
Putting the OS in Control of DRAM with Mapping Aliases

Marius Hillenbrand ∗ Frank Bellosa
Karlsruhe Institute of Technology

os@itec.kit.edu

On multicore CPUs, concurrent processes compete for
shared resources such as caches and the memory subsystem.
Sharing DRAM resources, such as channels and banks, can
increase request latencies and thereby slow down applica-
tions [3]. As an illustration, we measure the slowdown of
the Parsec suite with several memory-intensive background
jobs. We observe that slowdowns depend on the combination
of workloads and can vary widely for a given benchmark.

These slowdowns result from how DRAM operates, as
read and write requests fall into two categories: (1) fast row
hits address the row currently loaded in a DRAM bank’s row
buffer whereas (2) row misses first have to load another row
into the buffer and suffer a ∼3x higher latency. When the
request streams of competing processes hit the same bank,
locality is lower than from each process alone, resulting
in a higher row miss rate and thus higher memory latency.
Consequently, DRAM partitioning is effective for reducing
the slowdown from memory interference because it avoids
sharing: Partitioning dedicates DRAM resources, such as
channels and banks, via page allocation [1, 2]. Effectively,
the OS performs long-term scheduling on DRAM, treating
it as a processing resource for read and write requests.

While partitioning can mitigate interference, it introduces
overhead: we need to disable interleaving to give the OS
control of how pages map to DRAM resources. Interleaving
improves application performance by mapping channel and
bank indices to low-order address bits within the page offset,
thereby spreading requests over parallel DRAM resources.
In contrast, partitioning reduces DRAM parallelism because
channel and bank indices need to be controlled by high-order
address bits within the page frame number chosen by the OS.

In a conventional system, we have to choose either
DRAM partitioning or interleaving at boot time, when the
BIOS configures a fixed mapping of physical addresses to
DRAM. At that moment, we typically do not know yet which
jobs will later run on a system and whether their interfer-
ence will cause slowdowns. When our choice turns out to be
wrong later, we pay a performance penalty: We might have
chosen interleaving, yet find at run time that we need parti-
tioning to reduce slowdowns. Vice versa, we might boot a
system with partitioning and run only jobs that would benefit
from interleaving and do not suffer from interference.

∗ PhD student, will be presenting.

We propose to overcome this limitation by introducing
DRAM Mapping Aliases: We map DRAM into the physical
address space multiple times, each time with another map-
ping scheme, by configuring the memory controller. Typi-
cally, one of these mappings, which we call aliases, would
be interleaved, while another one would partition channels
and banks. By choosing page frames from the right alias
when allocating memory, the OS can choose between in-
terleaving and sharing or partitioning DRAM channels and
banks at run time. Mapping aliases break the common as-
sumption that physical addresses uniquely identify memory.
Thus, we have to be careful not to allocate the same under-
lying DRAM twice.

We implement mapping aliases with small changes to the
Linux kernel. For partitioning and choosing aliases, we cre-
ate fake NUMA nodes, one for each interleaved alias and
each partition. Then, we can decide to isolate processes to
separate channels and/or banks or let them share an inter-
leaved alias by binding them to the respective fake nodes
using existing NUMA APIs. To ensure that each piece of
DRAM is allocated at most once, we utilize memory hot-
plugging to have only one mapping of every piece of DRAM
visible to Linux at all times. For reconfiguring, we first mi-
grate the available physical memory by taking blocks offline
in the old memory and then setting the corresponding blocks
online in the new alias. Then, we migrate processes’ pages
and page tables to the new alias.

Our prototype runs on an off-the-shelf AMD Athlon X4
880K CPU 1 and provides aliases for channel interleaving
and partitioning. In our experiments, we find that migrat-
ing processes between both schemes at run time mitigates
most of the performance penalty induced by conventional
systems’ fixed mapping.

References
[1] L. Liu et al. BPM/BPM+: Software-based dynamic memory partition-

ing mechanisms for mitigating dram bank-/channel-level interferences
in multicore systems. ACM Trans. Archit. Code Optim., Feb. 2014. .

[2] S. P. Muralidhara et al. Reducing memory interference in multicore sys-
tems via application-aware memory channel partitioning. In IEEE/ACM
MICRO-44, pages 374–385, New York, NY, USA, 2011. ACM. .

[3] O. Mutlu et al. Research problems and opportunities in memory sys-
tems. Supercomputing Frontiers and Innovations: an Intern. Journal, 1
(3):19–55, Oct. 2014. .

1 For Intel CPUs, the necessary documentation is not publicly available.

1 2017/4/14

KIT – The Research University in the Helmholtz Association

Operating Systems Group
http://os.itec.kit.edu

Putting the OS in Control of DRAM with Mapping Aliases

Marius Hillenbrand, Frank Bellosa

libquantum
virtual AS

canneal
virtual AS

Classic Mitigation: DRAM Partitioning

CPU
Core

L1

CPU
Core

L1

…

Shared Cache

CPU
Core

L1

DIMM

DIMM

Rank
Rank

Rank
Rank

DRAM Chip

8 or 16
Independent
Banks

Memory Controller

2..8 Independent Channels
Row buffer

64
k

ro
w

s

1k columns

15 bus cycles (tCL)
column access in bank burst over memory bus

4 cycles
bank 0

Two categories of requests
Row hit

precharge activate column access burst
Row miss

~3x latency

Sharing DRAM banks overlaps request
streams and reduces row locality
Partitioning improves row locality yet
reduces bank/channel parallelism

bank 2
bank 1

Motivation: DRAM Interference
In a dynamic system, we do
not know in advance if
interference will be a
problem

Experimental Setup
Parsec suite + background job

4-core AMD Athlon X4 880K

Partition cores and caches

Slowdown depends on
workload mix

Background
Job

33%

Approach: Mapping Aliases – Choose Interleaving or Partitioning at Runtime

Evaluation

Physical AS DRAM AS

2 banks

2 channels

Page
frame

Map DRAM multiple times,
for example

1) Bank + channel interleaving

Max parallelism

No isolation

2) Linear

Channel and bank partitioning

Minimum parallelism

3) Bank interleaving

Channel partitioning

Bank parallelism

(Bank aliases not supported on current hardware)

Similar behavior for other benchmarks

Prototype: AMD Athlon X4 880K (4x4 GHz, 2-channel 32 GiB),
modified Linux 4.4.36, transparent hugepages enabled

C
on

ve
nt

io
na

l S
ys

te
m

D
R

A
M

 M
ap

pi
ng

 A
lia

se
s

Parsec canneal + SPEC libquantum NPB sp.C + blackscholes

In
te

rle
av

ed
P

ar
tit

io
ne

d

Background: SPEC libquantum

Parsec canneal Slowdown 27%

9%

Partitioning reduces slowdown

Background: Parsec blackscholes

NPB sp.C

Significant slowdown from
interference

4%

Partitioned 1channel
Parsec canneal

Slowdown 49%

Page-coloring 2ch 8%

Partitioning introduces
overhead over interleaving

Job does not suffer from
interference

NPB sp.C 4%
Start & remain in interleaved alias

Migrate 13 %

Detect slowdown,
migrate to partitioning

!

Optimistically use Interleaving or Switch to DRAM Partitioning at Runtime

<= 2% for 4
foreground jobs
(freqmine bodytrack
swaptions
blackscholes)

up to 9%
for 5
(raytrace x264
fluidanimate
ferret dedup)

up to 24%
for 2
(streamcluster
facesim)

24%

10-core Intel Xeon E5 v4: Up to 120% slowdown

Dedicate channels or
banks via page allocation

Reduced bandwidth over
interleaving

Must decide when booting

Implementation: Alias Allocation in Linux
Partitioning and Allocation
Reuse existing NUMA support

Custom assignment of phys. AS
to pseudo-NUMA nodes

Avoiding Conflicts
Utilize memory hotplugging support

Aliases define conflicts between blocks

Never have conflicting blocks
online at the same time

Migration Between Aliases at Runtime
Existing NUMA migration for processes

Also migrate page tables

Offline/online blocks to migrate physical
memory to requested mapping mode

Caches unaware of aliases: must invalidate
caches during migration

Reconfigure existing physical addressing scheme
(1) Source Address Decoder (CPU core/LLC)

(2) Target Address Decoder (memory controller on NUMA node)

(3) Per-channel address decoder

0

Physical AS

8G

0G Linear per-
channel AS

ch1

ch2

ch3

ch0

4x 1G

4G

(1)

DIMM

DIMM

Rank
Rank

Rank

Banks

(3)
NUMA node 0 (2)

base limit offset chan

0 4G 0 0-3

4G 5G 4G 0

5G 6G 5G 1

6G 7G 6G 2

7G 8G 7G 3

AMD Desktop/Server: Prototype on Steamroller
fully documented: [BIOS and Kernel Developer’s Guide for AMD Family 15h Models 30h-3Fh Processors]

Intel Server: Plausible, config regs scarcely documented
[Intel Xeon Processor 7500 Series Datasheet, Volume 2]
[W. Song et al. PIkit: A New Kernel-Independent Processor-Interconnect Rootkit. 25th Usenix Security Symposium, 2016]

Physical AS

N
od

e
2

(in
te

rle
av

ed
)

N
od

e
1

(c
h

1)
N

od
e

0
(c

h
0)

Hotplug
block (128M)

(online)

(offline)

(offline)

011

offsetpage frame number
offsethuge pfn

20

columnrow bank chcol

columnrowbankch

columnrow bankcolch

Conventional systems must
decide for single address
mapping scheme when booting

S
am

e
m

em
or

y

Migrate 4 %

Partitioning unnecessary,
migrate to interleaving

!

3-5s migration time, ~2s page migration, no downtime for jobs

Start & remain in partitioned alias
9%Parsec canneal

5s

(online)

	Poster Eurosys.pdf
	Slide 1

