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Abstract

Record and replay is a technique that enables full-system debugging at high exe-
cution speeds. During execution of a virtual machine, all non-deterministic input
to the system is saved to a log file. Later, this log file can be used to feed the
recorded data back into another virtual machine instance to reproduce the exact
execution as in the original system, accurate to the instruction level.

Examining a system’s operation on an instruction-by-instruction basis with
little runtime overhead enables more insights for the purpose of software verifica-
tion or security analysis, particularly with regard to the mobile devices and server
markets.

While the ARM architecture has been gaining in popularity during the past
decade, and the software running on such machines has greatly increased in com-
plexity, most work in the field of record and replay has thus far focused on the
x86 architecture. A deterministic record and replay implementation for ARM ex-
ists [21], recording non-deterministic inputs at the virtual device level, but it does
not support hardware virtualization.

This work evaluates the feasibility of a heterogeneous record and replay so-
lution for the ARMv7 architecture. We identify the sources of non-determinism
in an ARM computer system and demonstrate our implementation of a low-level
record and replay scheme with QEMU. Our modified virtual machine software
can successfully perform homogeneous record and replay of unmodified guests
using the Tiny Code Generator (TCG) binary translator.

We have implemented recording for the heterogeneous case, using the Linux
Kernel-based Virtual Machine (KVM) as the hypervisor. However, we have iden-
tified several issues in the architecture’s design and its implementations that com-
plicate a successful replay: Certain instructions exhibit non-deterministic behav-
ior that cannot be recorded; however, with appropriate correction mechanisms,
successful replay may yet be possible.

Although runtime overheads of up to 40 % have been observed in the KVM-
accelerated recording system, it still operates faster than a TCG-based virtual ma-
chine running on high-end x86 machines.
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Deutschsprachige
Zusammenfassung

Die Verbreitung der ARM-Prozessorarchitektur hat in den vergangenen Jahren
stark zugenommen: Der Großteil der heute verkauften Smartphones verwendet
einen Prozessor der ARM-Architektur, und auch in der IT-Branche werden ARM-
basierte Server aufgrund ihres geringeren Energieverbrauchs und der höheren In-
tegrationsdichte in Betracht gezogen.

Mit der gesteigerten Leistungsfähigkeit aktueller ARM-Prozessoren ging je-
doch auch eine erhöhte Komplexität der Rechnersysteme einher. Während frühere
Mobilgeräte ein kleines, aber dafür ausgiebig getestetes Betriebssystem verwen-
deten, kommt auf aktuellen Smartphones Software zum Einsatz, die sich in Auf-
bau und Größe kaum noch von Desktop- und Server-Anwendungen unterscheidet.

Bei der Verifikation und der Fehlersuche auf diesen Systemen stoßen traditio-
nelle zyklische Debuggingmethoden schnell an ihre Grenzen: Bedingt durch die
hohe Interaktivität – etwa in Form von Nutzereingaben auf einem Smartphone
oder durch Netzwerkkommunikation bei Servern – können Defekte nicht immer
zuverlässig reproduziert werden. In einigen Fällen verhindert die Ausführung mit-
tels eines Debuggers gar die korrekte Funktionsweise des Systems oder führt dazu,
dass das Problem durch geänderte zeitliche Abläufe nicht mehr auftritt. Auch ist
nicht immer von vornherein klar, ob der Defekt im Betriebssystem, in Funktions-
bibliotheken oder in der Anwendungssoftware selbst vorliegt, weshalb gegebe-
nenfalls mehrere Debugging-Durchläufe notwendig sind; der Fehler muss dabei
für jeden Durchlauf erneut reproduziert werden.

Das Konzept der Ausführungswiederholung (engl. record and replay) bietet
sich als eine mögliche Lösung für diese Probleme an. Hierbei macht man sich
zunutze, dass Computer im Allgemeinen so entworfen sind, dass sie ein deter-
ministisches Verhalten aufweisen: Die selben Eingaben führen immer zur selben
Ausgabe. Zwar verarbeitet ein modernes Computersystem die Eingaben aus un-
zähligen Quellen, etwa von Zeitgebern oder aus dem Netzwerk, wodurch sich
auch unter scheinbar identischen Bedingungen nichtdeterministische Abweichun-
gen im Laufzeitverhalten ergeben. Ein solches System lässt sich jedoch in ei-
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ner virtuellen Maschine simulieren, wodurch alle Eingaben präzise aufgezeichnet
werden können. Mit dieser Aufzeichnung lässt sich später eine erneute Ausfüh-
rung der virtuellen Maschine starten, welche die gespeicherten Daten als Eingabe
erhält und so exakt dem gleichen Programmablauf folgt.

Die Ausführung in einer virtuellen Maschine bringt jedoch wiederum eigene
Probleme mit sich, allen voran die reduzierte Ausführungsgeschwindigkeit be-
dingt durch die Simulation mittels Übersetzung. Aktuelle Prozessoren verfügen
daher über Erweiterungen für Hardwarevirtualisierung, mit denen die virtuelle
Maschine zum Großteil direkt auf der physikalischen CPU des Hostsystems aus-
geführt werden kann und so eine hohe Ausführungsgeschwindigkeit gewahrt wird.

Die Erweiterungen für Hardwarevirtualisierung lassen sich auch zum Zwe-
cke der Ausführungswiederholung nutzen, um nichtdeterministische Eingaben in
einem System aufzuzeichnen, ohne dabei dessen Zeitverhalten zu stark zu ver-
ändern. Dieses Konzept wurde in Projekten wie Aftersight [16] und V2E [39]
erfolgreich für die x86-Prozessorarchitektur umgesetzt.

Bedingt durch die weite Verbreitung der x86-Architektur lag der Fokus beste-
hender Arbeiten auf dem Gebiet der Ausführungswiederholung zumeist auf dieser
Plattform. Der zunehmende Marktanteil der ARM-Architektur und der damit ein-
hergehende Bedarf an Werkzeugen zur Fehlersuche machen jedoch die Technik
der Ausführungswiederholung auch für diese Systeme interessant.

Unsere Arbeit befasst sich daher mit dem Thema der Ausführungswiederho-
lung auf der ARM-Architektur. Das Ziel war es, zu überprüfen ob sich die Archi-
tektur für ein solches Aufzeichnungsschema prinzipiell eignet und welche Ereig-
nisse hierfür berücksichtigt werden müssten.

In vorigen Publikationen wurden verschiedene Ereignisklassen identifiziert,
welche für die Ausführungswiederholung relevant sind. Diese lassen sich unter-
teilen in synchrone Ereignisse, die durch Instruktionen in der virtuellen Maschi-
ne ausgelöst werden, sowie asynchrone Ereignisse, deren Ursprung außerhalb der
virtuellen Maschine liegt. Auf der ARM-Architektur umfassen die synchronen Er-
eignisse die Coprozessor-Instruktionen sowie Lesezugriffe von Speicherbereichen
für Memory-Mapped I/O (MMIO). Asynchrone Ereignisse sind externe Interrupts
sowie Schreibzugriffe per Direct Memory Access (DMA) durch virtuelle Geräte.

Für die Ausführungswiederholung ist es von erheblicher Bedeutung, dass die
gespeicherten Ereignisse zum exakt richtigen Zeitpunkt in die virtuelle Maschine
eingespielt werden, da es ansonsten zu einem unterschiedlichen Ausführungsver-
lauf kommen kann. Zu diesem Zweck werden sogenannte Landmarken eingesetzt,
die einen Zeitpunkt während der Ausführung eines Systems eindeutig kennzeich-
nen. Die ARM-Architektur bietet hierfür Ereigniszähler an, welche die Anzahl
der ausgeführten Instruktionen erfassen können. In Verbindung mit den Virtuali-
sierungserweiterungen können diese Zähler die virtuelle Maschine und das Host-
system getrennt betrachten. Neben dem Instruktionszähler wird in die Landmarke
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auch ein Abbild der aktuellen CPU-Register aufgenommen, sodass fehlerhafte
Zählerwerte erkannt und korrigiert werden können. Dieser Mechanismus kann
auch verwendet werden, um einen falschen Programmablauf bei der Wiederho-
lung zu erkennen.

Wir stellen in dieser Arbeit einen Entwurf und eine Implementierung eines
Systems zur Ausführungswiederholung auf der ARMv7-Architektur vor. Unse-
re Implementierung basiert auf QEMU, einem Simulator für virtuelle Maschi-
nen, der Codeübersetzung mittels des Tiny Code Generators (TCG) unterstützt,
um eine virtuelle Maschine komplett softwaregestützt auszuführen. Darüber hin-
aus wird auch die Ausführung mittels der Linux Kernel-based Virtual Machi-
ne (KVM) unterstützt, welche – eine passende Host-Architektur vorausgesetzt –
die Hardware-Virtualisierungserweiterungen für eine beschleunigte Ausführung
nutzt.

Beide Ausführungsmodi wurden von uns um eine Aufnahmemöglichkeit er-
weitert, sodass sowohl eine homogene Ausführungswiederholung möglich ist (Auf-
nahme und Wiederholung mit TCG), als auch der heterogene Fall (Aufnahme mit
KVM, Wiederholung mit TCG). Die Aufzeichnung im KVM-Modus erforder-
te Änderungen am Linux-Kernel sowie die Verwendung der Hardware-Debug-
erweiterung, was einige Einschränkungen für das Gastsystem mit sich brachte.

Im Verlauf unserer Arbeit wurden einige architekturelle Probleme festgestellt,
die eine hardwaregestützte Aufzeichnung erschweren: Die ARM-Architektur sieht
einen eingebauten Zeitgeber vor, der sich weder deaktivieren noch aufzeichnen
lässt, wordurch sich der virtuellen Maschine eine Quelle für Nichtdeterminismus
bietet. Zwar kann man etwa im Linux-Kernel die Verwendung dieses Zeitgebers
deaktivieren; dies ist jedoch nicht generell für alle Gastsysteme möglich.

Des Weiteren verhält sich die Store Exclusive-Operation, die für atomare Ope-
rationen eingesetzt wird, nichtdeterministisch: Der Erfolg beziehungsweise das
Fehlschlagen der Operation wird durch einen unterschiedlichen Rückgabewert an-
gezeigt. Die Spezifikation der ARM-Architektur gestattet es, dass eine Hardware-
Implementierung die Instruktion aus internen Gründen fehlschlagen lässt, etwa
aufgrund von Verdrängungen aus dem Zwischenspeicher, und in unseren Expe-
rimenten beobachteten wir, dass dieses Verhalten in einem Cortex-A15-Kern tat-
sächlich auftritt. Da eine fehlgeschlagene Store Exclusive-Operation in der Re-
gel einen zusätzlichen Schleifendurchlauf erzeugt, führt dies zu unterschiedlichen
Zählerwerten bei der Wiederholung der Aufnahme im TCG-Modus, der dieses
nichtdeterministische Verhalten nicht nachbilden kann.

Die Store Exclusive-Operation, die sich nicht durch den Hypervisor abfan-
gen lässt und die auch von unprivilegiertem Code verwendet werden kann, führt
somit zu erheblichen Problemen bei der Ausführungswiederholung. Trotz Kor-
rekturmechanismen, die unsere Implementierung beinhaltet, konnte somit bisher
keine erfolgreiche heterogene Ausführungswiederholung durchgeführt werden.
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Nichtsdestotrotz führten wir für unsere Arbeit eine Evaluierung der Aufzeich-
nungsgeschwindigkeiten und der dabei auftretenden Datenraten durch. Dabei tra-
ten im KVM-Modus abhängig von den durchgeführten Tests Verlangsamungen
von 1 % (im Falle von CPU-lastigen Prozessen) bis zu 40 % (bei I/O-lastigen
Prozessen) auf. Wir vermuten den Hauptgrund für die Verlangsamungen in der
fehlenden Unterstützung für DMA-Operationen in der Implementierung der vir-
tuellen SD-Karte; dennoch war die Aufzeichnung in jedem Fall schneller als eine
Simulation im TCG-Modus.

Trotz der aufgetretenen Probleme konnten wir zeigen, dass eine deterministi-
sche Ausführungswiederholung grundsätzlich möglich und vorteilhaft ist, wenn-
gleich man die möglichen Gastsysteme einschränken muss und noch weitere Kor-
rekturmechanismen notwendig sind. Unsere Arbeit konzentrierte sich auf den
Einzelkern-Fall und die ARMv7-Architektur; weitere Arbeiten sind notwendig
für die Aufzeichnung von virtuellen Mehrkern-Systemen oder von Systemen mit
der Nachfolgearchitektur ARMv8.
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Chapter 1

Introduction

The ARM processor architecture is gaining popularity due to the increasing avail-
ability of processor designs and rapid advances in computing performance. Cloud
computing providers are evaluating ARM-based servers for their higher efficiency
and integration density, and manufacturers of mobile devices such as smartphones
have already established ARM as the standard architecture in both budget and
high-end devices.

At the same time, the complexity of those computing systems has increased
dramatically in the past 10 years. Where previous handsets have consisted of a
comparatively weak CPU and a small but well-tested operating system, today’s
smartphones generally run a software stack whose size rivals that of desktop PCs.
Numerous software bugs in Android’s Linux kernel, the system libraries or user
applications have been found in the past years, with more critical bugs expected
to be as of yet undiscovered. Similarly, on the server side, vulnerabilities such
as Heartbleed, which permitted access to critical memory locations, have stayed
undetected for a long time.

Detecting or debugging such errors with traditional cyclic debugging tech-
niques has been difficult because of the system’s high degree of interactivity, ei-
ther in the form of user interaction through mouse or touch screen, or through
network communication in the case of a server. These interactions cannot always
be reproduced faithfully to trigger the bug. Furthermore, the act of debugging
the system may mask certain issues which do not occur while the system is being
observed (so called Heisenbugs) due to different timing.

Observing and reproducing a software defect generally requires a guess in
advance as to which subsystem or which layer contains the bug. When doing
a post-mortem analysis of an intrusion into a server, it may not be clear which
attack vector was used. System log files are of limited use because they may not
hold enough detail to understand the issue at hand. It would be helpful to have a
method of analyzing different layers of a system—such as the operating system

5
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kernel, the system libraries, or the user applications—without having to reproduce
the problem anew.

In high-performance systems, it is often a problem to debug issues which occur
only on production servers, or which require a high system load to be triggered. In
such a situation, it is neither possible to attach a debugger to single-step through
the execution, nor to reproduce the issue on command. A debugging technique
would be required that is performant enough to be active over long periods of
time without significantly disturbing the productive use of a system.

The concept of record and replay promises to address these issues by exploit-
ing the fact that a computer system is, by design, mostly deterministic: Feeding
a computer the same inputs multiple times should always lead to it producing the
same output. Thus, in theory, when launching a software system under identical
conditions, it should follow the same execution flow each time. While modern
computing systems are very complex, processing inputs from many sources, it
is possible to record these non-deterministic inputs. The recorded data can later
be fed back into a running system to make it behave identically to the original
recording system.

Originally, such deterministic record and replay systems were implemented
using virtual machine emulation software, causing very high overheads in ex-
ecution time when compared to a hardware system. With the advent of hard-
ware virtualization extensions, high-performance recording has become feasible,
as demonstrated in projects such as Aftersight [16].

Given the large market penetration of the platform, it is understandable that
most record and replay projects have concentrated on the x86 architecture, despite
its many features which make it hard to virtualize [31]. The ARM architecture,
however, is rapidly gaining both in popularity and in performance, giving rise
to a need for debugging techniques in order to manage the increased software
complexity.

Our work seeks to evaluate how the concept of record and replay can be ap-
plied to the ARM platform. We examine the architecture to identify the non-
deterministic events that need to be included in a recording in order to determin-
istically replay them in simulation later.

Virtual machines based on binary translation allow for system-level debug-
ging, even across different processor architectures; yet still, execution speed of
the debugged system remains an issue. It should be examined if hardware vir-
tualization extensions, such as used by the Linux Kernel-based Virtual Machine
(KVM), can be repurposed for record and replay in order to enable a low-overhead
recording process. It is well known that the x86 platform had been hard to virtual-
ize before the advent of virtualization extensions, due to subtleties e.g. in trap and
exception handling; it shall be seen where the difficulties in the ARM architecture
lie and whether they can be worked around.
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To that end, we explore the non-deterministic events described in previous
work for x86 and map them to the ARM architecture. For each event, we ana-
lyze which information must be recorded and how it can be obtained using the
platform’s virtualization extensions.

In order to feed back the recorded events at the correct time, so called land-
marks as defined in [39] need to be used to identify the exact processor state at
the time of their occurrence. Hardware performance counters are often used for
this purpose; however, previous projects have observed inaccuracies in the per-
formance counters of x86 CPUs [37], raising concerns that similar problems exist
in the ARM architecture’s performance counters. We test their accuracy to deter-
mine whether additional information about the machine’s state must be collected
to uniquely identify a point in time during execution.

Our contribution to the topic of record and replay is an analysis of the ARMv7
architecture with respect to replayability, as well as a design for a hypervisor-
based recording system on this architecture. We demonstrate a working determin-
istic record and replay system for software-emulated virtual machines, and show
that the heterogeneous case—recording through hardware virtualization—is not
easily possible on ARMv7 due to non-deterministic behavior of certain instruc-
tions. Despite these unresolved issues, the prototype of our heterogeneous system
can replay a large part of the boot process of a Linux guest kernel.

We present benchmark results showing that, while hardware-virtualized record-
ing carries a significant overhead compared to execution without it, it is still faster
than performing a simulation entirely in software.

1.1 Thesis Outline
Chapter 2 introduces the reader to the topic of virtualization, giving a general
overview of the ARM architecture and its extensions for hardware virtualization,
as well as presenting previous work concerning deterministic record and replay.
The operating principles of the QEMU virtual machine simulator, forming the
basis for our implementation, are outlined.

Chapter 3 applies the concept of record and replay to ARM, showing where
the events identified in previous work for x86 can be found in this architecture,
and how the performance monitoring extensions can be used to obtain a landmark.

Chapter 4 presents the design of our system for record on replay on the ARMv7
architecture, describing the involved components and which information is col-
lected for defining a landmark.

Chapter 5 details our implementation of the design using QEMU, with the
Linux Kernel-based Virtual Machine (KVM) used for recording and the Tiny
Code Generator (TCG) for replaying. We describe the issues we encountered,
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as well as the mechanisms we implemented to correct a mismatched landmark
resulting from non-determinism during recording.

Chapter 6 evaluates the performance and correctness of our recording system
implementation, as well as the efficacy of the correction mechanisms we imple-
mented to work around non-deterministic behavior.

Chapter 7 summarizes our work, presenting the results as well as suggesting
possible improvements for future work.



Chapter 2

Background

This chapter provides an introduction to the concept of record and replay by first
giving an overview of virtualization in general, assuming that the reader already
has basic knowledge of operating system concepts. The ARMv7 architecture tar-
geted by our work is introduced, highlighting the key differences to the x86 ar-
chitecture and showing how virtualization is done on ARM. Since the replay sys-
tem developed in this work is based on the Linux Kernel-based Virtual Machine
(KVM) subsystem and the QEMU virtual machine software, their principles of
operations are explained before surveying previous work in the field of record and
replay.

2.1 Virtualization

In computing, the term virtualization refers to the concept of transforming a sys-
tem using physical hardware, e.g. an operating system running on an x86 proces-
sor, such that it no longer uses a physical instance of that resource, but a virtual-
ized version instead [36]. These virtualized resources may or may not be directly
backed by a physical realization—it is possible to simulate them or, as has become
common practice in the cloud computing domain, share a single existing system
among multiple virtual users on demand. This transformation allows for greater
flexibility in fulfilling the architectural requirements of software and for better
utilization of servers. Unlike abstraction, however, which intends to simplify an
interface to reduce complexity, virtualization aims to present the same interface
as before, in order to retain compatibility with existing software [36].

An important use of virtualization is during the development of new comput-
ing platforms: Software typically develops at a faster pace than hardware because
physical implementations of computing architectures take a long time to design,
verify and produce. Virtualizing a system allows for software to be developed for

9
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architectures that do not exist yet. The desired system can be simulated, which
creates the illusion that a particular machine exists, without actually having to
realize it physically [27]. Such simulators are very flexible, in that the virtual
machine environment they provide and the guest system running in it can be de-
signed entirely different from the physical machine it runs on—the host system.

Virtualization is also used for debugging purposes on existing architectures,
providing a portable and reproducible platform on which to study a program’s
execution. Security analysis benefits from virtualization in that malicious software
can be isolated from production systems by confining it to a virtual machine where
its behavior can be analyzed. The Argos project [32], for instance, uses taint
analysis of incoming network packets to detect remote code execution attacks;
an approach that would be impractical without the use of virtual machines. As
demonstrated in the ReTrace project [38], virtualization allows for the collection
of execution traces of the entire machine, including the operating system, which
is not possible through traditional user level debugging methods.

A virtual machine simulator works by using the facilities provided by the host
operating system—e.g., processes, files, networking, and virtual memory—to cre-
ate a model representation of the guest system entirely within its own process
environment. It keeps track of the virtual machine’s state, including the central
processing unit (CPU) registers, the contents of the system’s memory, pending
input and output, and the state of interrupt lines. Typically, it will execute in a
looping fashion to determine which architectural action to perform next: decode
and execute an instruction, trigger interrupts, or handle input from the host system.
It is not required that the virtual architecture and the physical architecture match:
for example, if the virtual machine requires more registers than are available on
the host machine, the extra registers can be simulated in working memory. Even
systems requiring the presence of a memory management unit (MMU) could be
simulated on a machine that lacks it.

This flexibility, however, comes at the price of performance, typically causing
slowdowns of 30 times the native execution time in the case of x86 [34]. Since
code from the virtual machine cannot be executed directly on the host system, for
lack of virtualization awareness, it must either be interpreted or binary trans-
lated. All aspects of the simulated architecture, such as the devices and memory
layout, must be reproduced in a way faithful to how the corresponding physical
hardware would handle them. Privilege levels need to be checked, the processor
state (particularly conditional execution flags and status bits) must be updated,
and accesses to input/output devices have to be mapped to the facilities of the host
system.

A virtual machine using an interpreter analyzes one instruction of the guest
code at a time: The next instruction is decoded and a routine in the virtual machine
software is invoked to perform emulation of that instruction. While conceptually
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simple, this technique allows for little optimization by the executing host CPU due
to the complexity of the decoding loop, which has to run after every individual
instruction.

A binary translator, as is exemplified in Figure 2.1 for the QEMU virtual ma-
chine software [13], reads an entire sequence of instructions to be executed and,
via a platform-independent intermediate code stage, generates equivalent machine
code for the host system. Virtual machine software typically employs dynamic bi-
nary translation at runtime because a distinction between guest machine code and
data cannot be made statically, and due to the possibility of self-modifying code.
The generated machine code can be cached and re-executed later, if necessary,
avoiding costly re-compilation.

Instructions executed in 
Virtual Machine

Instructions executed 
on Host CPU

Intermediate code

ld_i32 tmp11, env, 
$0xfffffffffffffff0

movi_i32 tmp12, $0x0
brcond_i32 tmp11, tmp12, ne, $L0
discard cc_dst
discard cc_src
discard cc_src2
discard cc_op
movi_i64 tmp0, $0x0
deposit_i64 rdx, rdx, tmp0, 

$0x0, $0x10
mov_i64 tmp0, rdx
ext16u_i64 tmp0, tmp0
st32_i64 tmp0, env, $0xe8
movi_i64 tmp13, $0x4
shl_i64 ss_base, tmp0, tmp13
movi_i64 tmp3, $0xe06a
st_i64 tmp3, env, $0x80
movi_i32 cc_op, $0x31
ld_i32 tmp11, env, $0xb0
movi_i32 tmp12, $0x8
or_i32 tmp11, tmp11, tmp12
st_i32 tmp11, env, $0xb0
exit_tb $0x0
set_label $L0
exit_tb $0x7f3c40587113

mov    -0x10(%r14), %ebp
test   %ebp, %ebp
jne    0x7f1d6c4ce1ac
mov    0x10(%r14), %rbx
xor    %ecx, %ecx
mov    %cx, %bx
mov    %rbx, 0x10(%r14)
movl   $0x0, 0xe8(%r14)
xor    %ebp, %ebp
mov    %rbp, 0xf0(%r14)
movq   $0xe06a, 0x80(%r14)
mov    $0x31, %ebp
mov    %ebp, 0xa8(%r14)
mov    0xb0(%r14), %ebp
or     $0x8, %ebp
mov    %ebp, 0xb0(%r14)
xor    %eax, %eax
jmpq   0x7f1d6c4ce016
lea    -0x4f0c0a0(%rip), %rax
jmpq   0x7f1d6c4ce016

xor    %dx,%dx
mov    %dx,%ss

Disassembly Code
Generation,
Optimization

Figure 2.1: Example of x86 guest CPU code executed in a virtual machine hosted
by QEMU, binary-translated using the Tiny Code Generator (TCG) to be run on
an x86 host system. Notice how even for two simple arithmetic and data transfer
instructions, executed on an identical host architecture, the resulting instruction
count already increases tenfold, slowing down execution. The executed code in
this particular case is from the virtual machine’s BIOS boot-up code.

The code generated by dynamic binary translation can be augmented with
tracing hooks, which enables, for instance, the detailed analysis of memory ac-
cess patterns, and allows for profiling software execution. In that case, extreme
slowdowns of up to 1000 times the execution time can be observed, depending on
the level of detail [34].
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While the host architecture and the guest architecture can be radically different
from each other, the case where the two are identical is a valid and common use of
virtual machines: Running a virtual machine on a host system of the same archi-
tecture is done for security reasons—to isolate a piece of software from sensitive
resources, e.g., in malware research—or to reduce costs and improve utilization
of hardware by way of consolidating servers. It has become cost-effective to no
longer rent entire physical machines at a colocation facility, but to acquire and
release virtual machine instances as needed.

Executing a virtual machine on a system with a matching architecture enables
some of the simulated guest devices to be mapped directly to resources of the host
machine, without the large overhead incurred by emulation. A significant part
of the instruction set can be executed natively by the host system’s CPU without
having to resort to binary translation. Only the instructions that are sensitive to
the virtualized machine state (e.g. I/O accesses) or that require privileged access
must be trapped by the subsystem that controls the virtual machine instances. This
subsystem is called the virtual machine manager (VMM) or hypervisor and is
part of the operating system on the host machine. [27] It mediates the virtual ma-
chine’s access to the host CPU and is called upon whenever a privileged operation
or an aspect of the virtual hardware must be emulated.

Enabling efficient virtualization had for a long time been only an academic
exercise, because the commonly used computer architectures did not lend them-
selves well to virtualization. The Intel x86 architecture in particular, perhaps the
most prevalent general-purpose computing architecture in use today, has several
historically-grown architectural details that make it hard to virtualize. For in-
stance, there exist several instructions which, despite being privileged operations,
do not trap when called from non-privileged modes and can therefore not be em-
ulated by a hypervisor. [31]

The need for efficient virtualization was finally addressed by major processor
vendors Intel and AMD in the year 2006, implementing extensions for hardware
virtualization and thereby bringing the concept to the mainstream [31]. These
extensions supplement the instruction set by adding operations for virtual machine
entry and exit, thereby providing a straightforward way of switching the execution
context from the host to the guest machine and vice-versa. Figure 2.2 shows a
high-level sequence of this process.
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Create Virtual Machine context

VM entry

Save host registers

Load guest registers

Execute guest code

Guest executes privileged code
Trap to hypervisor:

Save guest registers

Load host registers

VM exit

Handle exit reason

Figure 2.2: Schematical overview of hardware virtualization. A virtual machine
context is first created and populated with information about the guest. The hy-
pervisor can then switch to this context, allowing the guest to physically run on
the CPU. Instructions that require emulation are trapped by the hardware, causing
a virtual machine exit and switching back to the hypervisor.

Later additions to the virtualization extensions allowed for a streamlined han-
dling of memory and I/O accesses, reducing the performance penalty incurred by
page faults in the guest machine [26].

2.2 ARMv7 Architecture
While the x86 architecture, as one of the most widely used general-purpose com-
puting platforms, has been at the center of attention in virtual machine research,
the growth of the mobile computing market has drawn the interest in virtualization
towards the ARM computing architecture. Devices implementing an ARM pro-
cessor design had previously been low-power designs with small software stacks;
the rapid proliferation of high performance ARM processors in smartphones and
servers, however, has made the platform a viable target for virtualization.

The ARM architecture traces its roots back to a research project by Acorn in
1985. [30] Conceived as a reduced instruction set computing (RISC) architecture
with a data bus width of 32 bits, it started as a low-complexity, low-power design
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and has evolved from being a single processor implementation—the ARM1—to a
whole family of architecture variants, as well as processor core designs available
under license from ARM Holdings. The most recent 32-bit architecture, ARMv7,
shall be the target architecture for this work. With mobile devices starting to hit
the 4 GB memory limit imposed by 32-bit architectures, the successor platform
ARMv8 with 64-bit support is gaining traction.

The ARM architecture generally follows the RISC principle of implementing a
simple instruction set that can be executed at high processing speeds, as opposed
to the complex instruction set computing (CISC) approach that for instance the
x86 architecture has adopted over time.

The key features of the ARM architecture are:

• Large uniform register file: The 32-bit general purpose registers R0 to
R14 can be used without restrictions, with R15 being the program counter.
Certain registers have multiple banked copies between the various processor
states. The x86 register file, by contrast, only encompasses 8 registers.

• Load/Store architecture: All accesses to memory occur only through ex-
plicit LDR*/STR* instructions, unlike the x86 instruction set which allows
direct computations on memory contents.

• Memory-Mapped I/O: Access to devices is generally handled via memory-
mapped regions using reads and writes. There are no equivalents for the
IN*/OUT* instructions on x86.

• Simple addressing modes: The memory addresses used by instructions
only depend on register contents and on the values encoded in the instruc-
tion word. Indexed addressing is supported, but there is no segmented mem-
ory model as there is on x86.

• Conditional execution: Most instructions can be made conditional, caus-
ing them to only be executed when a previous condition check has passed.
Program flow can therefore in some cases be simplified by omitting explicit
branch instructions.

While RISC architectures can usually be implemented more efficiently in sili-
con than CISC designs, the lack of complex operations typically reduces the den-
sity of application code, which is a concern particularly in the embedded devices
market. To address this issue, ARM processors offer a so-called Thumb mode, in
which instructions are limited to 16-bit width, supporting more compact code at
the expense of certain functionality. The CPU can switch between the two modes
at runtime using a "branch and exchange" instruction, allowing for mixed 32-bit
and 16-bit code.
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The basic ARMv7 architecture supports two different privilege levels: PL0 or
unprivileged execution, and PL1, which grants access to restricted system func-
tionality and is intended only for use by the operating system.

Implementing these two privilege levels, there are different processor modes
that the CPU can be in at any given time:

• User mode (PL0), typically when running application code.

• IRQ and FIQ modes (PL1), triggered by an external interrupt request
(IRQ) or fast interrupt request (FIQ), respectively.

• Supervisor mode (PL1), synchronously entered using the SVC (supervisor
call) instruction from unprivileged modes and used for implementing sys-
tem calls.

• Abort and Undefined modes (PL1), caused by page faults or undefined
instructions.

• System mode (PL1), not normally entered by architectural events.

• Monitor mode (PL1), comparable to System Management Mode on x86.
It is part of the security extensions and not relevant to our work.

The currently active processor mode is identified by a bitmask in the Current
Program Status Register (CPSR). Each of these modes has a banked copy of the
stack pointer (R13), the link register (R14) and of the CPSR from which it was
entered, simplifying exception handling. Figure 2.3 gives a concise overview of
the ARM core registers and their banking behavior. [11, B1.3]

The ARM architecture supports two kinds of asynchronous interrupt requests,
IRQ and FIQ, each of which has its own associated processor mode at privilege
level PL1. The FIQ mode has five more banked registers, allowing for faster inter-
rupt handling without having to spill registers to system memory, but is otherwise
used the same way as IRQ mode. Subsequently, this document will focus on the
IRQ type, which is the primary type used by the Linux kernel.

Interrupt requests can be triggered by activating the IRQ line on the CPU,
after which the processor saves the CPSR and the program counter and enters
IRQ mode. The exception vector table is consulted to find the entry address of the
exception handler.

Unlike other platforms such as x86, the ARM architecture itself does not have
a notion of interrupt numbers: There is only a single interrupt line. To allow for
multiple interrupts to be distinguished and prioritized, ARM processors include a
Generic Interrupt Controller (GIC) peripheral which queues multiple interrupt
events. The GIC register interface is memory-mapped into the processor’s address
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Figure 2.3: Overview of the ARM core registers, the processor modes and their
associated privilege levels (PLx). The current processor mode is determined by
the lowest 5 bits in the CPSR. Certain registers, such as the stack pointer and link
registers, have multiple banked copies across the different processor modes.

space and upon receiving an IRQ, its Interrupt Acknowledge Register (IAR) is
used to receive the interrupt number and to clear the pending interrupt. [10]

The concept of plug and play has not been popular on the ARM architecture.
Instead, the devices available to a machine are typically configured using a device
tree binary file (DTB), which contains the memory addresses and configuration
information for each device. The device tree is typically passed to the operating
system kernel by the machine’s boot loader.

For debugging purposes, an ARM processor provides a component called the
debug architecture, which offers support for breakpoints and watchpoints and
which is accessed through the coprocessor 14 interface.

2.2.1 ARM Virtualization Extensions

A platform implementing the ARMv7 architecture can optionally support the vir-
tualization extensions which, like their counterparts in the x86 implementations,
enable support for high-performance virtual machines. To that end, the system
architecture is extended by a new, higher privilege level PL2, as well as a new
processor mode implementing it, called Hyp mode, which has its own virtual
address space isolated from the PL0 and PL1 modes. [11, B1.7]

While a basic implementation of ARMv7 will start the CPU in Service mode,
a system supporting the virtualization extensions boots up in Hyp mode instead,
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which allows the operating system to access the hypervisor control registers only
available in PL2. The operating system will then switch to Service mode and
continue the regular boot process, later returning to Hyp mode using the HVC

(hypervisor call) instruction as necessary.
Using the Hyp Configuration Register (HCR), the hypervisor component in

the host operating system can trap certain system functions, such as accesses to
the coprocessor interface used for system management purposes, to Hyp mode
instead, where they can then be emulated or dispatched to the virtual machine
management software. Additionally, exceptions occurring while executing a vir-
tual machine can be routed either to their corresponding default processor modes,
where they are handled inside the guest machine, or also taken to Hyp mode.

In order to inject interrupts into the guest virtual machine, virtual IRQs and
FIQs can be triggered by setting the corresponding bits in the HCR, causing an
exception to be delivered once execution of the virtual machine resumes.

On entry to the virtual machine, the hypervisor changes the address translation
regime to switch to the correct address space of the guest, sets the return address
and target processor mode and uses the ERET (exception return) instruction to
switch from Hyp mode into the virtual machine. Once executing in PL0 or PL1,
the only way of returning to PL2, and thus to the host operating system, is by
invoking HVC or through an exception delivered to Hyp mode.

2.3 Kernel-based Virtual Machine (KVM)

The aforementioned hardware virtualization extensions enable a hypervisor to ef-
fecticely execute virtual machines; however, the instructions provided to do so are
privileged operations and can therefore not be used by user code directly. In order
to provide virtual machine hosting software with a way of accessing these facili-
ties, the operating system needs to expose these mechanisms through an interface.

In the Linux operating system, this is done through the so-called Kernel-
based Virtual Machine (KVM) subsystem, which was introduced in kernel ver-
sion 2.6.20 in 2007. [2] It provides a unified system call based interface to the vir-
tualization extensions offered by several platforms, including Intel x86 and ARM.

KVM follows the UNIX principle of "Everything is a file" by providing a de-
vice /dev/kvm, which can be accessed by user mode applications that have suffi-
cient file system permissions to open it. [8] There are several classes of operations
available using the ioctl(2) system call:

• System ioctls for managing the KVM subsystem as a whole and, in partic-
ular, to create new virtual machine instances.
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• VM ioctls for managing an individual virtual machine, e.g. to make user
space memory from an application available in the guest machine’s address
space and to create virtual CPUs.

• Virtual CPU (vcpu) ioctls for managing the execution context of one of
the virtual CPUs, and to schedule it for physical execution.

An application making use of KVM will typically first create a virtual machine
instance using the KVM_CREATE_VM call. Memory for the guest system can be
allocated in user space, e.g., using malloc(3), and is then made visible inside
the guest memory space using KVM_SET_USER_MEMORY_REGION.

Actual execution of the virtual machine takes place when the application in-
vokes the KVM_RUN ioctl: The KVM subsystem switches the host system’s execu-
tion context to the VM, causing the CPU to natively run the guest machine code.
Whenever an architectural event is trapped and must be emulated by the applica-
tion, the ioctl returns and the application can read the returned kvm_run structure
to find out the exit reason. One such reason, for example, is KVM_EXIT_MMIO,
which signifies that the guest machine is accessing a memory address that requires
special handling.

Once the application has completed emulation of a trapped event, it executes
KVM_RUN again to resume the virtual machine.

Since Linux 2.6.22, the basic KVM application programming interface (API)
has been finalized; new features can only be added through extensions to this
interface, whose support can be queried at runtime.

KVM was initially only available on the x86 architecture, due to the lack of
virtualization support in pre-ARMv7 architectures, but has been supported on the
ARMv7 architecture since Linux kernel version 3.9. [18]

2.4 QEMU
While KVM provides the facilities that enable high-performance virtualization, it
does not by itself emulate the virtual devices provided to the machine. Instead,
any access to such devices causes a virtual machine exit, returning control to a
user mode application which then performs emulation.

One such user mode application making use of KVM is QEMU, a virtual
machine simulator originally written by Fabrice Bellard which supports the em-
ulation of a wide range of architectures including x86 and ARM. It can be used
for full-system emulation in user space, but also as a translator to execute user-
land applications from a foreign architecture. This work concerns itself only with
full-system emulation of the ARM architecture.



2.4. QEMU 19

Besides emulating a CPU core, QEMU supports a wide range of virtual de-
vices that can be made available inside the virtual machine. These include an
universal asynchronous receiver transmitter (UART) for serial transmission, key-
board and mouse input, graphical displays, network adapters, block devices such
as hard drives, as well as basic system hardware such as timers and interrupt con-
trollers. Depending on the kind of device and on the simulated architecture, they
can be accessed using I/O instructions or are addressed through memory-mapped
I/O.

When running a virtual machine with QEMU, code inside the guest system
is by default executed using the Tiny Code Generator (TCG). Executed instruc-
tions are first disassembled into an intermediate, architecture-independent form to
model its effects on the virtual machine state. Multiple architectural instructions
are grouped into translation blocks (TBs) until encountering a branch or I/O in-
struction, making a TB the smallest unit of execution. A second code generation
step then performs just-in-time compilation to produce platform-specific machine
code that can be executed natively on the host system. Figure 2.1 gives an example
of this translation process for BIOS code on x86.

Grouping the executed instructions into translation blocks has the advantage
of reducing execution overhead, as it allows the host CPU’s branch predictor to
operate on larger blocks of code at once, as well as improving cache locality.
The boundaries of a translation block are chosen in a way that instructions which
change the CPU state, such as branch operations, always occur at the end of a
translation block.

For further performance improvements, multiple blocks can be chained to-
gether if the next block to be executed is known and translated already: The loop
exit instruction of the translation block is patched to jump directly into the next
TB, avoiding an exit to the CPU loop in many cases. Since generating a translation
block can be expensive, it is stored in a cache for later re-use.

The TCG approach allows for great flexibility in combining host and guest
architectures, as is evidenced by the large range of platforms actively supported by
QEMU. However, it cannot solve the fundamental problem of emulation: While
binary translation speeds up execution compared to simple interpretation of code,
it is still vastly slower than native execution on a suitable platform.

Looking for a way to improve the execution speed, an extension to the Linux
kernel was developed, called KQEMU. [1] This extension allowed QEMU to ex-
ecute some guest code natively on the host CPU. With the introduction of KVM
into the stable Linux kernel, KQEMU was obsoleted and is now no longer sup-
ported. QEMU can now instead use KVM on systems that support it, bypassing
the Tiny Code Generator entirely.
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2.4.1 Simulation Process
After launching QEMU in full-system emulation mode through the qemu-system-
-arm binary, the general program logic is as follows:

1. QEMU determines which machine type is to be emulated (e.g., the ARM
Versatile Express platform) and invokes the corresponding initialization rou-
tine.

2. The simulated peripherals are initialized and registered in an internal device
hierarchy. These peripherals include system memory, the interrupt con-
troller, UARTs for serial input and output, as well as storage devices.

3. A virtual CPU (e.g., a Cortex-A15) is created and reset.

4. The operating system kernel that has been passed to the -kernel com-
mand line argument—which can be an executable in the ELF format or a
Linux self-extracting bzImage—is loaded into the virtual machine’s system
memory, and the program counter is updated to point to the entry address.
When loading a Linux kernel, a small bootloader is used to pass the kernel
command line arguments along.

5. The configured accelerator is initialized, which is either the Tiny Code Gen-
erator or optionally, when executing a guest system with the same CPU ar-
chitecture as the host, the Kernel-based Virtual Machine. In the latter case,
a virtual machine context is created in the kernel, and the guest machine’s
RAM block allocated by QEMU is mapped into the VM address space.

6. A CPU worker thread is started, which begins virtual CPU execution.

• When using TCG:
(a) The CPU state is checked for a pending interrupt request. If such

a request is pending and interrupts are not masked, the CPU state
is updated to execute the corresponding exception handler.

(b) The program counter is used to look up a compiled translation
block for the currently executed address.

(c) If no such translation block can be found, the current instruction
is disassembled from ARM machine code to QEMU’s intermedi-
ate code and subsequently compiled to native host machine code.
Instructions requiring special handling, such as memory accesses,
are translated into calls to QEMU helper functions.

(d) The resulting translation block is executed and cached for future
use.
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• When using KVM:
(a) The KVM_RUN ioctl is used to transfer execution to the virtual ma-

chine context.
(b) The Linux kernel KVM subsystem performs the context switch to

execute the guest code natively on the CPU, and switches back to
the host once a trapped event requires emulation.

(c) The KVM_RUN ioctl returns and QEMU reads the returned struc-
ture’s exit_reason field to determine the cause.

(d) If emulation is required, e.g., for memory-mapped I/O accesses,
the appropriate QEMU helper function is called.

7. The CPU worker thread continues execution in a loop, unless interrupted by
QEMU’s I/O thread or the simulation is terminated.

2.4.2 Interrupt Handling
The Generic Interrupt Controller (GIC) is responsible for queuing and prioritiz-
ing interrupts from multiple sources and dispatching the pending interrupt with
the highest priority to the virtual CPU. Both QEMU and an ARM processor sup-
porting the virtualization extensions contain an implementation of a virtual GIC
(vGIC), though only one of them is used at a time.

When using TCG, a virtual GIC is instantiated and its configuration registers
are mapped into the address space of the virtual machine. Memory-mapped I/O re-
quests to the GIC by the guest operating system, e.g., to query the currently pend-
ing interrupt, are dispatched to QEMU’s vGIC functions using memory listeners.
The vGIC manages the simulated CPU’s interrupt_request line, which is
checked in the CPU loop between the execution of translation blocks to enter IRQ
mode.

If KVM is enabled instead, there are two options for where the interface be-
tween QEMU’s virtual devices and the vCPU can be located, as shown in Fig-
ure 2.4.

1. The physical CPU’s vGIC, a so-called in-kernel IRQ chip, is used. QEMU
does not instantiate a vGIC, and interrupt numbers are used as parameters
to the KVM_IRQ_LINE ioctl to set the state of each external interrupt line.
This is the default option when KVM is used.

2. QEMU’s internal vGIC is used. The virtual peripherals report their interrupt
outputs to the vGIC, as they do in the TCG case. The vGIC performs all
multiplexing and filtering in user space and communicates only the status
of the single IRQ line to KVM. This behavior is triggered by specifying the
CPU option kernel_irqchip=off.
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Figure 2.4: Interaction between virtual devices, the vGIC and the vCPU. The
vGIC has multiple numbered interrupt inputs and prioritizes them, delivering one
IRQ request to the vCPU at a time. The dashed lines denote the two possible
interfaces across which interrupts are signalled between QEMU and KVM: (1.)
when using the in-kernel IRQ chip, (2.) when using QEMU’s internal vGIC im-
plementation.

2.5 Record and Replay

To find and reproduce bugs in a computer program, a technique called cyclic de-
bugging is typically used: The program in question is run multiple times, exam-
ining its state at certain points and stepping through functions in varying detail
to narrow down the possible locations of the error. However, if the software sys-
tem is sufficiently complex, it may not be clear at first in which part the defect is
located—in fact, it may not even be evident if it is an error at the application or at
the operating system level.

Furthermore, attaching a debugger to the target program to manually step
through execution may mask the error (leading to so-called Heisenbugs which
disappear when they are observed) or, worse, prevent the system from working at
all because the user interface or networking is unresponsive.

To overcome the limits of cyclic debugging, the idea of record and replay was
conceived. Rather than inspecting the system at the same time as it is running,
the whole system’s operation is recorded so that an exact sequence of executed
instructions can later be replayed and analyzed multiple times.

While a full trace recording every executed instruction would be prohibitive in
size and runtime slowdown, practical implementations make use of the fact that
computing architectures are mostly deterministic: Given the same inputs, a system
behaves identically across several runs. It is therefore sufficient to record only few
non-deterministic events and feed them back into a running system during replay.
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These sources of non-determinism include:

• Data read from peripheral devices (such as network interfaces)

• System timers (e.g., the RDTSC instruction on the x86 architecture)

• Interleaving of multi-processor events

• Timing of interrupt requests

While non-deterministic behavior of existing computer systems cannot be eas-
ily eliminated, the results of such non-deterministic operations can be recorded
and then, during replay, fed back into the simulated system.

In order to achieve determinism without explicit hardware logging mecha-
nisms, record and replay has commonly been implemented using virtual ma-
chines. Initially, these virtual machines operated at the the operating system in-
terface level. ReVirt, for example, is based on a system called UMLinux, which
uses para-virtualization to translate a guest operating system’s hardware accesses
into usermode system calls. [22] As computers became more powerful, it became
feasible to use full-system emulators like Bochs to implement record and replay,
as used by ExecRecorder. [19]

An implementation of deterministic record and replay by Dovgalyuk et al.,
which has been included in QEMU, does not directly record actions performed by
the virtual machine (e.g. memory reads), but records the inputs to the emulation
software itself (e.g. keyboard and mouse events), using instruction counting to
replay those inputs at the correct time and to adjust the simulated clocks appro-
priately during replay. To do so, it requires the use of the Tiny Code Generator;
hardware acceleration with KVM is not supported. [21]

The advent of virtualization extensions gave rise to high performance virtual
machines, permitting record and replay at moderate costs in speed, as demon-
strated in ReTrace [38].

Decoupling the normal operation of a system from the debugging phase has
several advantages: The regular functioning of a server or user-interfacing device
is not disturbed by breakpoints or analysis delays, preserving interactivity and
keeping the system in a usable state. Furthermore, unlike cyclic debugging, the
scope of analysis can be determined later on: When performing a post-mortem
analysis of an attack on a server, a comprehensive full-system replay can be used
to perform multiple analysis passes at different levels (operating system, library
or user code) if it is not clear which attack vector was used. The Crosscut replay
system [17] can use such a full-system recording to generate multiple slices at
different abstraction levels.
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ReTrace [38] further separates the recording phase from replaying by intro-
ducing heterogeneous record-and-replay: The execution of a virtual machine is
recorded on one system—the VMware hypervisor—and replayed on another—
the simulator. This decoupling allows for the replay or analysis to take place on
a different physical machine, relieving the original system of analysis overhead.
This idea is further expanded on in the Aftersight system [16], even permitting
real-time threat analysis and decisions for best effort security.

Aftersight uses a modified QEMU full-system emulator, which unlike the pre-
vious schemes allows for heterogeneous record-and-replay across different com-
puting architectures. This approach combines the advantages of a hypervisor-
based, fast recording (e.g., using the VMware hypervisor or KVM-accelerated
virtualization software) with a replay in a full-system emulator that is not con-
strained by the recorded architecture.

The two implementations of such a heterogeneous record-and-replay scheme
are Aftersight, whose underlying technology was removed from VMware Work-
station in 2011, and V2E [39]. Neither of these systems are available publicly in
the form of source code. Their work has focused on the x86 architecture, which
is by far the most popular platform in the virtualization and software security do-
main.
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Analysis

There have been various efforts to implement record and replay for the x86 archi-
tecture, such as ExecRecorder [19] or more recently PANDA [20]. They permit
recording the execution of a simulated virtual machine and later replaying it to
analyze various aspects of the executed software or to extract information.

A compelling use case is to employ record and replay for malware analysis
and intrusion detection. However, for this purpose, virtual machine simulators
are not always applicable: Servers and mobile devices, in particular, depend on a
high degree of interactivity. Running them in a simulator is not always possible in
production. Some strains of malware, for example, use the system’s performance
or inaccuracies in the emulation to detect if they are running inside a simulated
virtual machine, in that case refusing to become active to prevent analysis [24].

To overcome the performance and accuracy issues, hardware extensions for
virtualization can be leveraged to enable recording with acceptable overhead.
These recordings can then be fed into a virtual machine simulator, which can
be done on a different platform than the original system that has been recorded,
giving this approach the name heterogeneous record and replay. Aftersight [16]
and V2E [39] are implementations of this technique. We have chosen the hetero-
geneous approach to record and replay as the basis for our work.

The record and replay projects so far have focused on the x86 platform, which
is understandable given the popularity of the architecture. However, as evidenced
by many vulnerabilities discovered in mobile devices, such as Android smart-
phones, the ARM platform is no longer protected under "security by obscurity",
but has become a lucrative target in the IT security business. Gaming company
Nintendo, whose mobile gaming platforms since the GameBoy Advance have
been using ARM microprocessor designs, has begun to offer a bug bounty pro-
gram, offering up to $20,000 in rewards for exploits that can compromise the
system’s security [7], showing that there is a growing demand for ARM security
research.

25
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It is therefore of interest to consider if the concept of heterogeneous record
and replay can be applied to the ARM architecture, in order to aid in debugging a
system. This chapter discusses the requirements for deterministic replay and the
challenges that must be solved to enable a successful full-system replaying.

This work considers the problem of deterministic full-system record and re-
play on the ARMv7 architecture; a task for which—to the best of our knowledge—
no implementations exist yet. While the successor architecture ARMv8 is already
available, featuring 64-bit support, it is not currently as widespread as ARMv7,
which is still used by many mobile devices and development tools currently on
the market. 1

We focus on recording a single-core virtual machine, because at the current
stage—when evaluating the feasibility of record and replay on the ARM archi-
tecture in general—multi-core support would add little value and complicate the
design.

3.1 Event types
The goal of record and replay is to capture as much information during the ex-
ecution of a system as necessary to deterministically replay the behavior later.
As the behavior of a system is defined by the stream of instructions that it exe-
cutes, one may separate the architectural instructions into two classes, as defined
by Bressoud and Schneider [14]:

• Ordinary instructions, whose behavior is determined only by inputs from
within the system itself, and which can therefore be deterministically re-
played given the current state of the system.

• Environmental instructions, which are influenced by a source outside of
the system and can therefore not be deterministically replayed without ad-
ditional information.

For the purpose of record and replay, it is sufficient to record only the en-
vironmental instructions and their inputs; ordinary instructions are deterministic
already, and can be dropped from the recording, provided that the replaying soft-
ware implements them in exactly the same way. This omission is in contrast to
execution tracing, which aims to save a complete log of all executed instructions.

While environmental instructions are non-deterministic from the system CPU’s
point of view, they typically communicate with external devices, which follow

1Popular development boards using the ARMv7 architecture include the Raspberry Pi 2
(Cortex-A7, released in 2015) and the Odroid-XU4 (Cortex-A7 and A15, released in 2015).
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deterministic behavior individually. By including an appropriate model of those
devices, their communication with the CPU does not need to be recorded because
it can be inferred from the simulation. This approach is used in Cooperative Re-
Virt [12], which includes the communication partners in the record and replay
scheme to reduce the network traffic that needs to be recorded.

Similarly, QEMU’s existing record and replay scheme based on the icount
system does not record the results of environmental instructions, but the non-
deterministic inputs to each simulated device [21]. Since the record and replay
scheme is homogenous, with both the recorded and the replayed system running
in the same virtual machine software, it is feasible to ensure that the virtual devices
behave identically in both modes.

When recording on actual hardware (i.e., through KVM), however, developing
an exact model of a peripheral is a difficult task and must be done for each of the
devices individually. In developing ExecRecorder, de Oliveira et al. considered
including the Programmable Interrupt Timer (PIT) in the recording system, but
noted that inaccuracies of the virtual machine’s software implementation, as well
as noise in the system’s crystal-controlled oscillator, made the PIT’s exact timing
behavior unpredictable during replay [19].

It is therefore easier to capture non-deterministic inputs into the virtual ma-
chine not for each peripheral individually, but directly at the interface to the CPU.
Figure 3.1 illustrates the two approaches.

Keyboard

Network card

Hard disk

User input

Network packets

Disk image

System
bus CPU

(1.) (2.)
Figure 3.1: Possible interfaces across which non-deterministic input can be
recorded. (1.) For each device individually, reducing the size of the recording, but
requiring modifications to the virtual devices; (2.) At the CPU interface, increas-
ing the number of recorded events, but simplifying the recording and replaying
processes.

Recording at the CPU interface level leads to a higher volume of data that must
be stored, yet greatly simplifies record and replay because the virtual devices need
not be individually considered—their responses are part of the replay log, and thus
they do not need to be emulated. Furthermore, the replay becomes independent
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of a particular implementation of virtual devices: Replaying a recording that has
been performed at the device level requires the implementations of the virtual
devices to match exactly, since any change to them—even a bug fix—might lead
to a different execution during replay.

Several classes of non-deterministic events have been identified in previous
projects [19] [23]:

• Input events, occurring in the form of data that is read from a peripheral
device into a processor register or main memory.

• Hardware interrupts, which are generated asynchronously to the CPU’s
execution by external peripheral devices.

• DMA transfers, taking a special role in that they typically trigger a hard-
ware interrupt and also write data to main memory.

3.2 Timing
In the previous section, events in a system’s execution have been classified ac-
cording to their deterministic properties and their source. In order to accurately
replay them, it is not sufficient only that non-deterministic values are recorded,
but also that they are played back at the correct time. For this purpose, Dunlap et
al. [23] separate replay events into two groups:

• Synchronous events, which occur through the execution of an instruction
and whose timing is therefore determined by their position in the instruction
stream. This includes, for example, reads from system memory.

• Asynchronous events, which are triggered by sources outside of the in-
struction stream, such as hardware interrupts, and whose precise location in
the instruction stream can therefore not be inferred.

When replaying synchronous events, their precise timing is unimportant: Be-
ing anchored in the instruction stream, it is only their relative ordering that must
be preserved when reading the values from the replay log.

The situation is different for asynchronous events: The virtual machine soft-
ware that replays a recording must interrupt execution and deliver the event at the
precise time at which it occurred during the original recording. If the timing is not
correct, interrupt handlers, for instance, may run too early or too late, altering the
system’s behavior.

In order to find the correct point at which to inject an asynchronous event,
information must be stored in the replay log by which that point can be identified
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in the instruction stream. Yan et al. have used the term landmark for this concept
in their V2E replay system [39].

The exact contents that make up a landmark vary by project. In V2E, a snap-
shot of the x86 CPU state is used, consisting of the register contents and the flags
register. When used as the only identifier, this can lead to a problem if the land-
mark happens to match at several points during execution, causing a "false posi-
tive" match and leading to the asynchronous event being delivered too early. The
authors of V2E acknowledge this issue, but found that, during their experiments, it
did not matter in practice because most events were of the synchronous kind [39].

Besides the current CPU state, modern processors typically implement some
variant of a hardware counter for architectural events, which can be used to ap-
proximate a position in the instruction stream. Using such a counter, it is possible
to reduce the chance of a false positive landmark match. Echo, a record and re-
play project for multi-threaded applications, uses the performance counters of the
Pentium 4 processor to count the number of retired instructions for use in a land-
mark [28]. Other projects like ReVirt [23] use the branch counter for this purpose.

3.3 DMA
In order to enable high-performance data transfers, modern computing systems
support the direct memory access (DMA) model, in which the CPU does not need
to poll a device for new data, but can instruct it to asynchronously write the result
of an operation directly to memory. The CPU can then continue to perform other
work and is notified of the transfer’s completion through a DMA interrupt. The
DMA model is used, for instance, by hard disk drives and network adapters to
deliver bulk data read from the disk and incoming network packets.

For the purpose of record and replay, the DMA model poses a challenge in that
a hardware DMA controller’s behavior cannot easily be recorded, yet can modify
memory contents at any time. Even if the device performing DMA is a virtual de-
vice under control by the virtual machine software, it may write to guest memory
asynchronously to the CPU execution loop. In order to deterministically replay
the execution of a system, these operations need to be replayed at the correct time.
While regular memory writes issued by the CPU, being ordinary instructions, can
be omitted from the recording because they can be inferred from the current CPU
state, data written to memory by the DMA controller must be recorded.

Dunlap et al [23] assume, in order to make record and replay involving DMA
feasible, that any DMA controller does not become active by itself, but that DMA
requests follow a transactional model: The CPU issues a DMA request, specify-
ing a destination for the data to be read, and only reads from that address once the
DMA controller signals completion of the request. This is a reasonable assump-
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tion to make because the state of the destination data is not well-defined while
a request is in progress, and properly written device drivers will only attempt to
access the data once the completion interrupt has been received.

To allow for deterministic replay, the recording system must therefore be
aware of any DMA requests issued by the guest system, which is possible if all
DMA controllers are emulated by the virtual machine software. Furthermore, it
needs to record not only the landmark when a request has been issued, but also
the content that has been written to memory. Under this model, there are no in-
cremental writes to the destination address, but all of the DMA result’s content is
written at once.

3.4 Applying Record and Replay to ARM
Having identified several classes of events relevant to record and replay, we now
look at how its concepts can be mapped to the ARM architecture. As outlined in
the ARM Architecture Reference Manual, the instruction set is composed of the
following groups [11]:

• Branch instructions to change execution flow and to switch between in-
struction sets (ARM/Thumb).

• Data-processing instructions performing arithmetic operations on register
contents only.

• Status register access instructions to access the banked versions of the
CPSR and, if the virtualization extensions are supported, to move data be-
tween banked general-purpose registers across different modes.

• Load/store instructions to transfer the contents of general purpose regis-
ters to and from memory.

• Load/store multiple instructions for reading and storing sets of multiple
registers at once.

• Miscellaneous instructions including debugging, memory barrier and wait-
ing instructions.

• Exception-generating and exception-handling instructions to perform
calls into privileged processor modes and to return from them.

• Coprocessor instructions for communicating with platform-specific co-
processors, including certain system management registers.
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• Advanced SIMD instructions implemented in the ARM NEON exten-
sions, supporting vector operations.

• Floating-point instructions implemented in the VFP extensions, support-
ing floating-point arithmetic.

3.4.1 Memory-mapped Input/Output
Among the instruction set groups, the instructions involving memory accesses de-
serve special consideration. Since the ARM architecture has no explicit IN/OUT
instructions to do port input/output as on x86, access to peripheral devices gener-
ally happens by way of memory-mapped input/output (MMIO). For this reason,
all instructions reading from memory must be considered environmental instruc-
tions.

On the x86 architecture, it is not immediately obvious which instructions are
environmental instructions because many of them can operate on memory con-
tents directly. Fortunately, ARM is a load-store architecture, on which operations
reading from system memory are easily identified:

• Load Register: Reading a 32-bit word from a memory address into a regis-
ter (LDR). Also supported are halfword (16-bit, LDRH) or byte (8-bit, LDRB)
accesses, which applies to the instructions below as well.

• Load Register Exclusive: Memory read with support for synchronization
(LDREX). After using an exclusive read, a subsequent exclusive write oper-
ation (STREX) succeeds only if no other processor in the system has written
to that address in the meantime.

• Load Register Unprivileged: A read operation that is carried out as if it
was executing in User mode (LDRT).

• Load Multiple: Read values from consecutive memory addresses into mul-
tiple registers at once (LDM). Pre- and post-incrementing the source address
register and writeback of the final address are supported. This group also
includes the POP instruction, which implicitly accesses the stack.

We do not consider the write operations (STR*) because they are ordinary
instructions, requiring no further recorded data to make them deterministic.

In order to trap memory accesses, the hypervisor can simply omit any page
table entries for the regions that are of interest for the recording, leading to a
virtual machine exit on every access. Regular accesses to system memory (RAM)
do not need to be trapped because their results are deterministic; after the first
access to a RAM page, an appropriate page mapping is created and the hypervisor
no longer needs to be involved when the guest accesses that page.
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3.4.2 Coprocessor Access
Besides accesses to system memory, the ARM architecture also supports two co-
processor instructions through which data can be read from one of up to 16 copro-
cessors in the system:

• Move to ARM core register from Coprocessor: The MRC instruction is-
sues a command to a given coprocessor, returning the result in a general-
purpose register of the CPU.

• Move to two ARM core registers from Coprocessor: Like MRC, MRRC
issues a coprocessor command but returns a 64-bit result in two general
purpose registers.

As with the memory accesses, we ignore the ordinary coprocessor write in-
structions (MCR/MCRR).

The coprocessor interface is typically used for system configuration purposes.
Coprocessor 15 (CP15) encompasses platform identification, cache management,
virtual memory and performance counting registers. It is also used in the event
of instruction and data aborts to provide fault information. Figure 3.2 shows an
overview of the subsystems that can be configured through CP15.

MRC p15, <opcode 1>, <target ARM register>, <CRn>, <CRm>, <opcode 2>
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Platform identification
System control
Memory protection and control
Memory protection and control
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translations, miscellaneous

TLB maintenance operations
Performance monitors
Memory mapping, TLB operations
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Security extensions
Process, context, thread ID
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Figure 3.2: Overview of the coprocessor 15 registers, grouped by their subsystem
(CRn). Using the Opc1, CRm and Opc2 parameters to the MRC/MCR instructions,
a particular control register can be selected.

If a system implements the optional Generic Timer extension, a system timer
can be accessed through CP15, typically operating at 1-50 MHz. This timer ful-
fills a similar role to the RDTSC instruction on x86. The architecture also allows
for virtualizing the physical counter value by subtracting a configurable offset,
resulting in a virtual counter value register, CNTVCT [11, B4.1.34], intended to
account for the time that a virtual machine has spent in a paused state.
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Coprocessor 14 (CP14) is used to access the debugging functions of the CPU
and controls various aspects of the Thumb instruction set. Coprocessors 10 and 11
are used by the floating point and SIMD subsystems. Other coprocessor numbers
are reserved for use either by ARM or by implementors of the architecture.

For the purpose of record and replay, it must be possible to record the result
of any coprocessor read operation. Indeed, the virtualization extensions provide
support for trapping some of the coprocessor accesses to CP14 and CP15 to Hyp
mode. The trapping mechanism for CP15 is configured through the HSTR register
[11, B4.1.73] using one bit for each of the subsystems affected by CP15, with the
notable exception of the Generic Timer extension: Access to the Generic Timer
registers is specifically excluded from any trap mechanism.

This restriction poses a problem for deterministic replay because the Generic
Timer introduces non-determinism into the system, and recording the values read
from the counter is essential to accurately replay execution. Since reading the
CNTVCT virtual counter register cannot be trapped, it is not possible to deter-
ministically replay arbitrary guest software because it cannot be ruled out that it
might access this register.

It is therefore necessary to restrict the guest system by making the following
assumptions:

1. The guest operating system does not use the Generic Timer.

2. The guest operating system does not allow User mode (PL0) access to the
CNTVCT register.

The Generic Timer is an optional extension to the ARM architecture. As such,
software cannot rely on its availability. The Linux operating system runs fine
on platforms without the extension; in fact, certain platforms like the Samsung
Exynos 5422 used in our work do ship with a Generic Timer implementation, but
with support for it disabled in Linux’ device tree database.

While it is possible to configure Linux not to use the Generic Timer extension,
it is not possible for the hypervisor to completely disable it when running guest
virtual machines.2 Therefore, one must trust the guest operating not to make use
of the Generic Timer, and thus record and replay cannot be used with arbitrary
(untrusted) guest operating systems.

In order to make sure that user software running in the virtual machine does
not use the Generic Timer to introduce non-determinism—either accidentally or
deliberately to thwart analysis—access to CNTVCT must be disabled from User
mode, which is the default setting after reset.

2Accesses to the CNTPCT physical counter value register can be disabled using the CN-
THCTL.PL1PCTEN bit, but there is no such setting for the virtual counter [11, B8.1.3].
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Accesses to coprocessor 14, which provides control registers for the debug
and Thumb instruction set subsystems, can be trapped by setting the appropriate
bits in the HDCR register [11, B4.1.66].

3.4.3 Interrupts
The ARM architecture supports two different kinds of external asynchronous in-
terrupts: IRQ requests and FIQ requests, differing only in the way that the banked
general purpose registers are handled. Once such a request is received by the
CPU, and interrupts are not currently masked through the CPSR, the processor
generates an appropriate exception and enters the corresponding processor mode
(IRQ mode or FIQ mode, respectively).

When in the process of executing a virtual machine, interrupts delivered to the
host machine are generally not intended for the currently executing guest oper-
ating system, but must be handled by the host operating system kernel. For this
reason, settings in the HCR register [11, B4.1.65] allow for IRQs and FIQs to be
taken to Hyp mode instead of being delivered to the guest machine. In KVM, this
mechanism is used to properly exit the virtual machine, then switch to Service
mode with interrupts enabled, causing the interrupt to be delivered again while in
the host machine context.

There are two possible ways in which a hypervisor can inject interrupt requests
into a virtual machine. Both are illustrated in Figure 3.3 for the case of IRQ
requests.

1. Using the virtual Generic Interrupt Controller (vGIC) provided by the vir-
tualization extensions, populating its list registers with interrupt entries [10,
5.3.8]. Each entry in the list registers corresponds to one virtual interrupt
and contains the associated interrupt number and priority. Like a physical
GIC implementation, the vGIC performs interrupt masking and priorization,
and the guest operating system uses memory-mapped I/O to acknowledge
the interrupt requests. Interrupts are signalled directly to the vCPU.

2. Using the virtual IRQ and FIQ bits in the HCR register. Once the cor-
responding bit has been set, an interrupt request will be generated upon
entering the virtual machine (unless disabled in the CPSR). In order to ac-
knowledge the interrupt and to get the interrupt number, the guest operating
system accesses a GIC that is simulated by the virtual machine software.

In order to perform deterministic record and replay, the timing of interrupt
requests must be precisely recorded. Since there are no physical interrupt sources
delivered directly to the virtual machine, but all interrupts are of the virtual kind,
this appears to be easily done.
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Figure 3.3: Two possible ways of handling virtual interrupts: (1.) Using the vGIC
provided by the virtualization extensions, which handles interrupt priorization and
masking; (2.) using a software-emulated GIC which sets the virtual interrupt flag
directly.

The actual delivery of virtual interrupt requests, however, cannot be trapped
by the hypervisor. Virtual interrupts are always delivered directly to the virtual
machine at PL0 or PL1, never to PL2 [11, B1.9.11]. Since a vGIC, if used, can
trigger virtual interrupts at any time without the hypervisor being aware of it, the
recording of those events is not possible.

For record and replay to work, it is therefore required to trigger interrupts
only through the HCR.VI and HCR.VF flags, and to record any changes to these
registers together with the current landmark. A vGIC must not be used; the virtual
machine software must provide a software implementation of a GIC.

While a recording scheme observing changes to the interrupt lines can only
record when an interrupt request is delivered to the virtual machine, it cannot
accurately tell when the interrupt request is serviced by the vCPU, as it might have
interrupts disabled through the CPSR or another exception might take priority. For
the replay, this does not make a difference because the virtual CPU will react to
the interrupt requests in the same way.

It is worth noting that not only the act of raising the interrupt line must be
recorded, but also when that interrupt request has been cleared again; otherwise,
the virtual machine might continue to receive extraneous interrupts.

Once an interrupt request has been delivered to the virtual machine, and an
exception has been taken into the corresponding IRQ or FIQ mode, the guest
operating system queries the GIC’s interrupt acknowledge register (IAR), which
provides the interrupt number that has triggered the request. At the same time,
its state is changed from pending to active, meaning that interrupt processing has
begun, but is not yet completed. Completion of the interrupt servicing is indicated
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by a write to the end of interrupt register (EOIR). Following completion, the GIC
will either deliver the next interrupt, or lower the IRQ line to indicate that no more
requests are pending.

All communication between the guest operating system and the GIC occurs
through a memory-mapped I/O interface, which means that during replay, no
special consideration needs to be taken for the emulation of the GIC: Recording
MMIO read operations is sufficient.

On replay systems targeting the x86 architecture, a particular instruction set
detail complicates interrupt handling: Certain instructions can be augmented with
the REP prefix, causing a single instruction to repeat until the count register ECX
reaches zero. Interrupts recorded in the course of such an instruction must cor-
rectly take into account that the instruction has completed only partially [29].
Fortunately, on the ARM architecture, no such repeated instructions exist.

3.4.4 Performance Counters
For asynchronous events, additional timing information must be recorded in the
form of a landmark. While landmarks consisting of only the current CPU state
may work under certain circumstances, performance counters offer a more reliable
way of identifying a particular location in the instruction stream.

The ARM performance monitors were introduced in some ARMv6 processors
and have been a part of the architecture starting with ARMv7. Their implementa-
tion is optional, but recommended.

Up to 31 performance counters can be supported in a system, plus one fixed-
function cycle counter. Access to the performance counters normally occurs
through a coprocessor interface available as CP15, but may optionally offer a
memory-mapped interface as well.

On a system implementing both the performance counters and the virtual-
ization extensions, the hypervisor can optionally reserve a range of performance
counters for exclusive use in Hyp mode (PL2): Setting HDCR.HPMN to a value
n allows access from PL0 and PL1 only to counters PMNx with x < n. The
ARM architecture requires that at least one counter remains available outside of
Hyp mode.

Reserving a range of counters for use in Hyp mode makes it easily possible to
use the performance counters to monitor events inside the virtual machine, without
having to worry about interfering with the guest operating system’s own use of the
performance counters.

Each of the performance counters can individually count one of 128 pos-
sible common architectural or implementation-specific events (of which not all
numbers are allocated). Table 3.1 lists some of the defined common events [11,
C12.8.2].
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Event
number

Mnemonic Description

0x02 L1I_TLB_REFILL Level 1 instruction TLB refill
0x06 LD_RETIRED Instruction architecturally executed, condi-

tion code check pass, load
0x07 ST_RETIRED Instruction architecturally executed, condi-

tion code check pass, store
0x08 INST_RETIRED Instruction architecturally executed
0x09 EXC_TAKEN Exception taken
0x0C PC_WRITE_RETIRED Instruction architecturally executed, condi-

tion code check pass, software change of the
PC

0x0D BR_IMMED_RETIRED Instruction architecturally executed, imme-
diate branch

Table 3.1: A selection of event categories commonly supported by the perfor-
mance counters.

Of particular interest for record and replay is the INST_RETIRED event type,
which simply counts each instruction in the instruction stream. Note that this
event type does not include the "condition code check pass" requirement: Most
instructions in the ARM instruction set can be made conditional, that is their ex-
ecution depends on the result of a previous test operation. The INST_RETIRED

event counts them no matter if they have actually been executed or failed their
condition code check. This behavior is ideal for identifying a location in the
instruction stream because instructions can be counted without considering the
results of condition code checks.

The ARM architecture also provides events for branch counting. Record and
replay projects targeting the x86 architecture typically use the branch counter for
their landmarks, for instance in ReVirt [23]. This choice is motivated by the ob-
servation that the counters for retired instructions are not perfectly accurate on
x86 [37] and that a single instruction prefixed with REP can be counted multiple
times. Using the branch counter instead provides a less precise, but more robust
landmark. ReVirt uses the branch counter to approximate a location in the instruc-
tion stream, then single steps until the exact location (as determined by the CPU
state snapshot) has been found.

While multiple counters can run in parallel, counting different event types at
the same time, only one of the counters can be configured and read at a time.
Selecting a counter is done through the PMSELR register. The 32-bit counter
value can then be read from the PMXEVCNTR register. Counter values can also
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Figure 3.4: Performance counter control registers and their interactions. Using the
HDCR.HPMN field, the hypervisor can reserve a number of performance coun-
ters for use in Hyp mode only. A single performance counter is selected using
PMSELR, allowing the counted events to be configured (PMXEVTYPER) and
the actual counter value to be read (PMXEVCNTR).

be written, which is helpful during virtual machine context switches. Figure 3.4
illustrates the use of the most relevant performance counter registers.

Since the PMUv2 version of the performance monitors extension, it is possible
to filter events by privilege levels, which is particularly helpful for virtualization:
When enabling the PMXEVTYPER.NSH flag, event counting takes place only at
privilege levels PL0 and PL1. Hypervisor code running at PL2 is excluded from
counting and therefore does not distort the landmarks.

As with the Generic Timer, there is no way for the hypervisor to prevent the
guest system from using the performance counters: At least one performance
counter as well as the CCNT cycle counter are always available [11, C12.7.2].
However, unlike the Generic Timer, accesses to the performance monitor CP15
registers can easily be trapped and recorded.

3.5 Conclusion
In this chapter, the events relevant for deterministic record and replay have been
identified: Input events, interrupt requests and DMA transactions must be recorded
in the event log because they can affect the replayed system non-deterministically.
For the purpose of uniquely identifying the point in the instruction stream at which
such an event must be replayed, the concept of landmarks has been introduced.

In the case of the ARMv7 platform, which will be the target of our replay
efforts, the input events that must be recorded are reads from memory associated
with peripheral devices (MMIO), as well as transfers from coprocessor registers
to the ARM general purpose registers.
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The ARM platform has support for two interrupt types, IRQs and FIQs, which
can be signalled to the CPU. Changes to the respective interrupt line must be
recorded; being asynchronous events, an exact landmark is required in this case
for accurate replaying. No special consideration must be given to the interrupt
controller because it is mapped through a memory interface, and thus already
covered when recording MMIO reads.

Using the virtualization extensions, most of the events that have been dis-
cussed can be trapped by the hypervisor and thus recorded. The Generic Timer,
however, which is accessed through the coprocessor interface, does not have any
trapping mechanism. With no way of capturing the values read from the timer,
record and replay must be restricted to guest operating systems that can be con-
figured not to use the Generic Timer. The Linux kernel fulfills this requirement.

For the purpose of recording a landmark, the ARM architecture supports per-
formance counters which allow instructions and branches to be counted, among
other events. When combined with the virtualization extensions, events can be fil-
tered between the host and guest machine contexts, making it easy to count only
the instructions executed by the virtual machine.
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Chapter 4

Design

This chapter concerns itself with the design of our heterogeneous record and re-
play system, stating the design goals, identifying the system’s components, and
enumerating which information needs to be recorded to enable replay later. The
requirements for the event logging backend are discussed, while keeping the de-
sign independent from any particular hypervisor or virtual machine software.

4.1 Design Goals

Our work concerns itself with recording and replaying an ARMv7 virtual ma-
chine. While the platform for the guest system is therefore fixed, we do not want
to constrain ourselves to replaying a virtual machine’s execution only on exactly
the same platform where it was recorded. In particular, it should be possible to
perform recording on an ARMv7 host machine, leveraging the virtualization ex-
tensions for fast recording speeds, but later perform the analysis on an x86 PC.
This goal is motivated by the greater availability and higher performance of de-
velopment machines using x86. While ARMv7 machines are likely to be faster
when recording an ARMv7 guest due to the use of hardware virtualization, a reg-
ular PC might still outperform them—due to its higher clock speeds and power
budget—when software emulation is used for replaying. For this reason, the sys-
tem should be built upon a virtual machine simulator software that runs on many
host architectures.

Enabling high performance recordings is essential to observe a system in pro-
ductive use. If the system becomes too slow during debugging, it can be difficult
to even trigger the bug: The user interface might be not responsive enough to ef-
fectively interact with it, or a server may drop connections due to timeouts. The
recording scheme should therefore produce only a small overhead, compared to
the case where recording is disabled.

41
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While the system should support fast recording, we make no such requirement
for the replaying that takes place later: Performance is most critical when the vir-
tual system is running and being interacted with. Since replay and analysis can be
deferred until later, and performed on a possibly faster machine, we do not intend
to optimize for replay speed. Similarly, it may occur that the virtual machine ac-
tually runs faster when replaying because it spends less time waiting for external
inputs, or that the replay speed is not consistent within a run. For the designed
purpose—to enable debugging and to trace execution of a virtual machine—the
speed of the replay matters little, as long as correctness of the machine’s execution
can be ensured.

A replay system may have bugs, or there may be differences in the imple-
mentations of architectural instructions between the recording and the replaying
system, which may lead to the replayed virtual machine behaving differently. De-
pending on how severe these differences are, execution between both machines
may diverge, leading to an entirely different execution flow and to being unable to
reproduce the system’s behavior. In order to detect such a situation, there must be
a component which regularly verifies if the state of the virtual machine matches
what was observed during the recording, without causing too much overhead.

In Chapter 3, direct memory access (DMA) requests have been identified as a
source of non-determinism in a system. Since DMA is an advanced topic, and pri-
marily intended to improve performance, we try to first obtain a working system
before implementing DMA transfers. To that end, the use of DMA in the guest
system will be disabled where possible, enforcing the use of the programmed I/O
(PIO) model which polls the device through the memory bus. Nevertheless, we in-
clude DMA in our system model to analyze its impact on recording performance.

The target system that the recorded virtual machine should eventually support
will be the Linux kernel, being a widely-used operating system which can also
be easily modified, should para-virtualization be necessary. However, Linux is a
complex operating system, and it is to be expected that it uses many features of
the ARMv7 architecture, making it a challenging task to ensure all of them are
correctly replayed.

4.2 System Architecture
Our record and replay scheme for the ARMv7 platform consists of two main com-
ponents, the recording system and the replaying system, as outlined in Figure 4.1.
Each system implements a virtual machine with an ARMv7 central processing
unit (CPU), although they do not need to share a common implementation, nor
run on the same host computing platform. The two components are only coupled
by way of the event log.
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Figure 4.1: System overview for an ARMv7 record and replay scheme. A record-
ing component taps into the memory bus and the coprocessor interface, passively
recording data read by the CPU, DMA transfers, and interrupt lines. Events are
stored in a log with their corresponding landmarks. In the replaying system, a
replaying component reads events from the log and feeds them back into the sys-
tem, replacing input from the affected devices. Note that in the replay system,
peripherals are typically detached from the system such that they do not produce
erratic output.

The recording system runs a virtual machine in the configuration that is in-
tended to be debugged, i.e., with an appropriate operating system installed, net-
working enabled and peripheral devices (such as the serial console UART) con-
nected. Shown in Figure 4.1 are sample peripherals supported on the ARM Versa-
tile Express platform, which is a popular target for emulation. Integrated into the
virtual machine software is a recording component which taps into the memory
bus and the coprocessor interface, recording the data that is read by the CPU from
peripherals, but not from RAM. All data collection is done passively; the record-
ing component does not actively manipulate the execution of the virtual machine.

In order to inject events at the correct time later during replay, each event must
be tagged with a landmark identifying its location in the execution stream. For
this purpose, the system includes a landmark generator, which may examine the
components of the virtual machine (e.g., the CPU registers or the RAM contents)
in order to compute a landmark.

All events are stored in an event log, which is typically a file, but may also be
a specialized tracing backend such as Simutrace [33].

The replay system is structured similarly to the recording system, but here, the
component which controls the replay takes up a more important position: It reads
events from the backing store and feeds them back into the running virtual ma-
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chine, taking on the role that the peripheral devices normally would. A landmark
verifier ensures that the system is in the correct state for injecting an event.

When in replay mode, the virtual devices that would normally be simulated are
detached from the system because any data that the CPU attempts to read from
them must be provided by the replay log. Writes from the CPU to the devices
can be ignored, and in fact, they should be; otherwise, the virtual machine might
cause side effects, leading to corrupted virtual disks or producing garbage network
traffic.

While most devices should be disconnected, and writes to them should be ig-
nored, there are exceptions to this rule: The coprocessor interface is used for con-
figuring certain aspects of the system’s caching and execution behavior and must
therefore continue to receive writes, even during replay. The serial port UART
is not crucial to successful replay, but it may be desirable to see the emulated
system’s output.

In addition to data transferred to the CPU, the replaying component also takes
control of the virtual CPU’s interrupt request (IRQ) and fast interrupt request
(FIQ) lines, setting it high or low at the times indicated by the landmark. It is im-
portant that no other component in the system changes these lines, as this would
trigger unwanted interrupts and prevent a correct replay.

One might consider the idea of making a virtual machine "go live" once there
are no more events to replay, a concept described by Bressoud et al. [14] and
implemented on x86 by Scales et al. [35] for the purpose of fault tolerance: Once
replay is finished, the replay component is disabled, the virtual peripherals are
reconnected, and the system continues executing from that point. It cannot be
ensured, however, that the virtual devices or the environment are in the correct
state to proceed with execution; the guest operating system’s network stack, for
instance, would find itself trying to continue TCP sessions which are long gone.
For this reason, our system is designed to terminate execution once the end of the
event log has been reached.

While there have been record and replay projects employing real-time commu-
nication between two systems, such as the failover replicas in [14] or the real-time
threat analysis in Aftersight [16], our system is intended for offline analysis. As
such, data is exchanged only in one direction through the replay log.

4.3 Landmarks
Landmarks, as defined in [39], serve as an identifier for a point in the execution
flow of a virtual machine. A replay system can use them in order to know at
which time an event must be injected into the virtual machine or to verify whether
it executes in the same way as during the recording.
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For synchronous events, which are triggered by actions performed from within
the virtual machine, a landmark is not strictly necessary: A memory read, for
instance, can only be replayed as soon as the corresponding load instruction is
executing. The sequential ordering of the events, however, must be preserved.

Asynchronous events, on the other hand, require more information to locate
the correct point in the instruction stream because they originated in the envi-
ronment, and the virtual machine itself does not trigger a synchronous event by
which to identify the insertion point. In order to replay asynchronous events such
as interrupts, a landmark is therefore mandatory.

Since an ARMv7 CPU can only react to interrupts in between two instructions,
defining a landmark as the number of instructions that have been executed by the
CPU is sufficient to uniquely identify a point for replaying asynchronous events.
On ARMv7 each instruction executes at most once—there is no REP prefix as
there is on x86. Although execution of an instruction may be skipped because of
the conditional execution feature, it makes sense to include it in the instruction
counting scheme in that case to make a landmark unambiguous.

The performance counters on the ARMv7 architecture support counting the
INST_RETIRED event, which implements exactly this instruction counting scheme.
Furthermore, platforms implementing the second version of the performance mon-
itoring extensions (such as the Cortex-A15 processor core) can filter events by
privilege level, making it possible to exclude hypervisor code running at PL2 from
counting and thereby to accurately count events in a virtual machine.

In order to prevent the virtual machine from interfering with instruction count-
ing, a performance counter can be reserved for use by the hypervisor using the
field HDCR.HPMN. This counter can neither be seen nor used by the guest sys-
tem.

Typically, a hypervisor intending to count guest instructions will, upon virtual
machine entry, store the current counter value and configure one of the reserved
timers to count INST_RETIRED events at PL0 and PL1 only. Once execution
returns from the virtual machine, the counter value is compared with the stored
value to obtain the number of executed instructions. Performance counter val-
ues are limited to a width of 32-bits, after which they overflow; this limitation
must be considered when obtaining a landmark, but never caused an issue in our
experiments.

4.3.1 Verification
In theory, the instruction counter alone is sufficient to uniquely define a landmark.
It is expected, however, that the record and replay system has bugs, inaccuracies or
unidentified sources of non-determinism, leading to the virtual machine behaving
differently during replay.
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Previous projects targeting the x86 platform have observed inaccuracies in the
instruction counts provided by Intel CPUs [37]. An incorrect instruction count
can lead to interrupts being delivered too late or too early, which changes the
execution flow of a virtual machine.

As identified in [15], sources of non-determinism abound, motivating the need
for verification tools. To overcome replay issues, it should be possible to detect
when the virtual machine’s execution diverges from that of the recording by in-
cluding additional information in the landmark.

Such extra information included in the landmark should be:

• Specific enough to help distinguish the correct state from incorrect ones;

• Quick to compute, in order not to cause a lot of overhead during recording;

• Quick to verify, such as to not slow down the replay too much, and

• Small in size, so that the landmark’s stored size is not increased too much.

A sensible choice for landmark verification information would be the pro-
gram counter register (R15): Its value changes after every instruction—except
for pathological cases such as in an endless loop branching to itself—and it can
reliably detect when the instruction counter is slightly offset. Being stored in a
register of the virtual CPU, it can be quickly obtained and verified, and requires
only 32 bits of space.

The record and replay scheme is designed so that it records reads from memory-
mapped I/O (MMIO). Instructions accessing virtual RAM are not recorded, but
assumed to be deterministic: RAM is only written to from the virtual machine or
through DMA requests, whose content is also recorded. Bugs or differences in
the implementations of instructions can however lead to different data being writ-
ten to RAM when compared to the recording system; the Store Multiple (STM*)
family of instructions, in particular, may or may not execute only partially in the
presence of a data abort [11, B1.9.8].

Incorrect values written to RAM may lead to errors in the replay that can be
hard to detect: They may manifest only several million instructions later when
that value is read again and causes a different code path to be taken than in the
recording. At that point, it is difficult to tell where the incorrect value originates
from.

In order to catch memory errors as soon as possible, checksums of the virtual
machine’s RAM contents can be computed and added to a landmark. Such a
checksum should be quick to compute and verify because a virtual machine’s
RAM size is typically in the order of gigabytes.
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Various implementations exist, ranging from simple consistency checks such
as CRC32 (32-bit) to cryptographically-safe algorithms including MD5 (128-bit),
SHA-1 (160-bit) and SHA-2 (≥ 224-bits). While all but the latter algorithms have
been deprecated for use in cryptography, they are otherwise still suitable for the
purpose of landmark verification in our system.

Computing a memory checksum may take a few seconds; for this reason, it is
advisable to not add a checksum to every landmark, but only in intervals of around
10-100 million instructions. There is a trade-off to be made between detecting an
error early, requiring shorter intervals, and keeping record and replay speeds high,
which suggests larger intervals.

4.3.2 Debugging

Including the program counter in the landmark enables the detection—and, under
certain circumstances, correction—of a shifted instruction count, as well as to de-
tect if the execution flow inside the virtual machine is different from the recording.
The reason for the diversion, however, can rarely be deduced from the program
counter alone without looking at the CPU state.

Although primarily used for verification of the recording system, it may be
helpful to generally collect more data in the landmarks than necessary, in order to
help uncover bugs in the emulator. If new features are added to the implementation
later, or the software implementing the replay component is changed, the extra
information in the landmarks can be used for regression testing.

For this reason, the landmarks can be augmented by a complete register dump,
which on ARM consists of 16 registers. Doing so allows for the debugging of
replay errors by comparing the registers from the landmark with the actual CPU
registers. To this end, it is helpful if the recording contains many events: The more
landmarks appear in rapid succession, the more closely the replay log resembles
an execution trace of the virtual machine.

Memory checksums, while helpful for verification purposes, are of only lim-
ited use when debugging a replay error: They can only detect if any byte in the
system’s RAM is incorrect, but do not give any information about where in mem-
ory the first error occurs. With perhaps millions of instructions since the last
landmark, it is nearly impossible to trace back the location of the error.

Including a memory dump in a landmark can be a great help during debugging
of the replay system, allowing to pinpoint the exact position of an incorrect byte,
but with possibly many gigabytes of virtual machine RAM that need to be saved
to the event log, they must be used very sparingly.
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4.4 Event Types
Having previously looked at which architectural events can occur on the ARMv7
architecture in Section 3.1, we now introduce the six different event types that our
record and replay system uses.

4.4.1 Initialization
While not strictly an architectural event, it is helpful to model the beginning of
the recording as a special event that always starts the event log. The first event
may contain metadata about the recording, for example information on which
hardware platform it originates from, to enable platform-specific adjustments and
workarounds.

More importantly, if this initialization event already contains a landmark, as
is the case for all event types, then it can be used to verify the initial system
state upon replay: By including a memory checksum, it is ensured that both the
memory size as well as its contents match that of the recording system. This is
particularly important because the replay system may have been launched with a
different kernel image, or even just a different boot command line, both of which
can affect the execution of a guest system.1

The initialization event might also include a memory dump that is loaded into
the virtual machine RAM at startup, making the replay file self-contained because
the kernel image and its command line are already included.

4.4.2 MMIO Reads
The recording system taps into the memory bus and records all values read from
memory addresses which belong to a peripheral device (MMIO). Reads from
RAM are considered deterministic and are therefore not part of the recording.

Being a synchronous event, replaying a memory read does not require an accu-
rate instruction counter: The event is replayed exactly at the time the CPU issues
the corresponding load instruction. The event’s landmark can however still be
used to verify if the execution flow and processor state are correct. Synchronous
events can even be used to adjust an incorrect instruction counter by resetting it to
the value contained in the landmark once the load instruction is executed.

Read instructions on the ARMv7 architecture range from an 8-bit width (LDRB)
up to 64-bit width (LDRD); the log event must be able to accommodate values of
any such size.

1The Linux kernel prints the command line to the console upon startup; so even if it contains
just one extra space, the replay will fail at the latest when that extra character is written to the
console and distorts the landmarks.
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It is not required to store the memory address from which the value was read,
since the address is implicitly defined by the instruction that triggered the event.
Like the extra information in the landmark, it can however be used for verification
purposes.

When recording with the virtualization extensions, memory reads cannot be
trapped directly; however, they cause data aborts when the guest accesses pages
which are not listed in the translation table. The hypervisor can omit translation
table entries for the MMIO regions, causing a trap on any access to a device.
Since the recording virtual machine emulates all virtual devices by itself and is
responsible for generating a device’s reply, it can easily record that value to the
event log.

4.4.3 Coprocessor Reads
Coprocessor reads can be 32-bit (MRC) or 64-bit (MRRC) in size. Like MMIO reads,
they are synchronous events, so they can be used for correcting the instruction
count. The coprocessor parameters are encoded in the instruction and as such do
not need to be stored in the event.

Certain optimizations are possible, for example in the case of the process,
context and thread ID registers, which can be accessed through coprocessor CP15
with parameter CRn 13: They provide the guest operating system with space to
store execution context information such as the current process ID. Thus, being
usable like ordinary registers, they can be treated as deterministic for the purpose
of record and replay and omitted from the recording. It must, however, be ensured
that they are initialized to the same starting value in the recorded and the replayed
system.

Other coprocessor registers, such as those of the Generic Timer interface (co-
processor CP15, CRn 14), are highly non-deterministic and must be recorded
in any case. This poses a problem because not all of them can be trapped and
recorded with the virtualization extensions, so their use must be disabled in the
guest operating system. With no way for the hypervisor to enforce this restric-
tion, the guest operating system must be trusted not to use the Generic Timer; the
virtual machine software must provide an alternative timer implementation that is
supported by the guest operating system.

The virtualization extensions provide support for trapping most other copro-
cessor accesses. The hypervisor can, through the use of the HSTR and HDCR
registers [11, B4.1.66], decide for each CRn individually if it should be trapped or
execute natively.

Not all coprocessor reads which need to be recorded are emulated by the vir-
tual machine host software. In order for the recording system to be able to gather
the result of a coprocessor read normally handled in hardware, it must perform a



50 CHAPTER 4. DESIGN

single-step operation over that particular instruction and record the values from
the result register. The ARM architecture provides support for this functionality
in the form of the debug extension, whose breakpoint mechanism can be used to
implement single-stepping [11, C3.3.5].

After the single-step operation has completed, the results of a coprocessor
instruction can be gathered from the current virtual CPU state. The processor
registers that need to be saved can be identified using the Hyp syndrome register
(HSR), which on the original coprocessor trap event contains information about
the MRC/MRRC instruction [11, B3.13.6].

4.4.4 Set Interrupt Lines
ARMv7 supports two external asynchronous events: interrupt requests (IRQ) and
fast interrupt requests (FIQ). Virtual machine software provides an internal repre-
sentation of such interrupt lines and sets them high or low, checking their value in
the CPU loop and taking the virtual CPU to the corresponding exception mode if
an interrupt is signaled.

In a virtual machine that executes using the ARM virtualization extensions, in-
terrupts are injected through the HCR.VI and HCR.VF flags or generated through
a virtual Generic Interrupt Controller (vGIC).

A recording system must record whenever the virtual interrupt lines change,
which is only possible if the virtual machine has full control of them. For this rea-
son, a vGIC must not be used and the GIC must be emulated entirely in software.

Unlike MMIO and coprocessor events, interrupt events are asynchronous and
as such depend on an accurate landmark. A shifted instruction count must be
corrected through extra information in the landmark, otherwise the interrupt is
injected at the wrong time.

4.4.5 DMA Writes
DMA writes occur when a virtual device wants to efficiently transfer a (possibly
large) block of data into virtual machine RAM. Since these writes are often the
results of I/O operations (e.g., reading a block of data from the hard disk or re-
ceiving network packets), their timing is non-deterministic and asynchronous to
the virtual CPU’s execution.

In a virtual machine, DMA writes to the guest memory must be recorded with
an accurate landmark such that on replay, the data block is written to RAM at
the correct time; otherwise, the guest operating system, expecting the results of a
DMA operation, might read incorrect data.

Care must be taken if the device driver performing the DMA write operates
asynchronously to the CPU loop, as is the case if the virtual machine is currently
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executing through the virtualization extensions: A virtual machine exit must be
triggered in order to accurately obtain the current landmark.

Since the data written by DMA operations must be considered external, non-
deterministic information, the entire data block must be saved in the replay log.
Due to possibly varying transfer sizes, it is the only event which requires a variable
record size in the log.

4.4.6 Trace
The landmarks which are part of the recorded events can be used to detect if the
replayed virtual machine’s execution diverges from that of the original recording.
These landmarks are however only encountered when a non-deterministic event
has been recorded. Depending on the workload in the virtual machine, several
millions of instructions may be executed without triggering such a replay event,
making it hard to pinpoint the source of an error when a landmark mismatch is
detected.

For verification and debugging purposes, it is therefore helpful to introduce
extra events into the record and replay scheme which have no relevance for en-
abling determinism, but whose only purpose is to periodically verify the execution
state through use of the landmark.

In our system, we use a trace event, which can be generated on every virtual
machine exit to the hypervisor. When such an event is encountered during replay,
its landmark is checked against the current system state. Since virtual machine
exits occur far more often than the actually recorded replay events—e.g., on data
aborts when the hypervisor is asked to map a guest page—they substantially re-
duce the distance between landmarks and allow replay errors to be detected more
easily.

Trace events are entirely optional, but when used, they depend on an accurate
instruction counter. They do not need to store any other event information beyond
the landmark itself.

4.5 Logging
After identifying the replay events modeled in our system, we now discuss the
requirements for the replay log. The replay log stores a sequence of events in the
order in which they were submitted, and later during replay allows for retrieving
them in that order.

There are six different types of events in our record and replay scheme. Since
the replay should follow the same execution flow as the recording, the relative
ordering of the individual events is fixed; i.e., if a MMIO read event E1 occurrs
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before a coprocessor event E2 during recording, then they will be in the same
order during replay. For the log format, this means that the data associated with
E2 will never be required before E1 has been processed, and thus all types of
events can be written sequentially to the same stream.

While all event types can share the same stream, they have different size re-
quirements, which are summarized in Table 4.1. Generally, the data associated
with each event has a fixed maximum size, except for the DMA write event whose
size is only bounded by the 32-bit address space (although in practice, individual
writes of more than a few megabytes are unlikely). Nevertheless, this precludes
the use of a fixed-size record, making iteration through the file slightly less con-
venient.

Event Stored information
All Landmark:

• Instruction counter (32-bit)
• Optional: Program counter register (32-bit)
• Optional: General purpose registers (15 × 32-bit)
• Optional: Memory checksum (32-bit to 256-bit, de-
pending on the algorithm)
• Optional: Memory dump (up to 4 GB)

Initialization –
MMIO Read • Value (up to 64-bit)

• Optional: Memory address (32-bit)
Coprocessor Read • Value (up to 64-bit)

• Optional: Coprocessor number (4-bit)
• Optional: CRn (4-bit)
• Optional: CRm (4-bit)
• Optional: Opcode 1 (3-bit)
• Optional: Opcode 2 (3-bit)

Set Interrupt Lines • IRQ line status (1-bit)
• FIQ line status (1-bit)

DMA Write • Destination address (32-bit)
• Size (32-bit)
• Content (variable size)

Trace –

Table 4.1: Storage requirements by replay event. Data marked as optional is not
strictly required for replay, but may be included for debugging and verification
purposes.
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The advantages of extra information in a landmark for verification and debug-
ging purposes have been highlighted previously; some of that information should,
however, not be part of every single landmark. Computing a memory checksum
or adding a memory dump to every event would be excessive, so the log format
should allow for adding such information to the landmark optionally on a per-
event basis, without wasting that space when the extra information is omitted.

Considering the use of external tools, it may be helpful to decouple navigating
through a replay log from the interpretation of the individual events: Adding a
length prefix to each log entry avoids having to decode each event structure just to
find out how many bytes it occupies before the next entry begins. Such a design
is advantageous for performing analysis on replay logs in external tools.

For easy handling of the replay file, it should ideally be self-contained, i.e. not
offload event data or memory dumps into a separate file. One might even go so far
as to include the virtual machine settings and the kernel image in the replay file,
e.g., by way of an initial guest memory dump.

Due to the regular structure of the recording file, with many events expected to
contain identical data, compressing the event log data is worth considering. New
events are only appended to the end of the log, making it conceptually suitable for
streaming or passing through a compression tool.

4.6 Replay

In the replaying system, the log file is used as an input to produce a sequence of
events. The replaying component must then use their stored data to feed the events
back into the running system. While this is easily done for the synchronous events,
since they are triggered through the instruction stream and can thus be processed
strictly in order, the asynchronous events require special handling.

To inject an interrupt at the correct time, the replaying system must ensure that
only a certain number of instructions are executed, up to the point at which the
next asynchronous event must be injected.

Since the log file contains all relevant data for replaying accesses to virtual
devices, they do not actually need to be emulated. Devices that interact with the
environment beyond the virtual machine, such as an emulated storage device or a
network interface card, must in fact be disabled during replay, or the instructions
they receive from the replayed system might cause them to produce garbage out-
put. As an exception to this rule, display and serial devices may be enabled so that
the output from the replayed system can be observed.
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4.7 Conclusion
In this chapter, we have stated the design goals for our record and replay scheme:
It should enable recording an ARMv7 system with little overhead and later allow
execution of that system to be replayed on a possibly different system. Only the
information required for deterministic replaying should be included in the replay
file, in contrast to execution tracing systems.

The recording system designed in this work consists of a recording compo-
nent, recording data from memory-mapped I/O, coprocessors, interrupt requests
and DMA writes, as well as a landmark generator which examines the virtual ma-
chine’s state to uniquely identify a point during its execution. Events are stored in
an event log, which can be used by the separate replaying system to feed informa-
tion back into a running virtual machine.

Each event is augmented with a landmark providing information about the vir-
tual machine’s current state, allowing the correctness of the replaying to be veri-
fied. A landmark includes at the very least the instruction counter, but may option-
ally also include the program counter or other CPU registers. Memory checksums
and dumps can be added to provide further verification.

Requirements for event storage have been identified: The event log must pro-
vide a way to sequentially write (during recording) or read (during replay) a sin-
gle stream of events. Support for variable-sized events is required because DMA
events have no fixed size.
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Implementation

The previous chapters have outlined the concept and challenges of heterogeneous
record and replay on the ARMv7 architecture. In Chapter 4, a generic design
for a record and replay scheme on the ARMv7 architecture has been presented.
While looking in detail at the architectural features that must be considered for
a recording, the design was intended to be independent of any particular virtual
machine implementation, and thus did not concern itself with the application pro-
gramming interfaces (APIs) of either the virtualization extensions or the virtual
machine software.

The requirement for low-overhead recording of real-world workloads moti-
vated the use of hardware virtualization for running a virtual machine. There are
two major hypervisors supporting the ARM platform: Xen, which runs paravir-
tualized guest operating systems, and Linux KVM, supporting the execution of
arbitrary guest systems. While both are open source, only KVM is suitable for
system-level debugging of unmodified guest software.

In this chapter, our design for such a replay system is demonstrated in the
form of an implementation using the QEMU virtual machine software and the
Linux Kernel-based Virtual Machine (KVM). We elaborate on the changes that
were necessary in these software projects to allow for deterministic replay and
discuss the problems we encountered in enabling heterogeneous replay.

To demonstrate our record and replay scheme, we had to choose a virtual
machine software upon which to base our project. We selected the QEMU open
source virtual machine emulator [13] because of our group’s familiarity with the
project, and for its support for ARMv7 as both the host and guest architecture.
Multiple existing projects in the field of record and replay have chosen QEMU for
their implementations as well [21] [25]. Besides offering software CPU emulation
through its Tiny Code Generator (TCG), it also supports running the guest system
using KVM, which made it well-suited to our requirements. Both QEMU and the
Linux kernel are written in the C programming language.

55
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At the time we started implementing our system, QEMU 2.6.2 was the most
recent stable version, and shall be the basis for this work. For the host system
kernel, where changes were necessary to support our recording scheme, we used
the most recent Linux kernel from the stable development branch, which was
version 4.8.10.

5.1 Recording
Any recording system which uses KVM is fundamentally divided by the boundary
between the kernel and userspace applications. As such, the recording component
from our original design must be split into a kernel recording component within
KVM and a userspace recording component within QEMU. Figure 5.1 shows the
architecture of our recording system, with the new components highlighted in
gray.

Kernel-based Virtual Machine QEMU
vCPUCoprocessor

emulation

Registers

Instruction
counter

Interrupt lines

Landmark
generator

Kernel
recording

component

Userspace
recording

component

Event
buffer

Device
emulation

Guest
RAM

MMIO

Set interrupt lines

Retrieve landmark

Retrieve events

Regular memory
access

Generic
Interrupt

Controller

DMA

Event
log

KVM ioctl API

Figure 5.1: Components and their interactions in our KVM-based recording sys-
tem. Coprocessor events and changes to the interrupt lines are recorded in the
kernel, which also generates the landmarks. Memory-mapped I/O events, which
are passed to the virtual machine software by KVM’s design, are recorded in
userspace, along with any DMA events. Events from the kernel event buffer are
then merged into the event log.
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Our system was designed so that costly context switches between kernel mode
and user mode can be avoided. To that end, coprocessor reads and changed inter-
rupt lines are recorded entirely within KVM, and the resulting events are written
to a kernel event buffer of a configurable size. Once that buffer is full, a KVM exit
to userspace is forced, causing QEMU to flush the buffer and save it to the event
log.

All components of our recording system are disabled by default, preserving
compatibility with existing KVM API clients and allowing for easy comparisons
between regular KVM execution and recording mode.

5.1.1 Instruction Counting

The instruction counter is implemented using the performance counters offered by
the ARMv7 platform, specifically the Instruction architecturally executed event
(INST_RETIRED) defined as a common event for the architecture.

Additions were made to the KVM world-switching code such that instruction
counting is enabled before a guest virtual machine is entered, and disabled upon
returning. The implementation takes the following steps:

1. Select the designated performance counter for configuration by setting PM-
SELR.

2. Disable the counter through the PMCENTCLR register.

3. Configure the performance counter to count INST_RETIRED events at PL0
and PL1 only, excluding hypervisor code at PL2.

4. Load the instruction counter from the internal virtual machine structure into
the PMXEVCNTR register.

5. Enable the counter through the PMCNTENSET register.

6. Virtual machine entry: Enter the virtual machine using the ERET instruc-
tion.

7. Virtual machine exit: May occur due to a trapped event or an expired time
slice.

8. Disable the counter.

9. Write back the counter value to the VM structure’s instruction counter.
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The instruction counter in the kernel has a width of 32-bit. In order to allow
for absolute landmarks without overflowing too soon, they are expanded to 64-bit
after being received by QEMU.

Our implementation assumes that the CPU implements version 2 of the perfor-
mance monitor extensions, which allows for counting guest instructions separately
from the host instructions. Instruction counting is theoretically possible without
this extension, but would introduce a systematic error through the VM entry and
exit instructions that must be corrected carefully.

Having read about inaccurate counters on the x86 platform [37], we were ini-
tially concerned that the performance counters on ARM would suffer of similar
inaccuracies. In fact, the Architecture Reference Manual is particularly vague on
the accuracy requirements of the performance counters, permitting only a "rea-
sonable degree of inaccuracy" [11, C12.2] without defining this criterium.

In order to verify the correct operation and the accuracy of the counters, small
test programs were written which tested various instruction classes (arithmetic,
branching and exception-generating instructions) on how they affected the instruc-
tion count. This task would have been easier if KVM supported single-stepping
through a virtual machine, allowing to check the counter value after every instruc-
tion; however, unlike on x86 and 64-bit ARMv8, this feature is not implemented
in KVM for ARMv7. For this reason, periodic virtual machine exits had to be trig-
gered by performing a memory-mapped I/O operation. Upon exit, the instruction
counter could then be read by QEMU.

Fortunately, the instruction counts we observed were extremely accurate. We
noticed a systematic error whereby the instruction count was increased by one
upon encountering a data abort, prefetch abort or interrupt exception. Our hy-
pothesis is that the processor internally generates a branch instruction to the cor-
responding exception vector. Nevertheless, being a deterministic error, it is easily
adjusted for during replay.

We encountered some minor issues concerning trapped operations, which, by
being taken to the hypervisor, are never actually executed and thus not counted by
the performance counters. When KVM performs emulation, it skips the trapped
instruction by increasing the program counter. For this reason, the counter must be
increased by one if kvm_skip_instr() is invoked. The WFI (wait for interrupt)
and WFE (wait for exception) instructions are affected by this mechanism, as are
data aborts and instructions involving memory-mapped I/O.

5.1.2 MMIO Reads
In our recording system, we assume the contents of RAM to be deterministic, thus
requiring only reads from memory-mapped I/O regions to be recorded. From the
hardware’s point of view, the two cases are seemingly identical at first: The first
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access to a page that is not currently in the translation table causes a data abort,
which is then taken to KVM.

If KVM resolves the corresponding page as belonging to guest RAM, it creates
an entry in the translation table, mapping that page directly to the memory block
that the QEMU user process has allocated as guest memory. Execution in the
virtual machine can then resume; if further accesses are performed to that page,
no traps to the hypervisor occur, keeping execution speeds high.

On the other hand, if the accessed page does not belong to guest RAM, KVM
first checks the KVM I/O bus for an internal handler for that address—such as
a virtual Generic Interrupt Controller (vGIC)—and if there is none, generates a
KVM exit to the userspace application controlling the virtual machine.

Accesses to memory-mapped I/O regions are thus reported to QEMU, which
forwards that memory access to its simulated memory bus where it is then dis-
patched to the corresponding device function. Fortunately, the reads whose result
we must record therefore end up in the same subsystem as during software execu-
tion using the Tiny Code Generator (TCG).

As this memory subsystem resides in user space, the resulting event can be
written directly to the log without an intermediate buffer (as in the kernel record-
ing component). The corresponding landmark can be retrieved through a KVM
ioctl call.

5.1.3 Coprocessor Reads

While seemingly simple in theory, capturing the results of coprocessor operations
turned out to involve many different approaches. We have identified four classes
of coprocessor operations requiring different handling in KVM:

• Coprocessor 15, CRn 15: These accesses are already trapped by KVM
through the HSTR register, so it was simple to hook into the existing emu-
lation function and create an event on every read.

• Coprocessor 15, CRn 4 and 14: Accesses to these coprocessor registers,
which include the Generic Timer, can never be trapped. The guest operating
system must never use them, or deterministic replay will not be possible.

• Coprocessor 15, All others: While it is simple to trap these registers by
additionally enabling their respective Tx flag in the HSTR register, they are
taken to the same emulation function as CRn 15 registers. KVM does not
expect to handle these registers, which means that no emulation functions
exist whose result can be recorded.
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• Coprocessor 14, Debug interface: These include, for example, the debug
interface. They are not normally trapped by KVM.

The coprocessor accesses which are not normally emulated by KVM pose a
problem: If we trap them to the hypervisor, we cannot obtain their result to record
an event. On the other hand, if we let them execute, then the virtual machine will
continue to run without generating a virtual machine exit.

We were able to solve this problem for coprocessor 15 by performing a single
execution step in the virtual machine. Although KVM does not implement single-
stepping support on ARMv7, hardware support for it is available in the form of
the ARM debug architecture.

Single-stepping can be done through the debug interface [11, C3.3.5] by per-
forming the following steps on virtual machine entry:

1. Through the DBGDSCR register, enable debug monitor mode and disable
interrupts such as not to disturb the single-stepping.

2. Set the breakpoint value register (DBGBVR) to the current program counter
value.

3. Configure the breakpoint condition to an unlinked instruction address mis-
match at PL0 and PL1 only, through the use of the breakpoint control reg-
ister (DBGBCR). This causes the breakpoint to hit if execution flow moves
beyond the instruction that is to be stepped over.

4. Enable HDCR.TDE in order to route the breakpoint event not to the virtual
machine, but to the hypervisor.

5. Disallow access to the debug interface from within the virtual machine
through the appropriate settings in HDCR.

6. Enter the virtual machine.

7. The breakpoint hits after executing the target instruction, reporting the break-
point as a prefetch abort exception which is taken to Hyp mode (PL2).

8. Examine the virtual CPU state to gather the results of the single-stepped
instruction.

9. Re-enable access to the debug interface.

10. Disable the breakpoint.
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As soon as execution returns to the hypervisor, the virtual machine’s processor
state contains the result of the coprocessor operation in one of the registers. The
number of the register that must be saved can be gathered from the Hyp syndrome
register (HSR), which is already provided in a decoded form by KVM.

One might consider, when encountering a trapped access to coprocessor 14,
to apply the same strategy: Disable traps, enable a breakpoint and step over the
instruction. However, the Architecture Reference Manual mandates that when
using the debug interface from Hyp mode—i.e., when debug exceptions are taken
to PL2 rather than into the virtual machine—access to the debug registers must be
disabled [11, B1.8.9], which renders the single-stepping approach unusable.

We were therefore left with no hardware support for safely recording accesses
to the debug registers. Since granting the guest machine proper access to the
debug registers was not a priority for us at this time, we chose to implement access
functions that provide a read-only view of the host register’s state. While this was
not a true fix for the problem, effectively preventing the guest from using the
debug interface, it served as a stopgap solution to continue with our work.

Since coprocessor emulation occurs entirely in kernel space, we chose to
record coprocessor read events in a kernel buffer to defer a costly KVM exit to
userspace.

While coprocessor recording has generally worked well in our implementa-
tion, there were rare cases in which two coprocessor reads in immediate succes-
sion, such as when reading the DFSR and DFAR registers to obtain information
about a data abort, failed to record the second access. We were unable to re-
produce the problem in a test case and therefore do not know whether it is an
architectural glitch or a bug in our implementation. As a workaround, if such a
case is encountered during replay, the read is dispatched to QEMU’s coprocessor
emulation while emitting a warning.

5.1.4 Interrupts

Using the ARM virtualization extensions, it is not possible for the hypervisor to
be notified when the guest CPU responds to an asynchronous interrupt request.
The closest that the hypervisor can get to knowing when exactly an interrupt is
taken is by assuming control of the source that generates it. Since the conditions
for taking an interrupt are well-defined and deterministic, observing changes to
the virtual interrupt lines HCR.VI and HCR.VF is enough.

All other sources of interrupts must be eliminated, which precludes the use
of a virtual Generic Interrupt Controller, or in-kernel GIC in KVM’s terms. This
device must therefore be implemented entirely in software; an approach which
KVM calls an out-of-kernel GIC. QEMU fortunately supports emulating such a
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GIC in userspace, although it must be enabled by adding kernel_irqchip=off
to the virtual CPU options.

The out-of-kernel GIC uses the KVM_IRQ_LINE call [8, 4.2.5] to set the status
of the virtual machine’s interrupt lines. KVM then updates the HCR flags upon
each entry to the virtual machine. Upon receiving an interrupt, the guest operating
system queries the GIC to acknowledge the interrupt; being a memory-mapped
I/O operation, its result is recorded.

While there are two possible locations at which changes to the interrupt lines
could be recorded—either in QEMU, tapping into the KVM_IRQ_LINE call per-
formed by the emulated GIC, or in the kernel upon VM entry—we opted to record
interrupt events in the kernel because it allowed us to capture the interrupt lines at
the exact location where HCR is set, taking into account corner cases where, for
instance, an interrupt is set while in the process of single-stepping.

5.1.5 DMA Writes
The virtual machine’s guest RAM consists of a block of memory that is allocated
by QEMU in userspace, then mapped into the virtual machine address space by
KVM. QEMU can write to this memory at any time, and the emulated devices
make use of this fact for implementing direct memory access (DMA). Instead of
polling data from a device one word (32-bit) at a time, the guest operating system
can instruct the device to write blocks of data—such as network packets or disk
blocks—directly to RAM, which improves performance.

DMA transfers are initiated by the virtual CPU, but their resulting data and the
time of their completion are determined by non-deterministic factors. As such,
they must be recorded for correct replay later.

Writes to guest memory occur through the address_space_*() family of
helper functions. They are, however, used both by some device drivers to per-
form DMA, as well as by multiple helper functions for ordinary guest memory
writes, which we do not want to record. Our solution was to change the few cases
where the functions were being used for DMA into calls to dma_memory_*()

and record those instead.
The function address_space_unmap() is used for committing the result

memory block of a DMA request into memory, and is also recorded.
DMA writes originate from QEMU, and therefore all data is already available

in userspace for quick copying to the event log. However, since these requests can
occur asynchronously to CPU execution, the virtual machine may currently be
running, and thus the last landmark obtained from KVM may not be up to date—
causing the DMA write to be replayed too early. In order to ensure accurate timing
of the DMA write during replay, the proper course of action would be to force a
KVM exit to synchronize the current landmark. In practice, one may assume that
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the guest does not read the target memory area of the transfer before it is signaled
the DMA completion interrupt, and thus that it does not matter if the response
arrives too early. We could not test this hypothesis, however, because the Linux
guest system we used for testing did not trigger any DMA operations.

5.1.6 Trace

Trace events are meant for debugging, serving no other purpose than to generate
an event whose landmark can be verified to check if the replay of the virtual ma-
chine is still correct. They increase the number of landmarks in the log between
recorded events, allowing for a more granular debugging.

If enabled in our system, a trace event is generated on every virtual machine
exit, no matter if it results in an event being recorded or is merely caused by, e.g.,
a data abort handled by the hypervisor. In this mode, these trace events occur as a
by-product.

We have also implemented an option which causes the virtual machine to op-
erate entirely in single-step mode, causing a trace event to be generated for every
instruction and effectively generating a complete execution trace of the virtual
machine. This option has proven invaluable to track down some particularly elu-
sive bugs, although, like most execution tracing solutions, it reduces performance
extremely.

5.2 Logging

Once an event has been captured, it must be stored in an event log to enable replay
later. We have considered different options for implementing the event log in our
system.

Initially, our goal was to modify the existing record and replay mechanism in
QEMU by Dovgalyuk et al. [21] for our own purposes because it already had an
implementation for reading and writing log files, with error handling, command
line options and endianess conversion taken care of. The idea was to replace the
existing events by that of our own system. QEMU’s existing record and replay
scheme is however based on a different, higher-level approach, taking close con-
trol of the execution loop and the system’s timers to ensure that virtual devices
behave deterministically. We found that modifying this replay mechanism was a
bad fit for our system, so we discarded this idea.

Our own logging implementation uses a single log file per recording for easy
handling. Each event is written to the file in the form of a fixed-size structure,
shown in Figure 5.2. The structure contains common fields for the event type,
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flags and the landmark. Event-specific data is stored in a union, causing some
overhead but simplifying the implementation.

While the event structure itself is of a fixed size (94 bytes in total), event data
that is seldom used or of varying size is appended afterwards; this optional data
includes memory dumps, checksums, and the contents of direct memory access
operations.

Source

Size

Address
Value

Value

Instruction count

Program counter

Memory Checksum

Memory Dump

DMA Content

Event type
Flags

Address Line Status

Registers

Initialization
Event

MMIO
Read

Set Interrupt
Lines

Coprocessor
Read

DMA
Write

Landmark

Event Data

Optional
Data

8 Bytes

8 Bytes

16 Bytes

Σ = 94 Bytes

32 Bytes

variable

variable

1 Byte
1 Byte

60 Bytes

Figure 5.2: Structure of each event record (not to scale).

We have chosen the SHA256 hashing algorithm for the checksum because it
was offered by the helper functions in QEMU. By default, a checksum is saved
once on the initialization event to check the kernel image and its boot arguments.
If desired, an interval can be specified for the number of instructions after which
the next checksum should be generated. We have found an interval of 100 mil-
lion to 1 billion instructions to be an acceptable setting without compromising
execution speed too much.

When testing the memory checksum and memory dump mechanisms, we ex-
perienced a bug where the memory data read inside QEMU was inconsistent with
the guest system’s view of memory: The values contained in the memory dump
were occasionally stale, whereas tracing the virtual machine’s execution revealed
that the virtual CPU was in fact reading up-to-date data. The problem only oc-
curred when running simple test kernels which did not use virtual memory; when
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running the Linux kernel as a guest, the memory contents were always read cor-
rectly by QEMU. We therefore assume that this is a rare caching bug which mat-
ters little in practice since QEMU normally does not read the guest’s memory.

Improvements to our logging format could be made by packing some fields
together or by using compression, as used in Simutrace [33], a specialized storage
backend for high-speed tracing. Furthermore, we currently do not consider the
endianess of the host architecture, which can be ignored in our case because Linux
on ARM defaults to the same little-endian byte ordering as x86. To store the event
log in a truly portable way, this issue should be addressed. For our initial efforts
in evaluating the feasibility of record and replay on ARM, however, our simple
log file approach has been an acceptable prototype solution.

5.3 Replay

We have thus far considered how to capture events when executing through KVM,
and how these events are stored to the event log. The event log can then be used
by the replaying system to reproduce the execution.

While it has been demonstrated on x86 that KVM can be used to implement
such a deterministic replaying system [29], our work targets a virtual machine
running in software emulation; in our case, QEMU using the Tiny Code Generator
(TCG). The choice for following this heterogeneous approach was made because
unlike recording, the replaying process is not time-critical, and implementing it in
software allows for easier development and greater insight into the system.

In the following sections, we identify the approaches we took to feed the
recorded events back into a virtual machine running in QEMU.

Once we had identified the locations in QEMU at which to replay events from
the log, we realized that it was only a small step to enabling recording in TCG
mode as well. Primarily for validation purposes, we have therefore successfully
implemented homogeneous TCG-to-TCG recording and replaying, which helped
in debugging the issues we encountered in the KVM-to-TCG case.

5.3.1 Instruction Counting

The replaying system reads a sequence of events from the recorded event log.
Each event is tagged with a landmark, consisting of the number of instructions
that have been executed up to that point and must be fed into the running system
at the correct time, that is, at the correct number of executed instructions and under
the condition that the landmark verification data, i.e., the registers, matches. There
are two fundamental classes of events, requiring different approaches in QEMU:
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• Synchronous events, which in our implementation are the MMIO and co-
processor read events. Since they result from an instruction in the exe-
cution flow of the virtual machine, an appropriate event is automatically
triggered at the correct time (assuming that the execution flow has not di-
verged). The instruction count in the landmark may be checked, although
this is not strictly necessary.

• Asynchronous events, consisting of interrupts, DMA and trace events. They
occur asynchronously to CPU execution, and thus a mechanism must be in
place which interrupts CPU execution at the correct time for the event to be
injected. A correct instruction count is mandatory.

A virtual machine software’s CPU simulation executes in a looping fashion.
One might therefore consider the following basic algorithm for replaying asyn-
chronous events:

1. Obtain the number of instructions executed until now.

2. Check if there is an asynchronous event pending for exactly this instruction
count.

• If yes, replay that event.

3. Execute a single guest instruction.

4. Increment the instruction counter by one.

5. Go to 1.

While this approach would work in emulators performing interpretation, one
guest instruction at a time, QEMU’s Tiny Code Generator binary-translates sev-
eral guest instructions at a time into a translation block (TB), which is its smallest
unit of execution. A translation block executes completely, or not at all; it cannot
be conditionally terminated in the middle.1 Checking for asynchronous events in
between iterations of the CPU loop therefore does not work correctly because an
event may fall within the boundaries of a TB. An example where this approach
would fail can be seen in Figure 5.3

Fortunately, the problems of counting executed instructions and inserting an
event at the correct time have already been solved by Dovgalyuk et al. [21]: The
icount instruction counting scheme that forms the basis of QEMU’s existing high-
level replay system allows for events to be injected at exact points within the
instruction stream. To this end, TCG execution observes an icount limit at all

1It may, however, still be aborted by a synchronous exception.
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push {r4, r5, r6, lr}
mov  r4, #57344
movt r4, #65535
mov  r3, sp
and  r3, r3, r4
mov  r1, r0
mov  r6, r0
ldr  r5, [r3, #12]
mov  r0, r5
bl   0x80137c04

Check event log for
asynchronous event

Inject event

Look up next translation 
block to execute

Translation block exit

Event
pending?

Execute TB

Yes, at current icount

Not now

0
1
2
3
4
5
6
7
8
9

Event LogCPU Loop (simplified)

icount Type Data

6 Set Interrupt IRQ

15 MMIO Read 0x1234

18 Set Interrupt none

... ... ...

Asynchronous event 
should have been
injected here

Exit translation block

Check for exit request

icount = 0

icount = 0

icount = 10

Figure 5.3: The problem of injecting asynchronous events when guest code is
executed in translation block units. When entering the TB, the instruction count
is 0, thus it is too early to inject the next interrupt from the log. After executing
the TB, the instruction count is 10 and the correct time to inject the interrupt at
instruction count 6 has been missed.

times. On each entry to the CPU loop, the next event is looked up in the event log
to determine how many instructions may be executed until control must be given
back to the CPU loop.

The code in each generated translation block is augmented by an icount check
at the beginning, which determines if it can be executed as a whole while still
falling below the current icount limit. If the translation block contains too many
instructions, it exits to the TCG execution loop, signaling that the TB must be
shortened. The translation block is then recompiled, taking into account how
many instructions to include so that the icount limit is respected. Figure 5.4 illus-
trates this process. The reason why the icount limit is checked inside the transla-
tion block, and not in the TCG execution loop before calling the TB, is QEMU’s
chaining mechanism, by which successive translation blocks can be patched to-
gether without requiring an exit to the execution loop.

In our implementation, interrupts, DMA, and trace events are all considered
when determining the instruction count limit. Any trace event from the recording
thus lines up with the TB entry locations, allowing for verification of the guest’s
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push {r4, r5, r6, lr}
mov  r4, #57344
movt r4, #65535
mov  r3, sp
and  r3, r3, r4
mov  r1, r0
mov  r6, r0
ldr  r5, [r3, #12]
mov  r0, r5
bl   0x80137c04

Check event log for
asynchronous event

Set icount limit to
next asynchronous event

Inject event

Look up next translation 
block to execute

Recompile
translation block

Translation block exit

Event
pending?

Execute TB

Execute TB
Too many 

instructions 
in TB

Yes, at current icount

Not now

0
1
2
3
4
5
6
7
8
9

Event LogCPU Loop (simplified)

icount Type Data

6 Set Interrupt IRQ

15 MMIO Read 0x1234

18 Set Interrupt none

... ... ...

Exit translation block

Check for exit request
Check against icount limit

icount = 0

icount limit = 6

icount = 6

push {r4, r5, r6, lr}
mov  r4, #57344
movt r4, #65535
mov  r3, sp
and  r3, r3, r4
mov  r1, r0

0
1
2
3
4
5

Exit translation block

Check for exit request
Check against icount limit

Figure 5.4: Injecting events at the correct time using the icount mechanism. Be-
fore executing any TB, the next asynchronous event in the log is looked up to
determine how many instructions may be executed (here: 6 instructions). The
first TB that is looked up turns out to be too large (at 10 instructions) and is there-
fore shortened to 6 instructions. After that TB exits, the CPU loop is resumed and
injects the pending interrupt on the next loop iteration.

execution flow. Execution speed, however, is reduced because translation blocks
are fragmented into smaller pieces, increasing the simulation overhead. When not
required, it is thus faster to disable the verification of trace events.

The requirement to look ahead to the next asynchronous event is slightly in-
convenient because unlike the designed system, the practical implementation re-
quires seeking forward in the event log, rather than simply taking a look at only
the next pending event. It is not sufficient to only consider the very next event in
the log because even if that event is synchronous, it may have an asynchronous
event waiting before the end of the TB, as exemplified in Figure 5.5.
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Event Log

icount Type Data

2 MMIO Read 0xABCD

6 Set Interrupt IRQ

14 MMIO Read 0xFFFF

... ... ...

movw  r3, #11944
movt  r3, #32913
ldr   r3, [r3]
ldr   r3, [r3, #64]
tst   r3, #15
moveq r0, #1
movne r0, #0
bl    0x8014b54c

0
1
2
3
4
5
6
7

Exit translation block

Check for exit request
Check against icount limitNext event

Next asynchronous
event

Translation 
block must 
end here

Figure 5.5: A case where a simple lookahead for the next event is not sufficient
because an asynchronous event would fall within the same translation block as a
pending synchronous event. If this translation block is executed as-is, the correct
time to insert the interrupt event will be missed. The icount limit must be set with
respect to the next asynchronous event, which may be several events ahead.

5.3.2 Landmark Verification

Beyond the instruction count, each event’s landmark also contains additional in-
formation about the virtual machine’s state that can be used to verify if the replay
is working correctly.

Synchronous events are triggered as a result of an instruction and therefore
match up with the corresponding replay event automatically; however, validating
the instruction count would provide another way of verifying correct execution.
Again, however, the translation block granularity of TCG complicates the issue:
The instruction counter is only incremented upon entry to the translation block. In
Figure 5.5, upon executing the MMIO read instruction at icount 2, the landmark
in the replaying system would have already been increased to the value of 8 (the
total number of instructions in this particular TB).

It is therefore not trivial to verify the landmark of a synchronous event, and
not strictly necessary either; knowing the exact instruction count upon encounter-
ing a synchronous landmark, however, can allow for the correction of a shifted
instruction count, which became important later during our experiments.

The first approach we took was to attempt writing the instruction count back
incrementally when a helper call is encountered, which is the case for load in-
structions and coprocessor accesses. Due to the many convoluted ways in which
a translation block can be traversed, including conditional execution and excep-
tions, we scrapped this approach.

Instead, the relevant memory read and coprocessor read instructions now end
the translation block during translation. The instruction count is then still too
high when encountering a synchronous event, but the error is always exactly one
instruction and can be corrected.
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For reasons we were unable to track down, terminating a translation block in
the gen_aa32_ld*() helper template broke regular TCG execution (i.e., when
not recording or replaying), causing endless loops when booting the Linux kernel,
but working fine when using the TCG for replaying. Since the mode of operation
is known when the TB is compiled, this issue could be easily worked around
however and was not investigated further.

Landmarks contain a full dump of all CPU registers, which can easily be com-
pared with the current virtual CPU state. The program counter register, R15,
however, requires special handling: Like the instruction counter, it is not always
updated after each executed instruction, but only written back at translation block
boundaries. To obtain the current program counter value, for the purpose of land-
mark verification at synchronous events, we had to add various hooks to branch-
generating TCG functions such that the up-to-date program counter is written to
a field in the CPU state for use during helper calls.

5.3.3 Coprocessor Reads
Unlike in KVM, where recording the coprocessor accesses proved to be the most
challenging part, recording and replaying them in QEMU was straightforward:
We tapped into the get_cp_reg() and get_cp_reg64() helper functions to
obtain the result or inject it from the replay log.

TCG optimizes its generated code by transforming accesses to constant co-
processor registers into immediate load operations, bypassing the helper function.
We had to disable this optimization in order to log all relevant accesses.2

We noticed that a large number of accesses involve coprocessor 15, CRn 13,
which contains extra registers for process and thread identification. Since the
contents of those registers are fully deterministic, being written only by the guest,
we always omit them from the recording.

Care must be taken when initializing the default values for these ignored reg-
isters: QEMU’s default for these registers is 0, whereas KVM initializes them to
the easily spotted magic numbers 0xDECAFBAD and 0xD0C0FFEE. This discrep-
ancy was quickly discovered through the use of trace events, which contained the
magic values in the landmark’s register dump.

5.3.4 MMIO Reads
Reads from memory-mapped I/O areas are dispatched through QEMU’s userspace
memory subsystem, regardless of whether KVM or TCG is used. This design

2Even if the register is constant to QEMU, it may not be considered constant by KVM; our
helper function must still be called to correctly acknowledge the event when replaying a log file
from KVM.
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makes them particularly easy to record and replay because it results in the same
functions being used.

We selected the memory_region_dispatch_read() function for record-
ing and replaying memory reads since it is the first function common to both the
KVM MMIO and TCG code paths.

In rare cases, the function is called recursively when reads are performed
through TCG, whereas they are directly dispatched to the correct memory region,
without recursion, if the read is performed through address_space_rw() in-
stead. Figure 5.6 shows a call graph we observed during replay. The recursive
call led to problems when performing heterogeneous replay from KVM to TCG
due to the different numbers of calls to our recording hook. We worked around
the problem by capturing only the result of the outermost recursive call, since it
overrides the result of all inner layers.

KVM_MMIO_EXIT
address_space_

rw

address_space_
read

address_space_
read_continue

memory_region_
dispatch_read

memory_region_
dispatch_read1

access_with_
adjusted_size

subpage_read
memory_region_
read_with_attrs

_accessor

io_read* helper_le_ld_*

Figure 5.6: A possible call graph for the memory read functions. MMIO reads
performed by TCG-generated code arrive through helper_le_ld_*(), whereas
MMIO exits from KVM are translated into address_space_rw() calls. Note
that there may be a cycle, depending on the implementation of the accessed mem-
ory region, which can lead to extraneous events being generated.

5.3.5 Interrupts

When executing a virtual machine using TCG, the interrupt lines are checked at
the beginning of the TCG execution loop. If an interrupt (IRQ) or fast interrupt
(FIQ) is signaled, and the CPU is in a state where interrupts are permitted, the CPU
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is taken into the appropriate processor mode and branches to the corresponding
exception vector.

QEMU’s interrupt_request field corresponds nicely to the HCR.VI and
HCR.VF flags used by KVM, where we record any changes to their state right
before the virtual machine entry. If, during replay, an interrupt event is pending
exactly at the beginning of the TCG loop, we restore the state of the interrupt
lines as stored in the event. As detailed in Section 5.3.1, the icount mechanism is
used to ensure that the check for an interrupt is not missed at the desired time of
injection.

When recording interrupts in TCG mode, there were two different approaches
we considered: Hook all locations that modify the virtual interrupt lines, or at
each TCG loop entry, compare the interrupt lines’ current state to the last known
state. We chose the latter, since it closely resembles the approach we took when
implementing recording in KVM, and because it allows for both recording and
replaying to take place at the same location.

During development, we initially forgot to discard guest writes to the Generic
Interrupt Controller (GIC) while replaying, causing it to unexpectedly modify the
interrupt lines. Storing the last known state of the interrupt lines allowed us to de-
tect if an unexpected source generates interrupts during replay, which has helped
debug this particular issue.

5.3.6 DMA Writes

DMA writes are considered asynchronous events by our implementation, caus-
ing them to be inserted at the correct time by way of the icount mechanism.
DMA writes are replayed at the beginning of the TCG execution loop by read-
ing the DMA data that is stored in the event log and writing it to memory using
dma_memory_write(), the same function that was originally used for recording.

Although we have implemented replaying DMA writes, we could not verify
their correct operation since the Linux guest system we used did not use any DMA
transfers.

5.4 Differences in Execution

At this point during development, having implemented record and replay for all
the events we had identified during the design of our system, we were able to
successfully record and replay a full Linux system bootup when performing ho-
mogeneous record and replay from TCG to TCG. We were therefore confident
that recordings obtained through KVM could also be replayed on TCG.
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As it turned out, replaying the non-deterministic events that we had previously
considered to be relevant were not the only changes that would have to be made
to the system. QEMU’s implementation of the ARM instruction set contained
several surprising differences to the actual hardware, while still conforming to the
rules mandated by the ARM Reference Manual.

This section details the difficulties we encountered when attempting the het-
erogeneous case of KVM to TCG replaying, and the countermeasures we took.

5.4.1 Load Multiple
Landmarks, with their regular snapshots of the CPU state, provide a reliable way
of ensuring that the virtual machine’s execution is the same between the record-
ing and replaying system. We occasionally observed cases where, on a replay
event, a register in the virtual machine would hold a value different from what
was recorded in the landmark.

Tracing the source of that register’s value back revealed that it had been read
from memory through a Load Multiple (LDM) or POP instruction, which reads
values from multiple consecutive memory locations into a set of registers. It was
not immediately obvious how a value in RAM could be different between the
recording and replaying system if all previous landmarks had been correct, and
especially given that the memory checksums matched.

Eventually, we noticed that the replay events which failed their landmark
checks were always coprocessor reads in the data abort handler of the Linux ker-
nel. Examining the CPU state at that point revealed that the abort was in fact
caused by the Load Multiple instruction in question, and that the incorrect regis-
ters were those that had already been loaded at the time the data abort occurred.

It turned out that the Cortex-A15 implementation of the Load Multiple in-
struction discards all results when a data abort is encountered. QEMU, on the
other hand, writes each value to a register immediately since it simplifies the im-
plementation.

Both variants are correct: The ARM Reference Manual permits instructions
which execute a series of sequential accesses to contain undefined register values
on a data abort [11, A3.5.3]. Since the data abort handler will generally restart
the faulting exception, the exact state of the registers does not matter for correct
execution, but it is relevant for our landmark verification.

In order to quickly resolve the issue, we have therefore modified QEMU’s
implementation to behave in the same way that this particular hardware CPU
does. An alternative approach—temporarily disabling landmark verification when
a data abort is encountered—may be preferable since it takes into account that the
register values, being unpredictable, may vary between implementations of the
architecture.
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5.4.2 Store Exclusive
When attempting to replay a KVM recording of booting the Linux kernel, we
were regularly experiencing landmark mismatches after executing 500 million to
1 billion instructions: An interrupt event was to be replayed at the instruction
count specified in its landmark, however upon arriving at that instruction count,
the landmark contents did not match the CPU state.

Upon examining the situation at the time that the error occurred, we noticed
that the landmark for the instruction where the interrupt should have been injected
had already passed. Repeating the experiment showed that almost in all cases,
TCG was reporting instruction counts that were too low by five instructions.

[icount=3091 pc=0x80101448] ldr    r3, [r6]
...
[icount=5334 pc=0x80132710] ldrex  r2, [r3]
[icount=5335 pc=0x80132714] add    r2, r2, #1
[icount=5336 pc=0x80132718] strex  r0, r2, [r3]
[icount=5337 pc=0x8013271c] teq    r0, #0
[icount=5338 pc=0x80132720] bne    80132710

[icount=3091 pc=0x80101448] ldr    r3, [r6]
...
[icount=5334 pc=0x80132710] ldrex  r2, [r3]
[icount=5335 pc=0x80132714] add    r2, r2, #1
[icount=5336 pc=0x80132718] strex  r0, r2, [r3]
[icount=5337 pc=0x8013271c] teq    r0, #0
[icount=5338 pc=0x80132720] bne    80132710

Replay log event at [icount=3091 pc=0x80101448]: Memory read, with correct landmark (last "known good" icount)

Replay log event at [icount=5732 pc=0x804630ec]: Set Interrupt Lines, injected 5 instructions too late

[icount=5339 pc=0x80132710] ldrex  r2, [r3]
[icount=5340 pc=0x80132714] add    r2, r2, #1
[icount=5341 pc=0x80132718] strex  r0, r2, [r3]
[icount=5342 pc=0x8013271c] teq    r0, #0
[icount=5343 pc=0x80132720] bne    80132710

-
-
-
-
-

...
[icount=5731 pc=0x804630e8] ldr    r0, [r3]
[icount=5732 pc=0x804630ec] dsb    sy
[icount=5733 pc=0x804630f0] mov    r1, #0
[icount=5734 pc=0x804630f4] bx     lr
[icount=5735 pc=0x801586d0] ldrd   r2, [r7, r8]
[icount=5736 pc=0x801586d4] ldrd   sl, [r6, #8]
[icount=5737 pc=0x801586d8] ldr    ip, [r6, #28]

[icount=5339 pc=0x80132724] str    r3, [r5, #624]
...
[icount=5726 pc=0x804630e8] ldr    r0, [r3]
[icount=5727 pc=0x804630ec] dsb    sy
[icount=5728 pc=0x804630f0] mov    r1, #0
[icount=5729 pc=0x804630f4] bx     lr
[icount=5730 pc=0x801586d0] ldrd   r2, [r7, r8]
[icount=5731 pc=0x801586d4] ldrd   sl, [r6, #8]
[icount=5732 pc=0x801586d8] ldr    ip, [r6, #28]

Store Exclusive Failure: r0 contains 1, Branch is taken Store Exclusive Success: r0 contains 1, Branch is not taken

[icount=5344 pc=0x80132724] str    r3, [r5, #624]

5 instructions 
not executed during replay

Recording: KVM Replaying: TCG

Figure 5.7: Example of an observed Store Exclusive failure, leading to incor-
rect instruction counts compared to TCG. (Numbers truncated for illustrative pur-
poses.)

Furthermore, the errors always occurred around the same code addresses, sug-
gesting that a particular instruction was to blame. Eventually, enabling single-step
mode to create full execution traces revealed a difference between KVM and TCG:
A Store Exclusive operation was failing in KVM for no apparent reason, but suc-
ceeded when replayed in TCG. Figure 5.7 shows an annotated example of such an
execution flow.

The Load Exclusive (LDREX) and Store Exclusive (STREX) operations are used
for synchronization purposes. Code that intends to atomically modify a value in
memory uses Load Exclusive to read the value into a register, modifies it, then
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writes it back to the same location using Store Exclusive. The latter operation
only succeeds if no other observer, process or thread has written to that address
in the meantime [11, A3.4]. On success, a value of zero is returned in the result
register, whereas a failure is signified by a value of one.

QEMU correctly implements the semantics of Store Exclusive, only permit-
ting a store to the location that was previously read. The hardware implementation
used during recording, however, caused the instruction to fail, in spite of a correct
load-store pair being executed. This behavior is permitted by the Architecture
Reference Manual [11, A3.4.5], citing cache evictions as a possible reason for a
Store Exclusive monitor to be cleared and the operation to fail with no apparent
reason. A context switch, such as occurs on a virtual machine entry or exit, also
clears the monitor, by design.3 We initially thought these context switches to be
the reason for the failures, but when we recorded the virtual machine exits and
replicated this behavior in TCG using the trace events, the problem persisted.

The execution sequence in Figure 5.7 is typical of how exclusive instructions
are used: Read a value, modify it, attempt to write it back, check the result, and
retry if necessary—a sequence of five instructions.

Indeed, most asynchronous landmark mismatches we observed were caused
by a shifted icount, and if so, it was always the instruction count from KVM that
was in advance by multiples of five instructions.

The Store Exclusive instruction thus proved to be the first architectural instruc-
tion we encountered to exhibit non-deterministic behavior. Unfortunately, to our
knowledge, there is no way to trap this instruction or to record its results.

We looked into the performance counters for events that might enable infer-
ring the result of Store Exclusive operations. The Cortex-A15 processor core we
were targeting supports an Exclusive instruction speculatively executed – STREX

fail event; though, since it counts speculative execution, it does not make any
guarantees about whether the instruction was actually retired. Even if one were
to assume the counter as reliable, with possibly many Store Exclusive instruc-
tions in between two landmarks, the replayer would only know the total number
of failures, and not their individual locations in the instruction stream.

Similarly, adding the branch counter to the landmark would enable the re-
player to detect—at the next landmark—that it has not executed enough branch
instructions, but it would not know which of them it would have had to take.

The problem with Store Exclusive could be solved if there was a way of trap-
ping the operation. For lack of such a mechanism, it would be possible to in-
strument the Linux kernel’s use of the instruction to cause a replay event directly

3This behavior also means that our single-stepping execution trace generator could never pro-
ceed beyond a loop which retries STREX until it succeeds. It was sufficient, however, to detect
this issue.
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afterwards, e.g., by introducing a dummy coprocessor read instruction. However,
because the instruction is not privileged, this approach does not work for arbi-
trary user code running in the guest operating system, which may also use the
instruction.

5.5 Landmark Correction
With no apparent way of recording the results of Store Exclusive operations, to
proceed with our work, we considered implementing a mechanism to correct the
shifted instruction counts. To do so, we had to make a rather strong assumption
about the guest code: A failed Store Exclusive instruction does not affect the
virtual machine state beyond a few instructions.

In particular, this assumption requires that the guest code does not perform
any counting of how often Store Exclusive operations have failed, and does not
write any such information to memory. While all code locations that we exam-
ined for this property were indeed benign, malicious guest code could deliberately
introduce non-determinism into the system to thwart analysis.

If the assumption holds, however, we can use the next replay event that follows
a Store Exclusive operation to resynchronize our landmark: Since the STREX fail-
ure does not have any lasting influence on the virtual machine state, we can simply
adjust the instruction counter and continue replay normally.

Of particular importance to this mechanism are the synchronous events: the
coprocessor and MMIO reads. Being anchored in the instruction stream, they can
be used to accurately compare the current replay instruction counter with the value
it should have, as specified by the recording.

The situation is more difficult, however, when considering the asynchronous
events, which do require an accurate instruction count. A possible way to resyn-
chronize these events is by single-stepping execution, checking the landmark after
every instruction until the correct insertion point is found.

To avoid having to single-step over too many instructions, hindering perfor-
mance, adjustments of the instruction counter are only permitted within a resyn-
chronization window whose size can be configured. Single-stepping only takes
place during the last ∆ instructions before the next asynchronous event is ex-
pected. Figure 5.8 illustrates the approach.

There is no correct setting for the size of the resynchronization window, as
multiple Store Exclusive operations may have failed since the last correct land-
mark, causing the error to accumulate. We have found a value of ∆ = 30 to work
reasonably well, but not in all cases.

Choosing a too large resynchronization window can cause asynchronous events
to be injected too early because of a false positive match on the landmark: There
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[icount=764982447 pc=0x801a2e04] add    r1, r1, #1
[icount=764982448 pc=0x801a2e08] strex  r0, r1, [r2]

[icount=764982529 pc=0x80111fec] ldr    r3, [r3]
[icount=764982530 pc=0x80111ff0] cmp    r3, r0
[icount=764982531 pc=0x80111ff4] bxeq   lr

...

Normal TB execution
Store Exclusive is encountered

Instruction count may be wrong from this point

Normal TB execution

Asynchronous landmark
as indicated by recording (too late): [icount=764982539 pc=0x80111fec] Set IRQ lines: IRQ ---

Resynchronization window:
Next asynchronous event minus ∆
Single-stepping begins

Matching landmark is found

Instruction count is adjusted

[icount=764982532 pc=0x80111ff8] push   {r4, r5, r6, lr}

[icount=764982533 pc=0x80111ffc] mov    r4, r0

[icount=764982534 pc=0x80111fec] ldr    r3, [r3]

[icount=764982535 pc=0xffff0018] b      ffff1020
[icount=764982536 pc=0xffff1020] sub    lr, lr, #4
[icount=764982537 pc=0xffff1024] stm    sp, {r0, lr}
[icount=764982538 pc=0xffff1028] mrs    lr, SPSR
[icount=764982539 pc=0xffff102c] str    lr, [sp, #8]

∆
-5

Figure 5.8: Single-stepping to correct a landmark. The asynchronous landmark
stored in the recording has an icount that is too high (39), which would cause the
event to be injected too late. To find the correct insertion point (34), execution is
switched to single-step mode, comparing the current landmark to the one stored
in the event. Note that the last block shown in this example already follows the
corrected path of execution, with 0xffff0018 being the interrupt vector.

may be multiple points in the instruction stream where the landmark for the event
matches, and the replaying system cannot tell in advance which is the correct one.

Curiously, when evaluating different sizes for the resynchronization window,
we have occasionally observed interrupts that were obviously injected at the wrong
position—sometimes hundreds of instructions in advance—but caused no adverse
effects for the subsequent replay. This behavior can be explained by the design of
interrupt service routines, which are carefully written to correctly restore the CPU
state from the time the interrupt was taken; thus, there may be multiple points
where the replayed interrupt may be injected, while still resulting in the same
eventual virtual machine state. However, there were also many instances where
false positive matches would in fact break the subsequent replay.

In our original design, we had intended to use the extra landmark information—
the program counter and other CPU registers—only for verification and debugging
purposes since the instruction counter alone is, in theory, sufficient to uniquely
identify a point in the execution. The landmark resynchronization mechanism
however, which is necessitated by the non-deterministic behavior of STREX, de-
pends on this extra information to correct a mismatched icount between the record-
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ing and replaying system. We thus had to deviate from our design by making the
extra validation data a mandatory part of the landmark.

5.6 Conclusion
In this chapter, we have described the steps we took to implement the record and
replay scheme designed in Chapter 4. Our implementation is heterogeneous in
that the recording system uses the Kernel-based Virtual Machine (KVM), in order
to enable high performance recording, while the replaying system uses QEMU’s
Tiny Code Generator (TCG).

Extending KVM to support recording non-deterministic events proved chal-
lenging due to various architectural details concerning coprocessor accesses. Mul-
tiple trapping mechanisms must be used for the different coprocessors, and their
interaction with the debug subsystem—which is itself accessed through a copro-
cessor interface—made it difficult to correctly capture the results of read instruc-
tions by way of single-stepping execution. Not all issues have been resolved; for
instance, the guest machine’s access to the debug subsystem had to be disabled
entirely.

Recording interrupts in the KVM subsystem was only a matter of saving and
comparing the last state of the virtual interrupt flags. MMIO reads and DMA
writes, both being events which are already handled in userspace within QEMU,
were easily recorded.

A simple log file format was implemented, allowing for recording all required
events into a single log file which can then be copied to another system for replay-
ing. The replaying system in our design was implemented using TCG, allowing
for better control and inspection of the virtual machine than would be possible
with KVM.

We have noticed some minor differences in instruction implementations be-
tween the hardware and QEMU that could be easily worked around. However,
we discovered that the Store Exclusive (STREX) instruction behaves non-deter-
ministically in hardware, leading to major problems during replay because its be-
havior could not be accurately replayed in software.

In order to work around the issues revolving around Store Exclusive opera-
tions, we assumed that the guest code only uses the instruction in a safe way, not
affecting the long-term state of the virtual machine. This assumption, however,
precludes the recording of arbitrary guest code, since it could deliberately intro-
duce non-determinism into the system through this instruction. While we had
previously constrained that only privileged guest code must be trusted not to use
the Generic Timer extension, the restriction concerning STREX applies to unpriv-
ileged guest code as well.
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Under this assumption, we have implemented mechanisms to correct mis-
matched instruction counts between recorded and replayed events, in order to fix
the non-determinism introduced by Store Exclusive operations.
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Chapter 6

Evaluation

The previous chapters have detailed the concept, design, and implementation of
our heterogeneous record and replay system for the ARMv7 architecture. While
we have succeeded in performing homogeneous record and replay using the Tiny
Code Generator (TCG), and have made advances towards a heterogeneous solu-
tion using the Kernel-based Virtual Machine (KVM), we have yet to show that our
implementation works correctly.

In this chapter, we therefore verify the replay accuracy of our system and
evaluate its implications for the performance during recording. We describe the
mechanisms we have put in place to ensure that the replayed system’s execution
is correct, analyze the errors that may occur in practice as well as their frequency,
and examine if the recording overhead is acceptable for practical use.

6.1 Approach

For a record and replay system to be practical, it must be correct in that the be-
havior of the replayed virtual machine is exactly the same as that of the original
machine, and it must offer a higher performance than comparable solutions; in
particular, the benefits in recording speeds should outweigh the added complexity
over simply simulating the system in software.

Our implementation already contains mechanisms to ensure that the replayed
system executes the same instruction stream as the original recording system, by
way of the landmarks which contain the instruction counter as well as a full CPU
register dump each time an event is recorded. Even small inaccuracies in the
replay quickly make the two systems diverge, leading to an entirely different pro-
gram flow which can be detected through a mismatched landmark register value.
Optionally, RAM checksums extend verification to the virtual machine’s system
memory as well.

81
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We demonstrate the functionality of our replay system by recording the exe-
cution of multiple benchmarks in a Linux virtual machine and later showing that
they can be correctly replayed in the case of TCG. While our system cannot en-
tirely replay a recording obtained through KVM yet, we examine the issues which
prevent it from working and determine their frequency.

Performance has been one of the driving factors for hardware-assisted record
and replay, and thus we compare the recording time of our system to the case
where a regular software-only emulation approach is used.

6.2 Evaluation Platform
Our recording system implemented in QEMU can operate in two alternative modes,
either using TCG to execute the virtual machine, or KVM. When recording is per-
formed using TCG, the architecture of the host system does not matter since the
virtual machine is simulated entirely in software. Executing the guest system na-
tively using KVM, however, requires a host system implementing the ARMv7
architecture and its virtualization extensions.

Furthermore, our implementation makes use of the performance monitoring
unit version 2 (PMUv2), which is required for accurately distinguishing between
host and guest instruction counts. For development and testing, we had to choose
a hardware implementation which fulfills all these criteria.

Popular ARMv7 implementations including the virtualization extensions are
the low power Cortex-A7 and the high performance Cortex-A15 processor cores,
which are architectually compatible to each other. Besides being used in many
smartphones, they are also part of various embedded single-board computers.

The particular system we used for development and testing was an Odroid-
XU3 single board computer [6], which features a Samsung Exynos 5422 processor
with four Cortex-A7 and four Cortex-A15 cores in a heterogeneous multiprocess-
ing configuration.

The Linux kernel has built-in support for the Exynos 5422, which means that
we could use the most recent stable release of Linux—version 4.8.10 at the time of
our development—as the starting point for the recording host system. We had ini-
tially tried to base our work on the vendor’s official kernel branch for the Odroid-
XU3 derived from Linux 3.10, but were experiencing host kernel panics when
executing most modern Linux kernels as guests on KVM.

Although all cores in the system are architecturally compatible to each other,
KVM only supports running a virtual machine on a core of the same family that is
being emulated. Since all CPU cores are treated the same way by Linux, we had
to constrain QEMU to only run on a Cortex-A15 core, or it would be randomly
assigned to a CPU core of the wrong type.
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A suspected hardware bug on this particular series of development boards
causes one of the CPU cores to wake up in Service mode, rather than Hyp mode,
when resuming from a sleep state. Linux detects this inconsistency between the
cores and normally refuses to enable KVM. In order to get KVM working, we
therefore had to apply a workaround patch [5].

The development board includes 2 GB of LPDDR3 memory, a Fast Ethernet
network interface card internally attached to the USB 2.0 bus, as well as a se-
rial port pin header for console output. Storage can be attached in the form of a
microSD card, or optionally an eMMC module.

Throughout developing and testing, we have used an Ubuntu 16.04 LTS instal-
lation on the Odroid-XU3. The kernel, which includes our modifications to KVM
for record and replay, was loaded to the machine using TFTP at each boot. The
Network File System (NFS) was used for providing the root file system, in order
to use the microSD card entirely for storing and exchanging replay log files.

The replay log files were stored on a 32 GB SanDisk Ultra microSD card with
a Class 10 speed rating, formatted with the ext4 file system.

6.3 Virtual Machine Setup
Unlike the emulation of x86 guest machines, there is no default ARM guest plat-
form in QEMU, but a wide range of possible virtual machine implementations of
the ARM architecture. Upon closer inspection, however, it turns out that many
of these emulated platforms are outdated, rarely used, or do not support all of the
required virtual devices.

The two possible options we considered for the virtual machine platform were
the virt and the ARM Versatile Express (vexpress-a15) machines. The virt
machine uses virtio devices, which provide high-speed paravirtualized input and
output when used with KVM; however, since the use of paravirtualization would
likely complicate our design, we decided not to use the virt machine. The
vexpress-a15 machine, however, is a popular target for emulation, and was
thus chosen for our work.

For the guest operating system, we selected the stable Debian GNU/Linux 8
"Jessie" release because it offered up-to-date installation files suitable for use in
ARMv7 guest machines, including the Versatile Express platform. We did not
modify the guest kernel, but used the official Debian kernel image installed by the
setup routine, named 3.16.0-4-armmp-lpae.

A sparse 16 GB disk image in the qcow2 format was used for the system drive,
stored on the host system’s microSD card, and provided to the virtual machine as
an SD card image—the only option supported on the Versatile Express machine
and unfortunately without any DMA support.
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As outlined in Section 3.4.2, for record and replay to possibly work, the use
of the Generic Timer must be disabled entirely in the guest system. Fortunately,
Linux offers a way to do so using the device tree mechanism, which provides
the operating system with information about the devices that a particular platform
supports. To disable the Generic Timer, we removed the arm,armv7-timer

entry from the device tree passed to the virtual machine.
Removing the device tree entry for the Generic Timer is not uncommon: The

Linux device tree for the Exynos 5422 platform, for instance, which we used for
the host machine, does not contain such an entry, despite the processor hardware
offering a Generic Timer implementation.

The Versatile Express platform we used for our virtual machine contains an
ARM SP804 Dual-Timer module, which is also emulated by QEMU and auto-
matically used by the guest Linux system to provide a clock source. This timer
is made available through the memory-mapped I/O interface, making it easy to
capture using our recording scheme.

In order to use KVM, the secure mode of the virtual machine’s CPU had to be
disabled because it cannot be used in combination with the virtualization exten-
sions. Furthermore, as explained in Section 3.4.3, our record and replay scheme
requires that a software GIC is used. Both can be achieved using the setting
-machine vexpress-a15,secure=false,kernel_irqchip=false.

The virtual machine was provided with 1 GB of guest RAM, which is half of
the host memory available on the Odroid-XU3. No swap partitions were used on
either the host system or the guest machine.

6.3.1 TCG Reference System
In order to allow our hardware-virtualized system’s performance to be compared
to the software-only case, we have performed our testing on an x86 host system
as well, using the Tiny Code Generator for emulation of the virtual CPU. The
system’s specifications were as follows:

• CPU: Intel Xeon E5-2618L v3 [4], with 8 processor cores running at 2.30
GHz (base speed) to 3.40 GHz (turbo frequency), HyperThreading, and
20 MB cache.

• RAM: 4×8 GB DDR4-2133 memory (Micron 18ASF1G72PZ-2G1A2) with
Error Correcting Code (ECC).

• Storage: 256 GB Solid State Drive (SanDisk SDSSDHP256G) using a Se-
rial ATA 3.0 interface.

• Operating System: Ubuntu 16.10 GNU/Linux, 64-bit version.
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The system was used exclusively for testing, with no other concurrent users of
the machine, thus allowing for the full single-core turbo performance to be used.
The same virtual machine image and settings were applied as when using KVM
on the Odroid-XU3.

6.4 Benchmarks
For evaluating the performance of our record and replay implementation, we have
used the Phoronix Test Suite [9], which allows for automated testing on Linux
systems. The particular tests to be run were chosen by their popularity on the
OpenBenchmarking.org website, as well as by their testing focus (CPU, file sys-
tem or RAM).

We have selected the following tests to be performed:

• The Linux kernel build benchmark, which compiles a Linux 4.9 kernel and
measures the time taken. This is a highly CPU and disk intensive benchmark
which is commonly used as a performance gauge for a system.

• The Apache benchmark, which is also CPU and disk intensive, but more
lightweight than the Linux kernel build and thus quicker to finish.

• The C-Ray benchmark, which performs little to no I/O, but uses primarily
the floating point unit to raytrace an image.

• The CacheBench benchmark, which tests the performance of the RAM and
caching subsystem.

For each particular benchmark, we have performed reference runs in both
KVM and TCG modes using an unmodified QEMU 2.6.2 emulator, which are
identified as the Running column in the subsequent test results. The KVM runs
were performed on the Odroid-XU3, whereas in the TCG case our x86 testing
machine was used.

The Recording benchmark passes were performed with our custom version of
QEMU supporting record and replay, saving all recorded events to a log file on
the local machine. After completion, each recorded file was replayed on the x86
system using TCG.

In order to accurately gather timing information, the output from the virtual
machine was timestamped using the host clock such that the effective runtime and
replay time of a test could be calculated, independent of any possible clock skew
inside the virtual machine and of the guest system’s boot time overhead. The same
was done for the log file size.
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Each test using the KVM mode was performed twice, and the arithmetic mean
was used to obtain an average of both results. Due to the high runtimes, we
configured the Phoronix Test Suite to perform at most one iteration of each test,
and only performed one pass of each benchmark in the TCG modes. For the same
reason, we have left the memory checksumming mechanism disabled because it
slowed down execution considerably.

While all TCG recordings could successfully be replayed, replaying the KVM
recordings always failed during the virtual machine system bootup because of the
unresolved issues in the recording system. We added the number of successfully
executed instructions to the test results, up to the point at which the replay had
to be terminated due to diverging from the recorded system. We also provide the
number of landmark resynchronizations that had to be performed up to that point
due to inaccurate instruction counts (see Section 5.5).

6.4.1 Linux Kernel Build
The Linux kernel build benchmark compiles a copy of the Linux 4.9 kernel source
and measures the time it takes to complete, which is a popular way of measuring
a system’s overall performance because it is easily replicated. Figure 6.1 shows
our test results for this benchmark.

Compiling the Linux kernel has turned out to be very taxing on the virtual
machine. When performing the test on KVM, there is a recording overhead of
38 % on the execution time compared to simply running the test. In the case of
TCG emulation, the base running time is already very high at over 9 hours, and
performing a recording increases the running time by 189 %.

While both the KVM and TCG tests run the same benchmark, and thus per-
form the same amount of work, the TCG recording file is much larger at 44.6
GB, compared to the average 22.6 GB of the KVM recordings. The increased
file size can be explained by the fact that the virtual machine was running for a
much longer time, and thus performed more device I/O operations that needed to
be recorded.

The large overhead between the total recording size and the test data itself
is mainly caused by the post-test script, which was not counted towards the test
itself.

QEMU’s emulated SD card uses a FIFO buffer to communicate with the de-
vice driver in the virtual machine, which is consistent with our observation that
the virtual machine does not use any DMA operation. This communication model,
however, is very slow, since the data from the disk must be polled through memory-
mapped I/O operations in small chunks, rather than being written directly to RAM
in large blocks. With the Linux kernel build being an I/O intensive benchmark,
the bottleneck is, in this case, the emulated SD card interface.
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pts/build-linux-kernel-1.7.0 Test Results

Time to build

KVM TCG

Running Recording Running Recording

Test result 2h 37m 3h 37m 9h 26m 27h 18m

Test runtime 2h 37m 3h 37m 9h 26m 27h 18m

Recording size 22.64 GB 44.61 GB
Test only 13.33 GB 34.10 GB

Compressed size
gzip 85.7 % 84.9 %
xz 7.5 % 8.2 %

Replay runtime – 30h 56m

Instruction count 5.0 · 1012 5.1 · 1012

Replayed 5.7 · 109 5.1 · 1012

No. of resyncs 12 0

Figure 6.1: Benchmark results from running the Linux kernel build benchmark,
averaged over two runs in each KVM mode and one run in each TCG mode.
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6.4.2 Apache
The pts/apache benchmark launches an Apache HTTP server and uses the ab
benchmarking tool locally to test how many requests per second can be handled.
In each run, one million requests are performed at 100 concurrent connections.
Figure 6.2 shows the results we have obtained.

At a runtime of 35 minutes in the KVM case, the benchmark is much more
lightweight than the Linux kernel build, which took two hours longer. Never-
theless, being also bound by the CPU and I/O performance, it exhibits similar
overheads: Recording using KVM reduces the requests that can be served per
second by 43 %, whereas the reduction amounts to 48 % when recording in TCG
mode.

Since we assumed the SD card, on which the test data is stored, to be the major
bottleneck during the benchmark, we performed another series of runs in which
all benchmark files were stored on a tmpfs file system. tmpfs is effectively a
RAM disk, saving all its data to memory only and thus reducing the data that is
read and written to disk. We configured the file system to use up to 768 MB of
the virtual system’s 1 GB RAM. No swap space was used. We intended to try the
same approach for the Linux kernel build as well, but its space requirements were
too high for the limited guest memory.

While the resulting speed improvement was not as large as we had hoped,
executing the tests from RAM increased the request rate by 20 % (KVM) and
5-7 % (TCG). Figure 6.3 shows the detailed results of the benchmark.
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pts/apache-1.6.1 Test Results

Requests per second

KVM TCG

Running Recording Running Recording

Test result [Req/s] 468.8 264.9 256.7 132.4

Test runtime 35m 41s 1h 03m 1h 05m 2h 06m

Recording size 10.87 GB 11.96 GB
Test only 9.41 GB 10.39 GB

Compressed size
gzip 86.7 % 85.2 %
xz 6.6 % 7.3 %

Replay runtime – 2h 15m

Instruction count 2.9 · 1011 2.9 · 1011

Replayed 5.6 · 109 2.9 · 1011

No. of resyncs 8 0

Figure 6.2: Benchmark results from running the Apache HTTP server benchmark.
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pts/apache-1.6.1 (on tmpfs) Test Results

Requests per second

KVM TCG

Running Recording Running Recording

Test result [Req/s] 561.3 318.9 274.9 139.9

Test runtime 29m 47s 52m 23s 1h 00m 2h 00m

Recording size 10.42 GB 12.14 GB
Test only 8.54 GB 10.31 GB

Compressed size
gzip 86.8 % 85.2 %
xz 6.6 % 7.3 %

Replay runtime – 2h 13m

Instruction count 2.7 · 1011 2.9 · 1011

Replayed 3.7 · 109 2.9 · 1011

No. of resyncs 11 0

Figure 6.3: Benchmark results from running the Apache HTTP server benchmark
on a tmpfs file system.
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6.4.3 C-Ray
C-Ray is a very small raytracing program that uses the floating point unit (FPU) of
the processor extensively [3]. In the Phoronix Test Suite, it is used for rendering a
1600x1200 pixel image at 16 threads per CPU core, casting 8 rays per each pixel.

Considering the test results in Figure 6.4, the differences between TCG and
KVM mode are striking: While the test completes in under 9 minutes on KVM,
executing it using TCG is much slower at 2 hours 19 minutes when running and 3
hours 6 minutes when recording.

This behavior can be explained by the fact that the benchmark uses primarily
the floating point unit, with few system calls or I/O operations, and can thus spend
most of its time natively executing through KVM. As a result, very few events
must be recorded and the recording overhead is only about 1 %.

In TCG mode, on the other hand, no hardware acceleration is used, leading to
a very high test runtime. Enabling recording in TCG mode causes the test to take
34 % longer. As with the Linux kernel benchmark, the greatly increased size of
the TCG recording compared to the KVM recording is not due to events triggered
by the test itself, but due to the background activity of the operating system caused
by the long runtime of the test.

6.4.4 CacheBench
CacheBench is a benchmark that tests the performance of the RAM and cache of
the system. The test runs for a fixed time and measures the read and write rates
attained during that time in megabytes per second. Figure 6.5 shows the results of
our testing.

Like the C-Ray benchmark, this test makes little use of I/O because it operates
on the guest RAM only, which is directly acessible when executing the virtual
machine through KVM. Comparing the transfer rates obtained through the bench-
mark with other ARMv7 systems on OpenBenchmarking.org showed that they
were close to the performance one would expect when executing natively on the
CPU. With very few events to be recorded, the resulting recording is very small,
with just 70 MB amounting to the execution of the test in either case. Again, the
recording overhead when using KVM was about 1 %.

The speeds attained through TCG were much lower due to the many layers
of indirections caused by software emulation. Being the only fixed-length bench-
mark among those we performed, it is worth noting that in this case, the total
number of instructions executed in the KVM recordings was 22 times as high as
the instruction in the TCG recording; a difference that was not observed in the
other benchmarks.
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Lower values are better

pts/c-ray-1.1.0 Test Results

Time to render

KVM TCG

Running Recording Running Recording

Test result 8m 23s 8m 36s 2h 19m 3h 06m

Test runtime 8m 38s 8m 53s 2h 19m 3h 06m

Recording size 1.84 GB 4.13 GB
Test only 0.13 GB 2.31 GB

Compressed size
gzip 88.3 % 87.3 %
xz 5.6 % 6.4 %

Replay runtime – 3h 16m

Instruction count 7.3 · 1011 7.4 · 1011

Replayed 5.7 · 109 7.4 · 1011

No. of resyncs 9 0

Figure 6.4: Benchmark results from running the C-Ray raytracing software.
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pts/cachebench-1.1.0 Test Results

Read [MB/s]
Write [MB/s]

Read/Modify/Write [MB/s]

KVM TCG

Running Recording Running Recording

Test result
Read [MB/s] 2478.5 2370.3 773.0 148.0
Write [MB/s] 4572.9 4466.5 2463.5 177.4
R/M/W [MB/s] 7548.0 7226.0 982.7 263.6

Test runtime 6m 19s 6m 21s 6m 20s 6m 23s

Recording size 1.76 GB 1.80 GB
Test only 0.07 GB 0.07 GB

Compressed size
gzip 88.7 % 89.4 %
xz 5.5 % 5.0 %

Replay runtime – 8m 12s

Instruction count 8.8 · 1011 4.0 · 1010

Replayed 5.6 · 109 4.0 · 1010

No. of resyncs 9 0

Figure 6.5: Benchmark results from running CacheBench.
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6.5 Store Exclusive

All recordings we performed using TCG could be replayed successfully, without
any errors in the landmarks, suggesting that we recorded all the non-deterministic
data that is required for replay; at least when using the same QEMU software for
replay that was used during the recording.1

However, when performing a recording using KVM, there is still the unre-
solved issue of the Store Exclusive failures, which occur non-deterministically
and thus cannot be replayed accurately. In Section 5.5, we have therefore made
the assumption that those Store Exclusive operations are benign in that they do
not have a lasting influence on the virtual machine operation, and thus that the
resulting differences in the instruction count may be corrected later.

While this assumption cannot be made about arbitrary user code running in
the virtual machine—the STREX instruction is non-privileged—it has held up in
all code locations that we have checked manually. Figure 6.6 shows four example
uses of the instruction.

8010b420 <__irq_svc>:
...
8010b498: str r1, [r9, #8]
8010b49c: msr  SPSR_fsxc, r5
8010b4a0: sub  r0, sp, #4
8010b4a4: strex r1, r2, [r0]
8010b4a8: ldm  sp, {r0, r1, r2, 
 r3, r4, r5, r6, r7, r8, r9, sl, 
 fp, ip, sp, lr, pc}^
8010b4ac: .word 0x80905b28

(1.)

(3.) (4.)

(2.)80140bc8 <vprintk_emit>:
...
80140c4c: pld  [r2]
80140c50: ldrex r3, [r2]
80140c54: strex r1, r4, [r2]
80140c58: teq  r1, #0
80140c5c: bne  80140c50
80140c68: ldr r3,  [pc, #1060]
80140c6c: str r3,  [sp, #44]
...

4

8018747c <set_pfnblock_flags_mask>:
...
801874dc: pld  [r0]
801874e0: orr  r3, r3, r1
801874e4: ldrex r14, [r0]
801874e8: mov  ip, #0
801874ec: teq  lr, r2
801874f0: strexeq ip, r3, [r0]
801874f4: cmp  ip, #0
801874f8: bne  801874e4
...

6

8057e3d0 <mutex_lock>:
8057e3d0: pld  [r0]
8057e3d4: ldrex r2, [r0]
8057e3d8: sub  r2, r2, #1
8057e3dc: strex r1, r2, [r0]
8057e3e0: teq  r1, #0
8057e3e4: bne  8057e3d4
8057e3e8: cmp  r2, #0
8057e3ec: bxge lr
8057e3f0: b  8057e300

5

Figure 6.6: Example uses of STREX in the Linux 4.8 kernel, showing different
sizes of the retry loop. The first register operand of the instruction receives the
failure status. Example (4.) is part of a context switch, in which the exclusive
monitor is only cleared without caring whether the operation has succeeded.

1It is possible that there are other unidentified sources of non-determinism, which are masked
by performing homogeneous record and replay on exactly the same emulator platform and would
emerge when attempting replay in another virtual machine implementation.
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There are different patterns in which the STREX instruction can be used: to
implement an atomic store, without using the previously stored data at that loca-
tion (examples 1 and 3), an atomic arithmetic operation (such as decrementing,
used in example 2), and—as required when performing a context switch—to clear
any pending exclusive Load-Store pair (example 4).2 Depending on the operation
that is to be performed, the loop which retries the operation on failure comprises
between 4 and 6 instructions.

In all cases we have examined, the retry loop is structured in a way such that
upon exiting the loop, the result register of the Store Exclusive operation is 0; thus,
any failures of the operation have no long-term effects on the virtual machine
state. However, lacking a comprehensive analysis, we cannot prove this claim;
and software could purposefully violate our assumption in order to avoid being
analyzed in the record and replay system.

6.6 Landmark Corrections

We have implemented a mechanism for correcting a shifted landmark, in order
to work around the non-determinism introduced by STREX, but have yet to show
how it affects the replay.

There are two different types of landmark corrections that can occur in our
system, depending on the event that is used for resynchronization: Coproces-
sor and MMIO read events allow for accurately determining the correct insertion
point because the replayed system generates a corresponding event synchronously,
whereas an interrupt event with an inaccurate instruction count must be adjusted
through single-stepping.

In the recordings that we obtained when performing the benchmarks, we could
typically replay the first 5 billion instructions correctly when landmark resynchro-
nization was enabled; this was enough to see the Linux system boot up to the
point at which the init process is launched. After that point, execution soon di-
verged, mostly because of a coprocessor access that hat not been recorded (see
Section 5.1.3) or because an asynchronous landmark had been injected too early.

Figure 6.7 is a histogram of how many resynchronization events have occurred
among the 64 billion successfully replayed instructions across the KVM bench-
mark recordings, grouped by the respective number of instructions by which the
instruction counter had to be adjusted.

The largest number of resynchronization events occurred with an offset of 30
instructions. This number is not coincidental, as it was the value of our resynchro-

2There is a special instruction, CLREX, reserved for this purpose, however its implementation
is broken in some revisions of the Cortex-A15.
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Figure 6.7: Occurrences of landmark resynchronization events across the success-
fully replayed parts of all KVM benchmarks.

nization window we had experimentally determined beforehand.3 All instruction
count adjustments with an offset of 30 were in fact false positives of our landmark
resynchronization mechanism, inserting an interrupt too early. These false posi-
tives do not always cause errors in the replay, since they often occur within some
kind of polling loop where the exact number of iterations does not actually matter.

Among the other resynchronization events, we can recognize the different
sizes of the Store Exclusive retry loop, as previously shown in Figure 6.6. Be-
ing the most common variant, the loops with 5 instructions account for most of
the synchronous landmark resynchronizations, as well as multiples thereof—since
there may be many thousands of instructions between two landmarks, the errors
in the instruction count can accumulate.

6.7 Log Size

The different benchmarks generate log files of very distinct sizes. CPU intensive
benchmarks like CacheBench and C-Ray generate very few events that must be
stored, whereas the Linux kernel build and the Apache benchmark quickly fill

3As explained in Section 5.5, there is no correct value for this window size due to the non-
deterministic nature of the Store Exclusive failures; we chose this value because it worked well in
practice.
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the log file due to their high I/O activity. Table 6.8 shows statistics about the
recordings obtained from the benchmarks and how well they can be compressed.

Benchmark Runtime Size Rate gzip xz

apache 1h 03m 9.41 GB 2.49 MB/s 86.7 % 6.6 %
apache-tmpfs 52m 23s 8.54 GB 2.72 MB/s 86.8 % 6.6 %
build-linux-kernel 3h 37m 13.33 GB 1.02 MB/s 85.7 % 7.5 %
c-ray 8m 53s 0.13 GB 0.25 MB/s 88.3 % 5.6 %
cachebench 6m 21s 0.07 GB 0.18 MB/s 88.7 % 5.5 %

Figure 6.8: Log size and test runtime, averaged across all KVM recording runs.
The runtime and sizes indicated comprise the test run only, excluding the virtual
machine startup and shutdown. The gzip and xz ratios indicate the size of the
entire compressed log file (including startup and shutdown) relative to its uncom-
pressed size.

We attribute the rapid log file growth to the lack of DMA support in QEMU’s
vexpress-a15 machine, leading to a large number of programmed I/O (PIO)
requests which, being carried out through memory-mapped I/O interfaces, gen-
erate many recorded events. Since all data that is read from the SD card is thus
stored in the replay log in the form of these MMIO events, the card image can be
detached from the machine during replay. Nevertheless, storing the same data in
larger blocks in the form of DMA events would allow for much smaller overheads.
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CacheBench run, obtained through KVM.
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Figure 6.9 shows the log file growth during the recording of a CacheBench
run, including the system startup and shutdown phase. A brief phase at the very
beginning can be observed during which the kernel performs low-level initializa-
tion, generating very little I/O. As the init process takes over and the operating
system boots, the log file grows at a steady rate, suggesting that it is busy per-
forming a lot of I/O. There is a plateau around the 5 minute mark where the test
suite attempts to connect to the Phoronix servers, but fails because the network is
unavailable; in this phase, the system is idle for a while, causing few I/O events.
The tests themselves, again, generate very little I/O because they spend their time
accessing the virtual machine RAM, which is mapped directly into the guest’s
address space.

6.8 Discussion
In this section, we have demonstrated that our implementation can successfully
record and replay the execution of a TCG-based virtual machine. Although replay
did not succeed in the heterogeneous case from KVM to TCG, we have been able
to show the performance of the system to evaluate whether the idea of record and
replay is feasible on the platform.

While recording using KVM exhibits high runtime overheads of up to 40 %, it
is still in all cases faster than doing so through the use of TCG. Furthermore, we
believe that implementing support for DMA or virtio would dramatically reduce
the amount of data that must be stored in the log file, while at the same time
offering better performance through fewer virtual machine exits.

The key problem which remains as of yet unsolved is that of the Store Ex-
clusive operation; the only instruction we have so far identified to exhibit non-
deterministic behavior, which poses a major issue for record and replay. It may,
however, be possible that the non-deterministic behavior is specific to the Cortex-
A15 processor core, and that other implementations do not behave in this way.

The landmark resynchronization mechanism we have demonstrated is only
a stopgap solution to fixing the issues surrounding Store Exclusive operations.
There are better ways to approach this problem, e.g., through the use of check-
pointing to simulate two different paths of execution based on different outcomes
of the Store Exclusive operation.
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Conclusion

The objective of our work has been to evaluate the feasibility of heterogeneous
record and replay on the ARM architecture: The non-deterministic inputs that a
virtual machine receives—such as interrupts, network packets, disk data—should
be recorded such that the execution of the machine can later be replayed accu-
rately, instruction by instruction. Through the use of hardware virtualization, high
performance recording should be possible with little overhead. Such systems al-
ready exist for x86 [39] [16], but to our knowledge, such a deterministic replay
scheme had not yet been attempted before for the ARM architecture.

Our intention was to demonstrate that such a heterogeneous system can be
implemented on the widely-used ARMv7 version of the architecture, and that us-
ing the hardware virtualization extensions, it is possible to perform recordings
at acceptable speeds, allowing for debugging and tracing an entire system at the
instruction set architecture level. To that end, we have first analyzed the ARM
architecture, identifying the architectural events that require recording, and pre-
sented a generic design for performing record and replay specifically on ARM.
The performance monitoring unit of the Cortex-A15 processor core was shown to
provide highly accurate instruction counters, which can be used as landmarks to
replay events at the correct time.

We have implemented a record and replay system based on the QEMU virtual
machine software. The system was shown to perform fully accurate replaying
in the homogeneous case where the Tiny Code Generator (TCG) is used for em-
ulating a central processing unit (CPU). A heterogeneous recording component
was implemented using the Linux Kernel-based Virtual Machine (KVM) hyper-
visor, which allows for faster recording when hardware virtualization extensions
are available on an ARMv7 host machine.

During the implementation of the system, it became evident that there is a cer-
tain range of memory synchronization operations, called Store Exclusive, which
behaves non-deterministically in hardware and cannot be trapped by the hyper-
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visor. These instructions have caused major problems during replay, requiring
careful adjustment of the landmarks and thus far preventing a successful replay.

Despite not being able to fully replay a recording obtained through the hard-
ware virtualization extensions, we have obtained measurements to evaluate if the
performance of such a system would be acceptable. While we had hoped to enable
low-overhead recording, the overheads we observed were in the range of a 40 %
slowdown compared to executing a KVM virtual machine without recording. We
attribute the high overheads to a lack of DMA support in the particular virtual
machine configuration we used. Nevertheless, even with recording enabled, exe-
cution of a KVM machine was faster than simulating it using TCG on a high-end
x86 machine.

7.1 Future Work
The non-deterministic behavior of the STREX instruction has caused us major
problems, and we do not believe that there is an easy solution to accurately re-
play it. There may be other CPU features available on ARM, such as CoreSight,
which might be of use to work around the problem from the recording side.

It would be possible to perform more complex correction mechanisms in the
replaying system, such as to create a checkpoint at each STREX instruction in order
to attempt simulating both possible return values. This would be a safer approach
than to attempt fixing the instruction count later, but was beyond the scope of our
work, which was to evaluate the general feasibility of recording.

Our implementation is not yet able to accurately capture all coprocessor events;
there is still a problem in capturing two coprocessor instructions in rapid succes-
sion, but we believe that this issue could be resolved. Currently, we disable the
guest machine’s access to the debug registers. It should be evaluated whether it
is possible to restore the access without preventing instruction emulation in the
hypervisor.

We have focused our efforts on the 32-bit ARMv7 architecture, while at the
moment, the 64-bit successor architecture ARMv8 is gaining traction. We have
not yet looked into the changes that this update brings to the platform.
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