
Evaluating Techniques for Full
System Memory Tracing

Bachelorarbeit
von

Thomas Schmidt
an der Fakultät für Informatik

Erstgutachter: Prof. Dr. Frank Bellosa
Zweitgutachter: Prof. Dr. Wolfgang Karl
Betreuender Mitarbeiter: Dipl.Inform. Marc Rittinghaus

Bearbeitungszeit: 19. Juni 2017 – 18. Oktober 2017

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu





Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, den 18. Oktober 2017



iv



Deutsche Zusammenfassung

Die Möglichkeit, Speicherzugriffe aufzuzeichnen, sogenanntes Memory Tracing,
ist ein entscheidender Faktor bei der Verbesserung der Leistung von Software.
Mit der immer weiter werdenden Lücke zwischen Rechenleistung und Speicher-
geschwindigkeit [27] können durch Optimierung des Zugriffsmusters, zum Bei-
spiel durch Erhöhung der Cache-Trefferraten, die verfügbaren Ressourcen eines
Systems besser genutzt werden.

Zwar gibt es viele Tools, die Speicherzugriffe von Programmen auf Basis von
Dynamic Binary Instrumentation aufzeichnen können, wie Valgrind [29] oder
Pin [26], doch sind aber die meisten in ihren Fähigkeiten eingeschränkt, da sie
nicht in der Lage sind, die Speicherzugriffe innerhalb des Betriebssystemkerns
weiter zu verfolgen, wie z. B. während eines Systemaufrufs. Da dieser entschei-
dende Teil des Bildes fehlt, können erhaltene Cache-Simulationen irreführend
sein, wenn ein Programm häufig die Dienste des Kernels nutzt, was möglicher-
weise zu falschen Annahmen führt, wie Verbesserungen erzielt werden können.
Darüber hinaus ist das Sammeln der Speicherzugriffe des Kernels nicht nur hilf-
reich, um die Performance von Programmen zu verbessern, sondern kann auch
nützlich sein, wenn man versucht, die Interna eines Kernels selbst zu optimieren.

Zudem können diese Memory Traces auch nützlich sein, um die Sicherheit der
Software zu verbessern, indem sie dabei helfen, kritische Probleme zu finden, die
möglicherweise sogar erst von der Toolchain, mit der die Software erstellt wurde,
wie zum Beispiel dem Compiler [39], eingeführt wurden. Da die Kommunikation
zwischen dem Userspace und dem Kernel über geteilte Speicherseiten gelöst wird,
kann ein falsches Zugriffsmuster des Kernels zu einer unerwünschten Privilegien-
erweiterung führen [39], die es einem nicht autorisierten Programm erlauben, mit
den Privilegien des Kernels zu arbeiten.

Diese Arbeit untersucht eine Vielzahl von Möglichkeiten, mit denen man Mem-
ory Traces eines Betriebssystemkerns sowie seiner laufenden Software erzeugen
kann.
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Abstract

The creation of memory traces for full system analysis is very time-consuming,
yet it is a vital part of nowadays toolchain for improving software performance as
well as for increasing the security of software, by enhancing the understanding of
the software behavior.

This thesis examines the use of hardware-assisted virtualization as an alter-
native to memory tracing based on dynamic binary translation, using Intel’s Ex-
tended Page Table to restrict the access to memory. Further, both approaches are
implemented, comparing them regarding performance and the quality of the data
recorded. The experiments show that dynamic binary translation outperforms the
proposed system significantly regarding its performance and also has an edge con-
cerning accuracy.
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Chapter 1

Introduction

The ability to create memory traces, that is a set of all the memory accesses a pro-
gram triggered during its execution, is a crucial part when improving the perfor-
mance of software. With the gap between processing power and memory speeds
widening [27], optimizing the access pattern, by, e.g., increasing cache hit rates,
can help make better use of the available resources. While there are many tools
out there able to create memory traces for user-space programs based on dynamic
binary instrumentation, such as Valgrind [29] or Pin [26], most are limited in their
capabilities, as they are unable to trace the memory accesses occurring within the
operating system kernel, such as during a system call. With this crucial part of the
picture missing, obtained cache simulations could be misleading, if a user-space
program is frequently using the services of the kernel, possibly leading to wrong
assumptions on how to archive improvements. Further, collecting the memory ac-
cesses of a kernel is not just helpful for improving the performance of user-space
programs, but can also be useful when trying to optimize the internals of a ker-
nel itself. Moreover, memory traces can also be useful for improving software
security, helping to find critical issues, possibly even introduced by the toolchain
used to build the software in question, such as the compiler [39]. Further, as the
communication between the user-space and kernel does happen to include shared
memory pages, a wrong access pattern of the kernel might lead to privilege esca-
lation attacks [39], allowing an unauthorized program to run with elevated privi-
leges.

This thesis will explore a variety of possibilities one might use to create mem-
ory traces of an operating system kernel and its running software. Those mem-
ory traces can be generated using special hardware tools, which listen in on the
computer’s internals, such as the CPU pins or memory buses directly, or using
simulation-based approaches. While hardware-based tracing might seem superior
at first sight, some of its limitations concerning the handling of the vast amount
of information as well as the limited insight into the doings of the processor help
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4 CHAPTER 1. INTRODUCTION

software-based tracing shine in a better light. Thus, two software-based tracing
approaches will be implemented and further evaluated, one utilizing dynamic bi-
nary translation (DBT), and the other based on hardware-assisted virtualization,
the latter specifically for Intel’s x86 processors supporting Intel’s Extended Page
Table (EPT), allowing to revoke the processor the right to access the memory.

Finally, it will be evaluated how those two methods compare based on their
performance as well as on the accuracy of the trace one will receive. It turns out
that utilizing DBT has an edge in both those categories.

1.1 Thesis Outline
In Chapter 2, an overview is given of the relevant technologies used in this the-
sis. Among other things, an introduction to tracing and full-system simulation is
provided.

Chapter 3 evaluates the previously introduced technologies and elucidates the
reasoning for the choice of the two implementation designs for memory tracing
chosen in this chapter.

In Chapter 4, the two previously introduced approaches to memory tracing
are implemented, one based on dynamic binary translation and a second based on
hardware-assisted virtualization.

Further, Chapter 5 provides quantitative and qualitative results, comparing
both previously implemented approaches to one another.

Finally, Chapter 6 concludes this thesis.



Chapter 2

Background

This chapter explains the basics of tracing with a particular focus on memory
tracing. Furthermore, it gives a short introduction to full system simulation and
some of the possible techniques to implement it.

2.1 Tracing
Tracing describes the process of collecting desired information about the execu-
tion of a program based on extensive event logging. Due to the growing complex-
ity of software, it can help developers improve by allowing for a greater under-
standing of their product based on the recorded data. In practice, this contributes
to increasing performance of software [31] and helps to find security vulnerabili-
ties [39]. Moreover, it can be of great importance when developing new hardware,
such as microprocessors [21]. The kind of event recorded can vary from being
low-level such as instruction traces [8] to higher levels such as tracing communi-
cations [28].

2.1.1 Memory Tracing

Traces recording memory accesses of the processor are called memory traces and
can be used by hardware designers to create new memory modules [36] or make
improvements for future cache architectures [21] with many more possible uses
for hardware design alone. Software developers, too, can benefit from memory
tracing, indirectly using it in the form of cache simulators to increase the perfor-
mance of their software [31] or memory error detectors to search for potential
security vulnerabilities [39].

One of the many tools for those tasks is Valgrind [1], a software framework
shipping with a well-known tool suite for dynamic analysis. However, memory
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6 CHAPTER 2. BACKGROUND

traces can also be generated in hardware by listening in on the processor’s pins
directly [15]. Another possible way of creating memory traces in hardware might
be to monitor the address and data bus, which is also used by memory-mapped I/O
devices to react to requests from the processor. Finally, one can try extracting the
desired information from the memory interface, using a specialized monitoring
board inserted instead of an actual memory module [4].

There are some crucial challenges to overcome for both hardware and soft-
ware solutions. Both have to find ways to handle the huge amount of tracing
events emitted; this is especially challenging for hardware as the processor might
timeout [23] should the tracing implemented to be blocking, as the memory access
could be taking too long. In case of asynchronous tracing, the necessary buffer
might overflow, and some events could be lost. Further, some software tracers,
such as Valgrind, cannot trace memory accesses happening in the kernel space on
behalf of the program, e.g., during system calls, as to get those a higher instance
is required, such as a simulator.

2.2 Full-System Simulation
A Full-System Simulator can simulate every component of the system, at least
detailed enough, so that arbitrary software can run [12]. As one is then running
a virtual computer on top of the actual hardware, these kinds of simulations are
called virtual machines (VMs) and are sometimes also referred to as guest in-
stances. The simulator itself is known as a virtual machine monitor (VMM) or
simply the host.

A common use of simulation is in research and development [12, 14]. When
building new hardware, one can try whether the planned project can meet the de-
sired requirements, without the need to develop a prototype, as one could just
simulate the hardware. Moreover, the simulator can also be used to start develop-
ing software for the hardware before it is available [14]. Furthermore, simulation
is vital for security researchers, allowing them to set up save environments, e.g.,
to study the behavior of malware [30]. Another common use is in the data cen-
ter, where virtualization is heavily used to make better use of otherwise unused
resources through, among other things, server consolidation [22].

To achieve full-system simulation, one needs to simulate the processor, mem-
ory and all connected devices. Most domains do only require this simulation to be
an abstraction on the instruction set level of the processor, whereas others might
need cycle-accurate simulations of all devices, taking heavily into account the
implementation details of the desired hardware. Because of that, cycle-accurate
simulators are very difficult to build, not only because of the added complexity
itself but also because some implementation details are not publicly available and
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would need to be reverse engineered [13]. Some simulators, such as Simics [13],
approximate cycle-accurate simulators by using a preset cycles-per-instruction
value, which still is accurate enough for many computer architects [13].

Although performance is, depending on the kind of simulation, not compara-
ble to native execution [14], with computing resources becoming more powerful
and less expensive every year, this downside is becoming less important. More-
over, advances in the way virtual machines can be implemented further help de-
crease the overhead by multiple magnitudes [14].

2.2.1 Interpretation

The simplest way of implementing a virtual processor (vCPU) for a virtual ma-
chine monitor is by using interpretation. It works by setting up a context for the
vCPU containing all the registers and other forms of state information required.
During the actual execution, every instruction is read and decoded to finally dis-
patch a function to mimic the behavior of the instruction using a functionally iden-
tical reimplementation in code [38]. This approach comes at a significant cost in
performance and can be about 1000x slower than native execution [14], as the
emulation of every single instruction alone will require tens of actual instructions
executed [38].

2.2.2 Dynamic Binary Translation

An improved way of simulating guest systems is dynamic binary translation (DBT).
The most significant difference is that instead of reimplementing the instructions
in code one maps the desired functionality to native instructions of the host’s
instruction set, recompiles them as such [38] to finally execute those using the
host’s hardware directly, still changing the state of the virtual processor, with this
alone resulting in a significant speed-up. Moreover, instead of executing the guest
instruction-by-instruction, one can execute blocks of instructions and cache their
translations [38]. Although the translation might be quite slow itself [38], it amor-
tizes over time as one reuses the cached translations. Aforementioned can be
especially useful for loops.

This approach is by multiple orders of magnitude faster, compared to interpre-
tation, with QEMU’s Tiny Code Generator, a well-known example further detailed
in Section 2.3, only having a slowdown of about 20x [16].
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2.2.3 Virtualization

A today commonly used method of implementing virtual processors is using vir-
tualization. Whereas during interpretation one simulates the execution of the in-
structions, virtualization tries to use the underlying hardware of the host for that
directly, even avoiding the additional step of using a binary translation.

The two most prominent ways to achieve virtualization are paravirtualization
and full virtualization, with the latter requiring supporting hardware.

Paravirtualization

Not every instruction set can be used to implement virtualization directly, as most
were not designed with this intent [35]. Examples of this are x86 and MIPS,
which both only later received support for full virtualization [24]. One of the
previous deployed methods was the use of paravirtualization, that is providing
adapted interfaces to the virtual machine, to communicate with devices or handle
privileged instructions of the CPU, instead of the native ones [35]. As it cannot
use the entire native instruction set, the guest’s software supposed to run has to
be specifically adapted to this environment. An example of this is Disco, a VMM
for the MIPS architecture that was demonstrated to run a modified version of the
IRIX operating system [9]. Nowadays Paravirtualization plays an important role
in improving the performance of spin-locks.

Full Virtualization

Although some instruction sets require the use of paravirtualization, there are oth-
ers available supporting virtualization natively through either trap-and-emulate or
supported by hardware extensions.

Trap-and-Emulate Virtualization based on trap-and-emulate relies on the fact
that a CPU has different privilege levels. If the instruction set is well designed, a
privileged instruction executed at a lower privilege level should cause a trap [35].
Considering an example where the guest runs entirely on a single privilege level,
both its kernel- and user mode, and the VMM is higher privileged so that it can
take note of traps caused in the entire guest. Should the guest trap, the VMM can
check what kind of instruction caused it and see if the guest, in its current state is,
allowed to execute the desired instruction. Then, the VMM appropriately acts on
the guest’s behavior and emulates the correct response.
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Hardware-assisted Virtualization Some instruction sets, such as x86, cannot
be virtualized through trap-and-emulate. The reason is that for x86, the popf
instruction behaves differently, depending on whether it is executed in a privileged
or non-privileged mode. As it does not trap, there is no way to correct its behavior
[3]. Furthermore, the guest can tell based on its code segment selector that is not
running in a privileged mode. Thus it knows that it is virtualized [3].

Due to growing demand, some manufacturers decided to add support for hard-
ware-assisted virtualization to their platforms, using special virtualization exten-
sions. For the x86 platform, Intel and AMD both implemented virtualization ex-
tensions that while similar, as both are designed to mimic a classical trap-and-
emulate, are not compatible to one another.

Intel Virtualization Extension Intel’s Virtual Machine Extension (VMX)
introduces a whole lifecycle for the management of virtual machines, making sure
those cannot detect they are run virtually and allowing the VMM to choose under
which circumstances to exit the guest granularly [19].

Before the guest can be entered, the VMM has first to enable VMX and pre-
pare a virtual machine control structure. This structure contains all the relevant
information for a logical processor to enter the guest, as well as necessary infor-
mation such as under which circumstances to exit the guest. It also stores the
state the host was in just before entering the guest [19]. A while after the VMM
launched the guest, an exit will occur. Based on the provided exit information
the VMM can now determine why the exit occurred, performing actions as it sees
fit [19]. Those actions could among other things be I/O operations, page faults, or
preprogrammed timeouts of the VMM, allowing for context switching.

Intel Extended Page Table Although all this allows for full virtualization
on x86, the first iteration of VMX was not resulting in a universally measurable
performance gain compared to at the time available software VMMs based on
dynamic binary translation, such as from VMware Inc. [3]. The most significant
source of overhead in the VMM at that time was the translation of virtual ad-
dresses from the guest (guest virtual addresses) to physical memory addresses of
the host (host physical addresses) [3].

As the guest uses virtualized memory, a translation has to happen from the
guest’s physical memory to the host’s physical memory. This translation could
just be done using the existing MMU, but as the guest is likely going to use
paging, a second translation has to occur from the guest’s virtual addresses to
guest’s physical addresses. As there was no hardware available to support this
need, VMMs addressed this problem by implementing MMUs in software, using
a so-called shadow page table, which maps guest virtual addresses directly to host
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Figure 2.1: On a memory access, the processor forwards the guest virtual address
to the TLB for translation. Should the cache not contain a suitable translation, it
will trigger a page walk on the MMU and EPT to receive the host physical address
necessary to access the memory.

physical addresses, in turn allowing the translation to happen using the existing
hardware [35], eliminating the overhead for page walks in software. However,
as the Software MMU is a part of the VMM, on every change, control had to be
handed over to it by exiting the guest, allowing to adjust the shadow page table
accordingly. Concidering that operating systems tend to change their page tables
frequently, this results in significant overhead that one can avoid [35].

With the implementation of the Extended Page Tables (EPTs) in a following
revision of VMX, this issue was addressed. On top of the usual translation of a
virtual address to a physical one by the MMU, a following secondary translation
is introduced, before the memory is accessed. This second translation is similar to
a regular MMU, as it takes a given address and translates it based on a provided
page table. Overall, it allows to grant the VM full access of the MMU, yet the
VMM can manage, which parts of the host’s memory space the guest will be able
to see based on the EPT [19], thus not losing any control.

Considering an example in which the guest is actively executing. To access
the memory, a host physical memory address is required. As seen in Figure 2.1,
on a memory access the guest virtual address will be used to first loop up for a
translation in the TLB. Should it be successful, the host physical address is put out
and one can interface the memory. However, should the TLB not provide a cached
translation, a page walk of the MMU is necessary to receive the guest physical
address. Directly following is a translation of the latter to the host physical address
desired, based on a page-walk of the EPT, now allowing to interface the memory
correctly.
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2.3 QEMU
One example of a full system simulator is QEMU [6], an emulator with its primary
focus being running a target’s operating system on a host that is already running
an operating system. It can emulate the processor, allowing to run a target with
a different instruction set than the host’s hardware, or use a processor support-
ing virtualization for the execution for increased performance. Moreover, it can
also emulate devices, such as a VGA display or hard drives, and further supports
paravirtualization [20].

2.3.1 Tiny Code Generator
Based on dynamic binary translation, the Tiny Code Generator (TCG) is at the
core of QEMU when emulating the processor. A guest’s code will first be trans-
lated at the frontend to an intermediate instruction set format to be further later
converted into the host’s instruction set at the backend [2]. An example of how
this looks like can be seen in Figure 2.2. While one might see this as an undesired
overhead at first, it allows for a significantly cleaner codebase, as not every com-
bination of guest-host translations has to be implemented on its own, but only the
frontend and backend for each instruction set once.

Figure 2.2: The guest’s instructions are translated into the TCG’s intermediate
instruction format. From there on, they are further translated to the instruction set
used by the host.

The introduced intermediate instruction set is "RISC-like" [7], meaning there
are only a few, straightforward instructions supported directly. This approach can
result in a single guest instruction being translated into a set of TCG instructions,
possibly resulting in poor performance for complicated ones, which is why there
is also a call instruction, allowing to dispatch so-called helpers [7]. Those helpers
are functions with their implementation being a part of QEMU itself and thus
might be optimized by the compiler, which could be an advantage compared to
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coding those based on the TCG instruction set, while moreover, they can access
resources available outside of the virtual machine thanks to this.

2.3.2 KVM
Since the advent of virtualization extensions for x86 processors, the Linux ker-
nel received a new subsystem called kernel-based virtual machine (KVM) [22],
to create virtual machines using an ioctl()-based API. It is important to note that
AMD and Intel have integrated their virtualization extensions differently and pro-
vide different capabilities [22].

After creation, the VM’s virtual processors are not scheduled on their own but
require a user-space program, such as QEMU, to call them using the aforemen-
tioned ioctl()-based API, elevating the running thread into kernel mode. At this
point, the kernel will repeatedly cause the virtual processor to run using the vir-
tualization extension. On every exit of the guest, the kernel performs necessary
actions, such as handling a page fault. Should the exit be due to a pending sig-
nal on the host’s running process, or due to an I/O request, possibly caused by
an I/O instruction [22] or access of MMIO memory, the kernel will return to the
user-space program to handle the case appropriately.

Further, the user-space program has to assign memory to the virtual machine,
which it is supposed to use. Each continuous memory region, called memory slot
by KVM, is a part of the program’s virtual address space and can be mapped into
the guest’s physical address space, but never be resized or removed [11].



Chapter 3

Analysis

Memory tracing can help improve software products by allowing for tools to find
security vulnerabilities [39] as well as helping enhance overall performance [31].
Moreover, it is a valuable tool in hardware research [21].

Independent of the actual implementation of the tracing mechanism, there
should be a universal hook, passing on the required information about the access
itself, allowing one to add the functionality desired, be it recording the trace to
disk or running online analysis, as one sees fit. In general, one will be interested
in collecting information about a memory access, such as the physical memory
address, virtual address, size of the access as well as a point-in-time reference to
when it happened, with the latter at best being able to differentiate between each
cycle of the processor, although the instruction level would generally suffice.

While being able to create a memory trace for user-level software is easily
possible using tools like Valgrind [29], it is more difficult if one is interested in
memory accesses of the operating system. For memory tracing to work in such an
environment, one needs to be able to control the code execution of the operating
system itself using, e.g., simulation or by listening on the hardware directly.

3.1 Hardware Tracing

In general, most hardware solutions for memory tracing will share the same char-
acteristics, as they are off the processor chip and their data source is necessarily the
same. For example, they will be unable to access the current instruction pointer,
and possibly, they will not even be able to interact with the memory bus directly,
as some vendors integrate it into the processor as well [19]. A schematic exam-
ple of a such-like processor interfacing with memory and devices can be found in
Figure 3.1. Thus, one should only assume information accessible by the CPU pins
and inferred data is available to a hardware tracer.

13
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Figure 3.1: Hardware-tracing techniques can only source their information di-
rectly from the CPU pins and interfaces inheriting their information from those.
They cannot access the CPU core directly to, e.g., obtain the current instruction
pointer.

The most significant advantage of hardware tracing is, that, if well imple-
mented, a trace of all physical memory accesses of the processor can be generated
without influencing the traced system by slowing it down, allowing for no time
distortion [15]. This in turn allows for those full-system traces to more closely
match the actual execution. However, such a system is not easy to build due to the
high volume of events triggered during memory tracing, as already described in
section 2.1.1. Two prominent examples are BACH [15] and HMTT [4], each us-
ing a slightly different approach. BACH creates memory traces by listening in on
the CPU pins directly, storing the trace events in a local buffer and once reaching
a certain threshold, halting the processor to store away the trace, resuming after-
ward [15]. This halting, which takes about 40 seconds [15], will, however, result
in time distortion compared to wall-clock time, which might still influence the
behavior of the traced system. In contrast, HMTT uses a hardware board inserted
into the DIMM slots of a computer system; the idea is to offload the trace events
during the actual tracing process itself, making it unnecessary to halt the system.
Although this sounds promising, a more recent report from the same authors writ-
ten in 2014 [18], makes clear it is tough to scale. Apparently, the bandwidth
required to offload the trace for memory modules up to DDR3-800MHz is already
8Gbps [18]. It should be noted that at the time of this writing DDR4 with speeds
of up to 3200MHz is available in consumer-grade systems. Furthermore, mod-
ern processors support multiple memory channels, increasing the overall memory
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bandwidth, making the issue of offloading the enormous amounts of trace events
even harder.

However, there also are some disadvantages to hardware tracing, starting with
the fact that only physical memory addresses can be recorded directly. Further,
should one be interested in tracing all memory accesses of the processor, using a
solution that inspects the memory interface, such as HMTT, the solution misses
out on MMIO accesses, as can be seen in Figure 3.1. However other hardware
tracing mechanisms, such as BACH, might be able to retrieve this information, by
either observing the memory bus, or by observing the processors I/O pins should
the memory controller be integrated. Moreover, HMTT cannot directly differen-
tiate between DMA memory accesses and the processor’s accesses [5], while a
system monitoring the processor pins will be unable to detect the first at all. To
achieve this, HMTT requires assistance of a hybrid build, using a kernel extension
in the traced operating system [5], to know whether a memory access is caused by
the processor or a connected device. Such an extension can further help by pro-
viding semantic information, such as virtual addresses, but it influences the traced
system and thus leads to a different memory trace.

Additionally, to be able to collect all the memory accesses from the processor,
one needs to disable all on-chip caches and possibly off-chip caches between the
processor and the tracing solution used, which can result in a 10x to a 100x slow-
down of the execution [5]. Another concern is portability, as hardware tracers use
particular interfaces, such as DIMM slots or a variety of CPU sockets [5], making
reuse of the same tracer difficult should the hardware setup change. Last but not
least, as this hardware has to be bought or expensively build in-house, there is also
a significant cost component to it as well.

3.2 Software Tracing
Simulation-based approaches to memory tracing are an alternative, yet should one
require cycle-accurate traces, the slowdown can be from 1000x up to 10000x [4],
making this approach very time-consuming. For software development, however,
this level of detail is usually not necessary. Using software tracing will cause
time dilation, due to the added overhead of collecting the needed information for
the event and processing it as required, resulting in this approach, in general, be-
ing less accurate than hardware tracers. This overhead causes, e.g., a triggered
interrupt to arrive relatively before it would otherwise have, as the virtual pro-
cessor’s execution is slower, effectively making the device seem faster than it is.
However, even delaying the interrupt to appear at the right point in time for the
execution based on an instruction counter would not help, as devices, such as net-
work cards, might start queuing up events for incoming data that they otherwise
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would not have. Moreover, in cases where the processor is simulated the executed
instructions might not match the implementation of the hardware accurately, be it
due to performance optimizations or because it is proprietary knowledge, possi-
bly causing a different memory access pattern as it would be the case in hardware,
introducing further differences to a hardware trace.

On the upside, as the tracing is happening on the same chip, as one is utiliz-
ing simulation or more advanced methods like hardware-assisted virtualization,
one can access more sources of information than a hardware tracer can access,
without the need to add software to the observed system itself. Examples of this
are among others virtual addresses, and further, as all devices connected to the ob-
served system will need to be virtualized, MMIO and DMA accesses are traceable
without much effort. Should one use simulation to create a memory trace, porting
and deploying it to other kinds of computing systems is quickly and inexpensively
doable. Although less portable, virtualization-based tracing can also be quickly
deployed, as long as the platform supports it.

As the already stated time dilation is unavoidable for software tracing, one’s
goal should be to minimize it as much as possible. For that, multiple solutions
may be plausible.

3.2.1 Simulation-based Tracing
One option would be to use a simulator based on dynamic binary translation, as
using a simulator based on interpretation would be unnecessarily slow. Aside
from portability, a significant advantage of this approach is that, as it is entirely
based on simulation, no hardware extensions for virtualization are necessary.

When executing a guest using dynamic binary translation, every instruction is
translated into a set of instructions the host can run natively, as described in Sec-
tion 2.2.2. To add support for memory tracing, one needs to modify the translation
process by adding extra instrumentation for every of the guest’s instructions ac-
cessing memory. This instrumentation, as it is in line with the guest’s execution,
can collect all the desired information about the access itself, and pass it on to a
hook for further use. However, to be able to get a point-in-time reference, fur-
ther modifications to the translation process will be required, such as the addition
of an instruction counter. For those instructions executing multiple memory ac-
cesses, one will need to make sure that their monotonically increasing order will
be preserved when recording them.

A possible canidate for interpretation-based memory tracing would be Simics
[13], however, the slowdown for an implementation with an empty hook alone
can be about 810x slower compared to native execution [34]. A better choice for
a tool would be to use QEMU [6], which does not offer a way to trace memory
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accesses of the guest, making it necessary to implement this oneself. Without
the required instrumentation to trace the memory accesses added, slowdowns of
only about 20x compared to native execution [16] can be measured, whereas an
implementation supporting memory tracing with an empty hook has a slowdown
of about 31x [34], outperforming Simics by order of a magnitude.

3.2.2 Virtualization-based Tracing
Hardware-assisted virtualization allows to significantly improve the performance
of a virtual machine, compared to dynamic binary translation, resulting in almost
native performance. Thus, the time dilation one will experience for a tracing
mechanism could be significantly reduced. Further, with increasing server con-
solidation in data centers thanks to virtualization, one might even argue that the
usual slowdown of a hardware-assisted virtual machines is closer to reality than a
bare metal execution.

PinOS Aside from Valgrind [29], another popular framework for dynamic anal-
ysis of a user-space program is Pin [26], created by Intel Inc. Based on this frame-
work, an extension was build called PinOS [10], supporting the creation of traces
for the whole system, including the kernel space.

PinOS is built on top of Xen [32], which uses Intel’s virtualization extension
to run guest systems. However, instead of directly executing the guest’s code, the
VMM executes Pin, which is instrumenting every instruction the guest desires,
allowing to keep full control over the execution of the guest on an instruction-
level while also being able to use virtualized devices provided by Xen [10].

However, even when not running any analysis on the guest, PinOS seems to
be about 50x slower than native execution, based on an average of the bench-
marks provided by [10]. This slowdown is due to the overhead of the dynamic
instrumentation Pin uses to add tools such as memory tracing.

Pure VMX-based Tracing In contrast to dynamic binary translation or PinOS’s
instrumentation approach, where the execution is entirely influenceable and con-
trolled by the VMM, using pure virtualization, the VMM only prepares the VM’s
context, then it hands over control to the processor for the actual execution of the
VM, which only returns, e.g., when an interrupt was triggered or the VMM’s ser-
vices are needed to, e.g., handle I/O requests. Due to this loss of control, as one
cannot force the VM to exit at any desired point, the tracing of memory accesses
is not as straightforward to implement and requires multiple steps.

If the processor needs to access memory and cannot do so for any reason, it
will cause a page fault. For processors supporting virtualization with nested page
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Figure 3.2: Once a memory access occurs, the VM will exit due to the page fault.
The page will be unlocked and single-stepping will be enabled. After resuming
the VM, it will again exit once the instruction is successfully executed, providing
an opportunity to lock the memory page again. Finally, the execution continues
normally.

tables, this means a running VM will exit and return control to the VMM, should
the page fault be due to the nested page table. Based on this observation, one can
get a virtual machine to return to the VMM on every memory access, by setting
up every guest physical frame to be not read- and writable.

To achieve memory tracing, first, the entire memory address space will be
access protected, by revoking the processor the right to read and write to the indi-
vidual pages using nested paging. On every page fault that is to be handled by the
VMM, one check if the cause of it is due to the set page protections. Should this be
the case, the restriction will be temporarily removed on the desired page, depend-
ing on the need for reading or writing, while also making a note of the physical
and virtual address of the access, its size and other requested information. Further-
more, the guest will be instructed to single-step over the next instruction, exiting
again right after its execution, so the page protections can be set in place again,
preventing any future accesses from slipping through. After the instruction was
successfully executed, all collected information about the possible multiple mem-
ory accesses that happened up to this point will be passed on to a hook responsible
for the further use of the trace events. At this point, the VM can resume normally.
This workflow is visualized by Figure 3.2.
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Getting accurate timing information, however, will require the hardware sup-
porting instruction counters. Without this, as the VMM is not controlling the
execution of the guest directly, as, e.g., DBT is for its guests, no real assertion can
be made, which would only allow for recording the order in which the memory
accesses happened. Further, as it is necessary to exit and reenter the VM twice in
order to be able to execute a single, writing instruction, it is clear that there is time
dilation, which will ultimately result in a slowdown of the execution.

3.3 Conclusion
As the most significant disadvantage to software tracing is time dilation, which
even when using hardware tracers might still be an issue, whether directly due to
the need to halt the system or because one needs to use slower hardware com-
ponents, such as memory modules, to slow down the event generation, than one
may like, in the following only methods for creating software traces are further
discussed.

Concerning the possibly different internals of an instruction, due to a different
implementation on the microcode level, one has to admit that those are not set-in-
stone and might change for future hardware iterations. Thus the simulator can just
be viewed as a different revision of the instructions inner workings, should it result
in a different access pattern. Further, such differences will only be detectable on
a sub-instruction level, with everything on the ISA level intact and the overall
program’s flow not influenced.

Based on the previous discussion, it is clear that a purpose-built modification
of QEMU, is able to outperform PinOS, as even including the required, addi-
tional instrumentation for just adding a hook for memory tracing only results in
a slowdown of 31x [34] compared to 50x of PinOS [10]. However, due to the in
general significant performance advantage for virtualization compared to dynamic
binary translation, as used by QEMU, and due to the lack of information about the
performance of pure VMX-based tracing as proposed before, it is appropriate to
compare both those approaches.
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Chapter 4

Design and Implementation

This part of the thesis is going to focus on how to implement the two different
approaches to memory tracing previously described in Section 3.2: one based on
dynamic binary translation and a second based on hardware-assisted virtualiza-
tion. To allow for a similar foundation for the upcoming evaluation, QEMU will
be used for both of them, resulting in the use of the same devices and background
logic. That way the differences one might experience will be only due to the dif-
ferent technologies involved, namely the Tiny Code Generator (TCG) and KVM,
as well as due to the tracing implementations.

4.1 Adapted QEMU by Simutrace

For this thesis, an already adapted version of QEMU is being used, which serves
as a reference implementation of memory tracing designed for the use with the
Simutrace framework [33]. Simutrace is a tracing backend, allowing for side-
effect free recording of memory traces when acquiring the trace using simulation.
It is based on a client-server-architecture, having each instance of the simulator
create its own session on a server to store the tracing events [33].

In the following, this variation of QEMU, based on v2.6.0, will be referred
to as QSimu. However, at this point, QSimu does only support tracing stores to
memory, but not loads. Thus, for the upcoming evaluation and implementation,
only write accesses will be further considered, as this will be enough to obtain
quantitative and qualitative results for the planned comparison.

As described in Section 2.3, QEMU uses the Tiny Code Generator to translate
the guest’s instructions first to an intermediate format of TCG instructions, to later
compile those into the actual instructions executed by the host. Tasks too com-
plicated to implement efficiently based on the TCG’s instruction set alone, will
call helper functions, that are a part of QEMU itself, similar to a dispatch func-
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tion for interpretation-based simulation. To introduce memory tracing, QSimu
uses modified TCG instructions, adding a helper method that passes on the infor-
mation about the access to the Simutrace framework. It is called after the store
is performed. Further, helper methods might access the MMU directly. Thus,
their interface to the MMU has also been modified by adding a call to the tracing
facility.

4.1.1 Striping Dependency on Simutrace
As it seemed the most useful only to evaluate the added overhead of the trac-
ing process itself, instead of also including measurements for possible use cases,
such as recording to Simutrace, the QSimu implementation used in this thesis is
adapted, leaving just the hook that is supposed to pass on the access event, re-
moving references to the Simutrace framework. This allows limiting the scope of
the implementation for the upcoming KVM-based tracing implementation to the
tracing facility itself, not requiring the addition of a use case. As shown in Sec-
tion 3.2.1, it is important to leave the hook as well as the acquisition of the tracing
information, as otherwise the slowdown measured will not be accurate.

Thanks to a thoughtful implementation of the tracing hook and the Simutrace
developers leveraging the existing tracetool of QEMU for their final integration
with their framework, one only needs to modify their provided script that usually
generates the functions interfacing Simutrace. By removing the contents of those,
leaving them empty, we are just left with the hook able to access information such
as the kind of memory access and its size, the virtual or physical address that
resulted in the access and its data, the current cycle count, as well as the current
state of the virtual processor.

Finally, one only has to clean the functions used to initialize the connection
to the Simutrace server, as well as those used to setup and teardown the session
recording the trace events. All of those are located in trace/simutrace-qemu.c.
Special care has to be taken for some of those methods, as they expect a valid
return value.

4.2 KVM for Memory Tracing
In the following, memory tracing is prototypic implemented using the approach
described in Section 3.2.2, to check whether or not this approach to memory trac-
ing is superior to tracing based on dynamic binary translation in term of either
execution times or the accuracy of the information acquired.

Based on the discovery that QSimu can only trace write accesses to memory at
this point, the scope of the virtualization-based implementation is reduced to just
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this functionality as well to ensure better comparability for the upcoming evalu-
ation. Besides, we will restrict this implementation to be only for a single guest
processor. Because the virtualization extensions of AMD and Intel are different,
as stated in section 2.3.2, the following implementation is further limited to only
support Intel’s x86 processors with VMX and EPT.

Just like QSimu, the implementation is expected to be able to extract a virtual
and physical memory address, the size of the access, its kind (in this case writes
only), timing information, as well as the data written to memory for each memory
access. However, as this is just a prototype, in some instances, just an idea for an
actual implementation is provided.

The following implementation is based on the Linux kernel v4.3, leveraging
KVM’s existing dirty logging mechanism as far as possible, which is used to effi-
ciently detect, whether a page fault is caused due to set write protections and if so
have them removed. On the user-space side, the adjusted QSimu implementation
is used, with its only further adjustment being the addition of a monitor command
to enable the memory tracing process for KVM’s running VM.

4.2.1 New Monitor Command in QSimu
By default memory tracing is disabled. It is necessary for the user to invoke it
using an ioctl, that is a function to control various aspects of devices on a Linux
host [25], such as KVM. The added ioctl KVM_START_MEMTRACE does not
accept any parameters, although future work might decide to pass on information
to limit the scope of the tracing process by regulating whether reads or writes shall
be traced, or what data shall be collected.

Within QSimu, a human monitor command was added in hmp-commands.hx,
referencing a function to enable the tracing process within KVM by calling the
previously introduced ioctl.

4.2.2 Architecture of the System
The overall control flow of the memory tracing implementation will be similar
to the following: By write-protecting each page of memory, the processor cannot
access those directly and will invoke the VMM on a write access. The VMM
can then make a note of the access, acquiring the desired information about it,
continue by removing the protection of the requested page and finally set up the
guest, so it only runs for a single instruction. After this instruction is executed, the
VMM will re-protect the page, while also committing any open memory accesses
to the receiving hook. The decision to pass on the information to the hook only
after returning from the single-stepped instruction will be implemented this way,
as an imminent interrupt might change the flow of the program before the VM
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gets the chance to execute the instruction. In this case, the implementation will
rollback, protecting the previously unprotected memory region and not commit
the write access.

The described implementation for the memory tracing is built directly into
the KVM module. Respectively some existing structures, like struct kvm,
representing the state of the entire VM, and struct kvm_vcpu, describing a
single virtual processor, were modified to contain the necessary state information.

The struct kvm was adapted to be able to hold the current state of the
tracing process, which for this prototype is just on or off, by adding a boolean.
Further, the struct kvm_vcpu received a new property revealing whether this
implementation’s single-stepping is currently activated for that virtual processor,
as well as a bounded array of currently uncommitted memory accesses. Those are
memory accesses to which the causing instruction has not been completed, yet.

4.2.3 Initialization Phase

Handling the incoming KVM_START_MEMTRACE ioctl from QSimu, the kernel
will first check, whether the tracing process is possibly already enabled and should
that be the case will immediately return.

After that, the function iterates over all the available memory slots, which are
mappings of guest physical addresses to host virtual addresses of the invoking
user-space program, looking for all valid ones. For those memory slots, all pages
will be write-protected using kvm_mmu_write_protect_pt_masked(),
as provided by the dirty logging mechanism. As this mechanism does not sup-
port large pages, support for those is disabled entirely1. Furthermore, once done
the TLB is flushed, ensuring that no stale translations might be used to bypass the
new protections.

Finally, a custom flag in the VM’s struct kvm is set to reflect the fact that
memory tracing is now enabled. Aside from the tracing process itself, only the
generation of shadow page-table entries will be influenced by this flag. Thus, to
ensure every newly created or modified page mapping will still reflect the fact that
memory tracing is enabled, write permissions are removed.

1This was archived by setting the global variable largepages_enabled within the KVM module
to false. Thus, it will also influence virtual machines with memory tracing disabled.
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4.2.4 Behavior on Write Access

Whenever the processor attempts writing to a memory address, but cannot do so,
the guest will exit, invoking the VMM to try resolving the issue. At this point
the VMM is provided with an exit reason and can access the guest’s physical and
virtual memory addresses for the fault. This information is provided as part of the
virtual machine control structure (VMCS), representing the state of the VM with
Intel VMX. The CPU also updates the exit qualification field, which supplies fur-
ther information on the exit, such as whether a memory access was a read, write,
or an instruction fetch. Finally, information about the timing is received using the
retired instruction performance counter from Intel’s Architectural Performance
Monitoring [19].

Memory-Mapped I/O Access KVM itself is unaware of the devices available
to the guest. As described in Section 2.3.2, it will return to QEMU in user-space
once I/O happens. However, to allow for efficient exits it sets incorrect bits in the
EPT’s mapping for every page that is assigned to MMIO, causing an EPT miscon-
figuration exit. On this exit, the VMM will verify whether a real misconfiguration
happened, it it is because of MMIO. Should it be due to a MMIO write, the access
is recorded, should the tracing be enabled.

However, at this point, no direct information about the access size nor the
written data is available, as those are not directly provided by Intel VMX. It is,
however, possible to get the size of the memory access as well as the source of the
data, thus the data to be written, by decoding the faulting instruction. This idea is
not implemented, as KVM’s integrated instruction emulation does not support the
entire instruction set, leaving out vector instructions, which may also access the
memory.

Normal Memory Accesses Most of the time a memory access will not be di-
rected to devices, but the RAM. If memory tracing is enabled, every write access
will cause an EPT violation exit, due to the set write protection, resulting in a re-
turn to the VMM. The VMM will consider this a typical page fault and proceed
accordingly, eventually assuming the exit occurred because of the dirty logging
mechanism, which is utilized for this tracing implementation.

If the page fault is caused due to the write protection, the protection of the
guest page in question will be removed. Further, we enable the single-stepping
flag of struct kvm_vcpu, ensuring that single-stepping will be activated just
before entering the VM again. This provides a way to re-enable the write protec-
tion, flush the TLB, and commit the write access to the hook after the instruction
has been executed. At this point, some information about the memory access has
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to be already collected, such as the virtual and physical memory address of the ac-
cess, as those will not be available again at a later point in time. For this prototype,
only the physical memory address is collected, although the virtual address could
be acquired as well, by reading it from the VMCS. Further, just like for MMIO
accesses, we are not provided with the access size directly nor the data but need
to decode the current instruction, which was not implemented.

Before resuming the virtual processor, within the vmx_vcpu_run() func-
tion, this patch checks the struct kvm_vcpu if single-stepping should be en-
abled. In general, there are multiple possible ways to implement single-stepping.
Setting the trap flag of the EFLAGS register is the most straightforward way, but
this would allow the guest to observe this fact, as the guest’s registers would need
to be manipulated. Therefore, a better choice is the Monitor Trap Flag (MTF),
which can be set as part of the VMCS, allowing to single-step the virtual machine
without its knowledge [19].

Return after enabling single-stepping Should the next exit, after enabling sin-
gle-stepping, be due to an EPT violation again; the VMM repeats the steps out-
lined in the previous paragraph for the new faulting address. This, e.g., might
happen for unaligned write accesses, where a second memory page will need to
be unlocked.

For any other exit reason, the patch starts by re-enabling the protections on
the previously unlocked pages, by resolving each access’s physical address to the
slot they belong to, then using this information to look up all shadow page table
entries for this address utilizing the reverse map. Now, the kernel set setting the
protection again.

Should the exit be an MTF exit, further evaluation is required to see whether
the last instruction has been executed by now, as a variety of factors can influ-
ence the actual execution [19], however, for every other exit reason, we deem the
write to be unsuccessful and rollback, by re-enabling all write protections and not
committing to the tracing hook. Using the instruction counter, we can determine,
whether any instruction was executed and if so, we know the write was successful.
However, REP-prefixed instructions will not increase the instruction counter for
every iteration, but only the last, which is why we also deem it a successful exe-
cution, should both, the instruction pointer and the counter not change. Once we
have a successful write, all previously in the struct kvm_vcpu accumulated
memory accesses can be committed to the tracing hook.

However, the evaluation later revealed, that this heuristic does not behave cor-
rectly, should an interrupt be injected into the guest from the outside or should an
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interrupt appear from internally at the same time when single-stepping is enabled.
As the VM will first try to set up the stack frame for the upcoming interrupt, this
patch possibly allows a series of write accesses without tracing those, as setting up
the interrupt cannot be single-stepped though in contrast to normal instructions.

VMX handles the particular case of an injected interrupt with single-stepping
enabled, by first setting up the stack frame, then returning to the VMM using an
MTF exit without modifying the current instruction pointer [19]. This implemen-
tation will, as explained above, assume this to be a successful write, even though
the actual instruction was not yet executed. Although it seems impossible to trace
all the memory accesses, leaving the accuracy always being suboptimal, one can
improve it by trying to handle the case of injected interrupts separately. As the
VMM is aware of all injected interrupts, this should trigger a special execution
path that first is to lock all previously unlocked memory pages and ignore previ-
ous uncommitted write accesses. Now, single-stepping is to be enabled and every
further memory page should be granted access to, up to the next MTF exit, as at
this point the interrupt is successfully injected, with the only thing left to do is
committing the accounted writes and re-protecting the memory pages.

Making matters worse, in case of an internally generated interrupt, consider
the interrupt happening right after re-entering the VM with single-stepping en-
abled. While preparing the stack frame for the interrupt, the processor can simply
request further memory pages, which the VMM has to assume are for the cur-
rent instruction, as there is no signal to the VMM what caused the page fault.
Eventually, an MTF exit occurs, after the stack frame is prepared, and the instruc-
tion pointer will change, without the instruction counter increasing, resulting in
all writes being ignored. A possible solution to this would be to simply commit
writes under the previously stated conditions, yet, this would also commit some
memory accesses of the current instruction, which are not fully executed yet and
are in need of re-execution at a later point in time.
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Chapter 5

Evaluation

The following evaluation is going to examine the two previously suggested mem-
ory tracing techniques. The first is based on dynamic binary translation, adding
instrumentation on every write access to allow tracing those. The second utilizes
KVM and Intel’s EPT, preventing accesses to memory from happening directly,
instead invoking the VMM, which can, in turn, trace the write event.

Both will be compared by their adopted implementation, as described in Chap-
ter 4, based on their performance as well as based on the quality of the memory
trace one can expect to receive.

The main considerations when choosing a platform for software-based mem-
ory tracing is the overall execution time, as time dilation will cause the trace to
lose in accuracy. Aside from accuracy, longer execution times are also undesired,
should the guest be supposed to be used interactively, e.g., by a customer or just
communicating over the network. A high slowdown could possibly lead to time-
outs or users getting impatient, thus changing their behavior.

Further, while one of the factors for the quality of the trace is time dilation, it
is more important whether, e.g., all the memory accesses occurring are traced and
contain all details as desired. In the best case, the resulting trace of write accesses
should contain no false-positives and not be missing a single access. Should the
quality of the trace be poor, possible analysis of its data could lead to a misleading
result.

5.1 Methodology

It quickly turned out the slowdown of the KVM-based tracing approach is signif-
icant, making commonly known benchmarks, such as SPECjbb2005, impossible
to run in the available timeframe.
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As the execution does only differ from normal execution for write accesses,
as those are the only memory accesses traced, a special benchmark has to be
constructed with allows to precisely control how many of the executed instructions
are actually writing instructions compared to other instructions. To prevent any
side effects from influencing the result, e.g., there should be no interrupts handled.
This allows to unbiasedly evaluate the performance of both approaches in this
controlled environment, even offering a way to measure the average execution
time for an freely chosen percentage of writing instructions.

Thus, a custom benchmark script was written, resembling a minimal multi-
boot kernel, which once loaded outputted BOOT to a serial port and looped for
0x7FFFFFFhex cycles as initialization. Then, the script outputs START to the se-
rial port and will end the benchmark outputting STOP, providing a framework for
the aquisition of timing information.

During the actual benchmark, which was written as inline assembly to have
full control over the execution, the CPU first loops for an at compile-time config-
urable amount of times t over a traced write instruction to the same address. After
that, a second loop over a dummy read instruction will be executed for r times.
The value of r will be computed based on the amount of traced instructions t as
well as an upper limit for traced instructions u, by simply subtracting from the
upper limit:

r = u− t

Further, this entire procedure is in itself looped for one hundred million times, to
make enough time elapse to get stable measurements of the execution time, yet
keep the benchmark quickly executable. A noteworthy benefit of this modeling is
that the total amount of instructions executed for each run will stay the same, even
should the value of t vary, as long as the upper limit u remains unchanged. This
makes it easier to compare different execution times of the benchmark.

Further, this setup allows expressing the percentage of traced instructions exe-
cuted by the system using a simple formula, providing additional insight into how
to interpret the resulting execution times. This formula can be determined based
on the knowledge, that the total amount of traced instruction ft for a given run
depends on t, as well as the number of executions of the outer loop, which in this
case is a hard-coded one hundred million:

ft = t · 100000000

The total amount of untraced instruction fu depends on all the instructions build-
ing both inner loops, the number of times the dummy read was executed as well
as the amount of instructions required to build the outer loop.

ft = ( 5︸︷︷︸
# ins. outer loop

+ 4 ∗ t︸︷︷︸
# ins. inner write loop

+ 5 ∗ r︸︷︷︸
# ins. inner dummy loop

) ∗ 100000000
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Based on this, the following formula for the percentage of traced write instructions
was designed:

traced% =
ft

ft + fu
=

t

5 + 5 · u

5.2 Test Setup

As it is important to get comparable results for both approaches, the same machine
was used to run all performance benchmarks. Figure 5.2 contains all the relevant
information about its hardware and the operating system running on it.

Component Model/Specification
Processor Intel(R) Xeon(R) CPU E5-2618L v3 @ 2.30GHz
Memory 4x Micron 18ASF1G72PZ-2G1A2 (8GB, 1866MHz)
Operating System GNU/Linux 4.3.0 (with modified KVM module)

Table 5.1: Setup of the test system

As for the software, the binary of the QSimu variant modified in this thesis,
based on QEMU version 2.6.0, was not just used to run the benchmark for the
dynamic binary translation tracing approach, but it was also used as the QEMU
base in combination with the KVM-based tracing benchmark. QSimu is config-
ured to record the size of the access, the physical address, timing information as
well as the data for each access, whereas the KVM-based tracing is limited to
only acquiring the physical address and timing information, as the acquisition of
all further information would result in further processing overhead and thus would
only be of interest, should the KVM-based tracing setup turn out to be faster than
the modified QSimu.

All benchmarks were run using the following command-line:
sudo qemu-system-x86_64 -display none -k de \
-serial unix:path="{serial}",server \
-monitor unix:path="{monitor}",server -S

However depending on the setup, possibly other parameters needed to be
added, such as -enable-kvm for the KVM-based tracing approach.
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5.3 Performance Measurements
The introduced benchmark script was run with the parameter u = 10000 and t
ranging from 0 to 100, two times for both, KVM-based tracing as well as the mod-
ified QSimu, to stabilize the results. Those can be seen in Figure 5.1, showing the
averaged execution times of the benchmark for a given percentage of instructions
being traced during each run.
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Figure 5.1: The results show the execution times for both approaches to be in-
creasing with the percentage of traced accesses. For workloads with less than
0,09% of write accesses, KVM-based tracing is superior, however, should the
proportion be larger, QSimu is faster.

The KVM-based approach was able to execute the benchmark in about 2 sec-
onds, when none of the instructions were traced, compared to QSimu that required
86 seconds. This result is as expected, as the DBT of QSimu comes at a significant
cost. Further, as one could also expect, both approaches will take linearly longer
for increasing amounts of write accesses, yet the slope for QSimu is nowhere
close to the raised slope of the KVM-based tracing. The tipping point, at which
QSimu’s execution times are the same as for KVM-based tracing is reached at a
mere 0,09% of all instructions being traced. From that point on, QSimu is faster
than the virtualization-based approach.

According to an analysis from 1998 by J Huang et al., about 9,5% of all ex-
ecuted microoperations on x86 are write operations [17]. Back then there were
no vector extensions, so only a few instructions, such as fsave have executed
more than one write access, thus one can assume about 9,5% of instructions exe-
cuted to be writing instructions Further, most instructions will execute more than
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one micro-operation, resulting in this estimate likely being lower than the actual
percentage of write accesses.

Based on this estimation, a second benchmark was executed, three times to
stabilize the results, with the goal to simulate an environment in which about
9,5% of all executed instructions are writing instructions. Using t = 48 and
u = 100, this writing rate based on the above formula can be simulated. The
results can be seen in Table 5.3, with KVM-based tracing being 1582 times slower
than native execution, compared to QSimu just being 38 times slower. Thus,
QSimu is executing almost 40 times faster than KVM-based tracing.

Execution Mode Elapsed time [s]
Slowdown
native KVM

native KVM 6 -
QSimu (hook only) 234 39
KVM-based Tracing (hook only) 9501 1582,5

Table 5.2: The execution of the in Section 5.3 described benchmark results in an
average slowdown, compared to native execution in KVM, of 39x for QSimu. The
KVM-based tracing in contrast is more than 1582x times slower.

5.4 Analysis of the Performance
Those results are not surprising if one considers the significant overhead that
comes with this KVM-based tracing approach. First, for each write access, the
VM will need to exit and re-enter twice, once to unlock the requested memory
page and a second time to enable its protections again. This attached work within
the VMM is responsible for further slow down. Additional, the requirement to
continuously flush the TLB after every successful write access makes it necessary
for the MMU and EPT to repeatedly walk the entire page table. Finally and most
importantly, there is a significant, hard to quantify slowdown due to the frequent
switching between the VM and VMM, as the processor is unable to fully utilize its
superscalar and pipelining capabilities because it cannot start executing instruc-
tions of the host or guest, until after their entire CPU context is fully restored.

While the last argument stated above is likely the cause for the largest part of
the slowdown encountered, one can still show that even the overhead of the VM
entries and exits, as well as the VMM’s additional tasks, are sufficient to have
QSimu clearly win in terms of performance.

One can calculate an average cycles-per-instruction (cpi) value for QSimu,
based on the average CPI of x86, which is 2,75 [17], and QEMU’s slowdown.
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In our case, we are particularly interested in the slowdown including the tracing
hook sQSimu, which was measured as being 38 compared to a normally executing
KVM, which is close to native execution:

CPIQSimu = CPIx86 · sQSimu = 104.5cpi

On the test machine, according to a VMX benchmarking tool [37], a VM exit
will take about 280 cycles, and a VM entry requires 267 cycles, averaged over
ten test runs. As we need two full exits followed by reentries to execute a single
write operation, at this point ignoring the added overhead of the work required in
the VMM, the execution of those entries and exits in total requires 1094 cycles.
Using the rdtsc instruction, which is a cycle-accurate counter [19], it was further
evaluated that the average time spent outside of the VM during memory tracing
is about 1212 cycles, averaged over 722 samples. Again, as the VM will exit
twice for each write access, the total, additional time spent in the VMM for each
memory write is 2424 cycles.

A similar calculation as above for QSimu can now be done for KVM-based
tracing, keeping in mind that 9,5% of instruction are write accesses, requiring a
significant number of cycles to execute, and other instructions can be executed in
their usual time:

CPIKVM = 0, 095 · (1094 + 2424) + (1− 0, 095) · CPIx86 = 336.69875cpi

This calculation shows, that even if the KVM-based tracing implementation
would not hurt the processor’s ability for pipelining and utilizing superscalar tech-
nology, due to its significant overhead for each writing instruction alone it would
be notably slower than using QSimu for memory tracing.

5.5 Quality of the Trace
Aside from the significantly slower performance for normal use cases, at least the
quality of the memory trace should be expected to be superior for virtualization-
based tracing, as the underlying hardware is used directly. However, in the limited
prototype implemented in this thesis alone many downsides came up, that are
going to be addressed in the following:

No direct knowledge of the access size As the current implementation of Intel
VMX does not provide a way to access the size of a memory access directly, the
VMM has to decode the currently executing instruction in software, which will
likely degrade the performance even further. Nevertheless, it might save some
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page-faults from happening, as currently, an unaligned write access spanning mul-
tiple memory pages will trigger multiple page faults, before the instruction can be
executed. Moreover, this will result in multiple memory accesses being recorded,
although is was just one. Further, it would allow for easier access to the data writ-
ten, as in the current implementation the VMM always has to assume the write
involves the entire register width, should it wish to perform some optimization
based on this, such an reducing the amount of required page faults for unaligned
accesses.

Inaccurate for instructions executing multiple writes Although we can force
a VM exit on the first write of a guest’s instruction, should it be performing mul-
tiple write accesses, such as the xsave instruction of x86, it is very likely at least
some of the following writes will be missed out on [19], as an entire memory
page will have to be unlocked. Thus, all the subsequent writes will not be passed
through to the VMM to trace, unless they themselves are at least partially on a
currently locked page.

Unable to trace all writes for exception handlers While a similar limitation,
it is worth pointing out separately, that this tracing approach is unable to trace all
write accesses that may happen during the preparation of the stack for an upcom-
ing exception or interrupt handler. While the VMM will be notified on the first
write, subsequent writes slip through, should they not be to a different page.

Implementation of accurate read tracing There is a fundamental challenge to
overcome if wishes to also trace read accesses using hardware-assisted virtual-
ization and page protections. Considering a reading instruction is next in line to
be executed, and the processor still needs to fetch it. Using the proposed single-
stepping approach, the instruction can be successfully loaded, but it possibly is
already being executed by the time the MTF exit occurs, which is the only mech-
anism allowing the VMM to regain control. This is, as should the location of the
read be part of the newly loaded code sequence, it is now able to access the mem-
ory, as it is currently unlocked and thus it will be able to perform the read, without
the VMM being able to trace it.

5.6 Conclusion

Although the KVM-based approach relies on hardware-assisted virtualization, it
is about 40 times slower than using QSimu for memory tracing, most of the slow-
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down possibly introduced due to inefficient use of the processors pipelining capa-
bilities and superscalar technology.

Further, as the instruction set does not provide information about the mem-
ory access such as the access size, it would be required to decode each writing
instruction within KVM. However, as this does not happen in the current imple-
mentation, it leaves the memory trace of the current implementation incomplete,
yet this could be improved on in the future. Nevertheless, it is not obvious how
to prevent other inaccuracies from happening, such as missing out on write ac-
cesses for the preparation of stack frames for the interrupt handler or missing
write accesses by complex instructions, such as xsave. As QSimu is utilizing
dynamic binary translation, which allows to simply add instrumentation to trace
every memory access, it does not need to deal with suchlike issues.

All in all, the evaluation has shown, that QSimu is better suited for memory
tracing than the in this thesis implemented KVM-based memory tracing facility,
in terms of both the performance as well as the accuracy of the obtained memory
trace.
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Conclusion

Memory traces are an important tool to improve the performance and security of
modern software. However, few tools are available to trace the entire system, in-
cluding the kernel. While hardware-tracers exist, software-based memory tracing
is more flexible, inexpensive and thus overall more accessible to a wide range of
people compared to hardware tracers, which is why only software tracers were
further evaluated during this thesis.

As the inherited slowdown of using a memory tracer based on dynamic binary
translation seemed to be avoidable when using a virtualization-based approach, a
prototype was designed based on QEMU and KVM using Intel’s EPT to control
the access to memory. By setting write-protections for all pages, once a write
access occurred, it was temporarily granted using single-stepping, then revoked
again.

While comparing the prototype of the previously described method to QSimu,
an adapted version of QEMU supporting memory tracing, the results show that
at this point the virtualization-based approach cannot compete with DBT when it
comes to performance, due to the significant overhead for VM exits and entries
and the page table manipulations. Aside from the actual cost of a VM exit and
entry itself, in addition, it comes with a high penalty, as the processor is unable
to fully utilize its pipelining capabilities and superscalar technology. Aside from
performance, due to some instructions performing multiple memory accesses, a
virtualization-based approach to memory tracing as suggested in this thesis might
have inaccuracies. Further, the VMX context does not provide the implementation
with all the details one is looking for, resulting in the need to decode the currently
executing instruction, which leads to a significant overhead, in contrast as DBT
already needs to decode every instruction, the added overhead there is minimal.

Should one perform memory tracing on the 86 platform, implementing such a
system based on dynamic binary translation would be a better choice than using
hardware-assisted virtualization.

37
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