
Reduced Response Time with
Preheated Caches

Masterarbeit
von

cand. inform. Mathias Gottschlag
an der Fakultät für Informatik

Erstgutachter: Prof. Dr. Frank Bellosa
Zweitgutachter: Prof. Dr. Wolfgang Karl
Betreuender Mitarbeiter: Prof. Dr. Frank Bellosa

Bearbeitungszeit: 1. Dezember 2015 – 31. Mai 2016

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, den 31. Mai 2016

iv

Abstract

CPU performance is increasingly limited by thermal dissipation, and soon aggres-
sive power management will be beneficial for performance. Especially, large parts
of the chip (including the caches) will be frequently power-gated in order to re-
duce leakage power. Therefore, the cache content is lost whenever the CPU is
idle, which causes a performance loss when execution is resumed, due to the high
number of cache misses when the working set is fetched from external memory. In
a server system, the first network request during this period suffers from increased
response time. For common workloads, we measured as much as 34% response
time overhead due to cold caches.

In this thesis, we present a technique to reduce this overhead by preheating
the caches in advance before the network request arrives at the server: Our design
predicts the working set of the server application by analyzing the cache contents
after similar requests have been processed. As soon as an estimate of the working
set is available, a predictable network architecture starts to announce future in-
coming network packets to the server, which then loads the predicted working set
into the last-level cache in anticipation of the packets. When the network packet
arrives after this preheating step is complete, the server application can process
the network request with warm caches and therefore with improved performance.

We evaluate our design with a proof-of-concept prototype based on Linux,
on a system with ARM CPUs. Our experiments show that cache preheating can
reduce the response time overhead caused by cold caches by an average of 80%.
We demonstrate that our prototype does not cause significant runtime overhead,
and we show that the time required to load the working set into the cache is low
enough that it is possible to exploit the full potential of cache preheating on current
server CPUs.

v

vi ABSTRACT

Acknowledgments

I would like to express my gratitude to the members of the Operating Systems
Group at the KIT and especially my supervisor Prof. Bellosa for their support and
guidance during my work on this thesis. I am particularly thankful for the oppor-
tunity to present my work at EuroSys 2016 as well as for the extensive feedback
on this thesis, the EuroSys poster and a workshop paper submitted to ROME 2016.
A special thanks goes to Marius Hillenbrand and Jens Kehne, who, while proof-
reading the poster and the paper, provided invaluable suggestions which had sig-
nificant influence on this document. I would also like to thank Yannick Hörstens-
meyer, who pulled an all-nigher to provide feedback as quickly as possible when
I sent him a draft of this work.

vii

viii ACKNOWLEDGMENTS

Contents

Abstract v

Acknowledgments vii

Contents 1

1 Introduction 3

2 Background and Related Work 5
2.1 Dark Silicon and Power Management 5

2.1.1 Power Management Techniques 6
2.1.2 Response Time Overhead 8

2.2 Predictable Network Architectures 11
2.3 Cache Usage Analysis . 12
2.4 Adaptive Pre-Paging . 13

3 Analysis 15
3.1 Situation and Requirements . 15
3.2 Hardware Support . 17
3.3 System and Application Behaviour 19

3.3.1 Only the Last-Level Cache Matters 20
3.3.2 Large Last-Level Caches 21
3.3.3 High Temporal Correlation of the Working Set 21
3.3.4 Lower Temporal Correlation over Larger Time Frames . . 23
3.3.5 Overlapping Working Sets 23

4 Design 25
4.1 Components . 25

4.1.1 Working Set Estimation 27
4.1.2 Isolating Single Network Requests 31
4.1.3 Prediction of Future Events 33

1

2 CONTENTS

4.1.4 Detecting the Targeted Server Application 34
4.1.5 Cache Preheating . 35

4.2 Detecting Server Restarts . 35
4.3 Other Types of Events . 36

5 Implementation 39
5.1 Hardware Platform . 39
5.2 Components . 42
5.3 Cache Preheating . 43
5.4 DMA Buffers . 45
5.5 Detecting Server Restarts . 46

6 Evaluation 49
6.1 Benchmark Setup . 49
6.2 Performance Metrics . 50
6.3 Performance Evaluation . 51

6.3.1 Response Time Benchmarks 51
6.3.2 Effects on Tail Latency 53
6.3.3 Mixed Workloads . 54

6.4 Preheating Costs . 55
6.4.1 Contribution of Individual Optimizations 55

6.5 Other Runtime Overhead . 57
6.6 Discussion . 57

7 Conclusion 61
7.1 Future Work . 62

Bibliography 63

Chapter 1

Introduction

In the future, server systems are going to use more and more aggressive power
management. At smaller and smaller chip feature sizes, CPU performance is
mainly limited by thermal dissipation, so methods to improve power efficiency
are increasingly beneficial for performance [56]. Whenever possible, the CPU
will therefore be placed in deep sleep states to reduce power. The most important
power management methods utilized by these sleep states are clock gating [57]
and power gating [49]. Whereas the former simply removes the clock signal from
inactive parts of the chip, the latter also disconnects the supply voltage. The im-
portant advantage of power gating is that leakage power is completely removed
when the supply voltage is disconnected. However, the affected parts of the chip
lose their state.

This loss of information is especially problematic for the CPU caches. Mod-
ern processors contain large on-chip caches, which are flushed when power is
removed. As a result, when the processor resumes operation, the server applica-
tion suffers from high cache miss rates and therefore high average memory access
latency while the working set is loaded into the cache.

In a server system, cold caches cause increased response times for the network
requests which are processed directly after the system has resumed from a deep
sleep state. The affected network requests significantly increase the tail latency of
the system. As operations are often parallelized on hundreds of machines (e.g.,
database shards), the tail latency of each single system is critical, though, as the
final result of a request by a user will be delayed even if only a single sub-operation
experiences increased latency [27].

In this thesis, we present a solution to reduce the response time of those net-
work requests which are processed with cold caches due to the effects of deep
CPU sleep states. Our design analyzes the working set of the server application
and estimates the memory locations which are required while a network request
is processed. Once sufficient information about the application’s working set is

3

4 CHAPTER 1. INTRODUCTION

available, the design uses a predictable network architecture with a central arbiter
to predict the arrival time of future network requests. Whenever a network request
is expected to arrive while the CPU is in a deep sleep mode, the system is config-
ured to wake up earlier and the working set estimate is loaded into the last-level
cache before the network request is processed. As a result, the server application
requires fewer accesses to external memory, so its response time is reduced.

In the following chapters, we provide a detailed description of the design, and
we also show that the design is viable and provides the desired response time re-
duction. To do so, we have implemented the main techniques in a prototype based
on Linux, and benchmarked that prototype with several common server applica-
tions. Our benchmark results show that the effect of cold caches on the response
time is reduced by 80% on average. Although our prototype system frequently
requires too much time to preheat the caches, we show that cache preheating is a
viable technique on modern server hardware.

The following sections are organized as follows: First, in Section 2, we give
more details on the problem we are trying to solve and on the technical back-
ground to our solution. Also, we describe other related work and show the differ-
ences to the design presented in this thesis. Afterwards, in Section 3, we analyze
the properties of a generic cache preheating solution and describe the hardware
and software properties as well as the assumptions which lead to our specific de-
sign. Then, in Section 4, we describe our proposed specific cache preheating
solution and describe how it mitigates the effects of deep CPU sleep states on re-
sponse times. We have implemented a prototype of our design and, while doing
so, have encountered several practical problems which are specific to the underly-
ing hardware. Our implementation and these problems are detailed in Section 5.
Section 6 contains an evaluation of our design, with a focus on response time re-
duction and general viability. Finally, in Section 7, we conclude the thesis and lay
out a plan for future work.

Chapter 2

Background and Related Work

In this chapter, we present technical background and related work of our proposed
cache preheating solution. Our design is supposed to counteract the negative side
effects of cache flushes due to aggressive power management. We expect such
aggressive power management to become increasingly common in server systems.
In Section 2.1, we give an overview of the most important power management
mechanisms, and we explain why future server processors will frequently flush
the CPU caches. As our solution makes use of predictable network architectures
to predict future network packets, we describe such architectures in Section 2.2.
The rest of this chapter is dedicated to related work: In Section 2.3, we describe
mechanisms to record the cache content, because our solution includes working
set prediction based on cache content analysis. Our design utilizes the predicted
working set in order to reduce the number of cache misses after a cache flush.
Similar techniques have been proposed to reduce the number of page faults after
virtual machine migration. We present these techniques in Section 2.4.

2.1 Dark Silicon and Power Management

The main problem we are trying to solve is that aggressive power management
leads to a significant response time overhead in server systems. Until now, server
administrators have only sparingly used power management techniques in their
systems, especially if the servers perform performance-critical tasks, because there
are a wide range of reports that power saving options hurt the overall perfor-
mance [14, 15, 46]. In the future, however, a situation will emerge in which ag-
gressive power management is crucial for good CPU performance, because the
latter will be limited not by the number of available transistors but rather by the
power density of the chip.

For a long time, the required power density stayed constant despite rising fre-

5

6 CHAPTER 2. BACKGROUND AND RELATED WORK

quencies and increased numbers of transistors, because constant-field scaling (also
called Dennard Scaling) provided lower and lower supply voltages [28]. This
trend stopped, however, because further threshold voltage scaling would have lead
to excessive leakage power and because the gate oxide had reached a size where
no significant further thickness reduction was possible [23]. Without voltage scal-
ing, every feature size reduction leads to a significant power density increase. The
dissipated power of a chip is generally limited by the cooling solution though.
The result is a problem known as Dark Silicon (or, originally, as a reduction of
the Simultaneously Active Fraction [24]): Because the thermal budget is limited,
only a fraction of the transistors can be active at any point in time. For a feature
size of 8 nm, less than 50% of the chip area is expected to be usable [30]. Al-
ternatively, Computational Sprinting [50] can be used to temporarily exceed the
thermal budget at some points in time if the system conserves energy at others,
so that the overall average power stays within the limits. Such a technique can be
used to reduce the response time of a system when the workload allows for tem-
porary low-power phases. In other words, Dark Silicon creates a situation where
aggressive power management is beneficial for performance.

2.1.1 Power Management Techniques
There are various different methods available to reduce the dissipated power of
a CPU. The power dissipation of a CMOS chip is generally dominated by dy-
namic power and leakage power. Dynamic power is dissipated when capacitive
elements like wiring and transistor gates are charged and discharged. Many im-
portant techniques to reduce dynamic power therefore reduce switching activity.
For example, clock gating [57] disconnects the clock signals from inactive parts
of the chip, and operand isolation [38] disconnects unnecessary input signals to
prevent spurious switching activity. Because all inactive parts of the chip are still
powered, however, these techniques do not affect leakage power.

Leakage power is dissipated due to sub-threshold currents between source and
train of the transistors as well as tunneling currents at the gate. At small feature
sizes and especially at small threshold voltages, these currents are large enough
that power consumption is dominated by the leakage power [39]. The leakage
currents depend on the supply voltage, therefore dynamic voltage and frequency
scaling (DVFS) can be used to significantly reduce the leakage power. DVFS
reduces the operating voltage of the chip and, in order to guarantee correct func-
tioning, also reduces the operating frequency. The result is a super-linear power
reduction, whereas the performance loss is only approximately linear to the volt-
age scaling factor [25]. However, recent studies have found that the range of
usable voltages has been significantly reduced for recent CPU generations [61],
and that frequency scaling has become increasingly ineffective [41].

2.1. DARK SILICON AND POWER MANAGEMENT 7

A technique which can provide far better leakage power reduction is power
gating. Power gating, originally also called multithreshold-voltage CMOS [44], is
a technique where sleep transistors are inserted between the power supply and the
virtual power rails of parts of the chip. When these parts of the chip are inactive,
they can be decoupled from the power supply. Especially if the sleep transistors
have a comparably high threshold voltage, there is almost no leakage current in
disabled regions [49].

All these mentioned techniques are available in current systems. For example,
on x86 systems, power gating and clock gating are implemented in the form of
ACPI CPU power states (C-states). Current Intel processors will power-gate in-
dividual cores and their L2 caches if the cores are placed in the ACPI C6 state.
The L3 cache and parts of the chip uncore area are additionally power-gated when
all cores are shut down and the package is placed in the C7 state [53]. Reduc-
ing the leakage power of the caches is especially important, as they occupy a
large percentage of the chip area. For example, cache and other on-chip memory
occupied 30% of the die area of the Alpha 21264 CPU and 60% of the Strong-
ARM CPU [49], and die shots of more recent Intel Haswell CPUs indicate that
approximately 20% of these chips is used for last-level caches [26,54] (excluding
processor graphics).

However, as described in the next section, power-gating the caches has the
disadvantage that, once the supply voltage is removed, all cache content is lost.
Therefore, a number of techniques have been proposed which can reduce the
power dissipation of on-chip memories without losing significant amounts of data.
Once such technique is the concept of Drowsy Caches, where the caches are not
power gated, but instead the supply voltage is reduced to 1.5 times the threshold
voltage [32]. At this supply voltage, the SRAM cells can keep their state, but no
access to the data is possible. Although drowsy caches yield impressive energy
savings and can in theory reduce the leakage power per bit by up to 85%, the
caches of an idle system still need several times as much energy as if they were
completely power-gated.

Alternatively, techniques have been proposed to power-gate only those parts
of the cache which are not in active use. For example, the Dynamically Resizable
Instruction Cache [62] can be shrunk if only parts of the cache are frequently
used. The decision to shrink or grow the cache is made based on the number of
cache misses in a given time interval. The unused parts of the cache can then be
power-gated [49] in order to reduce power consumption. Dynamically resizable
instruction caches can reduce the cache size by 62%, whereas the performance is
reduced by only 4% overhead while the CPU is active.

This technique is completely reactive and uses very simple heuristics. Some
dynamic situations however require a more flexible predictive approach for maxi-
mum performance: For example, the cache should be completely disabled during

8 CHAPTER 2. BACKGROUND AND RELATED WORK

idle periods, but the content should be restored before the system is reactivated
again. Such predictive tasks require information which is commonly only known
to the operating system. Similarly, the application running after the idle period
might not be the same application as before, so different cache contents should
be restored. For a similar scenario, Zhu et al. have proposed stronger software
engagement of the OS with sleeping CPUs. They show that the OS can efficiently
implement predictive policies to reduce the performance impact of power man-
agement mechanisms [64]. In this thesis, we present such a predictive software
technique which allows the cache to be completely power-gated during periods
of inactivity, while mitigating the negative effects of the cold cache on system
performance.

2.1.2 Response Time Overhead
As described above, aggressive power management saves significant amounts of
energy and is essential for good performance in a scenario with large amounts of
dark silicon. However, we have identified two main sources of overhead caused
by deep CPU sleep states: First, the system needs some time to reactivate the
CPU, and second, the following code runs with reduced performance because the
sleep states cause the CPU caches to be flushed.

In current server systems, power saving mechanisms are usually implemented
in the form of ACPI C-states. In [53], the authors have analyzed the wakeup time
from various ACPI C-states. For example, a SandyBridge-EP CPU takes between
30 and 40 microseconds to wake up from the package ACPI C6 state. As a re-
sult, the system is slower to respond to incoming network requests or other types
of events. Additional significant response time overhead is caused by the cache
misses generated after the processor has been woken up. The reason for these
cache misses is that the caches are power gated and therefore lose all their content
when the processor enters a sufficiently deep sleep mode. For example, on modern
Intel CPUs, the ACPI C3 state flushes the L1 and L2 caches, whereas the pack-
age C7 state additionally flushes and power-gates the L3 cache [53]. Depending
on the implementation of the sleep states, most other caches are flushed as well,
including branch prediction caches and translation lookaside buffers (TLBs), al-
though these, as shown in Section 3.3.1, tend to have a significantly lower impact
on performance.

The impact of a cache flush on system performance depends on the size of the
cache, which roughly translates to the number of cache misses generated by the
cache flush, as well as on the cost of each single cache miss. Figure 2.1 shows
the memory hierarchy of an Intel Nehalem system. Each core has its own small
exclusive L1 and L2 caches, and all cores together share one large L3 cache per
chip. The access latency to each memory hierarchy level depends on the distance

2.1. DARK SILICON AND POWER MANAGEMENT 9

Nehalem Quadcore

Core 0

Shared Level 3 Cache

IMC

(3 Channel)
QPI

L1

Core 1 Core 2 Core 3

L2 L2L2L2

I/O Hub

L1L1L1

Nehalem Quadcore

Core 4

Shared Level 3 Cache

QPI

L1

Core 5 Core 6 Core 7

L2 L2L2L2

L1L1L1

D
D

R
3

 A

IMC

(3 Channel)

D
D

R
3

 C

D
D

R
3

 B

D
D

R
3

 D

D
D

R
3

 F

D
D

R
3

 E

Figure 2.1: Memory hierarchy of an Intel Nehalem system with two CPUs [43]—
each core has its own L1/L2 caches, but all cores of a CPU share one L3 cache.

to the CPU core: Whereas an access to the L1 cache requires only 1.3ns, an L2
cache hit requires 3.4ns. If the L3 cache is accessed, the access latency further
rises to 13ns [43]. If all caches are flushed, however, the access latency increases
to around 63ns because the data needs to be loaded from external memory. How-
ever, not only is the access latency of requests to external memory especially high,
but the latency highly depends on the access pattern. External DRAM is organized
in multiple banks, and each bank is organized in multiple rows. Access operations
experience increased latency if they do not hit the currently selected row and in-
stead trigger a bank or row switch [51].

Due to the high cost of access to external memory, we expect especially last
level cache flushes to have significant effect on the response time to the following
events. These effects vary depending on the working set size and the memory
access pattern of the program. To measure the effect, we benchmark the response
time of several network programs (Nginx, memcached, MariaDB). Before the
network request, the benchmark flushes all cache levels. No actual processor
sleep modes are active, as we wish to show the effect of memory access overhead
in isolation. In Figure 2.2, we plot the resulting latency histogram for a simple
static web page served by the Nginx web server. We compare it to the response
time for the same setup, but without any cache flush. The benchmark shows that
cold caches increase the latency of Nginx by 132 µs, or by about 36% of the
original latency. Other benchmarks (memcached, MariaDB) also show significant
response time overhead depending on working set size, total response time and
memory access pattern.

As these results show, the overhead from cold caches is significantly larger
than the wakeup latency of the CPU. Previous work, however, has only addressed

10 CHAPTER 2. BACKGROUND AND RELATED WORK

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600

c
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n
 f

u
n

c
ti
o

n

response time (µs)

warm caches
flushed caches

Figure 2.2: Cumulative histogram of the response time of the nginx web server
with and without cache flushes between the requests.

the latter. Anticipatory wakeups [64] are a technique which, whenever a future
event is known which will wake the CPU up, mitigates the wakeup latency by
waking the CPU early in anticipation of the event, so that the system can quickly
react because the CPU is already active. Anticipatory wakeups can effectively re-
duce the performance impact of most CPU sleep states. The implementation de-
scribed in [64] has two significant limitations though, both which we try to solve
in this thesis: First, anticipatory wakeups do not reduce the effect of cold caches
on CPU performance, as the cache state is not changed by the early wakeup. Sec-
ond, anticipatory wakeups are only viable if the arrival time of future events is
well predictable. This limitation prevents the use of the technique to reduce the
response time for incoming network packets. Web services, however, are espe-
cially affected by increased response times, even if most web services do not have
to provide any hard real-time guarantees: It has been shown that excessive latency
often affects the user experience and results in reduced user interaction with the
web service [35].

Moreover, the user experience is even affected when only a small percentage
of all network requests in the data center suffers from increased latency. Modern
large-scale often parallelize incoming requests on hundreds of systems, and the
final result is delayed when even a single of the sub-operations is delayed [27].
In other words, the tail latency of each system is more important than its average

2.2. PREDICTABLE NETWORK ARCHITECTURES 11

response time. There are situations in which power management does not have
any significant effect on the average response time, but it always increases the tail
latency: We expect that each system processes network requests in bursts and puts
its CPU to sleep between each two bursts, but the first request of each burst always
hits cold CPU caches. The increased response time of this first request therefore
affects the overall performance of the web service.

2.2 Predictable Network Architectures
If a system is supposed to wake the CPU up and to preheat the caches before
an event causes an application to resume execution, the system needs to know
the arrival time of this event. Most events caused by local hardware, like the
completion interrupt of SSDs or GPUs, can be precisely predicted by analyzing
the runtime of similar previous operations. For example, the size of a transfer to or
from a block device is mostly proportional to the latency of the operation, and the
execution time of GPU kernels can be predicted based on the history of previous
launches of the same kernel [64]. Other sources of events, however, are more
difficult to predict. Especially, it is hard to predict the time of future incoming
network requests. A rather recent development in the area of data center networks
could change this situation, namely the reintroduction of connection switching to
data center networks.

Practically all current networks utilize packet switching to allocate physical
connections on a per-packet basis between the various networked systems. How-
ever, packet switching requires queues in all intermediate switches, because oth-
erwise temporary network traffic bursts can lead to increased packet loss if the
capacity of a network segment is exceeded, even if the average throughput of that
segment is sufficient over longer time periods [31]. Commodity switches gen-
erally have rather deep switch queues to handle bursty traffic patterns [42]. As
traditional TCP congestion control, however, uses packet loss to determine link
congestion, so flows with high throughput fill up the switch queues and affect the
network latency of all other packets. There are alternative congestion control al-
gorithms which reduce length of the switch queues (e.g., Data Center TCP [22]),
as a practical way to reduce the end-to-end latency.

An alternative to these techniques is to use connection switching instead of
packet switching, thereby removing the need for switch queues. If two systems
communicate over a network with connection switching, they are temporarily al-
located a physical connection. This connection is either exclusive to the two sys-
tems, or the systems are guaranteed a minimum network bandwidth. If the con-
nection is exclusive to the two systems, no collisions can occur in the switches,
so no queues are needed at all [34]. If the connection is not exclusive, but instead

12 CHAPTER 2. BACKGROUND AND RELATED WORK

some parts of the connection are shared with other systems, each communicating
system is allocated a limited data rate so that the capacity of shared connection
segments is not exceeded. Such a data rate limit can be enforced by scheduling
individual packets in a way that the overall rate is limited [47]. When the total data
rate of each network segment is below its maximum capacity, the switch queues
are mostly empty.

The allocation of such connections and data rates is usually done by a central
arbiter. This arbiter usually collects requests by the systems in the network and
periodically, based on the requests, creates a schedule of future connections. The
arbiter can then either directly mute those systems which are not supposed to send
any data [58], or it can send the schedule to all affected systems which then send
outgoing data according to the schedule [47]. The latter is a core component of
the design presented in this thesis: In Section 4.1.3, we show how we use this
mechanism to notify the receiver systems about future incoming packets, so that
they can use anticipatory wakeups and cache preheating to reduce the response
time to those packets.

2.3 Cache Usage Analysis
In this thesis, we present a cache preheating solution to reduce the effects of deep
CPU sleep states on network applications. We base our design on an analysis of
the cache contents after several network requests have been processed. Therefore,
our design requires hardware facilities to read the cache state. Previous research
on methods to dump processor cache contents has mostly attempted to improve the
performance of post-silicon processor debugging: When test cases are executed
on a processor to find faults in the hardware, the processor state is repeatedly
saved. The dumped processor state serves both as a basis for later analysis of
the faults as well as a starting point when the faulty parts of the tests are executed
again with finer processor state dump intervals [59]. It is not conceptually difficult
to construct facilities which allow to dump the cache contents. In fact, as used in
the design presented in this thesis, current ARM processors already allow direct
access to cache memories [5]. However, efficient usage of the provided data is
difficult, both due to the large amount of data and because frequent snapshots
slow down the running programs.

Our work only requires the cache tag bits, other parts of the cache contents like
the actual cached data are not needed to reconstruct the cache state. Therefore, our
design deals with a significantly reduced amount of data, and such partial cache
dumps are not as expensive as a full dump would be. Still, techniques which fur-
ther reduce the amount of data can be beneficial. One option is to implement cache
dumping or restoring in hardware, in order to reduce power usage or so that the op-

2.4. ADAPTIVE PRE-PAGING 13

erations could be executed in parallel with the running software (for example, [60]
describes an implementation of the latter). Another potential optimization is to
compress the dumped cache state. Vishnoi et al. present a technique to compress
the cache state with a derivative of the LZW compression algorithm [59]. In this
thesis, we have opted not to use any such compression algorithm. Instead, we
rely on simple run-length encoding, because we optimize for a different use case:
In the processor debugging scenario, cache analysis is time-critical, whereas in
our situation decompression is more problematic, as cache preheating has to meet
tight deadlines which are dictated by the network architecture.

2.4 Adaptive Pre-Paging
Whenever a network packet has been predicted, our design loads the predicted
working set of the server application into the cache. Similar techniques have been
developed to reduce the overhead caused by the migration of virtual machines
[36]:

Post-copy migration of virtual machines achieves low downtimes by immedi-
ately resuming the virtual machine at the target system and then using on-demand
paging to move the working set from the source system to the target. The problem
of this technique is that initially, right after execution has been resumed on the tar-
get system, the whole working set is still placed on the source system. Therefore,
many expensive page faults are generated. One approach to reduce the number
of page faults is to already move the predicted working set of the virtual machine
to the target system before execution is resumed (adaptive pre-paging) [36]. We
use a similar approach to improve performance right after a system has resumed
from a deep sleep state. However, instead of preventing page faults, we try to
prevent cache misses by loading the estimated working set into the cache before
execution is resumed. Our design therefore predicts the working set with cache
line granularity instead of page granularity.

Adaptive pre-paging is further extended by Zhang et al. in their Picocenter
virtualization system [63], which uses adaptive pre-paging to quickly restore vir-
tual machines from checkpoints. The Picocenter system differentiates between
different types of events which can reactivate a virtual machine (e.g., network
packets which target different server applications) and creates a separate work-
ing set prediction for each type, by logging which pages have been accessed in
the past after similar events. We employ a similar technique to maintain separate
predicted working sets, and we select one of them to be loaded into the cache
depending on the target port of the incoming network packet. In contrast to the
Picocenter virtualization system, though, our design can already predict the type
of future incoming network packets before they arrive.

14 CHAPTER 2. BACKGROUND AND RELATED WORK

Chapter 3

Analysis

In this work, we present a software design which employs cache preheating in
order to reduce server response times. The goal of this design is to mitigate the ef-
fects of deep CPU sleep modes, as such sleep modes cause the caches to be flushed
and power-gated. To the best of our knowledge, these effects of cache flushes on
server application performance have not been analyzed in detail before. The de-
velopment of our software design, however, required a good understanding of the
problem: Strong timing and performance requirements made extensive scenario-
specific optimizations necessary. Additionally, in some cases, additional knowl-
edge about application behaviour either made significant simplifications possible
or uncovered problems that needed to be handled by the preheating solution. At
the same time, cache preheating can significantly profit from hardware support for
various cache management techniques.

In this chapter, we start at a generic cache preheating system (Section 3.1) and
we describe how this system is affected by the choice of hardware (Section 3.2).
We also describe how the expected workloads interact with the hardware, and we
show the resulting consequences for cache preheating (Section 3.3).

3.1 Situation and Requirements

After the CPU has entered a deep sleep mode, the next incoming network packet
wakes the CPU up and triggers the server application. The server application then
has to transfer the working set from RAM back into the cache. Cache preheating
can reduce the response time by loading the working set into the cache in advance.
Although there are many ways in which cache preheating can be implemented, we
expect all potential solutions to follow the scheme shown in Figure 3.1.

In all cases, the system has to predict the future working set first. Afterwards,
whenever the system wakes up from a deep CPU sleep state, the predicted working

15

16 CHAPTER 3. ANALYSIS

Working set prediction
Idle time

(caches �ushed)

Prediction of the next

network request

Cache preheating
Network requests are processed

(with warm caches)

?

Figure 3.1: Generic steps which are required to preheat the caches for a single
network requests. The dashed lines mark the possible transitions when the system
becomes idle after the first network requests has been processed: Working set
estimation does not have to be repeated for every network request, and our design
skips it for all but the first requests.

set is loaded into the caches. The system can be woken up either after a network
packet arrives, or it can be woken up in anticipation of the packet, so that the cache
is warm when the packet arrives. The former significantly reduces the effectivity
of cache preheating, as the server application is delayed while the working set is
loaded into the cache. Therefore, we expect that all practical cache preheating
solutions employ anticipatory wakeups and require a method to predict future
incoming network packets. Before the predicted packet arrives, the system wakes
up the CPU and loads the working set into the cache. When the cache has been
preheated, the server application resumes execution and processes the incoming
network packet. After the server application has processed one or more network
requests and when the system is idle again, the cache preheating system can either
reuse the previously computed working set to preheat the cache for future packets,
or, as shown in Figure 3.1, it can repeat working set prediction to refresh the
information.

Although every cache preheating solution encompasses the steps described
above, each step can be implemented in various different ways. The specific de-
sign and implementation described in this thesis are based on a number of basic
requirements which we have identified. As we show in the following sections, the
generic requirements listed below significantly restrict the design space presented
in the beginning of this section.

• Decreased response times: The main goal of a cache preheating system
like the one described in this thesis is to reduce the tail latency of the server
application. Especially, cache preheating should ensure that the caches are
already warm whenever a network request arrives, so that the request can
be processed with reduced response time. At the same time, cache pre-
heating must not have any negative effects on tail latency. Such effects can
be caused by any computational overhead connected to cache preheating.
For example, working set estimation can be computationally expensive and

3.2. HARDWARE SUPPORT 17

must not delay the response to any network requests arriving in parallel.

• Reduced power: Deep CPU sleep states are used to reduce the power dissi-
pation of the CPU. Cache preheating compensates negative effects of sleep
states on the system’s latency, but the preheating code itself uses additional
energy. Overall, the usage of cache preheating must not result in a sig-
nificant net power increase. Ideally, the cost of cache preheating is offset
by the server application which is able to process requests with increased
efficiency due to the reduced number of cache misses.

• Robustness: Any cache preheating system must be robust in the presence
of other hardware components which can potentially access memory (e.g.,
DMA controllers). Depending on the architecture, memory is temporar-
ily treated as being non-cacheable by the operating system to enforce co-
herency between the CPU’s and the components’ view of memory. If not
implemented carefully, preheating can potentially violate that promise of
certain data not being loaded into the cache.

• Application independence: Ideally, the cache preheating system should be
compatible to existing software. Modern systems consist of large amounts
of code, and any requirement to modify parts of the software (e.g., to insert
manual prefetching hints) will pose a significant hurdle to adoption. Espe-
cially, this requirement means that any kind of working set estimation needs
to be performed dynamically at runtime by the operating system, because
the memory layout of applications is partially unpredictable.

• Commodity hardware: Compatibility to existing hardware is similarly im-
portant as compatibility to existing software. Ideally, all mechanisms should
work efficiently on current commodity hardware.

3.2 Hardware Support
Any cache preheating solution requires an estimate of the application’s working
set in order to decide which data is loaded into the cache. Usually, the working
set is used to provide efficient page replacement [21] in a system which performs
memory overcommitment. Working set estimation is therefore implemented with
page granularity. Cache preheating requires a more fine-grained working set esti-
mate, as data is loaded into the cache with cache line granularity, and any larger
granularity would result in wasted memory throughput during preheating. We
have identified three methods which can be used to track memory usage with finer
granularity:

18 CHAPTER 3. ANALYSIS

• Tracing cache misses: On some systems, the CPU can record all cache
misses and the corresponding accessed memory locations. For example, re-
cent Intel CPUs provide Processor Event-Based Sampling (PEBS) [37, 18-
97]. PEBS can be configured to monitor a wide range of CPU events (e.g.,
cache misses). It counts the selected event and stores a copy of most CPU
registers in a buffer whenever the counter reaches a configurable threshold.
In addition to the CPU registers, PEBS can also store the accessed memory
address for memory-related events [37, 18-66]. When configured to store a
copy of the registers as well as the accessed address whenever a cache miss
occurs, PEBS can in theory be used to trace all cache misses.

In practice, however, one hardware limitation makes precise PEBS-based
working set estimation difficult with current CPUs: Whenever PEBS records
a cache miss, it loses information about cache misses which happen di-
rectly after the recorded cache miss. This loss of information likely stems
from the fact that PEBS is implemented as a microcode assist which, in
microcode, flushes the CPU pipeline before recording the register state.
When the pipeline is flushed, the instructions which trigger the next cache
misses are aborted, but the corresponding memory accesses are already ex-
ecuted. When the instructions are repeated, they therefore do not produce
cache misses anymore because the data has already been loaded into the
cache [40].

Additionally, PEBS causes rather large overhead, because many CPU reg-
isters are saved whenever a cache miss is recorded [37, 18-66], even though
the working set estimation code only requires the accessed memory address.
Although other tracing mechanisms with lower overhead and better preci-
sion are certainly possible, we are not aware of any such mechanism being
already available in current CPUs.

• Analyzing the cache state: As an alternative to cache miss tracing, the
working set can also be estimated by analyzing the cache contents. Data in
the cache is addressed by its index. As multiple memory addresses map to
the same index, the cache additionally stores the higher bits of the address
as the tag of the cache entry, so that the address can be reconstructed by
concatenating the tag bits with the index. Therefore, the contents of the tag
bit memory can be translated into a list of physical addresses which have
been accessed by the application since the last cache flush.

Among others, the ARM Cortex-A15 and Cortex-A57 cores contain sup-
port for the RAMINDEX register [5], which can be used to read and write
arbitrary portions of cache memory, including tag bits. In the absence of
any conflict or capacity cache misses, the resulting list of addresses is com-

3.3. SYSTEM AND APPLICATION BEHAVIOUR 19

plete and, unlike any simple PEBS-based tracing mechanism, does not miss
some addresses which have been accessed. In Section 3.3.2, we show that it
is safe to assume that there are rarely any capacity or conflict misses directly
following a cache flush.

• Instrumentation: If no other hardware mechanism is available, the appli-
cation can be instrumented to record all memory accesses. The original ap-
plication binary must not be modified, therefore such instrumentation would
be introduced by an emulation layer, by interpreting or dynamically trans-
lating the executable. An example for such a instrumentation frame work
is Valgrind, which uses dynamic translation to provide instrumentation as
an acceptable performance loss [45]. Especially, Valgrind already provides
the Cachegrind plugin, which simulates CPU caches to profile the memory
access behaviour of the instrumented application [19]. This plugin could be
extended to record information on all cache misses.

Instrumented emulation does not require any hardware support and yields
a precise trace of all memory accesses. Of all described working set tech-
niques, instrumented emulation is the most complex one though: Although
emulating a single user space process is simple, many cache misses are ac-
tually generated by the operating system before it switches to the userland
application. Emulating the operating system can only be done in a hypervi-
sor, but that hypervisor must neither violate the timing expectations of the
operating system, nor must it have a significant impact on the working set
of the system while emulation is inactive. We believe that dynamic transla-
tion with instrumentation is a very promising technique to generate precise
memory access traces. However, due to the complexity of the task, this
thesis presents a conceptually more simple design based on cache tag bit
analysis.

3.3 System and Application Behaviour
The presented design is not only affected by the available hardware. It is also
tailored towards a specific class of applications: We envision cache preheating to
be useful particularly for latency-critical server applications which are executed
on server systems. We assume certain workload properties, as other types of ap-
plications (e.g., long-running data processing applications or applications without
latency requirements) do not profit from cache preheating. The assumptions can
significantly simplify the design and make it more efficient. In the following sec-
tions, we present the most important assumptions and show their effect on a cache
preheating solution.

20 CHAPTER 3. ANALYSIS

3.3.1 Only the Last-Level Cache Matters

Cache preheating mitigates the effects of cold caches on a server’s response times
by loading the working set and similar required data into the caches before a net-
work request is processed by the server. As shown in Figure 2.1, a modern system
contains many different types of cache memory with different access characteris-
tics: Caches near to the CPU core tend to be very small and provide low-latency
access, whereas larger last-level caches are placed further away from the CPU
core and are significantly slower. Several additional small caches are placed in
various parts of the CPU core to reduce the likeliness of pipeline stalls in certain
scenarios (e.g., branch prediction caches or the translation lookaside buffer).

Flushed Caches Latency Relative Overhead
None 337.9 µs
TLB 339.2 µs 0.4%

L1 (instructions) 337.5 µs -0.1%
L1 (data) 339.1 µs 0.4%

L1, L2 516.8 µs 53.0%
branch prediction 338.0 µs 0.0%

all 526.5 µs 55.8%

Figure 3.2: Overhead for nginx when various types of caches are flushed. The
system does not have any L3 cache, so the L2 cache is the last-level cache. Only
flushes of the L2 cache seem to have any significant effect.

Our analysis shows that it is sufficient to focus on preheating the last-level
cache, as flushes of all other caches have negligible impact on performance. We
have measured the latency of the nginx web server for a static website after types
of caches have been flushed (Figure 3.2). The latency is significantly increased if
all cache levels down to the L2 cache are flushed, whereas TLB flushes and L1
cache flushes do not appear to have significant effect on the response time. This
observation is easy to explain: As described in Section 2.1.2, the cost of a cache
flush depends on the size of the cache as well as the resulting cost of cache misses,
and the last-level cache is particularly large and accesses to external memory are
particularly expensive.

The focus on the last-level cache significantly simplifies the implementation
of the cache preheating code. Whereas regular load instructions can be used to
preheat the last-level cache, other types of cache would have required more com-
plex preheating methods. For example, loading code into the L1 instruction cache,
in the absence of any specialized cache management engine, would require an ex-

3.3. SYSTEM AND APPLICATION BEHAVIOUR 21

pensive series of branches and hardware breakpoints to execute one instruction
from every affected cache line in order to load the code into the instruction cache.

3.3.2 Large Last-Level Caches
In the previous section, we have shown that only the last-level cache needs to be
preheated. During working set prediction, the preheating design therefore ana-
lyzes the application’s memory access pattern and constructs a list of the memory
locations which are loaded from external memory. As described in Section 3.2,
cache tag bit analysis is the most promising method for working set prediction.
However, cache tag bit analysis is significantly affected by conflict and capacity
misses, as every such cache miss replaces a cache line from the cache, so the
corresponding memory location is missed when analyzing the cache state. The
predicted working set needs to be as complete as possible, though, as any missing
memory location can cause a potentially expensive cache miss.

We show that, despite their negative effects on working set prediction, neither
conflict nor capacity misses have any significant impact in practical scenarios,
because the working sets of the targeted server applications generally fit into the
last-level cache: The targeted server applications usually perform rather simple
tasks (e.g., serve static or dynamic web pages, or query databases). We have
analyzed the memory access pattern of several applications (nginx, memcached,
MariaDB) while they process a network request. To do so, we have extended
the cache profiler Cachegrind [19] with code to flush the simulated caches before
the network request is created and to log all subsequent cache misses. For every
cache miss, our code also logs whether another cache line was evicted from the
cache. We have configured Cachegrind to simulate a system with 4 MiB last-level
cache. None of these applications causes any significant number of cache lines to
be evicted the last-level cache.

3.3.3 High Temporal Correlation of the Working Set
Working set prediction is an expensive operation. Ideally, the resulting working
set description can be reused to preheat the caches many times, thereby amortizing
the prediction costs. Such reuse, however, is only possible if the working set is
highly temporally correlated and each invocation of the server application has
approximately the same working set.

We show that the working set is highly temporally correlated by submitting
10000 requests to a server application and measuring the working set of each re-
quest. Before every network request, we flush the cache, and after the request, the
client reads the contents of the cache tag memory to retrieve the memory loca-
tions which have been loaded into the cache. Each resulting working set estimate

22 CHAPTER 3. ANALYSIS

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000

w
o

rk
in

g
 s

e
t

s
iz

e
 (

K
iB

)

request

total
different

(a) nginx

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 2000 4000 6000 8000 10000

w
o

rk
in

g
 s

e
t

s
iz

e
 (

K
iB

)

request

(b) MariaDB (DBT-2)

Figure 3.3: Total working set size of every 100th request submitted to the server
application, compared to the size of those memory locations which are not ac-
cessed by the first request. The server application is restarted after approximately
5000 requests. The working set of the MariaDB benchmark varies significantly,
because multiple different types of requests are processed. Even in this case, the
effect of the server restart on the working set is clearly visible, though.

is compared to the working set of the first request. We compute the number of
cache lines which are missing in the working set of the first request but have been
used to process the later request.

We conduct the test for the nginx web server serving static web pages and for
the DBT-2 MariaDB database workload (see Figure 3.3). In the case of the ng-
inx web server, less than 5% of the working set is different between two arbitrary
requests. This value is fairly constant and does not depend on the temporal dis-
tance between the requests. The majority of the working set is constant even over
long timeframes. The working set of the MariaDB workload shows significantly
more change, mostly because the benchmark executes various different types of
database queries which access different data and cause different code paths to be
taken. Even in this case, on average more than 80% of the working set of different
requests overlap, though, and growing temporal distances between requests do not
result in less correlation.

The benchmarks show that the working set prediction can be reused, although
care must be taken to avoid preheating those parts of the working set which are
different for every request. Those parts cannot be well predicted, so cache pre-
heating is useless for them. All other parts of the working set, however, can be
assumed to be constant.

3.3. SYSTEM AND APPLICATION BEHAVIOUR 23

3.3.4 Lower Temporal Correlation over Larger Time Frames

In the last section, we showed that the working set of common server applications
is mostly constant. In our experiments, we did not observe any phase transitions
which cause abrupt change to the working set. Such phase transitions are possible,
though, as are slow changes to the working set over time.

As an example for slow change to the working set, the operating system could
continuously defragment physical memory in order to introduce huge page map-
pings [52]. Additionally, many server applications maintain data structures in
memory which represent the state of the server. Over time, these data structures
are manipulated and might be moved around in memory by the server application.
For example, a database server might keep parts of database indices in memory,
these indices are modified whenever rows are inserted into or removed from the
database, and each modification can potentially change the working set of the ap-
plication. Because such slow change is hard to detect, we propose that working
set prediction is periodically repeated to limit the negative effect of the changes.

Sudden phase changes are easier to detect if they are triggered by an external
event. For example, the server application could simply be restarted, for example
due to software updates, in which case its location in physical memory changes:
Even a slightly different initialization sequence can cause vastly different memory
allocator behaviour. Additionally, the OS can place mutable sections of the pro-
gram’s executable file at different physical addresses, even if their virtual address
does not change during the restart.

To measure the influence of application restarts on the working set, we repeat
the test from the last section with nginx, but stop and restart the server application
in the middle of the test. As seen in Figure 3.3, the server restart introduces 7%
change to the working set of nginx. Similarly, in the MariaDB benchmark, the
average difference to the working set of the first request is more than doubled.
Because this change significantly affects the effectiveness of cache preheating,
our design contains a method to detect server restarts (Section 4.2) and renews the
working set prediction after a restart.

3.3.5 Overlapping Working Sets

Although the working set of a single application shows a high degree of tem-
poral correlation, the working sets of different applications are usually radically
different. Even different server applications share some parts of the working set
though. For example, the operating system’s network stack is usually present in
all working sets, and different applications might link to the same share libraries.
This overlap in the working set is problematic for working set estimation: As we
will show in Section 4.1.2, the working set estimation needs to be able to isolate a

24 CHAPTER 3. ANALYSIS

single network application, and any overlap between the working sets makes this
isolation more difficult.

To show that such overlap is significant even among radically different web
services, we execute an instance of the nginx server and a MariaDB database
server on the same system and submit network requests to both. We read the
cache contents after both requests and compare the working set. Our experiment
shows that 31% of the combined working set of the two applications is accessed
by both applications. Running the applications in two separate virtual machines
can slightly reduce the overlap, because each application then has its own sepa-
rate network stack. However, the network stack of the hypervisor still generates
significant overlap between the two working sets.

Chapter 4

Design

In this work, we show how cache preheating can reduce the latency overhead
caused by deep CPU sleep states. The general idea is to wake the CPU up before
a network packet arrives and to load the estimated working set of the server ap-
plication into the cache. In Section 3, we have already sketched the structure of
a generic cache preheating solution and have identified generic requirements as
well as a number of properties of the targeted workloads. In this section, we de-
scribe a specific software design which implements cache preheating and fulfills
the requirements listed above.

The resulting design consists of two parts described in Section 4.1: One part
is a program which analyzes the cache usage of the server for one or more net-
work requests (Section 4.1.1 to 4.1.2) and then uses that information to speed up
subsequent requests by preheating the caches (Section 4.1.5). The caches have
to be preheated in advance though, so the other part is a network arbiter which
announces future incoming network requests to the server (Section 4.1.3 to 4.1.4).
The remainder of the section then focuses on additional features: Our proposed
cache preheating solution is able to detect server restarts (Section 4.2) and can
also be extended for the use with other types of wakeup events besides incoming
network packets (Section 4.3).

4.1 Components

The design which results from the requirements and assumptions listed above
operates in two phases, as shown in Figure 4.1:

• Working Set Prediction Phase: The preheating system estimates the work-
ing set of a network application by analyzing the accessed memory locations
after several requests have been processed by the application. The system

25

26 CHAPTER 4. DESIGN

System idle, wait for

announcement of network packet

Preheat caches

Process network requests

(normal operation)

Flush caches

Process network requests

Estimate working set

Cache preheating phaseWorking set prediction phase

Figure 4.1: The two phases of our cache preheating solution: First, the work-
ing set of the server application is estimated, then the estimate is used to preheat
the caches for all following network requests. Incoming network packets are an-
nounced by an external component (described in Section 4.1.3).

retrieves these accessed memory locations by reading the content of the
cache tag RAM and calculating the physical addresses from the tag bits.

• Preheating Phase: As soon as a good working set estimate is available,
the system switches to regular operation. In this phase, the system pre-
dicts future network requests through the help of a central network arbiter.
Whenever the arrival time of the next incoming network request is known,
the system wakes up in anticipation of the request and loads the estimated
working set into the caches. The system switches back into the training
phase when it detects that the server application has been restarted.

announces

timeslot

analyzes/

preheats

sends request

Network

Arbiter

Cache

Preheater

Server

Application
Client

client system server system

triggers

sending
requests

timeslot

Figure 4.2: Components of the preheating solution and their interaction with the
network service

The resulting software architecture is simple and consists of two major com-
ponents, as shown in Figure 4.2: On the server system, the operating system is
extended with a component which estimates the server application’s working set
and preheats the caches whenever a network request is announced. This announce-
ment is implemented by another component, the central network arbiter, which is
extended to predict future network packets and to notify the server system.

4.1. COMPONENTS 27

Because our design is supposed to work with arbitrary unmodified network
applications, neither the server application nor the client application are modified.
In both cases, the system is designed to work with arbitrary existing software,
and software changes are limited to the network and the operating system of the
server.

4.1.1 Working Set Estimation
The first execution phase of our preheating system is the working set prediction
phase, because cache preheating requires a fine-granular description of the mem-
ory locations which are supposed to be loaded into the cache. The working set
is only estimated once, and the result is reused throughout the cache preheating
phase, because, as shown in Section 3.3.3, all network requests to the same server
application have approximately the same working set.

Traditionally, working set estimation is conducted with page granularity. Ac-
cess to pages is detected either via page faults or via hardware access bits. How-
ever, these mechanisms cannot be used if cache line granularity is required. In-
stead, the information about the working set can be either generated by a pure
software solution, or it can be provided by the memory controller or the caches,
as these are the parts of the CPU which operate with cache line granularity. In
Section 3.2, we have identified several mechanisms which can be used to provide
fine-grained information about the current working set.

flush caches

process network

requests

read cache

tag bits

generate working

set from tag bits

filter variable parts

of the working set

sort memory

locations

subtract preheater

working set

apply run-length

encoding

no

yes

several times

repeated?

Figure 4.3: The various steps of our working set estimation phase: First, our soft-
ware analyzes the cache state to compute a list of all memory locations accessed
by the server application (left side). Then, the software postprocesses this estimate
of the working set to improve preheating performance (right side).

Of these mechanisms, analysis of cache tag bits provides the easiest method
to determine the working set of the system. Figure 4.3 shows how our design
uses snapshots of the cache state to determine what memory locations are used

28 CHAPTER 4. DESIGN

while the server application processes a network request: First, the caches are
flushed before the network request arrives, in order to exclude all irrelevant cache
lines from the results. Then, the network request arrives and is processed by the
server application. Afterwards, our design loops over all cache lines and reads
the corresponding tag bits. The tag bits are then concatenated with the index of
the corresponding cache line and converted into physical addresses. If there are
no significant numbers of conflict or capacity misses during the working set pre-
diction phase, the resulting list of physical addresses is a superset of the system’s
working set.

However, the resulting cache state dump is not yet a good basis for cache
preheating. Especially, it will contain a significant number of cache lines which do
not need to be loaded into the cache by the preheating code, either because they are
only infrequently (or never) required by the server application or because they are
already in the cache when the preheating code is executed. Such memory locations
must not be included in the resulting working set description, because loading
them does not provide significant gain, whereas the memory accesses significantly
increase the cost of preheating. As shown in Section 6.4, this preheating cost is
critical.

To make sure that the result does not include more memory locations than
accessed by the server application, our design disables any kind of hardware
prefetching during the working set prediction phase. Otherwise, the cache would
contain data which has been loaded by the hardware prefetcher but which is not
in the application’s working set. Disabling the hardware prefetcher can cause
significant performance loss. However, the working set prediction phase can be
kept rather short, and the resulting working set estimate can be reused for many
requests, so the temporary performance loss does not have any significant effect
on the overall performance. As a further improvement, we suggest an extension
for the hardware prefetcher which marks cache lines which have been fetched by
the hardware prefetching unit but have not been used by the application. Such
marking can enable the working estimation code to distinguish whether a cache
line was actually used by the server application, so prefetching does not need to
be switched off. We are, however, not aware of any available CPU architecture
which has such a hardware feature.

Even after the hardware prefetcher has been disabled, the resulting working
set estimate contains unnecessary cache lines and can otherwise be optimized.
Therefore, our design performs a number of post-processing steps to improve the
quality of the predicted working set:

• Removing highly variable parts of the working set: Apart from hard-
ware prefetching as described above, we have identified three important rea-
sons why unnecessary cache lines are included in the dumped cache state:

4.1. COMPONENTS 29

First, the operating system scheduler can preempt the server application and
schedule a different process with a distinct working set, and that process can
pollute the cache. Second, the server application can process network re-
quests of different types, and each type of request has a different working
set, so some memory locations are not accessed by other types of requests.
These locations are therefore unnecessary when the cache is preheated for
these types of requests. Third, and most importantly, some data (e.g., net-
work buffers) is placed in a different location for each network request.

In all these cases, our cache preheating solution purges all varying memory
locations from the working set estimate by performing the analysis repeat-
edly on several consecutive network requests. The resulting cache dumps
are intersected, and all memory locations which are not found in all cache
dumps are removed from the final working set estimate.

• Preventing memory locations from being loaded twice: In our design,
the cache preheating code is triggered by an announcement from a central
network arbiter. If this announcement is sent via a network packet, then the
CPU has already traversed the OS network stack by the time cache preheat-
ing is started. Therefore, the network stack as well as other parts of the OS
(e.g., interrupt handling) are already in the cache at that point in time. Most
likely, the locations are also part of the working set of the network applica-
tion, so the preheating code tries to load them again. Although no second
access to external memory occurs, the second load instruction increases the
computational complexity of preheating.

Therefore, for the first network request to be preheated, the system once
dumps the cache state from within the preheating code instead of preheating
the caches. This cache dump contains the cache lines which have already
been loaded when the cache preheating code is executed, so the memory
locations are removed from the working set estimate which is used for pre-
heating.

• Sorting memory locations by increasing physical addresses: After the
working set has been filtered as described above, it consists mostly of mem-
ory locations which are actually required by the server application. The or-
der of the memory locations is rather random, though. Our design sorts the
working set by increasing physical addresses to reduce the time required for
preheating. The preheating code linearly iterates through the list of memory
locations to be loaded, and the resulting sorted access pattern is significantly
more efficient.

Generally, DRAM is organized into many rows, and one row is held in the
row buffer at a time. An access to a different row causes the content of the

30 CHAPTER 4. DESIGN

row buffer to be written back into the memory matrix, and a different row
is read into the buffer instead [51]. A sorted memory access pattern causes
significantly less switching between rows compared to a random access pat-
tern, because the spatial locality of the accesses is increased. As a result,
the memory throughput is increased.

• Compression of the working set description: In order to maximize the
memory throughput available for loading the working set, we must mini-
mize the parts of the cache preheater’s cache footprint which are not part of
the application’s working set. For example, the description of the working
set is metadata which is loaded, but which is not required by the server ap-
plication. As the working set description is highly regular (all addresses are
aligned to cache line boundaries and are sorted), compression can signifi-
cantly reduce the size of the data. Complex compression techniques, how-
ever, require significant amounts of decompression code in the preheater
and increase the cache footprint again.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30 35
 0%

 2%

 4%

 6%

 8%

10%

12%

14%

fr
e

q
u

e
n

c
y

fr
a

c
ti
o

n
 o

f
th

e
 w

o
rk

in
g

 s
e

t

run length (cache lines)

frequency
total data size

Figure 4.4: Relative frequency and combined data size of runs of different length
in the working set of the nginx web server. Although very short runs are more
frequent, longer runs describe a larger amount of data.

We have opted for a very simple run-length encoding scheme instead, as it
provides very cheap on-the-fly decompression of the data, does not require
any data structures which increase the cache footprint (e.g., dictionaries),
and still achieves a good compression ratio. Most of the time when an
application touches one cache line, it also touches surrounding cache lines,
so memory locations in the working set description often form long runs of

4.1. COMPONENTS 31

consecutive cache lines. Figure 4.4 shows the distribution of the length of
these runs for the working set of the nginx web server and a simple HTTP
GET request. On average, 3.3 cache lines form one consecutive run. In our
design, the working set estimation code counts the number of consecutive
addresses and encodes this number into the least significant bits of the first
address to maximize the compression ratio. These bits are guaranteed to
be zero, because all addresses are always aligned to cache line boundaries.
Each run of consecutive addresses is therefore packed into 4 bytes, and the
size of the working set description of the example is reduced by 69%.

4.1.2 Isolating Single Network Requests
In the last section, we assumed that, as shown in Figure 4.3, the cache contains
the memory locations of exactly one network request. In practice, the operating
system might not have enough information to isolate a single request to a single
network application, though. Multiple server applications might be executed in
parallel, and multiple clients might send requests to the same application in par-
allel. Without application-specific knowledge, it is difficult for the OS to know
when requests begin and end, and it is difficult to isolate the memory accesses of
a single network request or a single network application. However, we argue that
it is not necessary to distinguish between multiple network requests of one sin-
gle network application, and we present mechanisms to differentiate between the
memory accesses of multiple server applications which are running in parallel.

Multiple Active Server Applications

If multiple server applications are processing requests in parallel, the working set
prediction method presented in the last section will generate the combined work-
ing set of the applications, because the cache is shared by all applications. As
a result, too much data is loaded whenever the cache is preheated. As shown
in Section 3.3.5, the overlap between different applications is significant, even if
they applications are placed in different virtual machines. Any working set estima-
tion based on cache content analysis would therefore only result in the combined
working set.

In this work, we expect a system which only executes one single type of ap-
plication. Although such a setup is common in some cases where other concur-
rent applications would reduce the performance of the executed application (e.g.,
dedicated cache servers or data storage servers), it often results in reduced utiliza-
tion of the available resources (and therefore increased cost) compared to a setup
where multiple different applications share one physical system. We therefore
provide several potential solutions for future evaluation:

32 CHAPTER 4. DESIGN

• Physical separation: One practical solution to isolate a single server appli-
cation is run it on a core with a separate cache, so that all data in that cache
was actually loaded by the server application. Other server applications can
continue to run on cores with different caches without affecting working set
estimation. The hardware platform of our prototype, the Samsung Exynos
5422, has such two separate L2 caches where each cache is used by a differ-
ent set of cores [9]. We use this hardware feature to separate the benchmark
client from the benchmark server. We could use a similar setup to distin-
guish between the working sets of two server applications. However, with
the exception of multi-socket NUMA systems, real server systems might
not cluster cores around more than one last-level cache. Therefore, such a
technique is not universally applicable.

• Other working set estimation techniques: Trace-based or simulation-
based working set estimation techniques (see Section 3.2) can be designed
in a way in which they ignore all but one server application. For exam-
ple, a simulator-based design can be configured to record memory accesses
done by either the network stack or one server application, or a trace-based
technique can trace all L1 cache misses from the server application’s CPU
core. Although these approaches are difficult to implement, they can likely
produce a clean estimation of the working set of a single server application.

Multiple Requests to One Server Application

Even if the system can isolate server applications from each other, the working
set prediction mechanism still does not know when the analyzed network request
ends. There is little harm from combining the working sets of multiple subsequent
requests into one working set estimate, though, because the working sets of the
requests are basically identical. As described in Section 3.3.3, the working set of
a single network service shows a high degree of temporal correlation. Therefore,
after one request has been processed, further requests do not cause significant
amounts of additional cache misses and therefore do not significantly change the
cache contents. Some parts of the working set, however, are specific to a sin-
gle request. For example, the operating system potentially places each incoming
network packet at a different location in memory.

We measured the cache footprint of the nginx web server after executing one
single request for a static web page and after executing 10 identical requests. On
average, the cache footprint was 20% larger when multiple requests were pro-
cessed before the cache state was analyzed. To measure how much of this in-
crease can be attributed to data which is specific to a single request, we repeated
the experiment, but applied additional filters to the result: Each cache footprint

4.1. COMPONENTS 33

analysis was repeated 10 times, and only memory locations were counted which
appeared in all repetitions. Under these conditions, the difference is significantly
smaller, and only 6% additional cache lines are included in the working set es-
timate when multiple requests are processed during working set estimation. We
expect this overhead to be acceptable, therefore the working set estimation code
does not need to distinguish between different network requests to the same server
application. Instead, the cache usage can be analyzed either when the CPU is idle
again or after a conservative time span has elapsed after the initial packet has
been received, even when multiple network requests have arrived after the initial
request.

4.1.3 Prediction of Future Events

When a good description of the server application’s working set has been created,
the system switches from the working set prediction phase to the preheating phase.
In this phase, the system wakes the processor cores up before a request arrives and
loads the working set into the cache. This behaviour means that the preheating
code has to know in advance when network requests are going to arrive.

Previous work has shown that such predictions are possible for other types
of events (solid state disks, GPUs), but network requests have generally been ex-
cluded [64]. Responses from network services with low response time jitter are
likely well predictable. In general, incoming network packets cannot be predicted,
though, because they are issued independently by other systems, outside of the
control of the system trying to preheat the caches.

If the network performs access control via a central arbiter though, this cen-
tral arbiter can provide information about future network packets. As described
in Section 2.2, such network architectures have been proposed for low latency
traffic in data center networks and show superior network latencies compared to
networks with traditional decentralized packet switching and flow control.

4. Sender sends data,

receiver processes

request with low latency

3. Receiver preheats

its caches

Figure 4.5: Future network packets are announced by the network arbiter in ad-
vance, so that the receiver can preheat the caches in anticipation of the packets.

34 CHAPTER 4. DESIGN

Figure 4.5 shows how the central arbiter can also be used to predict future
network packets. The figure shows the steps which happen when a sender system
wants to send a network packet to a different target system. First, as always in
such systems, the sender asks the arbiter for a timeslot to send a packet. The ar-
biter then schedules all such requests in a way that no collisions between different
packets occur. The resulting schedule is sent to the sender, which then creates a
timer to send the packet. Deviating from the regular behaviour in such network
architectures, the arbiter however also sends the schedule to the target system, as
an announcement of future incoming packets. When the target system receives the
schedule, it can activate a sleeping CPU core and preheat its caches. By the time
the packet reaches the target system, the CPU is fully awake with warm caches
and can process the network packet with low latency.

If cache preheating is still in progress after the arrival time of the packet, the
server application is delayed by the preheating code, and the effectiveness of cache
preheating is reduced. Therefore, this design causes cache preheating to be highly
time-critical, because the time between the announcement of the packet and its
arrival time is very limited. As the presented network architectures are designed
especially for low-latency traffic, packets must be scheduled as soon as possible
after the sender system has requested a time slot. For example, Fastpass calculates
schedules only 65 microseconds in advance [47].

4.1.4 Detecting the Targeted Server Application

Although the technique described in the last section can predict the arrival time
of future network packets, it can not yet identify the targeted server application.
However, depending on the server application, a different working set needs to
be loaded into the cache, and in Section 4.1.2, we have presented a working set
estimation mechanism for multiple concurrent applications. Therefore, the system
must not only predict the time of the request, but also its type.

In existing centrally arbitrated networks, the announcement of a network packet
usually only contains identifiers for the source and target systems [10]. The an-
nouncement does not contain any information which can be used to identify the
type of the request. We propose that the network architecture is modified in a
way that the announcement also contains the destination port of the TCP or UDP
packet. Whenever a system needs to send a packet, it sends a request with the
destination address and the destination port to the central arbiter, and the arbiter
includes that port number when announcing the packet’s allocated timeslot to the
destination system. Depending on the port number, the preheating code then se-
lects the working set of the corresponding server application and loads it into the
cache.

4.2. DETECTING SERVER RESTARTS 35

4.1.5 Cache Preheating

Once an incoming network packet has been announced, the cache preheating
code iterates through the run-length-encoded working set description and loads
the working set into the cache. At this point, the memory access pattern has al-
ready been optimized as part of the working set estimation code (Section 4.1.1).
The goal of the cache preheating code is therefore to execute this memory access
pattern in the most efficient way possible. The resulting optimizations are very
architecture specific, so we describe them in the implementation chapter (Sec-
tion 5.3).

4.2 Detecting Server Restarts

As described in Section 3.3.4, the working set of a server application can gradually
change over time, and there can be abrupt phase changes. We have not observed
the former in practice, and most variable parts of the working set are already
filtered out by the working set post-processing described above. In cases where the
working set is gradually degrading, we propose that the working set is periodically
refreshed to reduce the effect of such gradual change.

Unlike gradual working set changes, sudden phase changes are easier to de-
tect, because they are usually triggered by external events. Most importantly,
server restarts induce sudden change to the working set. However, server restarts
are also rather easy to detect, even without any knowledge about the internal work-
ings of the server application. A number of resources are acquired when the server
application starts, and are released when the server application is stopped. Exam-
ples for relevant resources are processes, threads, network sockets or memory.
The resources are allocated by the operating system, and so the operating system
can analyze resource usage to detect server restarts.

Detection of restarts is made difficult by the fact that different server appli-
cations use drastically different architectures, and each server architecture shows
different resource usage patterns. Our design therefore monitors the state of the
server application’s network sockets, because network sockets are the only re-
source which is used in a similar fashion by all common server architectures,
whereas the number of processes and threads varies wildly [29].

For example, servers often maintain one process per connection, especially on
Unix systems. Such multi-process servers can either fork the main process when-
ever a new connection is established, or a pool of processes can be initialized on
startup. Even in the latter case, a high number of connections can require addi-
tional processes to be created. When a connection is closed, the corresponding
process is then potentially destroyed to reduce memory usage. Similarly, multi-

36 CHAPTER 4. DESIGN

threaded servers can either spawn a new thread for every incoming connection, or
a pool of threads can be maintained. Therefore, for these types of server applica-
tions, neither processes nor threads can be used to identify server restarts.

The main network socket of a server application is usually created at startup,
though, and is destroyed when the server application is stopped. Therefore, the
socket provides a good indicator for server restarts. Our design assumes that the
server application has been restarted whenever the preheating software notices
that the server application’s socket is destroyed. First, however, the system needs
to establish a mapping between sockets and server applications. In our design,
this mapping is determined during the working set prediction phase. In this phase,
the preheating software memorizes the port number of the network requests which
trigger an analysis of the cache contents. The port numbers are stored along with
the resulting working set. Later, during the preheating phase, the system is notified
by the operating system whenever a socket is destroyed. In that case, the preheat-
ing software compares the port number of the destroyed software to the recorded
port numbers. If the port numbers match, the system returns to the working set
prediction phase to regenerate the working set estimate.

Although this design is able to reliably detect restarts for most common server
applications, it does not support applications which utilize socket activation to
start the application on-demand when a network packet arrives. An example for
such a socket activation system is inetd [20]. The inetd „super-server“ uses
select (and, optionally, accept) to wait for incoming connections and pack-
ets. It then spawns a new server processes which processes all requests from the
new connection, or—in the case of datagram sockets—processes all future pack-
ets arriving on the original socket [55, p.376]. In both cases, inetd maintains
a handle to the original socket, so the socket can outlive the server application.
Therefore, socket destruction is not a good indicator for a server restart. The sit-
uation is however special in that there is only one service like inetd which pro-
vides automatic restarts for many different server applications. Therefore, only
one single service needs to be modified to manually notify the operating system
about server restarts. Although such modifications are a clear violation of our re-
quirement for the preheating system to work with unmodified server applications,
the fact that only one application (inetd) needs to be patched makes such changes
viable.

4.3 Other Types of Events
Above, we have described how cache preheating can be used to reduce the re-
sponse time to network requests. Such a technique is not limited to network appli-
cations though. Similarly to how Zhu et al. use anticipatory wakeups mitigate the

4.3. OTHER TYPES OF EVENTS 37

effect of sleeping CPUs on the response time to various other types of events [64],
cache preheating can be employed to reduce the effect of cold caches.

Cache preheating, just like anticipatory wakeups, only requires the source of
wakeup events to be well predictable. Zhu et al. have shown that HDD transfers
and GPU kernel invocations are well predictable, so cache preheating can likely
improve the performance of the corresponding applications. The only limitation
of cache preheating in these situations is that not all these asynchronous tasks take
long enough that aggressive power gating of the CPU is power-efficient

38 CHAPTER 4. DESIGN

Chapter 5

Implementation

In the last chapter, we have described a design which preheats the CPU caches
before a network request arrives, in order to reduce the effects of cold caches on
the response time of network applications. We have performed our evaluation
with a prototype based on Linux and the Odroid XU3 single board computer. In
this chapter, we describe this implementation, with a focus on those parts which
are specific to the underlying hardware and operating system.

In Section 5.1 we describe our choice of hardware platform and the resulting
limitations of our prototype. We show the resulting structure of the prototype in
Section 5.2. In the following sections, we then describe how we implement and
optimize cache preheating (Section 5.3, how we ensure that DMA transfers are
not affected when data is loaded into the cache (Section 5.4 and how we detect
server restarts in the Linux kernel (Section 5.5).

5.1 Hardware Platform

As shown in Section 3.2, current hardware platforms provide two basic methods
to create a fine-grained working set estimate. The two possibilities are to read
the contents of the cache tag RAM (supported by many modern ARM processor
cores) and to trace all cache misses (supported by current Intel processor cores).
As described in that section, our current design focuses on direct access to cache
tag RAM as the method for working set estimation. Therefore, we based our
prototype on a system with an ARM processor, the Hardkernel Odroid XU3.

The Odroid XU3 is a single board computer designed around the Samsung
Exynos 5422 system-on-chip [9]. The system contains two clusters of CPU cores,
one with four ARM Cortex-A15 cores and one with four Cortex-A7 cores. Of
these cores, however, only the Cortex-A15 cores support direct access to cache
memories through the RAMINDEX register, so our cache preheating prototype

39

40 CHAPTER 5. IMPLEMENTATION

is limited to these cores. Each core contains 32 KiB L1 instruction cache and
data L1 cache. The two clusters each contain their own independent unified L2
cache (2 MiB for the Cortex-A15 cores, and 512 KiB for the Cortex-A7 cores) [9].
There are two properties of the system which limit the scope of our prototype:

• No advanced power management support: Although the Exynos 5422
SoC was originally designed for smart phones and provides advanced power
management functionality [6], we could not configure the system to flush its
caches during idle periods. The kernel provided by Hardkernel does provide
functionality to disable single cores or whole clusters of cores though. By
disabling all Cortex-A15 cores, the power usage of the system can be signif-
icantly reduced. Our experiments show that in this situation the cache seems
to be flushed. These findings are consistent with coarse-grained power gat-
ing of the cores as well as the cache, which is exactly the scenario targeted
by our cache preheating design.

However, the difference between this simple power management mecha-
nism and the sleep modes found in current server and desktop CPUs is sig-
nificant: Our experiments showed that reenabling a cluster of cores takes
more than a millisecond, whereas current desktop and server CPUs usually
require much less than 100 microseconds [53]. The available power man-
agement techniques are therefore not very representative for future server
systems, and the system is not the right system to show interactions with
power saving options. We therefore decided to ignore hardware-provided
power management and instead simulate deep sleep modes by manually
flushing the CPU caches whenever the CPU would have entered a deep
sleep mode.

• USB network adapter: Like most similar ARM single board computers,
the Odroid XU3 connects to the network through a USB network adapter.
In various parts of this evaluation chapter, we are presenting response time
measurements, because response time reduction is the main goal of cache
preheating. The USB bus however is a single-master bus in which only
the host controller can initiate transfers, without any means for the USB
network adapter to trigger interrupts when network packets arrive [18]. In-
stead, the host seems to poll the device once per microframe, where each
microframe is 125 microseconds long. In a lightly loaded network, the ar-
rival time of packets at the CPU is therefore aligned to 8000 Hz intervals.

As a result, the response time of the server can only be measured precisely
if the packets are synchronized to the USB microframes. Otherwise, the
response to the packet will be delayed by the USB bus. To demonstrate the
effect, we have created a network latency benchmark in which the network

5.1. HARDWARE PLATFORM 41

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 900 1000 1100 1200 1300

c
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

 f
u
n
c
ti
o

n

Response Time (µs)

(a) Cumulative histogram of the re-
sponse time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 1200 1400 1600 1800

c
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

 f
u
n
c
ti
o

n

Response Time (µs)

(b) Sum of response time and previous
random delay.

Figure 5.1: Cumulative histogram of the round trip time of a simple echo server.
The irregular distribution shows the effects of the USB bus.

client wants a random time before sending a network packet. Figure 5.1
shows the resulting response time histogram, with and without the random
delay. Figure 5.1a shows that the packets are randomly delayed by up to
125 microseconds, and if add the response time to the previous sleep du-
ration, the resulting distribution shows that the arrival time of the packet is
discretized by USB polling (Figure 5.1b).

As it is difficult to synchronize the benchmark client to the USB bus of the
server system, the results of latency measurements are basically useless to
analyze the effects of cache preheating, as the differences are mostly smaller
than the USB microframe interval. Therefore, we do not use physical net-
works at all, but instead place the benchmark client on the same system as
the benchmarked server and the cache preheating system. We use the two
processor clusters to separate the client from the server. The two separate
L2 caches allow us to flush only the cache of the emulated server system
while leaving the cache contents of the client intact.

These two hardware properties and the resulting simplification to the design
significantly limit the usability of the prototype. However, the main goal of our
evaluation is to show the general viability of the idea of cache preheating. The
prototype therefore only needs to show that the basic mechanisms work and are
likely suited for the presented scenario. Therefore, realistic power management or
networking is not strictly required, as long as its properties are taken into account
when analyzing the results (for example, Fastpass only computes schedules 60
microseconds in advance before the network packet is sent, placing a strict timing
requirement on preheating).

42 CHAPTER 5. IMPLEMENTATION

5.2 Components

announces

request analyzes/

preheats

sends request

Benchmark

Client

Cache

Preheater

Server

Application

Cortex-A7 Cortex-A15

requests cache flush

Figure 5.2: Components of our prototype setup. The benchmark client simulates
both power gating and the predictable network architecture.

In Section 4.1 we have described the different components of our design. Our
prototype follows this scheme, but, as described above, is slightly simplified. Fig-
ure 5.2 shows the components of the implementation:

• Client application: Because the prototype does not include any predictable
network architecture, there is no central arbiter which can announce future
network packets to the receiver. Instead, the benchmark client manually
sends a UDP packet to the cache preheating server before sending any net-
work request.

This UDP packet includes the time at which the client sends the next net-
work request. The client generally waits for 500 microseconds between the
announcement and the predicted network request in order to give the server
some time to preheat the caches. This timespan is significantly larger than
what is provided by real predictable network architectures. However, we
want to analyze the various effects and properties in isolation. If preheating
takes too much time, we still want it to be finished when the network request
arrives, in order to measure the potential response time reduction.

In addition to the timestamp of the following network request, the UDP
packet also contains an identifier of the requested service. As described
in Section 4.1.4, these identifiers allow the preheating system to maintain
a different working set estimate for every network service on the system.
The identifiers are statically allocated in the client application. In a real-
world setup, where the client application does not announce its requests,
the network arbiter will announce the target port to the destination system
instead.

• Preheater: The cache preheating system is divided into two components. A
Linux kernel module implements all features which require elevated priv-

5.3. CACHE PREHEATING 43

ileges. For example, working set estimation requires access to machine-
specific registers, and cache preheating requires access to all of physical
memory. A separate userspace program (the cache preheating server) im-
plements a small UDP server and receives packets which announce future
requests.

Whenever this server receives a packet announcing a future network request,
it first calls the kernel module to flush the caches, in order to simulate deep
processor sleep states. Then, the program issues a system call to the kernel
module to either estimate the working set or to preheat the caches. Working
set estimation is implemented as an analysis of the cache tag bits of the L2
cache with the RAMINDEX register [5].

• Server application: Whereas the client application has been modified to
announce its network requests, the server application is not modified. It
is executed on the same physical system (or, in our setup, the same core
cluster) as the preheater, so that the working set prediction code captures
the working set of the server application.

5.3 Cache Preheating
As soon as a good working set estimate is available, the system starts to pre-
heat the caches whenever an incoming request is announced. As described in
Section 4.1.5, the preheating code simply executes prefetch instructions on all re-
quired memory locations. The main challenge is that cache preheating needs to be
complete when the network request arrives. Therefore, the achieved throughput
needs to be maximized, and the code must not load more data than necessary, so
we have implemented a number of optimizations.

• Removal of high-memory support: Our first implementation was severely
slowed down by the way how Linux kernel code usually accesses physical
addresses: Our hardware platform is a 32-bit system, and Linux partitions
the virtual address space so that the bottom 3 GiB are accessible to the
application, whereas the top 1 GiB is reserved to the kernel. As much as
possible of physical memory is mapped into the kernel region at boot, in
order to enable efficient access to arbitrary physical addresses [65]. How-
ever, the limited size of the kernel region means that only a certain amount
of physical memory can be mapped. Therefore, Linux partitions physical
memory in low and high memory. Low memory is directly mapped into
the kernel region by default, whereas high memory is not mapped. Instead,
whenever kernel code wants to access physical addresses in high memory,

44 CHAPTER 5. IMPLEMENTATION

the location needs to be manually mapped into the address space with the
kmap_atomic function [65].

The cache preheating code needs to be able to load the data at arbitrary phys-
ical addresses into the cache. Therefore, the first version of our prototype
used kmap_atomic and kunmap_atomic to make individual physical
memory frames accessible whenever necessary. Doing so, however, proved
to be prohibitively expensive, as each call to these functions causes signifi-
cant overhead and little time was spent actually loading the working set into
the cache.

However, the concept of high memory is only required on architectures with
a small virtual address space. Future servers are universally expected to
use 64-bit processors though. On these systems, the whole physical mem-
ory can be conveniently mapped into the kernel part of the virtual address
space. To simulate this situation, and to achieve better cache preheating per-
formance, our prototype configures the Linux kernel in a slightly unusual
fashion. The virtual address space is split so that only 1 GiB is allocated
to user space applications, and 3 GiB are available to the kernel. As the
system only contains 2 GiB of RAM, all physical memory can be directly
mapped into virtual memory, and no expensive page table manipulations are
necessary while the cache is preheated.

• Manual unrolling: Most of the time during cache preheating is spent in
two loops: The outer loop iterates through all runs of consecutive loca-
tions, and the inner nested loop iterates through all addresses in each of the
loop to decode the run-length encoding. After, as described above, all page
table manipulation has been removed, only code to read the working set
description and to prefetch the working set is left. We have reimplemented
the two loops in assembly, and we have manually unrolled the inner loop.
Because the run length is encoded in the lowest six bits, the inner loop is
repeated at most 64 times, so we have replaced the loop by a sequence of 64
prefetch instructions with different offsets. For each run, the code computes
the instruction pointer so that the correct number of prefetch instructions is
executed.

• Parallel preheating: Recent multi-core CPUs can often only completely
utilize the available memory bandwidth when multiple cores are used to par-
allelize memory access. On our prototype platform, parallel access to mem-
ory from 6 cores is 40% faster than access from a single core, as measured
with the pmbw parallel memory bandwidth benchmark. Because cache pre-
heating is memory-bound, we have implemented a parallel version which

5.4. DMA BUFFERS 45

evenly divides the working set description into up to four parts and pro-
cesses them in parallel on up to four Cortex-A15 cores. We have, however,
found that the maximum throughput is achieved with only two cores, as
otherwise the parallelization overhead reduces the overall speedup.

5.4 DMA Buffers
As described in the last section, the cache preheating system can load data from
arbitrary physical addresses into the cache. There is one situation in which arbi-
trary access to memory can cause the system to misbehave, because the data is not
supposed to be in any cache: If a device uses DMA to write to the memory loca-
tion, the CPU might continue to see a stale copy of the data if the data is cached.
Therefore, in some architectures, the preheating code might not be allowed to
fetch data into the cache which is concurrently used for DMA transfers.

The access restrictions vary significantly depending on the architecture though.
Current processor architectures and CPUs use several methods to prevent inco-
herent cache contents during normal operation. For example, x86 processors
support the memory type range registers (MTRR) to mark segments of physical
memory as non-cacheable, or support page attribute tables (PAT) to mark parts
of virtual memory as non-cacheable [12], whereas other architectures allow the
OS to mark individual pages as cacheable through configuration bits in the page
tables [2]. However, marking large areas of memory as non-cacheable, in or-
der to allow DMA operations on them, can cause a significant performance hit.
Other mechanisms with higher performance include cache-coherent interconnects
which automatically clean or flush cache lines when a DMA transaction touches
the corresponding memory locations [3] and software-managed coherency where
the operating system manually cleans or flushes parts of the cache whenever nec-
essary [1].

In the Linux kernel, this architecture-dependent behaviour is hidden behind
the DMA mapping API, and kernel code is supposed to use special functions
(dma_alloc_attrs and dma_alloc_coherent) to allocate memory for
DMA transfers [48]. A hook could be inserted into these functions to remove
the corresponding parts from all existing working set estimates whenever a new
DMA memory region is allocated or whenever the DMA mapping code flushes
the caches, in order prevent the preheater from loading data into the cache which
is not supposed to be cached.

However, our prototype is only required to work on the ARM architecture,
so we chose a much less complex architecture-specific approach: Basically, the
prototype completely ignores the problem of (temporarily) non-cacheable DMA
buffers, because the underlying software-management coherency strategy already

46 CHAPTER 5. IMPLEMENTATION

expects that memory can be randomly fetched into the caches by the processor.
The reason for this behaviour is that modern ARM processors implement spec-
ulative prefetching (readahead), which builds upon access pattern detection and
already predicts the next access and fetches the corresponding data into the cache
before the program executes the corresponding load or store instruction. Linux
cleans the cache (writeback of all modified cache lines) before any DMA transfer
to make sure that modified data is not lost during the transfer. After the DMA
transfer has been completed, the kernel additionally discards any cached data [8].
This last step ensures that, whenever the cache might contain stale data because
the data has been fetched into the cache before the DMA transfer has modified
the corresponding memory locations, this stale data is discarded before the CPU
can access it. Because of this mechanism, the system can use cache preheating
without any additional mechanisms to provide cache coherency.

5.5 Detecting Server Restarts
As described in Section 4.2, the cache preheating system needs to repeat the work-
ing set prediction phase whenever the server application is restarted, because the
restart significantly changes the working set. For multi-process applications, pro-
cess restarts are not a good indicator for the application restart. Therefore, our
design tracks changes to TCP and UDP sockets instead, and whenever a socket is
destroyed, we expect the corresponding application to be shutting down. In our
prototype, the restart detection logic is divided into two parts:

• Working set prediction phase: During working set estimation, the pre-
heating system records the destination port of the next incoming IP packet
after the estimated arrival time. As the working set prediction phase spans
multiple incoming network requests, we track the destination port (and net-
work protocol) for each of the requests. Ideally, the predictable network
architecture announces the port of future network packets. In our case, no
such announcement is available though, so we need to manually track the
port of incoming packets via a hook inserted into the tcp_v4_rcv func-
tion [16]. Other protocols besides TCP are not tracked yet, although similar
functions exist for these protocols as well. The hook is only activated when
an incoming packet is announced during the working set prediction phase,
and automatically deactivates itself once a packet is received in order to
keep the performance overhead as low as possible.

Not every recorded destination port is automatically associated with the pre-
dicted request type: In our prototype, we noticed that the arrival time of ran-
dom network packets to other network applications (e.g., concurrent SSH

5.5. DETECTING SERVER RESTARTS 47

sessions) coincides with the predicted network packet, so the wrong port is
recorded. Therefore, we only associate ports with the request type after they
have been observed to be accessed at least twice. This modification might
not be necessary in a realistic setup with a real predictive network architec-
ture if those other random packets are announced in advance as well and the
order of arrival is known.

• Preheating phase: During the preheating phase, the system tracks changes
to network sockets and invalidates working set estimates whenever one of
the corresponding sockets is destroyed. To detect when sockets are de-
stroyed, we have inserted a hook into the __inet_put_port function
which is called whenever a socket is destroyed and the corresponding port
is deallocated [11].

48 CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation

In this section, we present the evaluation of our cache preheating prototype de-
scribed in Section 5. With our evaluation, we want to answer the following ques-
tions: Can cache preheating be used to reduce the response time to network re-
quests when the caches have been flushed? Is such preheating efficient enough so
that it is a viable technique when combined with existing network architectures?
How much do the individual optimizations described in the previous sections con-
tribute to the performance of the design?

The evaluation of our solution is divided into four parts: First, we describe our
benchmark setup (Section 6.1) and describe the performance metrics which we use
to check the performance of our prototype. In Section 6.3, we present the results
of our performance evaluation to show whether cache preheating can significantly
reduce response times. The effectiveness, however, is reduced if the cache is
not preheated quickly enough. In Section 6.4, we therefore analyze whether our
prototype meets the deadlines set by the network architecture. In Section 6.5, we
show that no significant runtime overhead is caused by cache preheating. Finally,
in Section 6.6, we discuss whether the presented solution is already viable and
what further modifications and optimizations should be explored.

6.1 Benchmark Setup

Most parts of the evaluation share a common setup. In Section 5.2, we have
described the components of our prototype, which differ slightly from the original
design. Especially, our prototype does not involve any actual network between
different physical systems. Instead, the components are only executed on separate
processor cores.

Most benchmarks are executed on an Odroid XU3 with four Cortex-A15 cores
running at 2 GHz and four Cortex-A7 cores running at 1.4 GHz. To reduce the

49

50 CHAPTER 6. EVALUATION

variance of the benchmark results, we have configured all cores to always run at
their maximum frequency. The system’s cooling fan was configured to always run
at full speed in order to reduce the likeliness of thermal throttling. In some of the
following sections we deviate from this benchmark setup, for example because
some properties are demonstrated on an x86-based system. In these cases, the
differences are explicitly mentioned.

Whenever the benchmarks are executed on the ARM system, the benchmark
client is always executed on the first Cortex-A7 core, whereas the server applica-
tion and the preheating server are always executed on the first Cortex-A15 core.
The kernel module executes most functionality on one or more Cortex-A15 cores.
The benchmark client generally waits 500 microseconds between announcing a
request and sending the actual request.

6.2 Performance Metrics
As described in Section 3.1, a cache preheating system needs to fulfill a num-
ber of requirements. Most importantly, the system needs to reduce overall latency
when the caches are cold, without sacrificing the power usage advantages of cache
power gating. Also, the system needs to be robust even when DMA is not cache-
coherent, and it needs to be compatible to existing hardware and software. Finally,
the predictable network architecture places some timing requirements on the pre-
heating system, as preheating needs to be completed by the time the network
request arrives.

In this evaluation, we mainly focus on the overall latency reduction as well
as the timing requirements caused by the network architecture, as these are the
main quantifiable performance properties of our prototype. Latency reduction
is measured by the benchmark client described in Section 5.2, which executes
several requests with warm caches, cold caches and with cache preheating. In
the following, we also analyze performance counters to show that the latency
difference is caused by cache preheating. The Cortex-A15 core supports a number
of performance counters which are usable for this task. Especially, the core can
count the number of data L2 cache refill events, as well as the number of cache
lines written back to RAM. Although these counters provide an approximation of
the number of cache misses, they do not include instruction cache misses, and no
other performance event seems to fill this gap [4]. More importantly, however,
not every cache miss is detrimental for performance. In an out-of-order CPU,
the latency of some cache misses can be hidden behind other instructions if those
instructions do not depend on the result of the memory operation. Instead of
counting cache misses, we would rather like to count the stall cycles caused by
the cache misses. No such performance counter is available though, so we use the

6.3. PERFORMANCE EVALUATION 51

cycles per instruction (CPI) as a metric which correlates with the number of stall
cycles.

Cache misses are only prevented, though, if the corresponding data is fetched
into the caches before the network request arrives. The time required to preheat
the caches is critical and, as shown in the sections below, significantly limits the
amount of data which can be loaded until the network request arrives. This time
is simply measured in the preheating kernel module, along with the selected per-
formance counters.

The fulfillment of other requirements is implicitly shown in our evaluation:
We demonstrate the compatibility to existing infrastructure by evaluating our pro-
totype with unmodified hardware and unmodified server applications. Also, our
prototype has shown to be compatible to DMA from other devices, as we have
not observed any crashes despite significant concurrent DMA activity during our
experiments. Finally, we argue that cache preheating will not have any signifi-
cant effect on overall power usage, because, as shown in Table 6.1, the response
time reduction mostly cancels out the corresponding preheating costs. As the lim-
itations described in Section 5.1 prevent any extensive power usage analysis, we
defer such an analysis to future work.

6.3 Performance Evaluation

The performance of a preheating system mostly depends on the achieved response
time reduction, whereas the time required to preheat the caches is usually hidden
behind the network latency. We analyze the response time reduction of our proto-
type for several real-world server applications to demonstrate the general viability
of the design.

All benchmarks are only executed on one processor core, so we set the CPU
affinity of the server applications when starting the benchmark. The nginx web
server provides the worker_cpu_affinity to limit the cores on which the
server is run. The other benchmarks provide no such option, instead they were
pinned to one core with the taskset utility.

6.3.1 Response Time Benchmarks

We have selected a number of representative server applications to demonstrate
the effect of cache preheating on response times. These applications are the
nginx web server, the memcached in-memory key-value store and the MariaDB
database. The benchmarks have been selected because they are all typical latency-
critical network services: For many web services, a single request can in turn

52 CHAPTER 6. EVALUATION

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600

c
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

 f
u
n
c
ti
o

n

response time (µs)

(a) nginx

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

c
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

 f
u
n
c
ti
o

n

response time (µs)

(b) memcached

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12

c
u
m

u
la

ti
v
e

 d
is

tr
ib

u
ti
o

n
 f
u

n
c
ti
o
n

response time (ms)

Warm Caches
Cold Caches

Preheating

(c) DBT-2 (MariaDB)

Figure 6.1: Cumulative histogram of the response time of various real-world ap-
plications.

spawn many requests to databases or caches, and a single website can contain
many small files which are fetched from a web server.

The nginx and memcached benchmarks use a static data set and the client sim-
ply fetches data from the server. The network requests are created with the libcurl
HTTP library and the libmemcached library. The MariaDB benchmark is more
dynamic, its network requests are copied from the DBT-2 benchmark [7], which
is in turn a clone of the TPC-C database benchmark [17]. This benchmark simu-
lates a warehouse management system and measures the performance of various
database queries for order management and stock level status. However, origi-
nally, both TPC-C and DBT-2 were designed to measure the database throughput
at maximum load. We have modified the DBT-2 benchmark to insert a short pause
between the requests and have instrumented the code to announce the next request
in order to simulate the predictable network architecture.

The complexity of the benchmarks differs significantly, and so do its working

6.3. PERFORMANCE EVALUATION 53

response time (µs) preheated data preheating
cold warm preheated (average) cost

nginx 367.8 500.0 379.6 265.3 KiB 77.7 µs
memcached 174.5 236.4 180.4 154.9 KiB 52.6 µs

MariaDB 3959 4317 4057 657.1 KiB 154.0 µs
mixed 1567 1719 1569 360.2 KiB 95.7 µs

Table 6.1: Average response times of our benchmarks with and without cache
flushes before each request as well as with cache preheating, and the correspond-
ing time required to preheat the caches as well as the working set size of the
benchmark.

cache misses CPI
cold warm preheated cold warm preheated

nginx 267 6791 1392 3.61 5.80 3.95
memcached 249 4089 895 3.89 5.90 4.21

MariaDB 7597 22838 11733 2.26 2.47 2.31
mixed 3625 11423 4824 2.41 2.69 2.42

Table 6.2: Effect of preheating on the number of cache misses per network request
and the average cycles per instruction

set size and the average response time. Figure 6.1 shows the average response
time with and without preheating as well as the amount of preheated data and the
time required to preheat the caches. In all cases, preheating causes a significant
reduction of the response time, and we measure a significant reduction of the
number of cache misses. We also measure a lower number of cache misses and
reduced cycles per instruction (i.e., less stall cycles due to cache misses). These
results show that the reduced number of cache misses is the main source of the
response time reduction.

The DBT-2 database workload is especially challenging, because it executes
a range of different network requests which have substantially different working
sets and which access a large dynamic data set. Even in this case, cache preheating
yields a significant performance improvement, even though only the commonly
used memory locations are preheated.

6.3.2 Effects on Tail Latency
As we describe in Section 2.1.2, we expect servers to process network requests
in bursts. Deep sleep modes are only activated between those bursts, so the first
network request of every burst is processed with reduced performance. Depending

54 CHAPTER 6. EVALUATION

Cold Preheated
mean latency 1.9% 0.5%

50th percentile 0% 0%
90th percentile 6.3% 1.3%
95th percentile 23.9% 2.3%
97th percentile 19.0% 1.4%
99th percentile 0.6% 1.0%

Table 6.3: Overhead at selected response time percentiles when every 20th re-
quest hits a system with cold caches. In our setup, the 99th latency percentile is
dominated by other effects which completely hide the effect of cold caches.

on the length of each burst, the average response time might not be significantly
affected, but the tail latency is defined by the response time of the first request of
each burst. In a modern large-scale web service, the tail latency of a single system
however defines the overall latency for the end-user [27].

To show the effect of cache preheating on the tail latency in such a scenario,
we simulate such burst processing: The benchmark client flushes the caches be-
fore every 20th network request, and optionally preheats the caches before this
request. Table 6.3 shows the resulting response time overhead. Although the
average latency is not significantly affected, cache flushes significantly increase
the 95th and 97th percentile of the response time distribution, whereas cache pre-
heating mostly mitigates this tail latency overhead. This result shows that cache
preheating can efficiently mitigate the effect of cache flushes on the tail latency of
web services.

6.3.3 Mixed Workloads

Our code detects the type of the network request based on the destination port of
the network packet. Depending on the port, the working set of a different server
application is loaded into the cache. To show that this differentiation between
server applications is beneficial, we have benchmarked a mixed workload con-
sisting of random requests to all the server applications described above. This
benchmark is repeated twice, once with one working estimate per server appli-
cation, and once with only one working set estimate for the whole system and
without differentiation between different types of requests.

In the latter case, there are two potential strategies: The preheating code could
either load all memory locations which are used by any of the application, or it
could include only those locations accessed by all applications. Because preheat-
ing is time-critical and the amount of data loaded into the cache therefore needs

6.4. PREHEATING COSTS 55

to be minimized, our code generally follows the latter strategy and removes all
memory locations from the predicted working set which are not always required
to process network packets. As a result, the working set is significantly reduced
if the server applications are different, so the effectiveness of cache preheating
is reduced. Our benchmarks show that, when the support for differentiation be-
tween multiple server application is removed, the overhead is reduced by only
23%, significantly less than the normal response reduction shown in Table 6.1.

6.4 Preheating Costs
Besides the effect on response time, we have also measured the overhead caused
by preheating. Loading the working set into the caches is expensive, but also
very time critical, because the time between the announcement and the arrival
of a network packet is short. During all our performance experiments, we have
also measured the time required to preheat the caches as well as the size of the
working set. The results are shown in Table 6.1: The memcached server is the
least complex application, as it only implements hash-table operations and mem-
ory management, whereas the MariaDB server implements execution of complex
database queries, and therefore, according to our experiments, requires around 4
times as much data to process the average query. Similarly, the time required to
preheat the caches varies between 53 and 154 microseconds. It can be seen that,
even though the working sets are rather small, our prototype violates the deadline
for cache preheating.

The numbers from Table 6.1 also show that the potential for further cost re-
duction is small on our hardware platform. On average, our prototype preheats
the caches with an average throughput of 3.54 GiB per second. The achieved
throughput depends significantly on the workload, with the preheating code trans-
ferring 2.94 GiB/s for the memcached workload and 4.27 GiB/s for the MariaDB
workload. We have compared this number with results from the pmbw memory
bandwidth benchmarking tool [13], which achieves up to 4.8 GiB per second when
six cores are linearly accessing memory, and which achieves 4.3 GiB/s when—
like in our prototype—two cores are accessing memory. Although the throughput
differs between pmbw and our prototype, the difference is small enough to show
that our prototype is already mainly limited by the available memory bandwidth.

6.4.1 Contribution of Individual Optimizations
As seen in the last section, the main challenge with cache preheating is that pre-
heating needs to be completed by the time the next network packet arrives. The
results shown above are the product of a number of individual optimizations. We

56 CHAPTER 6. EVALUATION

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

unoptimized sorted filtered RLE parallel

n
o

rm
a
liz

e
d

p
re

h
e
a

ti
n
g

 c
o
s
t

Figure 6.2: Normalized times to load the predicted working set of the nginx web
server with different optimizations (normalized to the cost of unoptimized pre-
heating)

have conducted an experiment to show that all of them have significant impact on
preheating performance. Figure 6.2 shows the time needed to preheat the work-
ing set of the nginx web server when the optimizations below are successively
enabled:

• Sorted Cache Dumps: Naturally, when the working set estimate is pro-
duced from copies of the cache tag memory, the list of memory locations
is sorted by the indices of the corresponding cache sets. Addresses from
different DRAM rows can map into the same cache set, so naive preheat-
ing utilizing this access order will lead to increased numbers of DRAM row
switches. If we sort the memory locations by address, we improve the tem-
poral correlation of the memory operations. As a result, the time required
for preheating is reduced by 54.5%.

• Working Set Filtering: As described in Section 4.1.1, the initial working
set estimate contains addresses which are only accessed during working set
estimation (e.g., buffers into which the cache state is copied) as well as
memory which has already been loaded into the cache when the preheating
code is executed. Both can be removed from the working estimate. In the
example of the nginx web server, this optimization reduces the size of the
working set estimate by 65.5 KiB or 22%. As a result, cache preheating
requires 15.3% less time.

• Run-Length Encoding: The list of memory locations in the working set is
compressed using run-length encoding. Compression can reduce the time
required to preheat the caches, as less data needs to be fetched from mem-
ory, and it can in theory reduce the potential for conflict cache misses be-
cause the cache footprint of the preheating code is reduced. In our case, the
time required to preheat the caches is reduced by 6.9%.

• Parallel Preheating: The memory bandwidth of our test system cannot
be fully utilized by a single core. If our preheating code is parallelized

6.5. OTHER RUNTIME OVERHEAD 57

on two cores, preheating requires 10.4% less time. We could not achieve
any further improvements by adding further cores, although the results of
the pmbw benchmark show limited potential for further optimizations. On
more than two cores, the throughput improvement is likely offset by the
parallelization overhead.

• Manual Unrolling: At this point, our preheating code is probably mostly
limited by the available memory throughput. Nevertheless, there are situa-
tions during which the memory controller is not efficiently utilized. There-
fore, we have manually unrolled the main loop which is used to preheat
the caches, and have hand-optimized with manually written assembly code.
This optimization further yields a 8.3% performance improvement.

6.5 Other Runtime Overhead

The last sections have shown the effects of the preheating solution on system per-
formance during the working set prediction phase and while preheating is active.
Preheating however only takes place while the system would otherwise be idle,
so the potential negative impact is limited. It is still necessary to show that pre-
heating does not produce any significant negative effect at other times while the
system is active though. Especially, our solution introduces hooks in the kernel at
two points, to check the target port of incoming packets and to invalidate working
set estimates when the corresponding server socket is destroyed.

However, rarely any functions are registered for the first hook, and the second
hook is rarely called during regular operation, so the induced overhead should be
insignificant. In fact, we could not measure any response time difference com-
pared to a system with an unmodified Linux kernel, because each reboot caused
more variation to the response time than any of our modifications.

6.6 Discussion

As shown, cache preheating can reduce the response time overhead after a cache
flush by on average 80%, almost as if the cache had never been flushed. As a
result, the tail latency of our benchmarks is significantly reduced. Although the
preheating system is limited to the last-level cache, this limitation is justified by
the low performance impact when other types of caches are flushed. All in all,
cache preheating is therefore a promising technique for response time reduction.

Our prototype, however, cannot preheat the caches quickly enough. The net-
work arbiter announces future packets only approximately 60 microseconds in

58 CHAPTER 6. EVALUATION

advance, and this time includes the time required to wake the CPU up, so only ap-
proximately 30 microseconds are left to preheat the caches. Our cache preheating
prototype exceeds this deadline for all presented benchmarks. In practice, cache
preheating is still viable, due to two reasons:

1. Increased preheating costs are compensated by the resulting response
time reduction: Even when preheating is not complete by the time the
corresponding network packet arrives, we can naively continue to preheat
the caches. The network request is then delayed until the cache has been
preheated. Even this strategy results in a net response time reduction, as the
delay is offset by an increased response time reduction.

For example, our prototype overshoots the deadline by 37 microseconds,
but the processing time is reduced by 120 microseconds, so the response
time is reduced by 83 microseconds overall. Even the complex MariaDB
workload would result in a net response time reduction.

2. Server systems usually have significant higher memory bandwidth: Our
prototype only achieves a throughput of 3.54 GiB per seconds while pre-
heating the caches, and synthetic memory benchmarks do not perform sig-
nificantly better. Our prototype platform is not very representative for real-
world server systems, though, which commonly employ more powerful
CPUs and significantly faster memory. For example, we have measured the
memory bandwidth of a system with an Intel i5-6500 CPU and two mem-
ory channels to be almost eight times as large as the one of our prototype
system. With such increased memory bandwidth, all our benchmarks can
likely be preheated within 30 microseconds, even the complex MariaDB
workload which took four times longer in our test.

We conclude that cache preheating will result in good response time reduction
on systems with high memory bandwidth. On systems with lower memory band-
width, preheating is not yet utilized to its full potential. As a future optimization
for this scenario, we propose a system which continues to preheat the caches even
after the network packet has arrived, but which from this point executes preheating
code in parallel to the server application.

The goal of cache preheating is that whenever the server application accesses
memory, the accessed data is already in the cache. However, not all data needs
to be in the cache when the network application is resumed. Only if a certain
memory location is accessed right after the application has been resumed, the data
needs to be loaded into the cache before any application code is executed. If data
is accessed at a later point in time, it can be loaded into the cache while the server
application is already running, as long as it is loaded into the cache before it is
accessed.

6.6. DISCUSSION 59

Such concurrent preheating is possible, but requires detailed information about
the order of the memory operations, so that data which is required early during
execution of the server application is also loaded early during cache preheating.
Concurrent preheating can be implemented either on a separate regular CPU core,
on a separate thread on the same CPU core (e.g., Intel Hyperthreading), or on a
specialized cache preheating controller. Using a separate CPU core wastes sig-
nificant power, but provides good performance isolation between the preheating
code and the server application. This performance isolation is not provided if the
preheating code is executed on a separate hardware thread. In this case, if the CPU
implements simultaneous multithreading, the memory accesses of the preheating
code are interleaved with the server application. Although the power consump-
tion is reduced compared to the usage of a second core for preheating, the two
threads share one memory instruction pipeline and one thread can cause the other
to stall due to resource conflicts. If, instead, cache preheating is implemented
in a specialized cache preheating controller, for example as part of the memory
controller, such resource conflicts cannot occur. Additionally, specialized hard-
ware generally provides significantly higher power efficiency and often provides
significantly higher performance.

In all three cases, the generated cache preheating memory accesses can block
the memory bus, thereby causing a memory request of the server application to
stall. Existing memory controllers implement heuristics to prioritize memory op-
erations which cause pipeline stalls [33], and a similar technique should be used
to prioritize „real“ memory accesses generated by server application code over
any cache preheating operations.

60 CHAPTER 6. EVALUATION

Chapter 7

Conclusion

In this work, we have presented cache preheating as a technique to reduce the re-
sponse time of server applications with cold CPU caches. Such cold CPU caches
are frequently caused by power management mechanisms which disconnect a
large fraction of the CPU area (including the caches) from the supply voltage.
Although we would like to avoid the negative effects of such power management
mechanisms, we have to use more and more aggressive power management in
order to efficiently manage the increasing fraction of dark silicon.

Cache preheating is a technique which can reduce the effect of cold caches
on CPU performance by loading the working set of the application into the cache
before execution is resumed. The working set of the application can be predicted
with fine granularity by analyzing the cache contents after similar requests are
processed by the server application. Additional post-processing steps reduce the
time required to load the working set, mainly by removing unnecessary data and
by optimizing the memory access order. Ideally, in the case of server applications,
such preheating is complete before the network packet arrives which triggers the
wakeup from the CPU sleep state. Our design therefore also includes a mechanism
to predict future incoming CPU packets with the help of a centrally arbitrated
network architecture, as we modify the arbiter to announce future packets to their
target systems.

In order to evaluate our design, we have implemented a prototype which im-
plements cache preheating on top of simulated networking and simulated power
management. The prototype is based on Linux and implements cache preheating
on a system with ARM Cortex-A15 cores. Our evaluation is able to show that
cache preheating is generally a promising and viable technique, even on hard-
ware which is available today: With preheated caches, the benchmarked server
applications perform almost as if the caches have never been flushed, and the re-
sponse time overhead of the cache flushes is reduced on average by 80%. Our
evaluation also shows that, on slightly more powerful systems, cache preheating

61

62 CHAPTER 7. CONCLUSION

likely meets the timing requirements posed by common predictable network ar-
chitectures, even though our prototype system does not provide enough memory
bandwidth. Our evaluation also shows that cache preheating is useful when mul-
tiple concurrent server applications are running on the same physical system.

7.1 Future Work
Although our evaluation generally shows that cache preheating is a viable tech-
nique, we have not implemented a full working cache preheating solution, leaving
significant space for future work. Especially, it is still necessary to evaluate the
benefits of such a solution in a representative data center environment. Cache pre-
heating has to be integrated with a real predictable network architecture, and has
to be ported to more representative server CPUs. In such a more complete setting,
the effects on overall power usage have to be evaluated.

Additionally, we have identified a number of places in the preheating software
with further potential for optimization. Especially, as we expect large amounts of
dark silicon to be available on future CPUs, some of these unusable transistors
could be used to significantly improve the performance of cache preheating, for
example by extending the memory controller to introduce more efficient methods
to load the working set. Other optimizations might be possible purely in software.
For example, preheating could be continued concurrently, on a different core, after
the server application has resumed execution. Alternatively, the working set esti-
mation could be used to identify parts of the application’s memory which could
be reordered to improve the cache preheating performance.

Finally, more research should be conducted on the various methods to create
fine-grained predictions of the working set. Especially simulation-based tech-
niques might be able to produce estimates of significantly higher quality with
reasonable performance impact. Such techniques techniques can not only predict
the working set but also yield information about the order of the memory accesses
(as required by concurrent cache preheating as described above) and information
about conflict cache misses.

Bibliography

[1] ARM Cortex-A Series Programmer’s Guide for ARMv8-A: 14.3. Multi-
core cache coherency within a cluster. http://infocenter.arm.
com/help/index.jsp?topic=/com.arm.doc.den0024a/
BABGJHAB.html.

[2] ARM926EJ-STM Technical Reference Manual: 3.2.8. Second-level descrip-
tor. http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.ddi0198e/I16780.html.

[3] CoreLink CCI-400 Cache Coherent Interconnect. http://www.arm.
com/products/system-ip/interconnect/corelink-cci-
400.php.

[4] Cortex-A15 MPCore Processor Technical Reference Manual: 11.6. Events.
http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.ddi0438i/BIIDBAFB.html.

[5] Cortex-a15 technical reference manual: 4.3.57. ram index regis-
ter. http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.ddi0438c/BABEJEAJ.html.

[6] cpuidle-exynos5422.c. https://github.com/hardkernel/
linux/blob/odroidxu3-3.10.y/arch/arm/mach-exynos/
cpuidle-exynos5422.c.

[7] Database Test Suite. http://osdldbt.sourceforge.net/.

[8] dma-mapping.c. http://lxr.free-electrons.com/source/
arch/arm/mm/dma-mapping.c#L100.

[9] en:xu3_hardware (Odroid Wiki). http://odroid.com/dokuwiki/
doku.php?id=en:xu3_hardware.

63

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/BABGJHAB.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/BABGJHAB.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/BABGJHAB.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0198e/I16780.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0198e/I16780.html
http://www.arm.com/products/system-ip/interconnect/corelink-cci-400.php
http://www.arm.com/products/system-ip/interconnect/corelink-cci-400.php
http://www.arm.com/products/system-ip/interconnect/corelink-cci-400.php
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438i/BIIDBAFB.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438i/BIIDBAFB.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438c/BABEJEAJ.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438c/BABEJEAJ.html
https://github.com/hardkernel/linux/blob/odroidxu3-3.10.y/arch/arm/mach-exynos/cpuidle-exynos5422.c
https://github.com/hardkernel/linux/blob/odroidxu3-3.10.y/arch/arm/mach-exynos/cpuidle-exynos5422.c
https://github.com/hardkernel/linux/blob/odroidxu3-3.10.y/arch/arm/mach-exynos/cpuidle-exynos5422.c
http://osdldbt.sourceforge.net/
http://lxr.free-electrons.com/source/arch/arm/mm/dma-mapping.c#L100
http://lxr.free-electrons.com/source/arch/arm/mm/dma-mapping.c#L100
http://odroid.com/dokuwiki/doku.php?id=en:xu3_hardware
http://odroid.com/dokuwiki/doku.php?id=en:xu3_hardware

64 BIBLIOGRAPHY

[10] fastpass/fpproto.h – yonch/fastpass – Github.
https://github.com/yonch/fastpass/blob/
71107152dda6ed7eae9de7be12a63e6a0f4e2fb8/src/
protocol/fpproto.h#L93.

[11] inet_hashtables.c. http://lxr.free-electrons.com/source/
net/ipv4/inet_hashtables.c#L105.

[12] PAT (Page Attribute Table). https://www.kernel.org/doc/
Documentation/x86/pat.txt.

[13] pmbw - Parallel Memory Bandwidth Benchmark / Measurement. https:
//panthema.net/2013/pmbw/.

[14] Poor virtual machine application performance may be caused by pro-
cessor power management settings. https://kb.vmware.com/
selfservice/microsites/search.do?language=en_US&
cmd=displayKC&externalId=1018206.

[15] Slow Performance on Windows Server when using the „Balanced“ Power
Plan. https://support.microsoft.com/en-us/kb/2207548.

[16] tcp_ipv4.c. http://lxr.free-electrons.com/source/net/
ipv4/tcp_ipv4.c#L1539.

[17] TPC-C. http://www.tpc.org/tpcc/default.asp.

[18] USB Made Simple: Part 1 - Introduction to USB. http://www.
usbmadesimple.co.uk/ums_1.htm.

[19] Valgrind User Manual – 5. Cachegrind: a cache and branch-prediction pro-
filer. http://valgrind.org/docs/manual/cg-manual.html.

[20] xinetd(8) - Linux man page. http://linux.die.net/man/8/
xinetd.

[21] Alfred V Aho, Peter J Denning, and Jeffrey D Ullman. Principles of optimal
page replacement. Journal of the ACM (JACM), 18(1):80–93, 1971.

[22] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan.
Data center tcp (dctcp). ACM SIGCOMM Computer Communication Re-
view, 41(4):63–74, 2011.

https://github.com/yonch/fastpass/blob/71107152dda6ed7eae9de7be12a63e6a0f4e2fb8/src/protocol/fpproto.h#L93
https://github.com/yonch/fastpass/blob/71107152dda6ed7eae9de7be12a63e6a0f4e2fb8/src/protocol/fpproto.h#L93
https://github.com/yonch/fastpass/blob/71107152dda6ed7eae9de7be12a63e6a0f4e2fb8/src/protocol/fpproto.h#L93
http://lxr.free-electrons.com/source/net/ipv4/inet_hashtables.c#L105
http://lxr.free-electrons.com/source/net/ipv4/inet_hashtables.c#L105
https://www.kernel.org/doc/Documentation/x86/pat.txt
https://www.kernel.org/doc/Documentation/x86/pat.txt
https://panthema.net/2013/pmbw/
https://panthema.net/2013/pmbw/
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1018206
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1018206
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1018206
https://support.microsoft.com/en-us/kb/2207548
http://lxr.free-electrons.com/source/net/ipv4/tcp_ipv4.c#L1539
http://lxr.free-electrons.com/source/net/ipv4/tcp_ipv4.c#L1539
http://www.tpc.org/tpcc/default.asp
http://www.usbmadesimple.co.uk/ums_1.htm
http://www.usbmadesimple.co.uk/ums_1.htm
http://valgrind.org/docs/manual/cg-manual.html
http://linux.die.net/man/8/xinetd
http://linux.die.net/man/8/xinetd

BIBLIOGRAPHY 65

[23] Mark Bohr. A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper.
Solid-State Circuits Society Newsletter, IEEE, 12(1):11–13, 2007.

[24] Koushik Chakraborty. Over-Provisioned Multicore Systems. PhD thesis,
University of Wisconsin, Madison, 2008.

[25] Anantha P. Chandrakasan, Samuel Sheng, and Robert W. Brodersen.
Low-Power CMOS Digital Design. IEICE Transactions on Electronics,
75(4):371–382, 1992.

[26] Ian Cutress. The Intel Haswell-E CPU Review: Core i7-5960X, i7-5930K
and i7-5820K Tested. http://www.anandtech.com/show/8426/
the-intel-haswell-e-cpu-review-core-i7-5960x-i7-
5930k-i7-5820k-tested.

[27] Jeffrey Dean and Luiz André Barroso. The Tail at Scale. Communications
of the ACM, 56(2):74–80, 2013.

[28] Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien Yu, V. Leo Rideout,
Ernest Bassous, and Andre R. LeBlanc. Design of Ion-Implanted MOS-
FET’s with Very Small Physical Dimensions. IEEE Journal of Solid-State
Circuits, 9(5):256–268, 1974.

[29] Benjamin Erb. Concurrent Programming for Scalable Web Architectures,
April 2012. http://www.benjamin-erb.de/thesis.

[30] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Dark silicon and the End of Multicore Scaling.
In 38th Annual International Symposium on Computer Architecture (ISCA),
pages 365–376. IEEE, 2011.

[31] Greg Ferro. Switch Fabrics: Input and Output Queues and Buffers for
a Switch Fabric. http://etherealmind.com/switch-fabric-
input-output-buffers-queues/.

[32] Krisztián Flautner, Nam Sung Kim, Steve Martin, David Blaauw, and Trevor
Mudge. Drowsy Caches: Simple Techniques for Reducing Leakage Power.
In Proceedings of the 29th Annual International Symposium on Computer
Architecture (ISCA’02), pages 148–157. IEEE, 2002.

[33] Saugata Ghose, Hyodong Lee, and José F. Martínez. Improving Mem-
ory Scheduling via Processor-Side Load Criticality Information. In ACM
SIGARCH Computer Architecture News, volume 41, pages 84–95. ACM,
2013.

http://www.anandtech.com/show/8426/the-intel-haswell-e-cpu-review-core-i7-5960x-i7-5930k-i7-5820k-tested
http://www.anandtech.com/show/8426/the-intel-haswell-e-cpu-review-core-i7-5960x-i7-5930k-i7-5820k-tested
http://www.anandtech.com/show/8426/the-intel-haswell-e-cpu-review-core-i7-5960x-i7-5930k-i7-5820k-tested
http://www.benjamin-erb.de/thesis
http://etherealmind.com/switch-fabric-input-output-buffers-queues/
http://etherealmind.com/switch-fabric-input-output-buffers-queues/

66 BIBLIOGRAPHY

[34] Matthew P Grosvenor, Malte Schwarzkopf, and Andrew W Moore. R2D2:
Bufferless, Switchless Data Center Networks Using Commodity Ethernet
Hardware. In ACM SIGCOMM Computer Communication Review, vol-
ume 43, pages 507–508. ACM, 2013.

[35] James Hamilton. The Cost of Latency. http://perspectives.
mvdirona.com/2009/10/the-cost-of-latency/, 2009.

[36] Michael R Hines and Kartik Gopalan. Post-Copy Based Live Virtual Ma-
chine Migration Using Adaptive Pre-Paging and Dynamic Self-Ballooning.
In Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments (VEE’09), pages 51–60. ACM,
2009.

[37] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Developer’s
Manual – Volume 3: System Programming Guide. Number 325384-058US.
April 2016.

[38] Hema Kapadia, Luca Benini, and Giovanni De Micheli. Reducing Switching
Activity on Datapath Buses with Control-Signal Gating. IEEE Journal of
Solid-State Circuits, 34(3):405–414, 1999.

[39] Nam Sung Kim, Todd Austin, David Baauw, Trevor Mudge, Krisztián Flaut-
ner, Jie S Hu, Mary Jane Irwin, Mahmut Kandemir, and Vijaykrishnan
Narayanan. Leakage Current: Moore’s Law Meets Static Power. Computer,
36(12):68–75. IEEE, 2003.

[40] Florian Larysch. Fine-Grained Estimation of Memory Bandwidth Utiliza-
tion. Master Thesis, Operating Systems Group, Karlsruhe Institute of Tech-
nology (KIT), Germany, March 2016.

[41] Etienne Le Sueur and Gernot Heiser. Dynamic Voltage and Frequency Scal-
ing: The Laws of Diminishing Returns. In Proceedings of the 2010 Interna-
tional Conference on Power Aware Computing and Systems (HotPower’10),
pages 1–8. USENIX Association, 2010.

[42] Shuhao Liu, Hong Xu, and Zhiping Cai. Low Latency Datacenter Network-
ing: A Short Survey. arXiv preprint arXiv:1312.3455, 2013.

[43] Daniel Molka, Daniel Hackenberg, Robert Schöne, and Matthias S. Müller.
Memory performance and cache coherency effects on an intel nehalem mul-
tiprocessor system. In 18th International Conference on Parallel Architec-
tures and Compilation Techniques (PACT’09), pages 261–270. IEEE, 2009.

http://perspectives.mvdirona.com/2009/10/the-cost-of-latency/
http://perspectives.mvdirona.com/2009/10/the-cost-of-latency/

BIBLIOGRAPHY 67

[44] Shinichiro Mutoh, Takakuni Douseki, Yasuyuki Matsuya, Takahiro Aoki,
Satoshi Shigematsu, and Junzo Yamada. 1-V Power Supply High-Speed
Digital Circuit Technology with Multithreshold-Voltage CMOS. IEEE Jour-
nal of Solid-State Circuits, 30(8):847–854, 1995.

[45] Nicholas Nethercote and Julian Seward. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. In ACM Sigplan Notices, vol-
ume 42, pages 89–100. ACM, 2007.

[46] Brent Ozar. SQL Server on Power-Saving CPUs? Not So
Fast. https://www.brentozar.com/archive/2010/10/sql-
server-on-powersaving-cpus-not-so-fast/, October 2010.

[47] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and
Hans Fugal. Fastpass: A Centralized „Zero-Queue“ Datacenter Network.
ACM SIGCOMM Computer Communication Review, 44(4):307–318, 2015.

[48] Laurent Pinchart. Mastering the DMA and IOMMU APIs.
http://events.linuxfoundation.org/sites/events/
files/slides/20140429-dma.pdf, 2014.

[49] Michael Powell, Se-Hyun Yang, Babak Falsafi, Kaushik Roy, and TN Vi-
jaykumar. Gated-Vdd: A Circuit Technique to Reduce Leakage in Deep-
Submicron Cache Memories. In Proceedings of the 2000 International
Symposium on Low Power Electronics and Design (ISPLED), pages 90–95.
ACM, 2000.

[50] Arun Raghavan, Yixin Luo, Anuj Chandawalla, Marios Papaefthymiou,
Kevin P. Pipe, Thomas F. Wenisch, and Milo M. K. Martin. Computational
Sprinting. In 18th International Symposium on High Performance Computer
Architecture (HPCA), pages 1–12. IEEE, 2012.

[51] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson, and John D.
Owens. Memory Access Scheduling. In Proceedings of the 27th Inter-
national Symposium on Computer Architecture (ISCA’00), pages 128–138.
ACM, June 2000.

[52] Theodore H. Romer, Wayne H. Ohlrich, Anna R. Karlin, and Brian N. Ber-
shad. Reducing TLB and Memory Overhead Using Online Superpage Pro-
motion. In ACM SIGARCH Computer Architecture News, volume 23, pages
176–187. ACM, 1995.

https://www.brentozar.com/archive/2010/10/sql-server-on-powersaving-cpus-not-so-fast/
https://www.brentozar.com/archive/2010/10/sql-server-on-powersaving-cpus-not-so-fast/
http://events.linuxfoundation.org/sites/events/files/slides/20140429-dma.pdf
http://events.linuxfoundation.org/sites/events/files/slides/20140429-dma.pdf

68 BIBLIOGRAPHY

[53] Robert Schöne, Daniel Molka, and Michael Werner. Wake-up latencies for
processor idle states on current x86 processors. Computer Science - Re-
search and Development, 30(2):219–227. Springer, 2015.

[54] Anand Lal Shimpi. The Haswell Review: Intel Core i7-4770K & i5-
4670K Tested. http://www.anandtech.com/show/7003/the-
haswell-review-intel-core-i74770k-i54560k-tested.

[55] W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff. UNIX Network
Programming, volume 1. Addison-Wesley Professional, 2004.

[56] Michael B. Taylor. Is Dark Silicon Useful? Harnessing the Four Horsemen
of the Coming Dark Silicon Apocalypse. In Proceedings of the 49th Annual
Design Automation Conference (DAC’12), pages 1131–1136. ACM, 2012.

[57] Gustavo E. Téllez, Amir Farrahi, and Majid Sarrafzadeh. Activity-
Driven Clock Design for Low Power Circuits. In Proceedings of the
1995 IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD’95), pages 62–65. IEEE Computer Society, 1995.

[58] Bhanu Chandra Vattikonda, George Porter, Amin Vahdat, and Alex C Sno-
eren. Practical TDMA for Datacenter Ethernet. In Proceedings of the 7th
ACM European Conference on Computer Systems (EuroSys’12), pages 225–
238. ACM, 2012.

[59] Anant Vishnoi, Preeti Ranjan Panda, and M Balakrishnan. Cache Aware
Compression for Processor Debug Support. In Proceedings of the Confer-
ence on Design, Automation and Test in Europe (DATE’09), pages 208–213.
European Design and Automation Association, 2009.

[60] Anant Vishnoi, Preeti Ranjan Panda, and M. Balakrishnan. Online cache
state dumping for processor debug. In 46th ACM/IEEE Design Automation
Conference (DAC’09), pages 358–363. IEEE, 2009.

[61] Yasuko Watanabe, John D. Davis, and David A. Wood. WiDGET: Wisconsin
Decoupled Grid Execution Tiles. In ACM SIGARCH Computer Architecture
News, volume 38, pages 2–13. ACM, 2010.

[62] Se-Hyun Yang, Michael Powell, Babak Falsafi, Kaushik Roy, and TN Vi-
jaykumar. Dynamically Resizable Instruction Cache: An Energy-Efficient
and High-Performance Deep-Submicron Instruction Cache. ECE Technical
Reports, page 22, 2000.

http://www.anandtech.com/show/7003/the-haswell-review-intel-core-i74770k-i54560k-tested
http://www.anandtech.com/show/7003/the-haswell-review-intel-core-i74770k-i54560k-tested

BIBLIOGRAPHY 69

[63] Liang Zhang, James Litton, Frank Cangialosi, Theophilus Benson, Dave
Levin, and Alan Mislove. Picocenter: Supporting Long-lived, Mostly-idle
Applications in Cloud Environments. In Proceedings of the 11th European
Conference on Computer Systems (EuroSys’16), page 37. ACM, 2016.

[64] Qi Zhu, Meng Zhu, Bo Wu, Xipeng Shen, Kai Shen, and Zhiying Wang.
Software Engagement with Sleeping CPUs. In 15th Workshop on Hot Topics
in Operating Systems (HotOS XV). USENIX Association, May 2015.

[65] Peter Zijlstra. High Memory Handling. https://www.kernel.org/
doc/Documentation/vm/highmem.txt.

All links were last accessed on 20. May 2016.

https://www.kernel.org/doc/Documentation/vm/highmem.txt
https://www.kernel.org/doc/Documentation/vm/highmem.txt

	Abstract
	Acknowledgments
	Contents
	Introduction
	Background and Related Work
	Dark Silicon and Power Management
	Power Management Techniques
	Response Time Overhead

	Predictable Network Architectures
	Cache Usage Analysis
	Adaptive Pre-Paging

	Analysis
	Situation and Requirements
	Hardware Support
	System and Application Behaviour
	Only the Last-Level Cache Matters
	Large Last-Level Caches
	High Temporal Correlation of the Working Set
	Lower Temporal Correlation over Larger Time Frames
	Overlapping Working Sets

	Design
	Components
	Working Set Estimation
	Isolating Single Network Requests
	Prediction of Future Events
	Detecting the Targeted Server Application
	Cache Preheating

	Detecting Server Restarts
	Other Types of Events

	Implementation
	Hardware Platform
	Components
	Cache Preheating
	DMA Buffers
	Detecting Server Restarts

	Evaluation
	Benchmark Setup
	Performance Metrics
	Performance Evaluation
	Response Time Benchmarks
	Effects on Tail Latency
	Mixed Workloads

	Preheating Costs
	Contribution of Individual Optimizations

	Other Runtime Overhead
	Discussion

	Conclusion
	Future Work

	Bibliography

