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On multicore CPUs, concurrent processes compete for
shared resources such as caches and the memory subsystem.
Sharing DRAM resources, such as channels and banks, can
increase request latencies and thereby slow down applica-
tions [3]. As an illustration, we measure the slowdown of
the Parsec suite with several memory-intensive background
jobs. We observe that slowdowns depend on the combination
of workloads and can vary widely for a given benchmark.

These slowdowns result from how DRAM operates, as
read and write requests fall into two categories: (1) fast row
hits address the row currently loaded in a DRAM bank’s row
buffer whereas (2) row misses first have to load another row
into the buffer and suffer a ∼3x higher latency. When the
request streams of competing processes hit the same bank,
locality is lower than from each process alone, resulting
in a higher row miss rate and thus higher memory latency.
Consequently, DRAM partitioning is effective for reducing
the slowdown from memory interference because it avoids
sharing: Partitioning dedicates DRAM resources, such as
channels and banks, via page allocation [1, 2]. Effectively,
the OS performs long-term scheduling on DRAM, treating
it as a processing resource for read and write requests.

While partitioning can mitigate interference, it introduces
overhead: we need to disable interleaving to give the OS
control of how pages map to DRAM resources. Interleaving
improves application performance by mapping channel and
bank indices to low-order address bits within the page offset,
thereby spreading requests over parallel DRAM resources.
In contrast, partitioning reduces DRAM parallelism because
channel and bank indices need to be controlled by high-order
address bits within the page frame number chosen by the OS.

In a conventional system, we have to choose either
DRAM partitioning or interleaving at boot time, when the
BIOS configures a fixed mapping of physical addresses to
DRAM. At that moment, we typically do not know yet which
jobs will later run on a system and whether their interfer-
ence will cause slowdowns. When our choice turns out to be
wrong later, we pay a performance penalty: We might have
chosen interleaving, yet find at run time that we need parti-
tioning to reduce slowdowns. Vice versa, we might boot a
system with partitioning and run only jobs that would benefit
from interleaving and do not suffer from interference.
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We propose to overcome this limitation by introducing
DRAM Mapping Aliases: We map DRAM into the physical
address space multiple times, each time with another map-
ping scheme, by configuring the memory controller. Typi-
cally, one of these mappings, which we call aliases, would
be interleaved, while another one would partition channels
and banks. By choosing page frames from the right alias
when allocating memory, the OS can choose between in-
terleaving and sharing or partitioning DRAM channels and
banks at run time. Mapping aliases break the common as-
sumption that physical addresses uniquely identify memory.
Thus, we have to be careful not to allocate the same under-
lying DRAM twice.

We implement mapping aliases with small changes to the
Linux kernel. For partitioning and choosing aliases, we cre-
ate fake NUMA nodes, one for each interleaved alias and
each partition. Then, we can decide to isolate processes to
separate channels and/or banks or let them share an inter-
leaved alias by binding them to the respective fake nodes
using existing NUMA APIs. To ensure that each piece of
DRAM is allocated at most once, we utilize memory hot-
plugging to have only one mapping of every piece of DRAM
visible to Linux at all times. For reconfiguring, we first mi-
grate the available physical memory by taking blocks offline
in the old memory and then setting the corresponding blocks
online in the new alias. Then, we migrate processes’ pages
and page tables to the new alias.

Our prototype runs on an off-the-shelf AMD Athlon X4
880K CPU 1 and provides aliases for channel interleaving
and partitioning. In our experiments, we find that migrat-
ing processes between both schemes at run time mitigates
most of the performance penalty induced by conventional
systems’ fixed mapping.
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Classic Mitigation: DRAM Partitioning
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Approach: Mapping Aliases – Choose Interleaving or Partitioning at Runtime
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