
Call Graph Based Instruction
Prefetching on Precompiled

Executables

Bachelorarbeit
von

Joshua Bachmeier
an der Fakultät für Informatik

Erstgutachter: Prof. Dr. Frank Bellosa
Zweitgutachter: Prof. Dr. Wolfgang Karl
Betreuender Mitarbeiter: Mathias Gottschlag, M. Sc.

Bearbeitungszeit: 5. Mai 2017 – 4. September 2017

KIT — Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

https://www.kit.edu

Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle
benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich
gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abände-
rungen entnommen wurde.

Karlsruhe, den 4. September 2017

Abstract

The performance of scale-out and online transaction processing workloads,
often found in modern datacenters, suffer from high instruction cache miss
rates. These are caused by large instruction working sets and irregular, non-
sequential execution flow patterns that are typical for these applications.
Past research has suggested many approaches to reduce instruction cache
miss rates. However, most existing solutions are either implemented in
hardware or require special compiler or operating system support.

In this work, we present Call Graph Prefetching on Precompiled Exe-
cutables (CGPoPE) as a system to reduce instruction cache misses caused
by function calls. CGPoPE builds the call graph of an application by
intercepting and recording function calls. It then extracts the most frequent
callee of each function and injects prefetch instructions into the ordinarily
compiled binary of the application. The mechanism we use to inject prefetch
instructions can be applied to insert arbitrary instructions into the machine
code of an application. This design enables the implementation of live
patching via the operating system, which is able to perform the binary
augmentation automatically when restarting an application.

We evaluate CGPoPE using a prototypical implementation for ELF files
and the x86 architecture. Although we find that CGPoPE does not improve
the performance of our benchmarks, we show that all injected prefetches are
effective. Our analysis also reveals that the injection of instructions into
unmodified binaries does not cause significant additional run time overhead,
and that the effectivity of CGPoPE can likely be increased by more aggressive
prefetching.

v

Deutsche Zusammenfassung

Die Performanz von Scale-Out und Online-Transaktionsverarbeitungs-Work-
loads, wie sie häufig in modernen Datenzentren zu finden sind, wird durch
hohe Miss-Raten in Instruktions-Caches beeinträchtigt. Diese Misses wer-
den durch große Instruktions-Working-Sets und irreguläre, nicht-sequentielle
Ausführungsflussmuster verursacht, wie sie typisch für diese Art von Anwen-
dung sind. In vorangegangenen Arbeiten wurden viele Herangehensweisen zur
Reduktion von Instruktions-Cache-Miss-Raten verfolgt, die allerdings häufig
entweder in Hardware implementiert sind oder spezielle Unterstützung durch
den Compiler oder das Betriebssystem benötigen.

In dieser Arbeit präsentieren wir Call Graph Prefetching on Precompiled
Executables (CGPoPE), ein System zur Reduktion von Instruktions-Cache-
Misses, die durch Funktionsaufrufe verursacht werden. CGPoPE generiert
den Aufrufsgraphen einer Anwendung, indem es Funktionsaufrufe abfängt
und aufnimmt. Für jede Funktion extrahiert es dann die am häufigsten
aufgerufene Kindfunktion und fügt Prefetch-Instruktion in die gewöhnlich
kompilierte Binary der Anwendung ein. Dieses Design ermöglicht die Imple-
mentierung von Live-Patching von Programmen durch das Betriebsystem,
da dieses in der Lage ist, die Modifikation der Binaries automatisch beim
Neustart der Anwendung durchzuführen.

Wir evaluieren CGPoPE mittels einer prototypischen Implementierung
für ELF-Dateien auf der x86-Architektur. Während wir feststellen, dass
CGPoPE die Performanz unserer Benchmarks nicht signifikant erhöht, zeigen
wir dennoch, dass alle eingefügten Prefetches effektiv sind. Unsere Analyse
offenbart auch, dass das Einfügen von Instruktionen in unmodifizierte Bi-
naries keinen nennenswerten zusätzlichen Laufzeitoverhead verursacht, und
dass die Effektivität von CGPoPE vermutlich durch aggressiveres Prefetching
erhöht werden kann.

vii

Contents

Abstract v

Deutsche Zusammenfassung vii

Contents 1

1 Introduction 3

2 Background & Related Work 7
2.1 Next-N-Line Prefetching . 7
2.2 Performance Bottlenecks in DBMSs and Cloud Applications . 8
2.3 Mitigating Instruction Cache Bottlenecks 9

3 Design 15
3.1 Overview . 15
3.2 Call Graph Generation . 16

3.2.1 Call Graph . 16
3.2.2 Call Tracing . 17
3.2.3 Prefetch Target Selection 19

3.3 Binary augmentation . 19
3.3.1 Instruction Insertion 19
3.3.2 Prefetch Code Injection 22

4 Implementation 25
4.1 Overview . 25
4.2 Call Interception . 27
4.3 The Binary Augmenter . 28

4.3.1 Call Accumulation . 29
4.3.2 Function Hijacking . 30

1

2 CONTENTS

5 Evaluation 35
5.1 Evaluation Environment . 35
5.2 Methodology . 36

5.2.1 Measurements . 36
5.2.2 Benchmarks . 37

5.3 Results . 39
5.3.1 Real-World Applications 39
5.3.2 Synthetic Benchmarks 40

5.4 Analysis . 42

6 Conclusion 45
6.1 Future Work . 46

Bibliography 47

Chapter 1

Introduction

The primary performance bottleneck of database management systems
(DBMSs) has traditionally been input/output (I/O) operation, caused by
long disk access latencies [4]. However, due to the availability of larger and
cheaper main memory, more data can be stored in memory [5]. Whereas
performance of database applications has improved through this, the upper
bound for the performance shifts to memory access time [4] and thus cache
effects have become more relevant.

The performance of processors has outpaced that of main memory since
as early as the 1980s [6, 26]. From then on, this gap continued to grow
and only recently, with processor technology reaching its upper bound for
sequential execution speed [35], the growth has begun to cease. Caches can
help to fill this gap, by bringing frequently used memory content closer to
the processor [6]. However, research has shown that scale-out and especially
online transaction processing (OLTP) workloads suffer from high data and
instruction cache miss rates [10].

Research has already explored possible reasons for this. Kanev et al.
observed that instruction working set sizes of typical datacenter applications
can significantly exceed the size of the level 2 cache (L2) in common architec-
tures [18]. Moreover, cloud applications and DBMSs exhibit complex, non-
sequential call patterns, due to their often modular and high-level design [4,
10].

In order to assert effective utilisation of available instruction cache capac-
ities, a more intelligent policy is required. Most CPUs provide a simple next-
N-line (NL) prefetcher, that prefetches the next N cache lines following the
program counter (PC). As the NL prefetcher is only effective for instructions
within this prefetch window, the policy especially needs to capture branches
out of the window. For modularly designed software with relative small
functions, which includes DBMSs and cloud applications, the majority of

3

4 CHAPTER 1. INTRODUCTION

these long jumps are function calls, because the NL prefetcher already covers
the whole function body in most cases.

Most existing prefetching schemes that capture complex execution pat-
terns are either implemented in hardware or, in case of software prefetching
schemes, inject prefetch instructions during compilation. Hardware prefetch-
ers that are available on commodity hardware are usually limited to NL
prefetchers, due to the long development cycle of computer hardware. Thus,
to effectively deploy a more intelligent prefetching scheme, a software im-
plemented approach is required. The disadvantage of most existing software
prefetchers is that they require to recompile the application to inject prefetch
instructions. A solution that does not rely on compiler support would be
applicable existing legacy or proprietary applications, and would allow to
live patch applications on a running system, only requiring the application
to be restarted.

Based on the work of Annavaram, Patel and Davidson [4] we developed
Call Graph Prefetching on Precompiled Executables (CGPoPE), a binary
augmenter that optimises an application to reduce instruction cache miss
rates based on its call graph. The augmenter operates on ordinarily compiled
executables, thus evading the need for special run time or compiler support.

CGPoPE first monitors the program while it executes a representative
sample workload. We use the dynamic instrumentation and monitoring tool
SystemTap [36] to trace and record function calls made by the program. By
accumulating the recorded function calls and counting the occurrences of each
caller-callee pair, a call graph annotated with call frequencies can be built.
CGPoPE uses this graph to inject prefetch instructions into each function,
prefetching the most frequent callee of that function. We show that the
injection of arbitrary instructions into ordinarily compiled binaries is possible
by hijacking the execution flow of functions via the insertion of jumps.
However, we find that CGPoPE does not significantly reduce the overall
instruction cache miss rates in its current form and thus does not improve
the performance of our benchmarks. Nontheless, we show that all prefetches
issued by CGPoPE are effective, and that no significant additional overhead
is caused by hijacking the functions. We conclude that the effectivity of
CGPoPE can be improved by making adaptions to the prefetching policy
while still using the presented function hijacking mechanism.

In Chapter 2 we review existing approaches to reduce instruction cache
miss rates, and compare them to CGPoPE. Chapter 3 discusses the design
of CGPoPE, with respect to conditions and requirements imposed across
different architectures and technologies. Then, we present the details of our
implementation in Chapter 4, concertising the given design of CGPoPE to
64-bit binaries in the executable and linkable format (ELF) [38] for the x86

5

architecture [8]. In Chapter 5 we evaluate our implementation. We also
give a detailed analysis on a smaller scale (microbenchmark), to both outline
the cases in which CGPoPE produces effective prefetches and identify likely
reasons why our system fails to increase the performance of software with
high instruction cache miss rates significantly. In Chapter 6 we conclude on
how CGPoPE can help to reduce instruction cache miss rates and propose
future directions to mitigate the observed issues.

Chapter 2

Background & Related Work

In this work, we present Call Graph Prefetching on Precompiled Executables
(CGPoPE), an instruction prefetching mechanism based on Call Graph
Prefetching (CGP) by Annavaram, Patel and Davidson [4]. In this chapter
we cover analysis of instruction cache performance bottlenecks and review
existing approaches to mitigate these.

Performance bottlenecks in database management systems (DBMSs) and
cloud applications have been pinpointed to instruction cache inefficiencies
in the past. We start with a brief presentation of the most common
hardware prefetching scheme already available in many modern processors in
Section 2.1. In Section 2.2 we summarise research and studies that analyse
common workloads and identifies high instruction cache miss rates as a
major performance bottleneck in these applications. In Section 2.3 we review
existing approaches to reduce instruction cache miss rates. We compare these
to our approach with regard to both the mechanism by which the prefetch
is performed, and the policy by which the prefetch target is selected.

2.1 Next-N-Line Prefetching

As most existing prefetching schemes cooperate with or supplement exist-
ing hardware prefetchers, we briefly present the most common hardware
prefetcher, next-N-line (NL) prefetching, to give a basis for further review of
existing approaches. NL prefetching is a hardware-implemented prefetching
mechanism based on next-line prefetching [32]. As only the minority of
instructions are branch instructions, the sequentially next instruction in the
program is most likely the one to be executed next. Next-line prefetching
takes advantage of this observation, by always prefetching the next instruc-
tion line. NL prefetching is an extension to this, which does not only

7

8 CHAPTER 2. BACKGROUND & RELATED WORK

0

25

50

75

100

In
st

ru
ct

io
n

m
is

se
s

pe
r

k-
in

st
ru

ct
io

n
146

L1-I (OS) L2 (OS)

L1-I (Application) L2 (Application)

Figure 2.1: “L1-I and L2 instruction cache miss rates for scale-out work-
loads (left) and traditional benchmarks (right)” [10]

prefetches the next N lines, instead of only a single line. Many modern CPUs
provide a builtin hardware NL prefetcher. However, as NL prefetchers only
cover simple, sequential execution patterns, they are insufficient to effectively
prefetch more complex execution flows, such as branches and function calls.

2.2 Performance Bottlenecks in DBMSs and
Cloud Applications

Ferdman et al. studied inefficiencies in processor micro-architecture when
running scale-out workloads, and compared these to traditional online trans-
action processing (OLTP) workloads [10]. They identified high instruction
cache miss rates as one of the major performance bottlenecks in scale-out
and especially OLTP workloads. Their findings are depicted in Figure 2.1.
The diagram shows the instruction cache misses per 1000 instructions for
selected scale-out workloads on the left, and OLTP workloads on the right.
Instruction cache miss rates are highest for the level 1 instruction cache (L1-
I), but the problem is also present for the level 2 cache (L2), most notably
for OLTP workloads like TPC-C [39]. For most workloads, the majority
of instruction cache misses occurs while running in user mode (marked as
“Application” in the figure), rather than in kernel mode (marked as “OS”),
suggesting the application as a promising target for optimisation efforts.

Ferdman et al. suggest the complexity of modern applications as a likely
reason for the poor utilisation of instruction caches: Since these are often
written in high-level languages, use external libraries and frequently trap
into the kernel, they exhibit complex, non-sequential call patterns, which are

2.3. MITIGATING INSTRUCTION CACHE BOTTLENECKS 9

Figure 2.2: “Large instruction cache footprints” [18]

not captured by the CPU’s NL prefetcher. Their argument targets cloud
applications, but can be applied to DBMSs as well, due to their often similar
structure [4].

Kanev et al. performed a live analysis of datacenter jobs over a period
of three years [18]. By extending their analysis over multiple years, they
identified characteristics and trends in datacenter applications. They confirm
the findings of Ferdman et al., that L2 instruction cache miss rates are usually
high, and even find the to be up to 50 % higher in their measurements.

The paper also offers further insight into the causes of this phenomenon.
By counting the number of unique cache lines in recorded samples, they give
a measure of a program’s instruction working set size. Figure 2.2 shows the
result of applying this approach over a period of 30 months. Not only did
they find that instruction working set sizes can be 688 KiB or more, and thus
exceed the size of the L2 in common architectures (Intel: 256 KiB, AMD:
512 KiB), but the figure also shows that the instruction working sets are
trending to grow even larger, with growth rates ranging from 3.23 to 27.77 %
per year for some applications.

2.3 Mitigating Instruction Cache Bottlenecks

Many approaches have been proposed by the research community to reduce
the instruction cache bottleneck. We review the approaches regarding the
prefetching policy which they implement and the mechanism by which they
issue prefetches.

Policy. As traditional hardware based NL prefetchers already effectively
covers sequential execution [31], the focus of most research is on the miti-
gation of instruction misses caused by interruptions of these sequences, i.e.
branches and jumps. To address this, many approaches issue instruction
prefetches based on the branch behaviour of the program. A straight-forward
method for this is proposed by Hsu and Smith [15]. Their employ a target

10 CHAPTER 2. BACKGROUND & RELATED WORK

prediction table, which for each instruction cache line stores the line that
most recently followed the active line. Based on this and the current program
counter (PC), a likely next instruction line can be prefetched. This approach
implements a standalone prefetching mechanism, completely replacing the
NL prefetcher. However, as the majority of code is sequential, the entry
in the target prediction table will simply be the next instruction line (i.e.
PC+ 1) for most instructions. As this common case is also covered by much
simpler NL prefetchers, a solution that focuses on non-sequential execution
is more suitable. CGPoPE issues prefetches of non-sequential function calls
in addition to any underlying hardware prefetcher, thus taking advantage of
NL prefetching for sequential execution.

Shyamala et al. present Basicblock Instruction Prefetching (BIP), which
is limited to non-sequential execution flow transitions. Basic blocks are
blocks of machine code consisting solely of sequential instructions, which
are then interconnected by branch instructions, such as the two arms of an
if/else clause or the body of a loop construct [30]. BIP builds a graph of
basic blocks and approximates transition probabilities between these blocks
in a learning phase. Based on these probabilities, BIP issues prefetches of
likely target basic blocks. Similarly, Spracklen, Chou and Abraham make
use of the effectivity of the already available NL prefetcher and also only
handle cases that disrupt the sequential execution flow, which they call
discontinuities [33]. They monitor and record these discontinuities in a
small hardware table and prefetch the target of each discontinuity just before
it comes up next. Although both of these approaches limit the additional
prefetching effort to non-sequential accesses, Luk and Mowry observe that
the NL prefetcher already covers many non-sequential accesses, namely
low-distance control-flow branches that fall within the next N lines [22].
Consequently, it is sufficient to prefetch targets of branches out of this
window, rather than all discontinuities. This observation is considered by
CGPoPE, which only prefetches targets of function calls, and thus relies on
NL prefetching for all intra-function execution.

The same observation is exploited by Annavaram, Patel and Davidson
in CGP. They build an annotated call graph of the program, which stores
for each function the functions called during its first execution, and their
invocation order [4]. Based on this, they issue instruction prefetches for the
next callee at the beginning of the function and upon each successive return.
The policy employed by CGPoPE is based on CGP. We also utilise a call
graph to identify likely callees for each function. But instead of annotating
our call graph with the order in which the callees were called during the
first run of the function, we weigh each edge with the frequency with which
the call was performed over multiple executions. This is a more expressive

2.3. MITIGATING INSTRUCTION CACHE BOTTLENECKS 11

profile, as it includes not only the first run of the function, but an average
over all invocations, has however the disadvantage of not including the order
in which the functions where called.

A different policy, which is not directly based on the branch/jump
behaviour of a program, is employed in RAS Directed Instruction Prefetching
(RDIP), developed by Kolli, Saidi and Wenisch [20]. They observe a
correlation between program context and cache miss patterns. The former
can be identified by the current state of the return address stack (RAS). RDIP
records instruction cache misses that occurred while running in each context
and prefetches these instructions just before the same context is visited again.
Whereas this approach shows similarities to a call graph based policy in that
a function that is often called from a given context is likely prefetched by
RDIP, it comes at the disadvantage of having to be retrained every time the
application is started: Only on repeated visits of specific contexts will the
prefetching be effective.

This is a disadvantage that RDIP has in common with many hardware
implemented approaches: These often require live training time to become
effective. CGPoPE on the other hand, only requires one profiling run to build
the call graph, after which any subsequent executions of the application are
optimised from the beginning.

Mechanism. In order to asses the advantages of a software based approach
like CGPoPE, we review existing prefetching schemes with regard to the
mechanism used. Most implementations prefetch target instructions in
hardware [4, 15, 20, 33, 30] or issue prefetches in software, directed by
the compiler [22, 28]. However, there are also approaches that are not
based on prefetching, but instead improve instruction cache patterns through
scheduling techniques [14, 42].

The advantage of hardware based approaches is that they have very
limited run time overhead, as they can be implemented as a separate
hardware unit operating largely independent of the CPU cores. But since
hardware support is also very expensive and has long development cycles, it
is usually unavailable on production systems. Precisely over this, software
based approaches like CGPoPE have the advantage, because they are much
easier and cheaper to deploy. Additionally, software systems have more high-
level run time information immediately available and can issue according
prefetches from the beginning, while hardware prefetchers typically require
initial training time to detect an access pattern that can be prefetched [21].

Existing software based prefetching systems are implemented in the
compiler, which has the disadvantage of either limiting the prefetching policy

12 CHAPTER 2. BACKGROUND & RELATED WORK

to a static analysis of the program, or requiring to recompile the program
after it has been run and the profiling data is collected. This is especially
a drawback in environments where recompilation is not an option or very
cumbersome, for example when working with proprietary or legacy software,
or when live patching applications on a running system.

CGPoPE uses a software based prefetching mechanism, but rather than
inserting prefetch instructions during compilation, we augment precompiled
executables, by injecting prefetch instructions directly into the machine code.
This way we include dynamically generated profiling information, while
eliminating the step of recompiling the program with the training data as an
additional input. Instead, the existing binary can be “patched” with prefetch
instructions.

Annavaram, Patel and Davidson present both a hardware and a software
implementation of CGP [4]. When compared to CGPoPE, especially the
software implementation is relevant: They also insert prefetch instructions
into the program, though they do not specify the method of inserting the
instructions. As we discuss in Chapter 3, this is a very complex problem,
especially when refraining from compiler-directed insertion. In this work, we
apply an adapted and simplified version of the policy of CGP to precompiled
executables. Building on CGP, we present a method to insert prefetch
instructions into a program.

An entirely different approach to reduce instruction cache miss rates is
followed by Harizopoulos and Ailamaki and Zhou and Ross [14, 42]. Their
approaches are not based on prefetching instructions likely executed in the
near future, but direct a system to execute multiple instances of the same
code locally and temporally close to each other, to maximise reusing of
instruction cache lines.

Harizopoulos and Ailamaki developed Synchronised Threads Through
Explicit Processor Scheduling (STEPS), a scheduling technique to improve
instruction cache performance of multithreaded applications. STEPS groups
threads into teams, that run the same system component and thus share code.
Within a team, STEPS schedules context switches to maximise instruction
cache line reuse [14].

Zhou and Ross use knowledge about shared code in an application to
increase reusing of instruction cache lines. They observe high rates of
instruction cache thrashing between different database operations, resulting
in the working set of a specific operation no longer being present in the
instruction cache once it is executed again. They achieve higher cache hit

2.3. MITIGATING INSTRUCTION CACHE BOTTLENECKS 13

rates, by buffering and reordering database operations, so that the same
operations are executed in sequence [42].

These high-level scheduling approaches have an advantage in common
with hardware based mechanisms: They can include run time information live
into the optimisation, while at the same time being much more flexible. Their
disadvantage is that they have higher overhead, as the thread scheduling
and operator reordering needs to be managed at run time from within the
operating system and the DBMS driver, respectively. The execution of
operating system and DBMS driver code increases the instruction working set
of the application, further straining the instruction cache. CGPoPE injects
the prefetch code directly into the application executable, thereby inserting as
few additional instructions as possible. Whereas this makes the prefetching
policy static (the prefetch targets are encoded into the executable prior to
run time), it also minimises the additional run time and especially instruction
cache overhead.

Chapter 3

Design

In this work, we introduce Call Graph Prefetching on Precompiled Executables
(CGPoPE), a system for reducing instruction cache miss rates in database
management systems (DBMSs). For this purpose, CGPoPE analyses the
call graph of a program and instruments each function to prefetch its most
frequent callee. Contrary to most existing software prefetching schemes,
our solution operates on ordinarily compiled binaries, which it patches by
injecting prefetch instructions.

In this chapter, we present the design of CGPoPE. Initially, Section 3.1
provides a brief overview of CGPoPE’s design. Then, we show how the call
graph is generated in Section 3.2. In Section 3.3 we explore techniques to
inject prefetch instructions into a binary based on a given call graph.

3.1 Overview

CGPoPE operates in three stages, as is illustrated in Figure 3.1. First, it
monitors the application and records and counts function calls. Second, the

Profiling Call graph
building Augmentation

Application

run

〈caller, callee〉
most frequent

callee

inject prefetch from
caller to callee

foreach caller

Figure 3.1: Overview of CGPoPE

15

16 CHAPTER 3. DESIGN

root setup

foo performAction

anotherAction

3
5

bar

1

5

10

4

Figure 3.2: Abstract representation of a weighted call graph

call graph of the program is derived from these records. It stores for each
function which other functions it calls, and how frequently. Third, CGPoPE
reads the most frequent callee of each function from the call graph and for
each of these 〈caller, callee〉 pairs, CGPoPE instruments caller to prefetch
callee.

The main problem of the first stage is to intercept all function calls made
by the program, without altering its source code or executable. The third
stage, the injection of prefetch code, is particularly difficult, with the insertion
of arbitrary instructions into binaries being the major challenge.

3.2 Call Graph Generation

To find suitable prefetch targets we use a call graph. In this section we
discuss how CGPoPE generates the call graph and the data structures used
to store it.

In Section 3.2.1 we provide a formal definition of a call graph. We then
present the generation process of such a call graph in Section 3.2.2. In
Section 3.2.3 we demonstrate how the generated call graph can be used to
identify suitable prefetch targets.

3.2.1 Call Graph

The call graph of a program is defined as the directed graph containing one
vertex for each function of the program [17]. An edge between to vertices
A and B exists if and only if the function A calls B. We also define the
weighted call graph. The weighted call graph additionally associates a weight
with each edge 〈A,B〉, representing how frequent A calls B.

Figure 3.2 shows an example of such a weighted call graph. In the
example, the function root calls setup one time, foo five and bar ten times.

3.2. CALL GRAPH GENERATION 17

The function foo calls performAction three and anotherAction five times,
which in turn calls bar four times.

Note that the call graph generated by CGPoPE only contains vertices
and edges for calls that actually occurred during the profile run, not for all
hypothetical calls that are contained in the program.

3.2.2 Call Tracing

The process of generating the call graph for a given program can be divided
into two stages, profiling and accumulation.

Profiling. In the profiling stage, CGPoPE monitors the program while it
executes a representative sample workload. The binary of the program does
not have to be modified for this.

CGPoPE intercepts function calls performed by the monitored process.
Our solution uses kernel mode software tracing and does not rely on hardware
tracing features, such as event counters. The advantage of this is that
CGPoPE can also work on CPUs which do not provide a precise event counter
for function call events (which includes most Intel and AMD CPUs [16, 3]).
The interception is done by instrumenting the process to trap into the kernel
in the event of a function call. By examining the state of the process at
the moment it was interrupted, the caller and the callee of the call can be
determined. The event is then recorded in the form of a 〈caller, callee〉 tuple.
For the example from Figure 3.2, there are be 28 such records, the sum of
the weights of all edges.

Accumulation. In the accumulation stage, the recorded calls are accu-
mulated into a call graph. The call graph is represented in the form of
〈caller, callee, frequency〉 tuples, where frequency designates the number of
recorded calls from that caller to that callee, over the total time of the
profiling run. Each of these tuples can then be seen as an edge in the weighted
call graph, the caller being the source and the callee the destination vertex.
Accordingly, frequency is then the weight of that edge. Note that by this
accumulation step, any information on the order the calls occurred is lost.
Only the call frequencies are retained.

To accumulate the record tuples, CGPoPE uses a hash table. Each
〈caller, callee〉 pair is mapped to its frequency. The hash table representation
of a call graph is equivalent to its 3-tuple representation. CGPoPE processes
the recorded function call event tuples and increments the corresponding

18 CHAPTER 3. DESIGN

Key Value
Caller Callee Frequency
root setup 1
root foo 5
root bar 10
foo performAction 3
foo anotherAction 5

anotherAction bar 4

Table 3.1: Hash table/3-tuple representation of a weighted call graph

entry in the hash table by 1, if one exits. If no such entry exits, it is created
and initialised to 1.

Table 3.1 shows the hash table representation of the call graph from
Figure 3.2. The first two columns designate the caller and the callee, i.e. the
key of this entry in the hash table, while the third columns gives the value of
the entry and thus the frequency of that call. The table also illustrates the
equivalence of the 3-tuple and the hash table representation: Each line can
be seen as a hash table entry as well as a tuple.

The two stages, profiling and accumulation, are executed in parallel. As
noted in Chapter 1, online transaction processing (OLTP) and scale-out
workloads are often characterised by consisting of many small functions.
CGPoPE creates a distinct record for each function call in the profiling stage,
so the amount of data produced in this stage might be considerable. After the
accumulation stage however, the amount is much more manageable, because
multiple records for the same call are merged into one. Also, since now there
is at most one record for every possible call, the number of records is in
O(n2), n being the total number of functions in the program. The size of the
profiling data is hence bounded statically by the complexity and size of the
program, rather then by the complexity and length of the profiling run. By
performing the accumulation live, each 2-tuple can be inserted into the hash
table upon creation and does not have to be stored. The insertion into the
hash table can be performed in O(1) [23], so the additional overhead imposed
on the profiling stage is minimal.

The call graph is then stored persistently in its 3-tuple representation, so
it can be processed in the next step to perform the actual augmentation of
the binary.

3.3. BINARY AUGMENTATION 19

3.2.3 Prefetch Target Selection

We can now select a suitable prefetch target for each function. For reasons
of simplicity, we limit our solution to injecting a single prefetch per function.
A suitable prefetch target is the callee function which is prone to cause the
most instruction cache misses when calling it. A natural candidate for this
is the most frequent callee.

The most frequent callees of all functions can be extracted from the
weighted call graph as follows. For each vertex, select the highest weighted
outgoing edge. Remove all other outgoing edges from that vertex. Remove
all vertices that are separated from the remainder of the graph. The weights
of the remaining edges are also no longer required. The resulting filtered call
graph contains only one outgoing edge per vertex, and the set of all edges
gives the prefetch operations to be injected: For each edge 〈caller,callee〉,
CGPoPE injects a prefetch instruction for callee into caller.

3.3 Binary augmentation

Once suitable prefetch targets are selected, the binary can be augmented
with the corresponding prefetch instructions. Instructions cannot be simply
inserted at arbitrary points in the program. In Section 3.3.1 we show why
and develop function hijacking, a mechanism to inject arbitrary instructions
into an unmodified binary. In Section 3.3.2 we then apply this mechanism
to the profiling data from Section 3.2.

3.3.1 Instruction Insertion

As part of the design of CGPoPE we need to insert prefetch instructions
into unmodified binaries, which poses a significant problem. A fundamental
restriction of memory-based computing is that in a readily compiled binary,
one cannot simply insert a new instruction at a given point by shifting all
following instruction to make space. This is due to the fact that the code
might contain references to the shifted instructions in the form of jumps.
Jump instructions refer to a location in the programs address space (AS) as
the jump target. When this target lies in the shifted segment, its address is
changed, and at its original position (to which the jump instruction refers), a
different instruction is found. The text section is also often directly followed
by data sections that contain global variables, references to which would also
be broken. As these references might be calculated in an arbitrary complex

20 CHAPTER 3. DESIGN

way by the program, they cannot be detected unless special information is
provided by the compiler.

To solve this problem we consider three distinct approaches: (1) the
usage of relocation tables, (2) requiring position independent code (PIC) for
augmentation or (3) putting the new instructions at the end of the program’s
memory image and redirecting the execution flow there. The first two
approaches attempt to enable the shifting processes, while the third bypasses
it. As we show, only the third approach is viable to our problem. All three
approaches are described in terms of inserting a single new instruction at
the beginning of a function, the argumentation in each case is, however, also
applicable to the problem of inserting multiple instructions at an arbitrary
position in the binary.

(1) Relocation Tables. For the purpose of linking, compilers generate
relocation tables. The tables’ entries describe positions in the object files
which contain references to symbols. A symbol in the context of programs
and object files is a name associated with a specific point in the program’s
AS, such as a function or a global variable. Once the final position of the
object file is known during linking, the correct addresses of the symbols can
be entered at the appropriate places. As shifting a portion of the memory
image is essentially a relocation of a part of the program, the relocation
entries can be used in much the same way to fix addresses to symbols whose
position changed by the insertion.

However, while the compiler builds these relocation tables when gener-
ating object files, they are typically consumed by the linker and not rebuilt
when the final executable/shared object is created. For this reason, the
relocation tables are unavailable in the files on which CGPoPE operates, and
can’t be used.

(2) Position Independent Code. PIC is machine code that can be
properly executed regardless of its absolute address. This can be achieved by
redirecting function calls through a procedure linkage table (PLT) and data
references through a global offset table (GOT). PLTs contain stub functions
that resolve the actual address of the function at run time. Likewise, GOTs
contain the actual run time addresses of variables. When shifting parts of the
memory image the tables can be adapted, so that the references are correctly
resolved at run time.

But in addition to GOTs and PLTs, position independence can also be
achieved by program counter (PC)-relative instructions. When an instruction
contains a PC-relative address, it references a position in the AS relative to

3.3. BINARY AUGMENTATION 21

Function:

init_instr

next_instr

...

(a) The original function
Function:
jump to detour

next_instr

...

Detour:

new_instr

init_instr

jump to func+1

(b) The hijacked function

Figure 3.3: The function hijacking mechanism

the current state of the PC, i.e. its own position in the AS. If all references
to a symbol are made this way, there is no need for it to have an entry in the
GOT/PLT, as long as the same offset applied to both the instructions and the
referenced symbol. This requirement is satisfied when mapping a program’s
memory image at an arbitrary offset, but not when shifting only parts of the
program, because for this, the offset is only applied to the part of the memory
image after the inserted instruction. For this reason PIC is unsuitable for
CGPoPE when PC-relative addressing is used. Most architectures (including
x86) have a PC-relative addressing mode, and compilers take advantage of
this when generating PIC.

(3) Function Hijacking. The third approach bypasses the need to shift
parts of the program entirely. It is based on the observation that while one
cannot simply insert instructions, one can append new instructions at the end
of the memory image and replace instructions anywhere in the binary. The
execution flow of a function can then be hijacked as shown in Figure 3.3.
We consider a function that starts with the instructions init_instr and
next_instr (Figure 3.3a). Figure 3.3b shows the function after applying the
mechanism as follows. First, CGPoPE allocates sufficient space at the end of
the memory image, and fills it with the new instruction new_instr . We call
this space the detour of the function. For the new instruction to be executed,
the initial instruction init_instr of the function is replaced with a jump to

22 CHAPTER 3. DESIGN

the detour, labelled ‘jump to detour’ in the figure. The replaced instruction
needs however be run, as to not interfere with the functions functioning.
They are copied to the detour, so that they are executed when it is taken.
The last instruction in the detour is a jump back into the function, more
precisely, to the next instruction next_instr after the jump to the detour.
This operation is designated as ‘jump to func+1’ in the figure. Thus, all
the original instructions in the function are executed, in addition to the new
instruction, and normal execution of the function can resume.

As the first two approaches, the usage of either relocation tables or PIC,
proved to be inapplicable for instruction insertion on most binaries, this
third approach, function hijacking, is used by CGPoPE. We now discuss ad-
ditional problems that arise when applying function hijacking to precompiled
executable.

The aforementioned PC-relative addressing mode induces a problem in
the function hijacking mechanism. If the initial instruction of a function
contains a PC-relative reference, moving it to the detour would break its
functioning, as its position relative to the remainder of the program would
be changed. The mechanism thus cannot be applied to functions beginning
with such instructions.

As position independence by PC-relative addressing comes with no
additional costs, many programs are compiled position independent. It
is therefore desired that CGPoPE can operate on such binaries, without
discarding the position independence. By using PC-relative addressing for
all new instructions added, i.e. the jumps and the injected instructions,
CGPoPE produces only PIC, thereby retaining any position independence
of the augmented binary.

3.3.2 Prefetch Code Injection

With the mechanism presented in Section 3.3.1 we can now inject instructions
into functions. From Section 3.2.3 we know which of its callees a function
should prefetch. To combine these two results, we need method to issue
prefetches.

Usually, the only way to direct the hardware to fetch specific data (which
can include code, i.e. instructions) into the cache is by accessing it using a
load-/store operation. The CPU then likely also copies the read/written data
into the cache. The policy by which existing entries are evicted and the cache
is managed is in this case solely hardware-defined. Fetching instructions into
the cache by accessing their memory location is unsuitable for prefetching:
Even though, on an out-of-order CPU, this “prefetch-by-access” could be
executed without stalling subsequent instructions, explicit prefetch support

3.3. BINARY AUGMENTATION 23

from the hardware is still preferable, as it requires less logic to be executed
by the CPU than a complete memory access, for example, the data only
needs to be fetched into the cache, and does not have to block a register.
Explicit prefetching also enables the application to control into which cache
level the instruction is prefetched. which is especially of interest when data
and instruction caches are seperated. If the instruction cache is seperate on
at least one level (e.g. on Intel instruction and data caches are seperate on
level 1), then prefetching an instruction by accessing its memory location
would pollute the data cache.

Thus, the process of prefetching data/instructions must be specially
supported by the hardware. More precisely, a machine instruction suitable
for fetching the callee function into the cache must be provided by the
instruction set architecture (ISA). Most CPU vendors provide such a prefetch
instruction. For example, Intel provides one via the x86 Software SIMD
Extensions (SSE) [16] and AMD via 3DNow! [1] and SSE [2].

With this, we can insert prefetch instructions at the appropriate places
into the binary. CGPoPE iterates over all edges of the filtered call graph.
For each of these edges 〈caller, callee〉, CGPoPE inserts a prefetch instruction
for callee at the beginning of caller using the function hijacking mechanism.
Thereby, each function prefetches its most frequent callee. The detours of
all functions are placed consecutively at the end of the memory image of the
program, after any text or data sections. This has the advantages of allowing
a simple incremental allocation scheme for the detours when processing the
binary.

Chapter 4

Implementation

In this work, we present Call Graph Prefetching on Precompiled Executables
(CGPoPE), a system for injecting instruction prefetches into application
binaries based on the call graph of the application. In this chapter, we present
our implementation of CGPoPE, which operates on application binaries in
the executable and linkable format (ELF) [38] and x86 [8] machine code.

Chapter 3 presented the general design of CGPoPE, whereas this chapter
focuses on issues specific to the x86 architecture and ELF.

The CGPoPE implementation primarily consists of a C program and a
SystemTap [36] script. Section 4.1 gives a brief overview of the components
and their interaction. Section 4.2 discusses the collection of profiling data,
which is the part of CGPoPE not implemented in C. Finally, Section 4.3
covers the main program of CGPoPE, which performs the post processing of
the profiling data and the actual augmentation of the application binary.

4.1 Overview

Our implementation of CGPoPE is structured into two main components: a
SystemTap script and the main program. The SystemTap script monitors
the application and reports function call events to the main program, which
then processes the events and augments the binary of the application with
prefetch instructions based on these calls.

An overview of this process is given in Figure 4.1. On the left side,
the figure shows the SystemTap script and various files CGPoPE interacts
with, and on the right side, a simplified view of the main program. Its
four modules, together with the SystemTap script comprise the core logic of
CGPoPE. The main module augment serves as a controlling instance, calling
the other modules and passing data between them. The other modules do not

25

26 CHAPTER 4. IMPLEMENTATION

SystemTap call-freqs

elfutils asmutils

augment

C

in.elf

out.elf

call-graph.txt

read(a)

write

(b)

caller:callee(1)

caller:callee:freq
(2)

call
er:c

alle
e:fre

q (2a) max. caller:callee(3)

caller:callee(4)

inject prefetch

(5)

Figure 4.1: Overview of CGPoPE implementation

directly interact with each other and each encapsulate functionality of the
core CGPoPE components: call-freqs manages and stores the call graph,
elfutils parses, modifies, and writes ELF files, and asmutils comprises
x86 machine code handling, like instruction en-/decoding and alteration.
The primary workflow, as depicted in Figure 4.1, is as follows. First, the
application given as in.elf is started and monitored by the SystemTap script
(profiling run). (1) The script emits caller:callee tuples, which are then
read by the call-freqs module. (2) The call-freqs module accumulates
multiple occurrences of the same tuple to a caller:callee:frequency tuple and
(2a) optionally writes this preprocessed data to a persistent file, so that they
can be later reused for augmentation. Therefore, CGPoPE can either operate
on unmodified input from step one, or load data already preprocessed by itself
from disk. This is for example useful to perform multiple augmentations
(possibly with different optimisation parameters) without reprofiling the
application, as profiling might take a long time. (3) After accumulating the
2-tuples into 3-tuples, or loading them from disk, they are filtered to contain
only the most frequent callee for each caller. (a) The application binary in.elf
is then read and parsed by the elfutilsmodule. (4) To insert the prefetches,
the augment modules passes each of the remaining caller:callee pairs to the
asmutils module, to encode and (5) inject a prefetch instruction for the
callee into the caller. The injection of the encoded instructions is performed
by the elfutils module, which (b) writes the augmented binary to the
output file out.elf in the end.

4.2. CALL INTERCEPTION 27

1 #!/bin/stap
2 probe process.function("*").call {
3 printf("%s:%s\n", stack[call_depth -1], ppfunc ())
4 stack[call_depth ++] = ppfunc ()
5 }
6
7 probe process.function("*").return {
8 call_depth --
9 }

Listing 4.1: Simplified version of CGPoPE’s SystemTap script

4.2 Call Interception

As presented in Section 3.2.2, part of CGPoPE is to trace function calls, in
order to construct the call graph from these call records. In this section, we
discuss two approaches for implementing function call tracing. We demon-
strate why the straightforward approach of using perf’s stack tracing [24] is
unsuitable and what the advantages of using SystemTap [36] are.

perf. perf [24] is a user space tool and kernel subsystem for Linux to use
hardware performance counters and trace kernel events in applications, such
as system calls and scheduling events. Using perf to trace function calls
would however require the usage of a function call event counter, which is
not available on most CPUs (see Section 3.2.2). Another option to make use
of perf would be to use its built-in call graph feature. Perf’s method is to
include snapshots of the current stack in each sample, which are taken either
periodically or when a monitored event counter surpasses a given threshold.
The stack traces can then be accumulated into a call tree. Although this
method is suitable to identify “hot” subtrees in the program’s call graph, it
gives no notion of how often which call was actually made: If two stack traces
both contain the call caller→callee, this can either be because caller called
callee twice, or because so much time was spent in that subtree that two
samples were taken in that time.

SystemTap. We instead require a method that allows us to intercept and
record individual function calls. SystemTap [36] is a user space tool and
scripting language for Linux to dynamically instrument running kernels and
user space processes. It utilises the kernel’s Kprobes and Uprobes APIs
to execute arbitrary code (probes) at certain predefined events. Whereas

28 CHAPTER 4. IMPLEMENTATION

SystemTap can also place probes in kernel code, especially the probing of user
space processes is of interest for our purpose. There is a probe point process
.function(PATTERN).call to intercept calls of functions matching PATTERN.
This probe point is used by CGPoPE to record function calls. A simplified
version of the script is shown in Listing 4.1. In the .call probe, the function
call is printed as caller:callee, the caller beeing read from the stack. Then
the current callee is pushed to the stack as the new caller. In the .return
probe, the topmost element of the stack is discarded, to restore the previous
caller for all subsequent calls.

To probe user space events SystemTap uses the Uprobes API [19], which
instruments the code of the monitored application to trap into the kernel
when the probe point is reached, in our case call and return instructions.
Whereas this allows to intercept each individual call instruction, which
enables us to later build an exact and complete call graph, it also comes
at the disadvantage of having to trap into the kernel at every function call,
which is very resource-intensive.

Because the amount of data might be very large when recording every
individual function call, the accumulation of identical records, i.e. calls that
occurred more then once, into single records is performed live, as described in
Section 3.2.2. The SystemTap scripting language has support for associative
arrays, so one might use a statement like ++freqs[caller,callee] to perform
the accumulation within the script. However, although the accumulated
records are considerably smaller than that of the individual calls, their size is
still in O(n2), n being the total number of functions. This is still be too large
for reasonably complex applications. SystemTap limits the size of associative
arrays to 2048 entries by default for safety reasons [37], because the associate
arrays are allocated in kernel memory.

To avoid storing a large amount of data in kernel memory, we perform
the accumulation in user mode. The SystemTap script thus only prints
the caller:callee records, whereas the accumulation is handled by the main
program.

4.3 The Binary Augmenter

Now, the function call records produced by the SystemTap script need to
be accumulated into a call graph as described in Section 3.2.2. Based
on the generated call graph, prefetches are injected into the application
binary. The accumulation and injection are handled by the main program
of our CGPoPE implementation, the binary augmenter, which we present
in the following section. Section 4.3.1 describes how the binary augmenter

4.3. THE BINARY AUGMENTER 29

1: function AugmentBinary(input_elf, call_records)
2: extract prefetch_targets from call_records . Section 4.3.1
3: setup input_elf . Section 4.3.2.1
4: for caller,callee in prefetch_targets do
5: inject <prefetch to callee> into caller . Section 4.3.2.2
6: return output_elf

Listing 4.2: CGPoPE Main Loop

handles the accumulation of call records the SystemTap script has produced,
and Section 4.3.2 describes the implementation of the function hijacking
mechanism introduced in Section 3.3.1. Listing 4.2 gives an overview of
the performed tasks. Whereas the procedures described in Sections 4.3.1
and 4.3.2.1 are performed only a single time for the whole binary, the
instruction injection described in Section 4.3.2.2 is performed once for each
prefetch that is to be injected.

4.3.1 Call Accumulation

The call-freqs module handles the creation of the call graph. The
module generates the call graph in its hash table, and optionally its 3-tuple
representation, as defined in Section 3.2.2. The module also performs the
selection of a suitable prefetch target for each function. As described in
Section 3.2.3, we use the most frequent callee of each function as the prefetch
target.

The call-freqsmodule reads the records from a file stream. This stream
can either be directly attached to the output of the SystemTap script, or to
a file containing the saved 3-tuple representation of the call graph, i.e. the
output of this step, the call-freqs module. In both cases, each line of input
comprises a record. In the first case, each record represents a single call event,
in the second case, each record states how often a call event occurred. The
parser is implemented in such a way that it can read both types of records
compositely, so that the input can be read and interpreted independently of
its source. The exact record format complies with the form caller:callee:n,
which reads as “caller called callee n times”. Alternatively, the format is
caller:callee, in which case n = 1 is assumed.

To build the hash table representation of the call graph, we use the
UThash [13] library. The call-freqs module iterates over each input record
and looks up the entry with the key caller:callee in the call graph table. If

30 CHAPTER 4. IMPLEMENTATION

the entry exists, its value is incremented by n, otherwise it is created and
initialised with n.

Once all input records are processed and the hash table representation of
the call graph is built, its 3-tuple representation can optionally be dumped
to an output file. This file can later be re-read using the procedure described
in this section.

The call-freqs module determines the most frequent callee for each
function from the resulting call graph. It uses a second hash table, the
prefetch target table, to store the most frequent callees, mapping each caller
to its most frequent callee. To perform the extraction of the most frequent
callees from the call graph, it first sorts the entries in the call graph table so
that all entries for a caller are adjacent and the most frequent callee for each
caller appears first. Such an order can be achieved by sorting the entries
alphabetically by the caller name, and by the frequency n within each caller.
Then, the call-freqs module iterates over the entries in this order and
extracts the most frequent callees by transfering only the first entry for each
caller to the prefetch target table, which is the one with the maximum n for
this caller. The adjacency of all entries for the same caller eases the check if
the currently processed entry is the first for its caller: When all entries with
the same caller occur consecutively, an entry is the first one for its caller, if
and only if the previous entry had a different caller.

4.3.2 Function Hijacking

We now have selected a set of suitable prefetch operations, in the form of
〈caller,callee〉 pairs stored in the prefetch target table.

To insert the prefetch instructions into the application binary, we imple-
ment the function hijacking mechanism introduced in Section 3.3.1. Function
hijacking is a mechanism to inject arbitrary instruction at the beginning of a
function, which can be used to inject prefetch instructions. The mechanism
places the to-be-injected instructions in a special detour at the end of
the application’s memory image and replaces the initial instructions of the
function with a jump instruction to that detour. A jump back to the function
is placed at the end of the detour.

In this section we present our implementation of function hijacking.
Building upon the general mechanism formulated in Section 3.3, this imple-
mentation applies function hijacking to ELF binaries containing x86 machine
code.

4.3. THE BINARY AUGMENTER 31

4.3.2.1 ELF File Modification

For the implementation of function hijacking, sufficient space to hold the
detours for all functions is required. Because shifting instructions and thus
the insertion of code in the middle of the address space (AS) is impossible,
we place the detours at the end of the AS. The elfutils module performs
the setup of the input binary and the allocation of sufficient space for the
detours.

ELF files are structured in multiple sections, each containing various
information relevant to the application. Sections can comprise data or
executable code to be mapped into the main memory upon execution [38], or
control structures such as relocation or symbol tables that are not mapped
into the application’s AS. Sections that are to be mapped are marked as
allocated with the SHF_ALLOC flag. All allocated sections usually appear
consecutively, so that they can be mapped into the main memory with a
single operation. The end of the mapped part of the ELF file can thus easily
determined by identifying the last allocated section in the file. Any following
sections are not mapped at run time and can thus easily be shifted. The
elfutilsmodule can then insert a new executable detour section of sufficient
size after the last allocated section to extend the application’s memory image.

The operating system needs to be advised to load the new section when
the application is started. As the section header table offers a very detailed
view of the ELF file, which is not required by the operating system to load the
memory image, the mapping of sections to the main memory is specified in a
separate program header. Each entry in this table designates a segment, which
specifies a portion of the file (offset and size), a corresponding region in the AS
(address and size) and a set of access flags (writable, readable, executable).
An ELF file usually contains at least two segments: a code segment, which
contains executable components of the application, such as the text section;
and a data segment, which primarily includes the data and bss section.
The most straightforward approach would be adding a new segment to the
program header. This is, however, problematic, because the program header
is located at the beginning of the file and often mapped into the AS, so
extending it would again require to move subsequent (allocated) sections,
which is not possible. Although the program header could theoretically
be moved to the end of the memory image, for reasons of simplicity the
elfutils module instead increases the size of the preceding segment to
include the detour section and ensures it is marked as executable. Note that
this comes at the disadvantage of making the whole data segment executable,
which is considered a security concern, as it potentially enables an attacker
to divert the control-flow to previously placed malicious code [34]. This is

32 CHAPTER 4. IMPLEMENTATION

usually prevented by ensuring that no memory segment is both writable and
executable [40], an assumption which no longer holds when making the data
segment executable.

Special care needs to be taken if the original last allocated section is the
bss section, i.e. marked as type SHT_NOBITS in the file. The bss section
contains application data that is to be initialised to zero. In ELF this is
achieved by placing the bss section last in the segment, and setting the in-
memory size of the segment larger than the in-file size of the segment, the
difference being exactly the size of the bss segment. This way, when the
operating system loads the contents of the ELF file into the main memory,
the “missing” part of the segment, which corresponds exactly to the location
of the bss section, is initialised by the operating system with zeros. This
mechanism however fails, when the bss section is not the last section of
the segment, which is the case after appending the detour section. As a
simple workaround, the elfutils module converts any preceding section of
type SHT_NOBITS, if one exists, to a regular section (type SHT_PROGBITS)
filled with zeros in the file and adapts the program header accordingly. The
disadvantage of converting the bss section is that it unnecessarily increases
the size of the executable. The conversion introduces a portion in the file
that is merely filled with zeros and thus contains no information which could
not also be expressed by marking the section as SHT_NOBITS. The need to
convert the bss section could be avoided by placing the new detour section
in a separate segment, which would, however, require the additional effort of
extending the program header.

4.3.2.2 x86 Instruction Injection

At this point, we have allocated sufficient space in the application’s binary to
store the detour of each function, and can thus apply the hijacking mechanism
to each function, which is implemented in the asmutils module.

As stated in Section 3.3.2, we require a special instruction to perform
the prefetch. Software SIMD Extensions (SSE) provides instructions for x86
to fetch data into caches [16]. Whereas there is no instruction to explicitly
prefetch instructions, since instruction and data caches are only separated on
level 1, the same instructions used to prefetch data can be used to prefetch
instructions from the level 2 cache (L2) upwards. We use the PREFETCHT1
instruction, which prefetches into the L2. Note that the unavailability of a
suitable level 1 instruction cache (L1-I) prefetch instruction limits CGPoPE
on x86 to the mitigation of L2 misses, even though, as noted in Section 2.2,
L1-I misses are also problematic.

4.3. THE BINARY AUGMENTER 33

0 1 2 3 4 5 6 7 8 9

push %r12 push %r13 mov %rax,0x42(%rsp) . . .

:

jmpq 0xbeef(%rip) nopl %rax . . .

Figure 4.2: Example function with x86 instructions of varying length,
before (top) and after (bottom) applying function hijacking

To implement function hijacking, we need to perform various instruction
level operations. These operations include encoding the to-be-inserted
prefetch and the jump instructions, as well as decoding the instructions at
the beginning of a function to verify that they can be moved. To encode and
decode instructions, the asmutils module uses the X86 Encoder Decoder
(XED) library [7].

A special property of x86 are its varying instruction lengths: Encoded
instruction can be 1 to 15 B long. To find out the length of the instruction
at a given position, it has to be partly decoded, a feature which is provided
by XED.

The arbitrary instruction length can result in a problem when a function
is hijacked, more precisely when the initial instruction is replaced with a jump
to the detour: Relative jump instructions, which we use for function hijacking
(see Section 3.3.2), can be up to six bytes long, while the initial instructions of
many functions are typically stack management operations such as small two-
byte push instructions. In this case replacing the first instruction of a function
does not yield sufficient space to hold a jump, and the asmutils module
has to move multiple instructions to the detour. Consider the example in
Figure 4.2. It shows an example function that starts with two two-byte push
instructions and a five-byte load instruction. In this example the jump to the
detour is a instruction with a length of six bytes. To fit it at the beginning
of the function, we have to move at least the two push instructions to the
detour. Since this still leaves us two bytes short, and instructions cannot be
split, we have to move the load instruction to the detour, too. We then place
the jump instruction and fill the superfluous space with a three-byte NOP
instruction. The jump back from the detour to the function skips execution
of the NOP, by targeting the instruction immediately after it, which in the
example is the ninth byte of the function.

Another issue is that applications can contain very small functions,
usually generated by compilers, sometimes only a few bytes long. If a function
is smaller than the length of the required jump instruction, the function
hijacking mechanism cannot be applied and it is skipped by CGPoPE. Since

34 CHAPTER 4. IMPLEMENTATION

such functions are relatively rare, for example recent builds of the database
severs Redis [29] and PostgreSQL [27] contain none, we do not expect this
to have any considerable impact.

Chapter 5

Evaluation

In this work we present Call Graph Prefetching on Precompiled Executables
(CGPoPE), a system to mitigate high instruction cache miss rates by
injecting prefetch instructions into application binaries. As described in
Chapter 3, CGPoPE achieves this injection by hijacking the execution flow
of each function and redirecting it to a special code section which contains
the prefetch logic, before resuming normal execution of the function. The
hijacking is performed by replacing the initial instructions of functions with
jump instructions.

In this chapter we present our evaluation of CGPoPE. We first introduce
our evaluation environment and methodology in Sections 5.1 and 5.2. In
Section 5.3 we present our results: Although we find CGPoPE unable to
improve the performance of the benchmarks or to reduce overall instruction
cache miss rates, we show that CGPoPE does issue effective prefetches for
the most frequent callees of each function. Finally, we analyse our results in
Section 5.4, putting them in context with our design and implementation,
and discuss directions to improve CGPoPE.

5.1 Evaluation Environment

We conduct our evaluation on an Intel Core i5-6500 CPU, comprising 4
physical cores with a frequency of 3.20 GHz each. Each core has an indepen-
dent level 2 cache (L2) with a capacity of 256 KiB. A L2 next-N-line (NL)
instruction prefetcher is active for each CPU on the system [41]. No level 1
instruction cache (L1-I) prefetchers have been disclosed to be implemented
by Intel. All benchmarks are run on a single system, so the communication
between the server and the client side of the database benchmarks does not

35

36 CHAPTER 5. EVALUATION

involve network communication. The system is running Ubuntu 17.04 with
a Linux 4.11.3 kernel.

5.2 Methodology

The augmentation of the benchmark binaries is performed using the CG-
PoPE implementation presented in Chapter 4. The runs of the unmodified
and augmented versions of the benchmarks are then monitored and their
performance is measured as described in Section 5.2.1. In Section 5.2.2 we
present the benchmarks we use.

5.2.1 Measurements

Because no L1-I prefetch instruction is available on x86 computers, the
implementation only injects prefetches for the L2. Therefore, we only
consider L2 misses as a suitable metric to measure the effectivity of CGPoPE.

To allow a more detailed analysis of the cache behaviour induced by
CGPoPE into the benchmarks, we distinguish between three types of cache
misses, based on the target instruction that was missed:

• If the missed instruction was the first instruction of a function, we call
the miss a call miss. It indicates a miss that was directly caused by a
function call.

• Detour misses are misses of additional instructions introduced by
CGPoPE. CGPoPE hijacks the execution flow of each function and
redirects it to a detour, which contains the prefetch instructions. The
detours are placed in a special section in the application’s memory.
Since executing the detours involves jumping to them, they are a likely
cause of additional instruction cache overhead. Detour misses are easily
identified by their target addresses being located in the detour section,
which is outside of the regular text section of the application.

• All other misses are local misses, i.e. misses caused within func-
tion boundaries by sequential execution or low-distance control-flow
branches.

To measure L2 misses, we use the FrontEnd_Retired.L2_MISS perfor-
mance counter provided by Intel’s Process Event Based Sampling (PEBS)
facility [16]. PEBS events are precise events, meaning that the exact
instruction that caused the event can be determined. Only a precise event is

5.2. METHODOLOGY 37

suitable to distinguish the three miss types. To collect performance counter
data we use the Linux perf tool [24].

We also assess the effectivity of individual prefetch operations. A prefetch
is said to be effective, if and only if it is timely and the data is still present
in the cache once it is accessed. A prefetch is timely if and only if the
data brought into the cache is accessed only after the prefetch request is
completed [25]. For instruction prefetches, this especially means that the
prefetched function is actually called before it is evicted from the cache.

5.2.2 Benchmarks

We conduct our evaluation using three benchmarks. The TPC-C and the
redis-benchmark were chosen to represent realistic database workloads. The
functree benchmark is a microbenchmark developed by us to allow a detailed
analysis of the cache behaviour induced by CGPoPE.

redis-benchmark. The redis-benchmark tool is the builtin benchmark-
ing utility shipped with the Redis in-memory NoSQL database [29]. Although
the redis-benchmark is no traditional SQL online transaction processing
(OLTP) workload, we include it in our evaluation to represent the typical
workload of a modern NoSQL key-value stores. The benchmark issues
a number of different operations to the Redis server concurrently, using
multiple parallel network connections. Note that the server itself handles
all request in a single thread. We configure the redis-benchmark to issue
100 000 requests via 50 parallel connections.

TPC-C. The TPC-C benchmark is a common OLTP benchmark to
measure and compare the performance of database management systems
(DBMSs). It has been shown to be one of the most instruction cache-bound
benchmarks, with L2 miss rates of up to 75 misses per kilo-instruction [10].
TPC-C is therefore a suitable choice to assess the quality of CGPoPE
optimisations for DBMSs. We use the OLTP-Bench [9] implementation
of TPC-C and run it against a PostgreSQL DBMS server [27]. Since, in
contrast to Redis, PostgreSQL handles requests in parallel by forking multiple
processes, we consider the TPC-C benchmark in two different variants:
TPC-C/S disables parallelism by binding all server processes to a single
CPU using the Linux utility taskset, while TPC-C/M allows the server
processes to be executed on different CPUs. We configure the TPC-C load
with four warehouses and four clients.

38 CHAPTER 5. EVALUATION

1 void leaf_aa () { asm ("nop; [...]"); }
2 // [...] ‘leaf_a(b|c)’ ommitted
3 void node_a () {
4 asm ("nop;nop ;[...]"); // times n
5 for (int j=0; j<10; ++j) leaf_aa ();
6 leaf_ab (); leaf_ac ();
7 }
8 // [...] ‘node_b ’ and ‘leaf_b(a|b|c)’ ommited
9 void root() {

10 asm ("nop;nop ;[...]"); // times n
11 node_a ();
12 for (int j=0; j<10; ++j) node_b ();
13 node_c ();
14 }
15 int main(int argc , char **argv) {
16 __clear_cache (0, (void*) -1); // 0x0 to 0xf..fff
17 for (int j=0; j<(atoi(argv [1])); ++j) root ();
18 return 0;
19 }

Listing 5.1: Schematic view of a source code file generated by functree

functree. We developed functree as a tool to generate microbenchmarks
with high instruction cache overhead. We perform the generation by
automatically producing C source code based on a set of parameters and
compiling it with GCC [11]. functree generates a w-ary full function tree of
depth d. Listing 5.1 shows a schematic view of a source code file generated by
functree generated with w = 3 and d = 2. Each node function calls each of
its w children a single time, except one child, which is called multiple times
(10 times in the example) so that it stands out as the most frequent callee. In
the example, leaf_aa is the most frequent callee of node_a, and node_b of
root. To ensure that the instruction working set size exceeds the L2 capacity,
we increase the size of each function sufficiently, by filling each function with
n bytes of NOP instructions. The NOPs are generated using the C inline
assembler directive at the beginning of all tree functions. To ensure that
results stay consistent across multiple runs we use the GCC builtin function
__clear_cache [12] to flush the instruction cache at the beginning of each
run. Since from the L2 upwards data and instruction caches are shared, we
also execute the function tree i times, thereby creating identical cache states
for all iterations but the first, and thus further ensuring homogeneity of the

5.3. RESULTS 39

results. As seen in the figure, i is read from the command line, so that it can
be changed without regenerating the benchmark.

We found a six-ary tree of depth six with 2048 bytes of NOPs per function
executed 10 times to be suitable to emulate instruction cache bound execution
(w = d = 6, n = 2048, i = 10).

5.3 Results

To measure the effect of CGPoPE on the benchmarks’ performance, we
measure the absolute L2 instruction misses for an unoptimised and an opti-
mised version of each benchmark. The optimised versions are generated by
applying CGPoPE to the unmodified server binary used in each benchmark.
In Section 5.3.1 we find that CGPoPE does not reduce the overall instruction
cache miss rates of the OLTP benchmarks, and in Section 5.3.2 we investigate
the cause for CGPoPE’s ineffectivity. All results presented in the following
sections are obtained by running each of the experiments ten times and
calculating the arithmetic mean of each value.

5.3.1 Real-World Applications

We first examine the effect of CGPoPE on the overall L2 instruction miss
rates of TPC-C (single- and multicore) and redis-benchmark. These
are depicted in Figure 5.1. The figure shows the absolute number of L2
instruction misses for each of the benchmarks, when run with a unmodified
(blue) and a augmented binary (red). While we note that redis-benchmark
has a significantly lower L2 instruction miss overhead than the traditional
OLTP workload of TPC-C, we find that for all benchmarks the difference
in the miss rates of unmodified and augmented binaries are below 5 % and
have no notable effect on the benchmarks’ performance: For TPC-C/S and
TPC-C/M, the performance varies between 378 and 438 requests per second,
and the redis-benchmark takes approximately 17 seconds to complete, both
independently from whether CGPoPE is in effect.

We also observe that the instruction cache miss rate of TPC-C/M is
8.91 % lower than that of TPC-C/S. A possible reason for this is that,
although all PostgreSQL server processes are running the same binary, they
still have sufficiently different instruction working sets to benefit from having
distinct L2 instruction caches. Because the parallel TPC-C/M uses multiple
CPUs, it is more strongly affected by scheduling effects, since the server
processes are now subject to CPU migrations and the chance for them being
interrupted by other tasks is higher than when they share a single core.

40 CHAPTER 5. EVALUATION

tpc-c/s
(↗ 2.06%)

tpc-c/m
(↘ 4.78%)

redis-b.
(↘ 2.82%)

0.5

1

1.5

2

·108

2.
2
· 1

0
8

2.
02
· 1

0
8

6.
64
· 1

0
7

2.
21
· 1

0
8

1.
92
· 1

0
8

6.
46
· 1

0
7L2

m
is
se
s
[#

] Vanilla
CGPoPE

Figure 5.1: Instruction cache misses of unoptimised and optimised bench-
marks

Therefore, the performance of TPC-C/M shows increased non-determinism
in comparison with TPC-C/S, which is reflected by the higher standard
deviation of 2.8 to 3.7 %.

We conclude that CGPoPE does not reduce the L2 instruction miss rates
significantly and has no measurable effect on the benchmarks’ performance.

5.3.2 Synthetic Benchmarks

We use the functree microbenchmark to investigate possible reasons for the
ineffectivity of CGPoPE and to identify misses that are effectively prefetched.
Figure 5.2 shows the results of comparing the L2 misses of an unoptimised and
an augmented binary. The figure shows the absolute L2 instruction misses
measured in samples (each sample corresponds to 100 007 actual misses)
overall, as well as for local, function and detour misses specifically. We
observe that the total miss rate is slightly reduced by 5.3 %. This reduction
is not enough to significantly improve the performance, the run time stays
constant at 176.34 s. Thereby, these results are consistent with those for
the database benchmarks presented in Section 5.3.1. To investigate how
the reduction was caused we look at the three miss types separately: The
majority of instruction cache misses in functree is caused by local misses,
which are not significantly decreased by CGPoPE, since they are not target

5.3. RESULTS 41

Total
(↓ 5.3%)

Local
(↘ 2.66%)

Function
(↓ 23.85%)

Detour
(↑ −)

0

0.5

1

1.5
·104

13
,5
31
.9

11
,8
39
.9

1,
69

2

0

12
,8
13
.1

11
,5
24
.6

1,
28

8.
5

20
2.
1

L2
m
is
se
s
[#

sa
m
pl
es
]

Vanilla
CGPoPE

Figure 5.2: Instruction cache misses of functree by type

of our optimisation. Only about 12.74 % of all L2 misses are function misses.
Regarding the function misses in separate, we find that applying CGPoPE
reduces the misses by 23.85 %, which is significant. When CGPoPE is applied
to a functree binary, it injects a single prefetch per function (to the most
frequent callee). Each function has w = 6 children in our configuration,
leading CGPoPE to issue prefetches for 1

6
= 16.6̄ % of all functions. This

number roughly corresponds to the 23 % reduction of function misses, and
therefore the prefetches issued by CGPoPE are actually effective. The cache
miss reduction is even larger then 16.6̄ %. The cause for this can be found
in the iterative calling of subtrees in functree: Every function calls each of
its children only a single time, except one of its children multiple times, in
the form of a for-loop, so that a single child of each function stands out as
the most frequent callee, and is then selected as a prefetch target. For this
reason, even though the fraction of functions that are prefetched is exactly
1
6
, the fraction of calls that are made to those functions is actually higher,

because they are called most often.
The analysis also reveals that CGPoPE introduces detour misses as a

new potential cause of performance overhead. Detour misses, however, only
account for about 0.92 % of all L2 instruction misses, and are therefore an
unlikely cause of significant performance overhead.

To show that the detours do not significantly impact the performance we
measure their exact CPU overhead, by applying a slightly adapted variant

42 CHAPTER 5. EVALUATION

Vanilla NOP-CGPoPE Relative overhead

Cycles 6.358 · 1011 6.363 · 1011 0.07 %

Instructions 2.5107 · 1012 2.511 · 1012 9.72 · 10−3 %

Run time 176.45 s 176.42 s −0.02 %

Table 5.1: Processor overhead induced by detours

of CGPoPE to functree: Instead of prefetch instructions, we inject NOP
instructions into the function. This way, we only introduce the potential
overhead caused by the detours, without any positive effect via prefetches,
and can measure the detour overhead. Table 5.1 shows the total number of
cycles, instructions, and the run time of unmodified and NOP-augmented
functree runs. As CGPoPE only adds three additional instructions per
function (jump to the detour, prefetch and jump back to function), opposed
to the approximately 2070 instructions per function in functree (2048 NOPs
plus children function call logic), the relative increase in instructions executed
is close to zero, namely below 0.01 %. We find the total overhead caused by
CGPoPE to be insignificant, with an increase in required CPU cycles of only
0.07 %. The total run time was even decreased by 0.02 % in our experiments,
which is likely to be attributed to unrelated hardware or scheduling effects.

5.4 Analysis

Although we found CGPoPE unable to reduce the overall L2 instruction
miss rates, we also showed that the prefetches issued by CGPoPE are effective
most of the time. Possible reasons for not all prefetches being effective include
that the most frequent callee might be called at a relative late point in the
function. As CGPoPE injects all prefetches at the beginning of functions,
the prefetched cache line might already be evicted once the call is performed.
To increase the effectivity of prefetches of most frequent callees that are not
the first call in the function, an approach might be to move the prefetch
closer to the corresponding call instruction, for example shortly after the
previous call, similar to the original Call Graph Prefetching (CGP) software
implementation by Annavaram, Patel and Davidson Annavaram, Patel and
Davidson. This would ensure that no potentially very deep function tree is
executed inbetween the prefetch and its corresponding call.

We also observed that the majority of instruction misses in functree
are local misses, whereas CGPoPE is only able to mitigate function misses.
This observation seems to contradict with the statement found in literature

5.4. ANALYSIS 43

and described in Chapters 1 and 2, that the majority of instruction cache
misses in scale-out and OLTP workloads is caused by long-distance branches
like function calls, and execution within functions is captured by the NL
prefetcher. The NL prefetcher does, however, only prefetch the next N lines
relative to the current program counter (PC). Therefore, when prefetching
a target function, only the cache line containing the first instruction of the
function is prefetched. The first cache line comprises, depending on the
alignment of the function, maximally the first 64 (the cache line size in
Intel’s L2 cache) bytes of the function. Instruction cache misses caused
by long-distance branches thus do not only include the first instruction of
the function, but also all subsequent instructions, because the NL prefetcher
only starts to prefetch the instructions of the function after the jump is
performed. Because CGPoPE only prefetches the first line of the target
function, the subsequent instructions of the function are left to be missed
upon entering the function. The prefetching of the first N lines of a function
could be achieved in hardware or in software: If the CPU were aware that
the prefetch target is an instruction, for example via a special instruction
prefetch instruction, it could advise the NL prefetcher to start prefetching
relative to the prefetched target. As it is unlikely that such a feature is
available on production CPUs in the near future, CGPoPE could manually
prefetch the first N lines of the most frequent callee by injecting N separate
prefetch instructions for consecutive cache lines within the target function
into each function.

In our evaluation of functree, we also showed that CGPoPE effectively
prefetches approximately 1

6
of all calls, because only one prefetch per function

is performed. An attempt to increase this fraction could be made by
prefetching more than the most frequent callee of each function. Because
approximately 80 % of all functions have less than eight distinct callees [4],
prefetching the eight most frequent callees might be more suitable. This im-
provement of CGPoPE could easily be combined with moving the prefetches
closer to their corresponding callees, as proposed above, by injecting a
prefetch for the most probable next callee after each call instruction, thereby
fully emulating the original CGP policy implemented by Annavaram, Patel
and Davidson [4].

We showed that the total performance overhead introduced by the detours
is negligible. Reasons for this likely include the small size of the detours
The detours produced when applying CGPoPE to our benchmarks have an
average size of approximately 20 B, therefore about three detours can fit in a
single cache line. Because the detours are stored consecutively in the memory
image, it is thus likely that executing a detour causes neighbouring detour
to be “prefetched” into the instruction cache. The small overhead caused by

44 CHAPTER 5. EVALUATION

the detours could be further reduced by explicitly prefetching the detours:
When prefetching a functions most frequent callee, an additional prefetch to
the most frequent callee’s detour could be added.

We conclude that CGPoPE, in its current form, cannot effectively reduce
instruction cache miss rates, and does not improve the performance of the
applications. At the same time, we find that the prefetches that are issued
by CGPoPE are effective most of the time, though they prefetch to few lines.
The most promising approach to make CGPoPE effective, is thus to increase
the number of functions prefetched, by prefetching more callee functions, and
to increase the number of lines prefetched, by prefetching the first N lines of
each callee, instead of only the first.

Chapter 6

Conclusion

In this work we propose Call Graph Prefetching on Precompiled Executables
(CGPoPE) as a system to mitigate instruction cache overhead in cloud
applications and database management systems (DBMSs). The scale-out
and online transaction processing (OLTP) workloads typically found in
these applications suffer from high instruction cache miss rates [10]. The
reasons for poor instruction cache utilisation have been identified as large
instruction working sets and irregular, non-sequential instruction access
patterns [18, 4]. Because the hardware prefetchers found in most modern
CPUs are not able to capture these complex patterns, many more intelligent
instruction prefetching schemes have been proposed. However, most of these
solutions are either implemented in hardware, and therefore unavailable on
most production systems, or in the compiler, thus require recompiling the
application to optimise it. With CGPoPE we developed a system that is
entirely implemented in software, requiring no hardware support besides a
suitable prefetch instruction, and still functions without special support from
the compiler.

CGPoPE issues one prefetch per function, to the most frequent callee
of that function. We determine the most frequent callees via monitoring
the function calls made by the program and building the call graph of
the application from the traced function calls. CGPoPE evades the need
for compiler support by operating on compiled executables, augmenting
the application’s binary with prefetches to the most frequent callee of
each function at the beginning of this function. The major challenge in
augmenting the binaries is the injection of the prefetch instructions into the
unmodified machine code, since instructions cannot be inserted by shifting
the subsequent instructions, as doing so would break references to existing
code. To circumvent this problem, we developed function hijacking, a
mechanism to hijack the execution flow of a function, by replacing the initial

45

46 CHAPTER 6. CONCLUSION

instructions of a function with a jump to a special detour, which contains the
prefetch instruction.

By developing function hijacking, we showed that it is possible to inject
prefetch instructions into precompiled executables. Although being designed
to inject prefetch instructions at the beginning of functions, function hijack-
ing can be used to inject arbitrary instructions at any point in a function.

We describe a prototype implementation of CGPoPE, targeting binaries
in the executable and linkable format (ELF) [38] and x86 machine code [8].
To monitor the application and build its call graph, we use the dynamic
instrumentation and monitoring tool SystemTap [36].

We evaluated our implementation using the TPC-C benchmark as a
workload representative for OLTP applications, and the Redis benchmark
to represent modern noSQL key-value stores. Although we find CGPoPE
to be ineffective in significantly increasing the performance of applications,
we nevertheless show that it issues effective prefetches for the most frequent
callees. The major reasons for CGPoPE’s ineffectivity are the fact that it
only prefetches a single callee per function, and the first cache line of each
function, so that in the event of a call the first instruction in the second line
of the function is already a miss again.

6.1 Future Work

In order to make CGPoPE an effective measure to improve instruction cache
performance, we suggest a number of improvements to mitigate the issues we
observe in Chapter 5:

The outstanding problem is that CGPoPE only prefetches the first line of
each function. This can be mitigated by prefetching not only the first, but the
first N lines of a function, either by executing N prefetch instructions, or via
a special prefetch instruction, that advises the next-N-line (NL) prefetcher
to prefetch the lines following the prefetched address.

To increase the number of prefetched function calls, we suggest a prefetch
target selection policy closer to Annavaram, Patel and Davidson’s original
policy [4]. Instead of prefetching only the most frequent callee, the eight
most frequently called functions should be prefetched at appropriate places
in the function.

Even though we found the total instruction cache overhead caused by
jumping to the detours to be minimal, it could nontheless be further reduced
by prefetching not only the start address of the most frequent callee, but
also its detour, as the detour is immediately jumped to and executed upon
entering the callee function.

Bibliography

[1] Advanced Micro Devices Inc. 3DNow! Technology Manual. Version G.
2000. url: http://support.amd.com/TechDocs/21928.pdf (visited on
08/24/2017).

[2] Advanced Micro Devices Inc. AMD64 Architecture Programmer’s Man-
ual Volume 4: 128-Bit and 256-Bit Media Instructions. Version 3.20.
2017. url: http://support.amd.com/TechDocs/26568.pdf (visited on
08/24/2017).

[3] Advanced Micro Devices Inc. Processor Programming Reference (PPR)
for AMD Family 17h Model 01h, Revision B1 Processors. Apr. 15, 2017.
url: https://developer.amd.com/resources/developer-guides-manuals
(visited on 09/02/2017).

[4] Murali Annavaram, Jignesh M. Patel and Edward S. Davidson. “Call
Graph Prefetching for Database Applications”. In: ACM Transactions
on Computer Systems (TOCS) 21.4 (2003), pp. 412–444. doi: 10.1145/
945506.945509.

[5] Phil Bernstein et al. “The Asilomar Report on Database Research”. In:
SIGMOD Record 27.4 (Dec. 1998), pp. 74–80. issn: 0163-5808. doi:
10.1145/306101.306137.

[6] Carlos Carvalho. “The Gap Between Processor and Memory Speeds”.
In: Proceedings of IEEE International Conference on Control and
Automation. 2002. url: http://gec.di.uminho.pt/discip/minf/ac0102/
1000gap_proc-mem_speed.pdf (visited on 09/02/2017).

[7] Mark Charney. Intel X86 Encoder Decoder Software Library. Ver-
sion 10.0-84. Intel Developer Zone. 2017. url: https://software.intel.
com/en-us/articles/xed-x86-encoder-decoder-software-library.

[8] Ulan Degenbaev. “Formal Specification of the x86 Instruction Set
Architecture”. PhD thesis. Universität des Saarlandes, 2012. url: http:
//scidok.sulb.uni-saarland.de/volltexte/2012/4707.

47

http://support.amd.com/TechDocs/21928.pdf
http://support.amd.com/TechDocs/26568.pdf
https://developer.amd.com/resources/developer-guides-manuals
https://doi.org/10.1145/945506.945509
https://doi.org/10.1145/945506.945509
https://doi.org/10.1145/306101.306137
http://gec.di.uminho.pt/discip/minf/ac0102/1000gap_proc-mem_speed.pdf
http://gec.di.uminho.pt/discip/minf/ac0102/1000gap_proc-mem_speed.pdf
https://software.intel.com/en-us/articles/xed-x86-encoder-decoder-software-library
https://software.intel.com/en-us/articles/xed-x86-encoder-decoder-software-library
http://scidok.sulb.uni-saarland.de/volltexte/2012/4707
http://scidok.sulb.uni-saarland.de/volltexte/2012/4707

48 BIBLIOGRAPHY

[9] Djellel Eddine Difallah et al. “OLTP-Bench: An Extensible Testbed
for Benchmarking Relational Databases”. In: Proceedings of the VLDB
Endowment 7.4 (2013), pp. 277–288. doi: 10.14778/2732240.2732246.

[10] Michael Ferdman et al. “Clearing the Clouds: A Study of Emerging
Scale-out Workloads on Modern Hardware”. In: ACM SIGPLAN No-
tices. Vol. 47. 4. ACM. 2012, pp. 37–48. doi: 10.1145/2150976.2150982.

[11] GNU Project. GNU Compiler Collection. Version 6.3.0-12ubuntu2.
2017. url: https://gcc.gnu.org (visited on 08/26/2017).

[12] GNU Project. Internals of the GNU Compiler Collection. Version 6.3.0.
2016. url: https://gcc.gnu.org/onlinedocs/gcc-6.3.0/gccint (visited
on 08/26/2017).

[13] Troy D. Hanson. UThash. Version 1.9.8-248-g4d197f2. 2017. url: http:
//troydhanson.github.io/uthash (visited on 09/02/2017).

[14] Stavros Harizopoulos and Anastassia Ailamaki. “Improving Instruction
Cache Performance in OLTP”. In: ACM Transactions on Database
Systems (TODS) 31.3 (2006), pp. 887–920. doi: 10 . 1145/1166074 .
1166079.

[15] Wei-Chou Hsu and James E. Smith. “A Performance Study of Instruc-
tion Cache Prefetching Methods”. In: IEEE Transactions on Computers
47.5 (1998), pp. 497–508. doi: 10.1109/12.677221.

[16] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer
Manuals. 2017. url: https://software.intel.com/en-us/articles/intel-
sdm.

[17] Pankaj Jalote. An Integrated Approach to Software Engineering. Sprin-
ger Science & Business Media, 2006. isbn: 9780387281322.

[18] Svilen Kanev et al. “Profiling a Warehouse-scale Computer”. In: Pro-
ceedings of the ACM/IEEE 42nd Annual International Symposium on
Computer Architecture (ISCA). IEEE. 2015, pp. 158–169. doi: 10 .
1145/2749469.2750392.

[19] Jim Keniston et al. “Ptrace, Utrace, Uprobes: Lightweight, Dynamic
Tracing of User Apps”. In: Proceedings of the 2007 Linux Symposium.
2007, pp. 215–224. url: https://www.kernel.org/doc/ols/2007 (visited
on 07/29/2017).

[20] Aasheesh Kolli, Ali Saidi and Thomas F. Wenisch. “RDIP Return-
Address-Stack Directed Instruction Prefetching”. In: Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitec-
ture. ACM. 2013, pp. 260–271. doi: 10.1145/2540708.2540731.

https://doi.org/10.14778/2732240.2732246
https://doi.org/10.1145/2150976.2150982
https://gcc.gnu.org
https://gcc.gnu.org/onlinedocs/gcc-6.3.0/gccint
http://troydhanson.github.io/uthash
http://troydhanson.github.io/uthash
https://doi.org/10.1145/1166074.1166079
https://doi.org/10.1145/1166074.1166079
https://doi.org/10.1109/12.677221
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
http://books.google.com/books?vid=ISBN9780387281322
https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1145/2749469.2750392
https://www.kernel.org/doc/ols/2007
https://doi.org/10.1145/2540708.2540731

BIBLIOGRAPHY 49

[21] Jaekyu Lee, Hyesoon Kim and Richard Vuduc. “When Prefetching
Works, When It Doesn’t, and Why”. In: ACM Transactions on Ar-
chitecture and Code Optimization (TACO) 9.1 (Mar. 2012), 2:1–2:29.
issn: 1544-3566. doi: 10.1145/2133382.2133384.

[22] Chi-Keung Luk and Todd C. Mowry. “Cooperative Prefetching: Com-
piler and Hardware Support for Effective Instruction Prefetching in
Modern Processors”. In: Proceedings of the 31st Annual ACM/IEEE
International Symposium on Microarchitecture. MICRO 31. Dallas,
Texas, USA: IEEE Computer Society Press, 1998, pp. 182–194. isbn:
1581130163.

[23] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures:
The Basic Toolbox. Springer Science & Business Media, 2008. isbn:
3540779779.

[24] Arnaldo Carvalho de Melo. “The New Linux ‘perf’ Tools”. In: Slides
from Linux Kongress. Vol. 18. 2010. url: http://www.linux-kongress.
org/2010/abstracts.html#4_1_1 (visited on 09/02/2017).

[25] Sparsh Mittal. “A Survey of Recent Prefetching Techniques for Proces-
sor Caches”. In: ACM Computing Surveys 49.2 (Aug. 2016), 35:1–35:35.
issn: 0360-0300. doi: 10.1145/2907071.

[26] Todd Mowry and Anoop Gupta. “Tolerating Latency Through Soft-
ware-controlled Prefetching in Shared-memory Multiprocessors”. In:
Journal of Parallel and Distributed Computing 12.2 (1991), pp. 87–106.
doi: 10.1016/0743-7315(91)90014-Z.

[27] PostgreSQL Global Development Group. PostgreSQL. Version 10 Beta
1. 2017. url: https://www.postgresql.org (visited on 08/23/2017).

[28] Alex Ramirez et al. “Code Layout Optimizations for Transaction Pro-
cessing Workloads”. In: SIGARCH Comput. Archit. News 29.2 (May
2001), pp. 155–164. issn: 0163-5964. doi: 10.1145/384285.379260.

[29] Salvatore Sanfilippo. Redis. Version 3.2.9. 2017. url: https://redis.io
(visited on 08/23/2017).

[30] K. Shyamala et al. “Instruction Prefetching Using Basicblock Predic-
tion”. In: Proceedings of the 2008 International Conference on Elec-
tronic Design (ICED). IEEE. 2008, pp. 1–4. doi: 10.1109/ICED.2008.
4786750.

[31] Alan J. Smith. “Cache Memories”. In: ACM Computing Surveys
(CSUR) 14.3 (Sept. 1982), pp. 473–530. issn: 0360-0300. doi: 10.1145/
356887.356892.

https://doi.org/10.1145/2133382.2133384
http://books.google.com/books?vid=ISBN1581130163
http://books.google.com/books?vid=ISBN3540779779
http://www.linux-kongress.org/2010/abstracts.html#4_1_1
http://www.linux-kongress.org/2010/abstracts.html#4_1_1
https://doi.org/10.1145/2907071
https://doi.org/10.1016/0743-7315(91)90014-Z
https://www.postgresql.org
https://doi.org/10.1145/384285.379260
https://redis.io
https://doi.org/10.1109/ICED.2008.4786750
https://doi.org/10.1109/ICED.2008.4786750
https://doi.org/10.1145/356887.356892
https://doi.org/10.1145/356887.356892

50 BIBLIOGRAPHY

[32] Alan J. Smith. “Sequential Program Prefetching in Memory Hierar-
chies”. In: Computer 11.12 (Dec. 1978), pp. 7–21. issn: 0018-9162. doi:
10.1109/C-M.1978.218016.

[33] Lawrence Spracklen, Yuan Chou and Santosh G. Abraham. “Effective
Instruction Prefetching in Chip Multiprocessors for Modern Commer-
cial Applications”. In: Proceedings of the 11th International Symposium
on High-Performance Computer Architecture (HPCA). IEEE. 2005,
pp. 225–236. doi: 10.1109/HPCA.2005.13.

[34] Laszlo Szekeres et al. “Sok: Eternal War in Memory”. In: IEEE Sym-
posium on Security and Privacy (SP). IEEE. 2013, pp. 48–62. doi:
10.1109/SP.2013.13.

[35] Yuan Taur. “CMOS Design Near the Limit of Scaling”. In: IBM Journal
of Research and Development 46.2.3 (2002), pp. 213–222. doi: 10.1147/
rd.462.0213.

[36] The SystemTap Contributors. SystemTap. Version 3.2/0.166. 2017.
url: https://sourceware.org/systemtap (visited on 07/01/2017).

[37] The SystemTap Contributors et al. SystemTap Language Reference.
Oct. 9, 2015. url: https://sourceware.org/systemtap/langref (visited
on 08/22/2017).

[38] TIS Committee. Tool Interface Standard (TIS) Executable and Linking
Format (ELF) Specification. Version 1.2. 1995. url: http://refspecs.
linuxbase.org (visited on 09/02/2017).

[39] Transaction Processing Performance Council. TPC Benchmark C.
Version 5.11. 2010. url: http : / / www . tpc . org / tpcc (visited on
09/02/2017).

[40] Arjan van de Ven. New Security Enhancements in Red Hat Enterprise
Linux. Whitepaper. Version 3, update 3. Red Hat, Inc., 2004. url:
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
(visited on 08/23/2017).

[41] Vish Viswanathan. Disclosure of H/W prefetcher control on some Intel
processors. Intel Developer Zone. Sept. 24, 2014. url: https://software.
intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-
intel-processors (visited on 09/03/2017).

[42] Jingren Zhou and Kenneth A. Ross. “Buffering Database Operations for
Enhanced Instruction Cache Performance”. In: Proceedings of the 2004
ACM SIGMOD International Conference on Management of Data.
ACM. 2004, pp. 191–202. doi: 10.1145/1007568.1007592.

https://doi.org/10.1109/C-M.1978.218016
https://doi.org/10.1109/HPCA.2005.13
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1147/rd.462.0213
https://doi.org/10.1147/rd.462.0213
https://sourceware.org/systemtap
https://sourceware.org/systemtap/langref
http://refspecs.linuxbase.org
http://refspecs.linuxbase.org
http://www.tpc.org/tpcc
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://doi.org/10.1145/1007568.1007592

	Abstract
	Deutsche Zusammenfassung
	Contents
	Introduction
	Background & Related Work
	Next-N-Line Prefetching
	Performance Bottlenecks in DBMSs and Cloud Applications
	Mitigating Instruction Cache Bottlenecks

	Design
	Overview
	Call Graph Generation
	Call Graph
	Call Tracing
	Prefetch Target Selection

	Binary augmentation
	Instruction Insertion
	Prefetch Code Injection

	Implementation
	Overview
	Call Interception
	The Binary Augmenter
	Call Accumulation
	Function Hijacking

	Evaluation
	Evaluation Environment
	Methodology
	Measurements
	Benchmarks

	Results
	Real-World Applications
	Synthetic Benchmarks

	Analysis

	Conclusion
	Future Work

	Bibliography

