
Physical Address Decoding in Intel Xeon
v3/v4 CPUs: A Supplemental Datasheet

Marius Hillenbrand
Karlsruhe Institute of Technology

os@itec.kit.edu

September 5, 2017

The mapping of the physical address space to actual physical locations
in DRAM is a complex multistage process on today’s systems. Research
in domains such as operating systems and system security would benefit
from proper documentation of that address translation, yet publicly avail-
able datasheets are often incomplete. To spare others the effort of reverse-
engineering, we present our insights about the address decoding stages of the
Intel Xeon E5 v3 and v4 processors in this report, including the layout and
the addresses of all involved configuration registers, as far as we have become
aware of them in our experiments. In addition, we present a novel tech-
nique for reverse-engineering of interleaving functions by mapping physically
present DRAM multiple times into the physical address space.

Contents

1 Introduction 2

2 Background 3

3 Approach 4
3.1 Experimental Platforms . 4
3.2 Address Decoding Architecture . 5
3.3 Configuration Registers . 5
3.4 Interleaving Functions . 6

4 Address Decoding Overview 7
4.1 Configuration Registers . 8

1

4.2 Common Patterns . 8
4.2.1 Compact Encoding of Consecutive Regions 8
4.2.2 Interleave Target List . 9

5 Source Address Decoder 9
5.1 SAD Regions . 9
5.2 Socket Interleaving . 11

6 Target Address Decoder 12
6.1 TAD Regions . 12
6.2 Channel Interleaving . 13

7 Memory Mapper 15
7.1 Rank (Interleaving) Regions . 15
7.2 Rank Interleaving . 17

8 Limitations & Pitfalls 18
8.1 Processors With Two Memory Controllers 18
8.2 3-Way Channel Interleaving . 18
8.3 Interaction of Socket and Channel Interleaving 18
8.4 Open Page / Closed Page Mapping . 18
8.5 Configuration Space Access . 19
8.6 Live Reconfiguration . 19
8.7 Locking Configuration Registers . 19

9 Summary 20

1 Introduction

The naive view of physical memory, as a linear address space that represents main mem-
ory and memory-mapped devices, is overly simple on today’s non-uniform memory access
(NUMA) multiprocessor architectures and within complex system-on-chips (SoCs) [2, 1].
In reality, the physical address space is mapped to actual physical locations in several
steps. There might not even be a single physical address space that is universally used
by all CPUs [2].
As main memory is a shared resource, this mapping from physical addresses to the

actual physical structure of DRAM has implications for performance and security [3, 13,
14, 15]. Knowledge about that translation process is required to make use of side channels
and covert channels based on the operation of DRAM [14]. Further, it can even be used
to subvert protection based on virtual memory and to hide rootkits [15]. Research in
operating systems and systems security would benefit from a thorough understanding of
that address decoding process.
However, for current generation CPUs that decoding process is only sparsely docu-

mented, which presents a massive hurdle to researchers by forcing them to rely on reverse-

2

engineering [14]. For example, the datasheets for the outdated Intel Xeon 5500/7500
generation CPUs offered a detailed description of how a request traveled from the last
level caches to DRAM and provided the layouts and addresses of all involved configura-
tion registers (at least for the 5500) [4, 5]. Yet the datasheets for recent Xeon E5 v3 and
v4 generations (Haswell and Broadwell-EP) lack in these regards [6, 7].

In ongoing research, we have made a considerable effort towards understanding the
physical address translation in Intel Xeon E5 v3 and v4 CPUs – which started out as a
high-risk and time-intensive endeavor with unclear likelihood of success. We spent count-
less hours alternatively staring at hex dumps or rearranging memory modules in our test
systems. In addition, we employed DRAM mapping aliases [3] as a novel technique for
reverse-engineering interleaving functions – regularly locking up our test system because
of incomplete knowledge. To spare other interested parties that effort, we decided to
share our insights in this document. We hope to hereby encourage and enable future
systems and security research based on a near-complete documentation of all involved
translation steps and configuration registers.
In this report, we make the following contributions:

• We describe our approach in Section 3. In particular, we discuss how to use DRAM
mapping aliases for reverse-engineering DRAM interleaving functions in Section
3.4. We apply this approach to socket interleaving, channel interleaving, and rank
interleaving in the Xeon E5 v3 and v4 processors.

• We provide extensive documentation of the address decoding process in recent Intel
Xeon E5 processors of the Haswell and Broadwell generations. We give an overview
of the decoding process in Section 4. Further, we provide detailed descriptions of the
operation and configuration register layout of the source address decoder in Section
5, the target address decoder in Section 6, and the memory mapper in Section 7.
We also report the interleaving functions we discovered in those sections.

We discuss limitations of our report and the pitfalls we encountered in Section 8.

2 Background

The Xeon processors of the Haswell and Broadwell generations support non-uniform
memory access (NUMA) configurations [10]. In multiprocessor systems, each processor
may have memory attached to its local memory controller. The memory controllers built
into these processors use DDR3 or DDR4 DRAM as primary main memory.
In Intel lingua, all the components of a processor chip outside actual CPU core are

referred to as uncore. In this report, we are mainly concerned with that uncore and
discuss addresses and layout of the uncore configuration registers.
DDR DRAM systems typically form a hierarchy: Each memory controller interfaces

with one or multiple memory channels, which are independent buses. Each bus may be
populated with memory modules (dual inline memory modules, DIMMs). The DRAM
chips on a memory module form groups that can be accessed independently. These groups

3

are called rank. In this report, we only cover address decoding down to the granularity
of ranks. For a more thorough discussion of DRAM, please refer to the excellent book
by Jacob et al. [9].

3 Approach

We derived all the information presented in this report from publicly available docu-
mentation (mainly datasheets from Intel’s website) and from what can be observed on
a running system (e.g., by retrieving hex dumps of configuration registers from within
a running OS). We did not reverse-engineer software (i.e., the UEFI firmware) to avoid
legal complications. Further, we did not have access to any documentation about Intel
Xeon processors under a non-disclosure agreement.
We followed these steps for discovering configuration registers and their layout:

• First, read all available datasheets for previous CPU and current generations to
recognize and exploit similarities. In our case, those included the datasheets for
Xeon 5500, 5600, and 7500 generation CPUs, as well as those for Xeon E5 up
to v4 and for Xeon E7 up to v3. Notably, the datasheets for the 7500 [5] and
the E7 v2 generations [8] briefly describe the address decoding architecture. The
datasheets for the 5500 and 5600 series [4] provide a complete description of all
relevant configuration registers, including register layouts and addresses, for that
generation of processors.

• Second, extract patterns common to all generations. Newer datasheets contain only
incomplete lists of configuration registers. Thus, we looked for similar names for
the pseudo-PCI devices that map these configuration registers, which then hinted
at which registers to look for in each device.

• Finally, discover the configuration registers and their layout in the new generation,
guided by what we learned about the previous generations.

For discovering interleaving functions, we used DRAM mapping aliases to map the
DRAM both with interleaving and with regions dedicated to each socket/channel/rank.
We searched for corresponding address pairs in both mappings and derived the interleav-
ing functions from these pairs.
We introduce our test platforms below and then discuss how we specifically discovered

the address decoding architecture, addresses and layouts of configuration registers, and
interleaving functions.

3.1 Experimental Platforms

We ran all our experiments on a dual-socket Intel Xeon E5-2630 v3 (Haswell-EP), a
single-socket Xeon E5-2618L v3 (Haswell-EP), and a single-socket Intel Xeon E5-2630 v4
(Broadwell-EP) system. We varied the amount and organization of memory during our
exploration, as discussed below.

4

3.2 Address Decoding Architecture

We assumed that newer generations will follow the overarching architecture for physical
address decoding as introduced with the Xeon 7500 generation. The concept of source
and target address decoders stems from Intel’s QuickPath Interconnect (QPI) [11] and
likely remains in use because recent generation Xeon CPUs still use QPI as their NUMA
interconnect. In addition, the E7 v2 datasheet describes the same addressing architecture
and the more recent datasheets suggest no fundamental changes.

3.3 Configuration Registers

We followed a two-step process of first discovering configuration registers and then un-
derstanding their layout. We iterated that process for all the stages of the address
decoding process, beginning at the target address decoder as an anchor (because the cur-
rent datasheets document some registers in that stage), then working from there towards
the source address decoder, and finally towards the DRAM address decoder.
In both steps, we employed an approach broadly related to differential cryptanalysis

against the BIOS firmware’s memory configuration code: We varied the number, size,
and organization of memory modules (DIMMs) in our test system, booted the system
into Linux, and then dumped the contents of regions of memory-mapped configuration
registers, searching for correlating changes. The overall address decoding architecture
guided what changes we were looking for. As an example, when doubling the amount
of memory in the system, we expected the limit registers in the source and target ad-
dress decoders to double. Further, when populating two memory channels instead of
one, we expected global interleaving settings to change, as well as the second channel’s
configuration to switch from disabled to an active setting.

As we performed that analysis manually (i.e., by looking at the differences in hex
dumps), we aimed to minimize the differences between each pair of configurations to
compare. For example, replacing a single dual-rank DIMM with two single-rank DIMMs
of half the size each restricted the changes to the memory mapper and allowed us to
identify the configuration registers specific to that channel.
We used the dual-socket system for exploring the configuration of NUMA node inter-

leaving. For that purpose, we switched ACPI NUMA support on and off in the BIOS
setup. With that setting off, the firmware assumes that the OS is not aware of NUMA
and interleaves the physical address space between all nodes to avoid unbalanced memory
allocation [10].
Using the dual-socket system proved valuable also with the configuration registers local

to each NUMA node by both speeding up the exploration process and by making it easier
to discover offset registers. By populating the memory slots attached to each socket in
a different fashion, we were able to explore two configurations for each time-consuming
cycle of shutting down, rearranging DIMMs, and rebooting the system. Further, the
address decoding scheme uses several address offsets, which are hard to discover because
they are typically configured to zero in a single-socket system – we cannot tell apart these
configuration registers set to 0 from nonexistent registers that also show up as 0 in a

5

hex dump. Using a dual-socket system trivially avoided that by forcing nonzero offsets
in the second socket’s configuration registers.

3.4 Interleaving Functions

Interleaving spreads adjacent cache lines across different entities in the DRAM hierarchy,
such as channels or ranks. Simple interleaving schemes place subsequent cache lines on
subsequent channels/ranks by using address bits for indexing channels/ranks. Other
schemes combine several address bits in more complex binary functions, for example
using XOR to achieve a pseudo-random distribution. Often, these interleaving functions
are undocumented, so that interested parties have to rely on reverse-engineering [14, 12].
We propose to utilize DRAM mapping aliases [3] for reverse-engineering interference

functions. For that purpose, we map the same physical DRAM twice into the physical
address space, once with interleaving and once as a linear mapping, so that we can identify
the interleaving functions by finding correspondences between both address mappings.
Linear mapping places the memory of each rank, channel, and NUMA socket as con-

tiguous and distinct region in physical memory. Thus, within that linear mapping, we can
unambiguously and trivially identify each physical address with its location in DRAM
(i.e., socket, channel, and rank indices). In the interleaved mapping, though, we do not
know that relation as we are unaware of the interleaving functions that map a given
physical address to a specific socket / channel / rank.
In our approach, we use corresponding pairs of addresses from the linear and the

interleaved mapping that refer to the same underlying DRAM. From the address in the
linear mapping, we can extract on which socket, channel, or rank that address resides,
as that mapping is known. Thereby, we derive the interleaving index of the address in
the interleaved mapping. Given a sufficiently large set of these address pairs, we can
reconstruct the interleaving function.
For searching corresponding address pairs, we rely on the fact that cache lines map to

a single access to DRAM (a burst transfer on the memory bus). Thus, a data structure
that fits within a cache line will be contiguous in both the linear and the interleaved
mapping. We use this observation by first placing marker data structures in one of the
mappings and then searching for these markers in the other mapping. By storing the
address where we placed each marker within that marker, we gain a pair of corresponding
addresses whenever we find a marker in the second mapping.
In each marker, we store a prefix of 16 random bytes (common to all markers, but

chosen anew for each experiment), the physical address where we placed the marker,
and a CRC checksum over the random prefix and the address. We align each marker at
the start of a cache line. When searching for markers, we can quickly identify potential
candidates using the random prefix and the alignmtne to cache lines. Then, we validate
the checksums in each candidate to avoid mistaking random data for a marker1. Once
we found a marker, we add the physical address where we found the marker together
with the placement address stored within the marker to the set of found pairs.

1The remaining chance is negligible.

6

With this approach, it is irrelevant whether we place the markers in the interleaved
mapping and then search them in the linear mapping or vice versa. In any case, we
derive the interleaving index (e.g., the number of the channel that an address maps to)
from the address in the linear mapping and the corresponding physical address from the
interleaved mapping.
Finally, we derive the minimum XOR-based function from the (address, index)-pairs we

gathered, using the same approach that Maurice et al. proposed when reverse-engineering
the interleaving functions for Intel’s last level cache slices [12]: For each bit of the inter-
leaving function, for each address bit, we check whether we can eliminate that address
bit from the function, by

1. set trials to 0
2. randomly choose an address from the pairs we gathered,
3. derive a new address by inverting the address bit currently under consideration,
4. searching for the new address in the (address, index)-pairs,
5. if not found, increment trials and go back to step 2 if trials is below a limit,
6. if found, check whether both addresses differ in the index bit currently under con-

sideration
7. if they do not differ, then the current address bit cannot be an input to the inter-

leaving function currently under consideration, so eliminate that address bit from
the function,

8. if they do differ, increment trials and go back to step 2 if trials is below a limit
(we aborted each loop after one million trials).

Note that we left Linux unaware of the additional mappings in the physical address
space to avoid conflicting allocations. Thus, we had to patch the driver code of Linux’s
/dev/mem/ to allow access to any physical address (in function valid_phys_addr_range
in drivers/char/mem.c). As a result, we could simply mmap the alternative mappings.

4 Address Decoding Overview

All in all, the address decoding from physical addresses to physical locations in DRAM
in Intel Xeon processors in the Haswell and Broadwell generations comprises four steps:

1. Upon a miss in one of the last level caches (LLC), or when an uncacheable memory
request is handled by the LLC [8, § 3.1.1], the LLC has to decide where to route
a request for that cache line. For that purpose, the source address decoder (SAD),
a part of the LLC, compares the request’s physical address to a set of configured
regions. When the address matches a region, that region defines which NUMA
node to route the request to. If desired, the region can be set to interleave between
multiple NUMA nodes. While the process is similar for DRAM-backed and MMIO
regions, we focus on DRAM-backed regions in this report.

2. Once the request arrives at its destination NUMA node, the target address decoder
(TAD) of that node processes the request’s physical address. The TAD matches

7

that address to its own set of regions. Each region in the TAD defines the target
memory channels for matching physical addresses, or a set of target channels for
interleaving. The TAD can subtract offsets from the address or perform bit shifts
for interleaving. Thereby, the TAD translates from the global physical address
space to a per-channel address space that is local to the specific memory channel
within a specific NUMA node. Each per-channel address space ranges from 0 to
the capacity of all the memory attached to that channel.

3. For each memory channel, the memory mapper matches the request’s address to
another set of regions to determine which rank to map the request to. Each region
can target a single rank or interleave between up to eight ranks. Similar to the
TAD, the memory mapper can subtract offsets and perform bit shifts to map the
per-channel address space to a local per-rank address space.

4. Finally, the memory mapper translates from the per-rank address space to the
address bits used by the physical organization of the respective rank: It slices the
request’s address into components that address a single bank, row, and column
within the rank.

4.1 Configuration Registers

All the uncore configuration registers that we discuss in this report are memory-mapped.
Specifically, they are mapped in the PCI configuration spacE of pseudo-PCI devices on a
dedicated PCI bus for each processor uncore [7, §1.1.2, 6, §1.1.2]. The uncore component
called Processor Configuration Agent (Ubox) is responsible for implementing these PCI
devices and mapping transactions to their configuration space to reads/writes to the
uncore configuration registers [8, §9].
Each processor socket has two such dedicated PCI buses for configuration accesses: The

first bus provides access to the processor’s integrated I/O devices such as the IOMMU
or the I/O xAPIC and the second bus offers access to the configuration registers for
address decoding (among others), which we focus on in this report. While being freely
configurable, the uncore configuration showed up as bus 0xff in all our single-socket
systems and as buses 0x7f and 0xff in all our dual-socket systems.
In the following sections, we will refer to PCI devices relative to these buses and only

provide PCI device and function numbers.

4.2 Common Patterns

Many decoding stages share common idioms in the layout and the semantics of their
configuration registers, which we introduce in this section.

4.2.1 Compact Encoding of Consecutive Regions

All the address decoders only support a set of consecutive regions and encode them in
a compact way: The limit address of each region implicitly defines the base address of

8

the successive region. The base address of the first region is fixed at 0. In most cases,
limits are defined at the granularity of 64 MiB. A physical address matches a region if
its high-order address bits 26 and above are less than or equal to the limit of that region
and greater than the limit of the preceding region.
Each address decoder offers a fixed number of region registers. As systems typically

use fewer regions, superfluous region registers can be marked as unused (e.g., our dual-
socket system only uses two out of twenty regions in the SAD). In most cases, regions are
marked as unused implicitly by setting their limit to the same as that of their predecessor.
Some region registers contain an explicit enable flag.

4.2.2 Interleave Target List

Interleaving at all levels (sockets, channels, ranks) uses a level of indirection for added
flexibility in selecting the target for each physical address. First, the decoding stage
calculates an interleave index as a function of the address bits. Then, it looks up the
destination socket, channel, or rank in a list of interleave targets using that index.

5 Source Address Decoder

The source address decoder (SAD) defines the layout of the physical address space for
each set of processors that share a last level cache (i.e., a NUMA node). It is responsible
for directing memory requests to the NUMA node where the addressed memory cell is
locally attached. The SAD can map whole regions to a single NUMA node or interleave
regions between several NUMA nodes, which is also called socket interleaving2.
The SAD’s configuration registers map to device 15, function 4 (0f.4)3. We provide

an overview of the configuration space of that device in Figure 1.

5.1 SAD Regions

The SAD matches physical addresses against a list of consecutive regions. Each region is
encoded in one of the SAD DRAM region registers, according to the layout in Register
5.1, following the encoding pattern described in Section 4.2.1. The SAD supports up to
20 regions (as with the 7500 generation [5, §4.4]).
When a request’s physical address matches a region, that region defines to which

NUMA node the SAD will direct the request. For that purpose, the SAD always treats
regions as if they were 8-way socket interleaved, which we describe next.

2Strictly speaking, the term socket interleaving is misleading, because a processor package may occupy
one socket but comprise multiple NUMA nodes. We use the term anyway to be consistent with Intel’s
datasheets.

3Linux uses hexadecimal numbers for denominating PCI buses. Thus, we provide device/function
specifiers in hex in parenthesis, the same as they appear in, for example, /proc/bus/pci.

9

0x00 device id vendor id = 0x8086

0x08
... unknown

0x58

0x60 SAD DRAM region 0 interleave target list 0

0x68 SAD DRAM region 1 interleave target list 1

0x70 SAD DRAM region 2 interleave target list 2
...

...
0xf8 SAD DRAM region 19 interleave target list 19

Figure 1: Layout of the Source Address Decoder’s PCI configuration space, device 15,
function 4 (0f.4). The SAD supports up to 20 different regions. The PCI
device id is 0x2ffc on Haswell and 0x6ffc on Broadwell-EP.

Register 5.1: Source Address Decoder Region

un
kn
ow
n

31 27

flip
96

26

lim
it

25 6

un
kn
ow
n

5 2

dis
ab
leX

OR

1

en
ab
le

0

enable Use this region definition if set.

limit Limit of this region in multiples of 64 MiB.

disableXOR When set, then use bits 8:6 as interleave index. When reset,
then XOR 18:16 onto 8:6 to get the interleave index.

flip96 Use bit 9 instead of bit 6 to calculate the interleave index.

10

5.2 Socket Interleaving

The SAD can interleave adjacent cache lines between different NUMA nodes. Intel’s
datasheets use the term socket interleaving for that mechanism. When an OS is not
aware of the NUMA topology of a system, socket interleaving helps to balance memory
requests across all NUMA nodes, because each allocated page frame unavoidably covers
memory from all NUMA nodes. When the OS is NUMA-aware, however, the NUMA
nodes’ memory is typically mapped as dedicated regions to let the OS control on which
nodes to allocate each page [10].
Socket interleaving uses the pattern of interleave target lists, which we described above

in Section 4.2.2: The SAD first maps the physical address of a request to one of eight
interleave indices and then uses that index to look up the destination NUMA node in a
list of interleave targets for that region. We present the layout of the interleave target
list that accompanies each SAD region in Register 5.2 (see Figure 1 for the addresses of
these registers). This scheme allows all variants from 2-way up to 8-way interleaving by
setting several entries of the target list to the same NUMA node. In particular, we are
not aware of a flag to disable socket interleaving; instead, you set all entries in the target
list to the same value to map a region to a single NUMA node.

Register 5.2: Source Address Decoder Interleave Target List

un
us
ed

31 30

tg
t7

29 28

un
us
ed

27 26

tg
t6

25 24

un
us
ed

23 22

tg
t5

21 20

un
us
ed

19 18

tg
t4

17 16

un
us
ed

15 14

tg
t3

13 12

un
us
ed

11 10

tg
t2

9 8

un
us
ed

7 6

tg
t1

5 4

un
us
ed

3 2

tg
t0

1 0

tgtN target NUMA node (or socket) for interleave index N.

We are aware of four variants how the SAD calculates the interleave index from the
physical address. Two flags in the SAD’s region registers (see Register 5.1), which we
call flip96 and disableXOR, select the variant:

• With both flags set to 0, the SAD will XOR the address bits 18:16 to the address bits
8:6 to form the interleave index. Specifically, the index bits in will be calculated
from the physical address bits an as follows: i2 = a18 ⊕ a8, i1 = a17 ⊕ a7, and
i0 = a16 ⊕ a6.

• When enabling the disable_XOR flag, the SAD will only use the lower address bits
8:6 as index.

• When enabling the flip96 bit, the SAD will use address bit 9 instead of bit 6.
That is, i0 = a16 ⊕ a9 (when using XOR).

Our results concur with those reported by Pessl et al. on a two-socket system [14] but
extend them to the full interleaving function. Pessl et al. found that a17 ⊕ a7 selected
the socket with 2-way socket interleaving, which we identified as i1. Thus, their system’s
interleave target list was likely set as (0, 0, 1, 1, 0, 0, 1, 1), which matches what
we observed when enabling socket interleaving in the BIOS setup on our test system.

11

0x00 device id vendor id = 0x8086

0x08
... unknown

0x38

0x40 TAD DRAM region 0 TAD DRAM region 1

0x48 TAD DRAM region 2 TAD DRAM region 3
...

...
0x68 TAD DRAM region 10 TAD DRAM region 11

0x70
... unknown

0xf8

Figure 2: Layout of the home agent’s target address decoder PCI configuration space,
device 18, function 0 (12.0). The TAD supports up to 12 different regions. The
PCI device id is 0x2fa0 on Haswell and 0x6fa0 on Broadwell-EP.

6 Target Address Decoder

At each NUMA node, two components are responsible for handling requests to that node’s
local memory: The home agent handles the cache coherency protocol on the NUMA inter-
connect and the integrated memory controller interfaces with the local DRAM channels.
The target address decoder (TAD) appears to be split between these two components.
However, from the perspective of address decoding, it does not matter which component
performs which part of the address translation. Thus, we will discuss the TAD as if it
were a single entity.
The TAD’s region configuration is duplicated between home agent and integrated

memory controller and appears in two uncore configuration devices: The home agent’s
TAD configuration resides in device 18, function 0 (see Figure 2), whereas the integrated
memory controller’s TAD configuration is mapped to device 19, function 0 (see Figure
3). Both sets of registers are independent, yet BIOS firmware appears to set both to the
same values.

6.1 TAD Regions

The TAD matches a request’s physical address against a list of up to 12 consecutive
regions. These regions are configured in the TAD DRAM region registers in both the
home agent’s and the integrated memory controller’s TAD configuration spaces (Figures
2 and 3) and share a common layout which we depict in Register 6.1. Like with the SAD
regions, each TAD region’s base address is implicitly defined by the limit address of the
preceding region, as we describe in Section 4.2.1.

12

0x00 device id vendor id = 0x8086

0x08
... unknown

0x78 memory technology

0x80 TAD DRAM region 0 TAD DRAM region 1

0x88 TAD DRAM region 2 TAD DRAM region 3
...

...
0xa8 TAD DRAM region 10 TAD DRAM region 11

0xb0
... some documented, some unknown

0xfff

Figure 3: Layout of the integrated memory controller’s target address decoder PCI con-
figuration space, device 19, function 0 (13.0). The TAD supports up to 12
different regions. The PCI device id is 0x2fa8 on Haswell and 0x6fa8 on
Broadwell-EP. Please refer to the datasheets for documentation of the memory
technology register [7, §2.1.2, 6, §2.1.2].

The field socket interleave wayness instructs the TAD to remove the address bits used
in socket interleaving by shifting the physical address to the right.

6.2 Channel Interleaving

When a request’s address matches a TAD region, the TAD consults that region’s config-
uration register to determine the memory channel that should handle the request. For
that purpose, the field channel interleave wayness (see Register 6.1) defines how many
channels to use for interleaving in that region – from mapping to a single channel up to
4-way channel interleaving. The TAD first calculates a 2-bit interleave index (i1, i0) by
XOR-ing several address bits ai according to the following function:
i0 = a7 ⊕ a12 ⊕ a14 ⊕ a16 ⊕ a18 ⊕ a20 ⊕ a22 ⊕ a24 ⊕ a26
i1 = a8 ⊕ a13 ⊕ a15 ⊕ a17 ⊕ a19 ⊕ a21 ⊕ a23 ⊕ a25 ⊕ a27
Then, the TAD looks up the destination channel in the interleave target fields in the

region’s configuration register, using up to 2, 3, or 4 of the target fields for 2-way, 3-way,
or 4-way interleaving, respectively. When mapping the whole region to a single channel,
the field target channel index 0 denotes that channel.
Before forwarding a request’s address to the memory mapper, the TAD will subtract

an offset from that address and perform a bit shift to remove the bits used in interleaving,
as necessary. The fields socket interleave wayness and channel interleave wayness in the
region’s configuration register determines how many bits to remove. For 3-way channel

13

Register 6.1: Target Address Decoder Region

reg
ion

lim
it
ad
dr
ess

31 12

so
ck
et
int
erl
ea
ve
wa
yn
ess

11 10

ch
an
ne
l i
nt
erl
ea
ve
wa
yn
ess

9 8

ta
rg
et
ch
an
ne
l i
nd
ex
3

7 6

ta
rg
et
ch
an
ne
l i
nd
ex
2

5 4

ta
rg
et
ch
an
ne
l i
nd
ex
1

3 2

ta
rg
et
ch
an
ne
l i
nd
ex
0

1 0

region limit address Limit address of this region in multiples of 64
MiB. Matched against the high-order address
bits 26 and above.

socket interleave wayness Degree of NUMA interleaving (0: no interleav-
ing, 1: 2-way, 2: 4-way, 3: 8-way), controls how
many bits to remove from a physical address.

channel interleave wayness Degree of interleaving across memory channels
(0: 1 channel, 1: 2 channels, 2: 3 channels, 3:
4 channels), defines how many bits to use as in-
terleaving index and how many bits to remove
from a physical address.

target channel index 3..0 List of target channels. The interleaving index
selects which entry to use.

14

interleaving, the TAD will divide the address by three instead of bit shifting it to the
right.
The offset enables to use channel interleaving when channels are populated with un-

equal capacity. An offset can be set specific per channel and per region using registers
in the per-channel configuration spaces of the integrated memory controller, see Figure
4. The registers follow the layout depicted in Register 6.2.
Keep in mind that the TAD first subtracts the offset from an address and then performs

the bit shift to remove interleaving bits.

Register 6.2: Target Address Decoder Region Per-Channel Offset

un
us
ed

31 30

un
kn
ow
n
fla
gs

11 10

un
us
ed

9 8

off
set

25 6

un
us
ed

5 0

unknown flags Appear to control address calculation with 3-way channel in-
terleaving.

offset Offset to subtract from the physical address when matching a specific
region and directing a request to a specific channel, in multiples of 64
MiB.

7 Memory Mapper

The memory mapper performs the final two translation steps from per-channel addresses
to physical locations in DRAM. The first step maps the address space of the channel
to the DRAM ranks attached to that channel, translating from per-channel addresses
to per-rank addresses. The second step maps the linear per-rank address spaces to the
actual DRAM addressing signals used on the memory bus. For that purpose, it splits
the address into components that address a bank, row, and column, according to the
physical organization of the rank.
In this report, we focus on the address decoding down to the granularity of ranks, that

is, down to the first translation step performed by the memory mapper. Information
about the mapping functions for individual banks have been reported by Pessl et al. [14].
The memory mapper uses a distinct set of configuration registers for each channel.

These configuration registers share PCI devices with the channel-specific settings of the
TAD, see Figure 4.

7.1 Rank (Interleaving) Regions

The memory mapper matches each per-channel address to a list of up to five contiguous
rank interleaving regions. These regions follow the pattern of storing only the limit

15

0x00 device id vendor id = 0x8086
... unknown

0x78

0x80 DIMM organization 0 DIMM organization 1

0x88 DIMM organization 2 unknown, likely channel enable bit (0)

0x90 per-channel offset for TAD region 0 per-channel offset for TAD region 1
...

...
0xb8 per-channel offset for TAD region 10 per-channel offset for TAD region 11

0xc0
... unknown

0x100

0x108 rank interleaving region (RIR) 0 RIR 1

0x110 RIR 2 RIR 3

0x110 RIR 4 unused/unknown

0x120 interleave target 0 for RIR 0 interleave target 1 for RIR 0
...

...
0x138 interleave target 6 for RIR 0 interleave target 7 for RIR 0

0x140 interleave target 0 for RIR 1 interleave target 1 for RIR 1
...

...
0x160 interleave target 0 for RIR 2 interleave target 1 for RIR 2

...
...

0x180 interleave target 0 for RIR 3 interleave target 1 for RIR 3
...

...
0x1a0 interleave target 0 for RIR 4 interleave target 1 for RIR 4

...
...

0x1b8 interleave target 6 for RIR 4 interleave target 7 for RIR 4

0x1c0
... unknown, likely unused

0xff8

Figure 4: Layout of the integrated memory controller’s per-channel TAD and rank inter-
leaving configuration spaces, device 19, functions 2-5 for channels 0-3 (13.2-13.5,
with device ids from 0x2faa to 0x2fad). See datasheets for the DIMM organi-
zation registers [7, §2.3.2, 6, §2.3.2]. The PCI device ids range from 0x2faa to
0x2fad on Haswell and from 0x6faa to 0x6fad on Broadwell-EP.

16

address of each region, which implicitly defines the base address of the successive region
(see Section 4.2.1). Each region is configured according to Register 7.1.

Register 7.1: Rank Interleaving Region

en
ab
le

31

un
us
ed

30

int
erl
ea
ve
wa
yn
ess

29 28

un
us
ed

27 12

lim
it

11 1

un
us
ed

0

enable Use this region definition if set.

interleave wayness How many ranks to interleave in this region (0: single
rank, 1: 2-way, 2: 4-way, 3: 8-way).

limit Limit of this region in multiples of 512 MiB.

7.2 Rank Interleaving

The memory mapper supports rank interleaving across two, four, and eight ranks, as well
as mapping a region to a single rank. The number of ranks to interleave is defined in the
registers that configure the regions (see the field interleave wayness in Register 7.1).
The memory mapper employs the pattern of interleave target lists, which we described

above in Section 4.2.2, and directly uses address bits 13 to 15 as the 3-bit interleaving
index. For each possible rank interleaving region, the interleaving target list comprises
eight registers (i.e., one per target), see Figure 4, offsets 0x120 and following. Each of
these registers uses the layout depicted in Register 7.2.

Register 7.2: Rank Interleaving Target List

un
us
ed

31 20

ra
nk

19 16

off
set

15 0

rank Rank encoded as 2-bit DIMM number and 2-bit rank index within a
DIMM.

offset Offset (in multiples of 16 MiB) to subtract after removing interleave
bits.

After extracting the interleaving index from a request’s address, the memory mapper
removes these bits from the address by shifting the higher order address bits right. Then,
it subtracts the offset specific to this interleaving target.
The offset is useful for mixed configurations in a channel. Imagine a memory channel

populated with three ranks (e.g., with three single-rank DIMMs) that uses a region with

17

two-way rank interleaving for two of the ranks and another region that maps the third
rank without interleaving. The offset field in the second region, first interleave target
will be set to the length of the first region (no interleaving means just a single target).

In contrast to socket and channel interleaving, the interleaving function for ranks is
relatively simple. We are not aware of any flags that change this function.
Note that we used address bits as seen by the memory mapper in the discussion above.

When using socket and/or channel interleaving, a physical address is shifted to the right
before being handed over to the memory mapper. Thus, the rank interleaving bits can
appear in the physical address at higher bits than 13 to 15. Keeping that in mind, our
results confirm the rank address mapping that Pessl et al. reported for a dual Haswell-EP
system [14]. They found that bit 15 of the physical address chooses between two ranks
on each of two channels, which aligns with bit 13 of the per-channel address after shifting
the address right by two bits for 2-way channel and 2-way socket interleaving.

8 Limitations & Pitfalls

In this section, we list limitations of our exploration, such as configuration options we
deliberately omitted, and pitfalls we encountered and circumvented.

8.1 Processors With Two Memory Controllers

Some Xeon E5 processors feature two integrated memory controllers and home agents.
The datasheets suggest that the seconary devices mirror the configuration registers at
different PCI config spaces [6, §1.1.2]. We cannot confirm that assumption because we
do not have a processor model with two memory controllers available.

8.2 3-Way Channel Interleaving

We deliberately exclude 3-way channel interleaving from this report. While apparently
supported by the TAD, we found no benefit in tackling the additional complexity. We
typically populate all four channels anyway.

8.3 Interaction of Socket and Channel Interleaving

When reverse-engineering interleaving functions, we considered interleaving at each ad-
dress decoding step in isolation – that is, we analyzed channel interleaving without socket
interleaving and rank interleaving without socket or channel interleaving. Comparing our
channel interleaving function with that reported by Pessl et al. [14], we have to assume
that the combination of socket and channel interleaving results in a different channel
interleaving function than what we observed.

8.4 Open Page / Closed Page Mapping

The memory mapper supports two address mapping schemes, referred to as open page and
closed page address mapping scheme (see register mcmtr in [7, §2.1.2]). Jacob provides

18

an overview of row-buffer-management policies and the related address mapping schemes
in [9, §13.2]. In this report, we only present results for the open page mapping scheme,
which is chosen by the BIOS firmware in all our test systems. The datasheet from the
5500 generation processors suggest that the rank interleaving bits differ between the two
addressing schemes [4, §2.17.2].
We left out an exploration of the closed page mapping scheme because this setting

is global for each memory controller and thus cannot be changed without disturbing a
running system: Allocated data structures and page frames in physical memory would
suddenly appear at different physical addresses and thereby crash any running system.
In contrast, our approach establishes additional regions in the physical address space and
leaves the existing mapping untouched so that a running operating system and its existing
allocations remain undisturbed. As a consequence, our approach cannot be applied for
global settings such as the DRAM address mapping scheme.

8.5 Configuration Space Access

On some of our systems, we found that not all the TAD registers were visible when
accessing them via the /proc/bus/pci interface in Linux. The uncore exposes its config-
urations registers in the configuration spaces of pseudo-PCI devices. Linux relies on fields
in the PCI configuration space to differentiate between conventional PCI and PCI-X or
PCI express devices and, consequently, to determine the size of these configuration spaces
(256 bytes for conventional devices versus 4K for some PCI-X and all PCI express de-
vices). As the configuration spaces of the uncore PCI devices did not fully conform to the
PCI specs on some of our systems, Linux would falsely guess the size of these configura-
tion spaces as 256 bytes. Consequently, Linux will only expose the lower 256 bytes of the
configuration space in /proc/bus/pci/<device> and thereby hide the registers that are
mapped to the extended configuration area above that limit. To avoid that, we modified
the function pci_cfg_space_size in the Linux kernel’s source file drivers/pci/probe.c
to use the extended configuration space for the uncore configuration devices we discuss
in this report.

8.6 Live Reconfiguration

In our experiments, we successfully reconfigured the address decoding registers in a run-
ning system for regions of physical memory not currently in use. When accessing in-
correctly configured regions, the SAD and TAD behaved gracefully and just aborted
memory requests. However, we observed lockups of our test systems when we left the
configuration of the memory mapper in an inconsistent or incorrect state.

8.7 Locking Configuration Registers

The real value of understanding the uncore configuration registers is being able to adjust
them for a research prototype. To be practical, that means writing new settings to the
configuration registers after an unmodified firmware established a commodity configura-
tion. Unfortunately, firmware can lock the configuration registers of all address decoding

19

stages against modifications and there is no public documentation on that locking mecha-
nism besides its existence [7, 6, §1.3 RW-LB]. YMMV. Our experience is mixed: On some
of our test systems, the configuration registers remain writable, on others the firmware
apparently locked them against modification at runtime.

9 Summary

The decoding of physical addresses to actually physical locations in DRAM is a com-
plex multi-step process in current server-class processors, driven by the requirements to
support NUMA architectures and the variable and asymmetric population of memory
channels and NUMA nodes with DRAM. In this report, we describe that decoding pro-
cess as implemented in the Intel Xeon E5 v3 and v4 processors. We provide the layouts
and locations of configuration registers that have an essential influence on the decoding
process but are left out from publicly available datasheets.
By utilizing DRAM mapping aliases for reverse-engineering, we derived the interleaving

functions used by these processors for socket interleaving, channel interleaving, and rank
interleaving. Our findings confirm previously published results. To the best of our
knowledge, we extend on previous results because our approach permits us to discover the
full interleaving functions (e.g., for eight-way socket or rank interleaving) while previous
work is limited to the DRAM organization physically present in the systems under test
(e.g., only two sockets or ranks).

References

[1] Reto Achermann et al. “Formalizing Memory Accesses and Interrupts.” In: Pro-
ceedings of the 2nd Workshop on Models for Formal Analysis of Real Systems.
MARS 2017. Upsala, Sweden: Open Publishing Association, 2017, pp. 66–116. doi:
10.4204/EPTCS.244.44. url: http://eptcs.web.cse.unsw.edu.au/paper.cgi?
MARS2017.4.

[2] Simon Gerber et al. “Not Your Parents’ Physical Address Space.” In: Proceedings of
the 15th Workshop on Hot Topics in Operating Systems. HOTOS’15. Switzerland:
USENIX Association, May 2015.

[3] Marius Hillenbrand et al. “Multiple Physical Mappings: Dynamic DRAM Channel
Sharing and Partitioning.” In: Proceedings of the 8th Asia-Pacific Workshop on
Systems. APSys ’17. Mumbai, India: ACM, 2017, 21:1–21:9. isbn: 978-1-4503-5197-
3. doi: 10.1145/3124680.31247425. url: http://doi.acm.org/10.1145/
3124680.3124742.

[4] Intel Xeon Processor 5500 Series Datasheet, Volume 2. 321322-002. Intel Corpora-
tion. Apr. 2009.

4https://doi.org/10.4204/EPTCS.244.4
5https://doi.org/10.1145/3124680.3124742

20

http://eptcs.web.cse.unsw.edu.au/paper.cgi?MARS2017.4
http://eptcs.web.cse.unsw.edu.au/paper.cgi?MARS2017.4
http://doi.acm.org/10.1145/3124680.3124742
http://doi.acm.org/10.1145/3124680.3124742
https://doi.org/10.4204/EPTCS.244.4
https://doi.org/10.1145/3124680.3124742

[5] Intel Xeon Processor 7500 Series Datasheet, Volume 2. 323341-001. Intel Corpora-
tion. Mar. 2010.

[6] Intel Xeon Processor E5 v4 Product Family Datasheet. 333810-002US. Intel Corpo-
ration. June 2016.

[7] Intel Xeon Processor E5-1600/2400/2600/4600 v3 Product Families Datasheet.
330784-003. Intel Corporation. June 2015.

[8] Intel Xeon Processor E7 v2 2800/4800/8800 Product Family Datasheet. 329595-002.
Intel Corporation. Mar. 2014.

[9] Bruce Jacob, Spencer Ng, and David Wang. Memory Systems: Cache, DRAM,
Disk. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007. isbn:
0123797519, 9780123797513.

[10] Christoph Lameter. “NUMA (Non-Uniform Memory Access): An Overview.” In:
Queue 11.7 (July 2013), 40:40–40:51. issn: 1542-7730. doi: 10.1145/2508834.
25131496. url: http://doi.acm.org/10.1145/2508834.2513149.

[11] R.A. Maddox, G. Singh, and R.J. Safranek. Weaving High Performance Multipro-
cessor Fabric: Architectural Insights Into the Intel QuickPath Interconnect. Books
by Engineers, for Engineers. Intel Press, 2009. isbn: 9781934053188.

[12] Clémentine Maurice et al. “Reverse Engineering Intel Last-Level Cache Complex
Addressing Using Performance Counters.” In: Proceedings of the 18th International
Symposium on Research in Attacks, Intrusions, and Defenses - Volume 9404. RAID
2015. Kyoto, Japan: Springer-Verlag New York, Inc., 2015, pp. 48–65. isbn: 978-3-
319-26361-8. doi: 10.1007/978-3-319-26362-5_37. url: http://dx.doi.org/
10.1007/978-3-319-26362-5_3.

[13] Onur Mutlu and Lavanya Subramanian. “Research Problems and Opportunities in
Memory Systems.” In: Supercomputing Frontiers and Innovations: an International
Journal 1.3 (Oct. 2014), pp. 19–55. issn: 2409-6008. doi: 10.14529/jsfi1403028.
url: http://dx.doi.org/10.14529/jsfi140302.

[14] Peter Pessl et al. “DRAMA: Exploiting DRAM Addressing for Cross-CPU At-
tacks.” In: 25th USENIX Security Symposium, USENIX Security 16, Austin, TX,
USA, August 10-12, 2016. Ed. by Thorsten Holz and Stefan Savage. USENIX
Association, 2016, pp. 565–581. url: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/pessl.

[15] Wonjun Song et al. “PIkit: A New Kernel-Independent Processor-Interconnect
Rootkit.” In: 25th USENIX Security Symposium (USENIX Security 16). Austin,
TX: USENIX Association, Aug. 2016, pp. 37–51. isbn: 978-1-931971-32-4. url:
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/
presentation/song.

6https://doi.org/10.1145/2508834.2513149
7https://doi.org/10.1007/978-3-319-26362-5_3
8https://doi.org/10.14529/jsfi140302

21

http://doi.acm.org/10.1145/2508834.2513149
http://dx.doi.org/10.1007/978-3-319-26362-5_3
http://dx.doi.org/10.1007/978-3-319-26362-5_3
http://dx.doi.org/10.14529/jsfi140302
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/song
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/song
https://doi.org/10.1145/2508834.2513149
https://doi.org/10.1007/978-3-319-26362-5_3
https://doi.org/10.14529/jsfi140302

	Contents
	Introduction
	Background
	Approach
	Experimental Platforms
	Address Decoding Architecture
	Configuration Registers
	Interleaving Functions

	Address Decoding Overview
	Configuration Registers
	Common Patterns
	Compact Encoding of Consecutive Regions
	Interleave Target List

	Source Address Decoder
	SAD Regions
	Socket Interleaving

	Target Address Decoder
	TAD Regions
	Channel Interleaving

	Memory Mapper
	Rank (Interleaving) Regions
	Rank Interleaving

	Limitations & Pitfalls
	Processors With Two Memory Controllers
	3-Way Channel Interleaving
	Interaction of Socket and Channel Interleaving
	Open Page / Closed Page Mapping
	Configuration Space Access
	Live Reconfiguration
	Locking Configuration Registers

	Summary

