: Available as branches in the ba-osv repository.

– The implementation our our solution: The version that we
used for our evaluation is b18d6af8 which is HEAD of the stage.

– Upstream OSv For using upstream OSv as a baseline the eval-
uation, we made several changes.

∗ The baseline with page access scanner frequency 10Hz and
configurable idle strategy is 7b853491 which is HEAD of the
eval_upstream branch.

∗ The additional implementation of the stage API on top of
the upstream primitives is bf6ed9ac which is HEAD of the
eval_upstream_threadmig branch.

• Micro-Benchmark and MySQL OSv ports. They are used by all
of the above versions and are thus located in the ba-osv-apps (HEAD
of master branch). The OSv versions use submodules to include this
repository.

• The tool we wrote to coordinate the benchmark execution.
We call it doltp, it is responsible for starting the VM, starting perf,
starting oltpbenchmark on the remote machine, etc. It is available in
the ba-doltp repository and has all library dependencies in the vendor
directory.
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• The LATEX sources for this thesis are available in the ba-thesis
repository.

• The scripts to perform the benchmark runs, the raw result
data and the IPython notebook used to render the evalua-
tion figures. They are located in the ba-thesis repository, in the
thesis/evaluation subdirectory.

• Details on the hardware used for the evaluation. We provide the
output of some standard hardware information tools in the ba-thesis
repository in the thesis/evaluation/hw subdirectory, along with the
shell script to generate the output.
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