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Abstract. CPU performance is increasingly limited by thermal dissi-
pation, and soon aggressive power management will be beneficial for
performance. Especially, temporarily idle parts of the chip (including
the caches) should be power-gated in order to reduce leakage power.
Current CPUs already lose their cache state whenever the CPU is idle
for extended periods of time, which causes a performance loss when
execution is resumed, due to the high number of cache misses when the
working set is fetched from external memory. In a server system, the
first network request during this period suffers from increased response
time. We present a technique to reduce this overhead by preheating the
caches in advance before the network request arrives at the server: Our
design predicts the working set of the server application by analyzing the
cache contents after similar requests have been processed. As soon as an
estimate of the working set is available, a predictable network architecture
starts to announce future incoming network packets to the server, which
then loads the predicted working set into the cache. Our experiments
show that, if this preheating step is complete when the network packet
arrives, the response time overhead is reduced by an average of 80%.

Keywords: Leakage Power, Caches, Preheating, Response Time, Working Set
Estimation

1 Introduction

CPU performance is increasingly limited by thermal dissipation. While smaller
feature sizes provide us with additional transistors which could be used to
implement more and more cores on one chip, the increased power density will
soon create a situation where a significant portion of the available chip area has
to be powered off (dark silicon [5]). Several techniques have been developed to
make use of additional chip area even if continuous usage of the whole chip would
violate thermal limits. One such technique is Computational Sprinting, which lets
a CPU temporarily utilize all of the chip area to reduce the response time of the
system. At other points in time, the chip is operating with significantly reduced
power dissipation to keep the average power below the thermal limit [12].

We envision computational sprinting to be useful in a data center environment,
because many web services have critical response time requirements. In such
a setting, a server system would process several requests at full performance
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and therefore with low response times, and then would enter a low-power state
in order to reduce the chip temperature. As leakage power is responsible for a
significant part of the overall power consumption in modern CPUs [8], deep CPU
sleep states (e.g., the ACPI PCT7 state of modern Intel CPUs) shut down as much
of the chip area as possible, including the caches [13]. As a result, the caches
lose their state during idle periods. When the CPU resumes execution, the server
application therefore incurs a performance loss because the working set has to
be fetched from external memory. For the nginx web server serving a static web
site, we have measured the response time overhead caused by cold caches to be
as high as 35%.

The high response time from the initially cold caches would affect the tail
latency of the system, even if, as described above, we expect servers to process
requests in bursts between low-power periods. In modern large-scale web services,
however, the tail latency of single systems is critical: Because operations are often
parallelized on hundreds of machines (e.g., database shards), the final result will
be delayed even if a single sub-operation experiences increased latency [2]. It
is therefore important to reduce the impact of power management on the tail
latency of server systems.

Zhu et al. propose anticipatory wakeups as a technique to hide the exit latency
of CPU sleep states by waking the CPU up in advance before an event occurs [17].
Our experiments, however, have shown that the exit latency is low compared to
the latency overhead caused by cold caches. Additionally, anticipatory wakeups
can only function when the wakeup source is well predictable, whereas incoming
network packets are hardly predictable. In this paper, we build upon the theory
of anticipatory wakeups and extend it to solve these two problems. The key
contributions of this paper, which are elaborated in Section 3, are as follows:

— We describe a technique to construct a fine-grained estimate of the working
set of a server application. Such an estimate is required for efficient cache
preheating. We generate the estimate by analyzing the tag bits of the last-level
cache.

— We present a technique to predict future incoming network packets, in order
to enable the system to wake up early and preheat the cache in anticipation of
the network packets. Our design uses a network architecture which implements
congestion control in a central arbiter. Having an overview over all packets
sent in the near future, this arbiter is able to announce future packets to the
receiver system.

— We discuss a mechanism to preheat the cache in anticipation of an event,
so that the response time to that event is reduced significantly because the
working set is already present in the caches.

These contributions are evaluated with measurements of a prototype imple-
mentation (see Sections 4 and 5). We outline further improvements and future
work in Section 6.
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2 Background and Related Work

Leakage-Power Reduction: Leakage power dominates the power consump-
tion of modern CPUs with small feature sizes [8], and as caches constitute a
significant portion of the chip area, many approaches have been developed to
reduce their leakage power. These approaches can be categorized into destruc-
tive and nondestructive techniques, depending on whether the cache contents
are destroyed by the power management technique. Nondestructive techniques
usually have lower impact on performance, but also provide lower power-saving
advantages. For example, drowsy caches [3] can temporarily reduce the supply
voltage of the cache to a point where the memory cells retain their content, but
no access is possible. Significantly better leakage power reduction can be achieved
by completely disconnecting memory cells from the power supply. Gated-V 34 [11]
is a technique which performs such destructive power gating and combines it
with a dynamically resizable cache. The decision to shrink or grow the cache is
based on the number of cache misses during a time interval, and the inactive
parts of the cache are disabled to conserve power.

This policy is completely reactive and uses very simple heuristics. Some
dynamic situations however require a more flexible predictive approach for
maximum performance: For example, the cache should be completely disabled
during idle periods, but the content should be restored before the system is
reactivated again. Such predictive tasks require information which is commonly
only known to the operating system.

In a similar scenario, Zhu et al. therefore propose strong software engagement
of the OS with the power management mechanisms of the hardware [17]. Especially,
they show that the operating system can hide the wakeup latency of current
CPUs by predicting future events and waking the CPU up in advance, so that it
is fully awake by the arrival time of the events [17]. We extend these anticipatory
wakeups with a technique to predict future incoming network packets and with a
mechanism to preheat the caches when they have been flushed by the low-power
state.

Centrally Arbitrated Networks: To be able to preheat the cache contents
for an incoming network packet, our system needs to know the arrival time of
that packet in advance. We use a network architecture with a central arbiter
to predict future packets. Such networks have been studied in-depth [4,10,14],
albeit with a different goal: Central arbiters are frequently used to implement
connection switching, which has been proposed for low-latency traffic in data
center networks.

Packet switching requires queues in all switches in order to deal with tempo-
rary congestion in some network segments, and these queues can significantly
delay the queued packets. Connection switching, however, can provide superior
network latencies compared to networks with traditional packet switching and
congestion control [10]. In networks based on connection switching, a network
arbiter temporarily allocates a connection with a fixed guaranteed bandwidth to
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a pair of systems. As the arbiter has a global view of the network, it can prevent
any congestion by exclusively allocating network links to a single connection [4].
Despite the differences between such a network architecture and current network
stacks, connection switching can be implemented on top of off-the-shelf ethernet
hardware [14] and can even coexist with traditional packet switching by assigning
different types of packets to different priority classes [10].

Adaptive Pre-Paging: Whenever a network packet has been predicted, our
design loads the predicted working set of the server application into the cache.
Similar techniques have been developed to reduce the overhead caused by the
migration of virtual machines [6]:

Post-copy migration of virtual machines achieves low downtimes by immedi-
ately resuming the virtual machine at the target system and then using on-demand
paging to move the working set from the source system to the target. The prob-
lem of this technique is that initially, right after execution has been resumed
on the target system, the whole working set is still placed on the source system.
Therefore, many expensive page faults are generated. One approach to reduce
the number of page faults is to already move the predicted working set of the
virtual machine to the target system before execution is resumed (adaptive pre-
paging) [6]. We use a similar approach to improve performance right after a
system has resumed from a deep sleep state. However, instead of preventing page
faults, we try to prevent cache misses by loading the estimated working set into
the cache before execution is resumed. Our design therefore predicts the working
set with cache line granularity instead of page granularity.

Adaptive pre-paging is further extended by Zhang et al. in their Picocenter
virtualization system [16], which uses adaptive pre-paging to quickly restore
virtual machines from checkpoints. The Picocenter system differentiates between
different types of events which can reactivate a virtual machine (e.g., network
packets which target different server applications) and creates a separate working
set prediction for each type, by logging which pages have been accessed in the
past after similar events. We employ a similar technique to maintain separate
predicted working sets, and we select one of them to be loaded into the cache
depending on the target port of the incoming network packet. In contrast to the
Picocenter virtualization system, though, our design can already predict the type
of future incoming network packets before they arrive.

3 Design

We present a system which loads the working set into the cache right before a
network packet arrives. As shown in Figure 1, our design consists of two phases:
Initially, in the working set estimation phase, the system estimates the working set
of the active server application. Once an estimate is available, the system enters
the cache preheating phase. It resumes regular operation, with one exception:
Whenever the system is woken up from a deep sleep state, the predicted working
set is fetched into the CPU caches in order to reduce the response time of the
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Fig.1: The two phases of our cache preheating solution: First, the working set of
the server application is estimated, then the estimate is used to preheat the caches
for all following network requests. Incoming network packets are announced by
an external component (described in Section 3.2).

system. For most server applications, the principle of locality is valid even over
long timeframes, so the working set does not significantly change over time.
Therefore, working set estimation is only performed once, but the predicted
working set is reused to preheat the caches many times.

Working set estimation and cache preheating are implemented as part of
the OS and are designed to work with arbitrary unmodified server applications.
Similarly, the extensions to the network architecture as described in Section 3.2
are completely transparent to both the server application and its clients.

3.1 Working Set Estimation

In current systems, working set estimation is usually performed with page granu-
larity, for example to provide efficient virtual memory. Often, the application only
requires parts of a page, though. A cache preheating system should not load more
data into the cache than necessary, so the working set must be predicted with
cache line granularity. On current hardware, we have identified two hardware
mechanisms which can be used to provide fine-grained information about the
current working set.

First, some CPU architectures are able to trace and record all cache misses.
The list of the cache misses and the accessed memory locations can be analyzed
to create an estimate of the application’s working set. For example, current Intel
processors provide processor event-based sampling (PEBS) as a tracing facility
for various types of events [7]. PEBS monitors an event counter and stores a
copy of the most important CPU registers (along with the accessed memory
address in case of memory events) to a buffer whenever the counter reaches a
user-defined value. In theory, this facility can be used to trace all cache misses.
In practice, however, whenever an event is logged, PEBS frequently misses other
events which occur at approximately the same time [9]. It is therefore neither an
effective working set estimation mechanism, nor is it efficient, as it also causes
significant overhead when every event is recorded.
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Alternatively, the working set can be estimated by analyzing cache contents.
The tag bits in the cache can be translated into a list of physical addresses which
have been accessed by the application since the last cache flush. Among others,
the ARM Cortex-A15 and Cortex-A57 cores provide the RAMINDEX register [1]
which can be used to read and write arbitrary portions of cache memory, including
tag bits. In the absence of any conflict or capacity cache misses, the resulting list
of addresses is complete and, unlike any simple PEBS-based tracing mechanism,
does not miss some addresses which have been accessed. Our experiments show
that directly after a cache flush there are rarely any conflict or capacity misses.

As cache tag bit analysis is a viable technique for working set estimation, we
use a ARM Cortex-A15 system as the basis of our design: First, the caches are
flushed to remove any unwanted data from the cache, and hardware prefetching
is temporarily disabled to ensure that only accessed data is loaded into the cache.
Afterwards, the server resumes normal operation and processes incoming network
requests. After one or more requests have been processed, the last-level cache
tag memory is read and analyzed. The result is a list of all memory locations
which have been accessed since the cache flush. Future invocations of the server
application might access slightly different memory locations, though. For example,
network buffers are likely placed at different locations. To remove such dynamic
regions from the working set, all these steps are repeated several times (8 times in
our prototype). The final working set estimate then only contains those memory
locations which have been repeatedly accessed.

3.2 Network Packet Prediction

Once a good working set estimate is available, the system switches back to regular
operation, but activates cache preheating. The cache preheating mechanism
however not only requires a prediction of the working set, but the system also
needs to know when to preheat the caches. Because the arrival time of network
packets is usually highly nondeterministic, anticipatory cache preheating is not
possible with traditional network architectures. Our solution makes use of a
centrally arbitrated network architecture such as Fastpass [10] to predict future
incoming network packets.

_ 2. Arbiter announces
e = collision-free schedule

1. Sender expresses
desire to send a packet ‘ 3. Receiver preheats
its caches
= = 4. Sender sends data,
receiver processes

request with low latency

Fig. 2: Future network packets are announced by the network arbiter in advance,
so that the receiver can preheat the caches in anticipation of the packets.
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Figure 2 shows how a central arbiter can announce future packets: First, the
sender requests a time slot to send the packet. The network arbiter receives all
such requests from all systems in the network, and creates a schedule for the
packets. Normally, this schedule only needs to be sent to the sender systems so
that they know when to send their packets. In our system, however, the schedule
is also sent to all affected receiver systems as an announcement of future network
packets. When a system receives such an announcement while it is in a low-power
state with flushed caches, it wakes up a CPU core which then starts to preheat
the caches so that the network packet can be efficiently processed.

Ideally, the receiver system not only knows in advance when packets arrive,
but also which type of request they carry. When different types of requests are
processed, the server applications can have significantly different working sets.
While the network is mostly oblivious to the type of request carried by a network
packet, some indicators are transferred along with the data (e.g., the target TCP
port). We modify the network arbitration scheme so that the sender system not
only announces the target address to the arbiter, but also includes the target
port. The arbiter forwards this information to the receiver system, which can,
depending on the port, preheat the predicted working set of the corresponding
server application.

3.3 Preheating

When an incoming packet has been announced by the network arbiter, the
receiving system wakes the CPU and loads the estimated working set into the
last-level cache. The main problem here is the short time span between the
announcement and the arrival of the packet. For example, Fastpass calculates
schedules only 65 microseconds in advance [10]. Waking up the CPU requires
half of that time already [13], so only approximately 30 microseconds are left
to preheat the cache. Preheating is therefore highly time-critical. However, the
nginx web server only requires 235.8 KiB to serve a static website from RAM,
and even a TPC-C-like MariaDB workload only requires 621.8 KiB to serve most
requests. The required memory bandwidth to load these working sets into RAM
in the available time (7.5 GiB/s and 19.8 GiB/s respectively) is well within the
capabilities of current server hardware.

To preheat the last-level cache, the preheating code loops over all memory
locations in the working set and loads them into the cache. To effectively utilize all
the available memory bandwidth, the memory locations are sorted by increasing
physical address. A linear access order minimizes the number of DRAM row
activations and therefore improves memory throughput. As sorting is costly, the
data is sorted as a preprocessing step during the working set estimation phase.

Additionally, the working set description is run-length encoded. Compression
of the working set description increases the preheating memory throughput, as
less additional data needs to be fetched from RAM. Run-length encoding provides
significantly lower computational complexity compared to more complex cache
state compression methods found in literature (e.g., dictionary-based compression
[15]). The decoding overhead is low enough that it can be mostly hidden behind
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memory operations. Also, the regular structure of the addresses enables sufficient
compression factors: Applications frequently access long consecutive memory
regions, so many consecutive cache lines can be described in one “run”. As an
example, the working set description of the nginx web server can be reduced by
68%, from 14528 bytes (one 32-bit address per 64-byte cache line in the working
set) down to 4596 bytes, thereby increasing preheating performance by 5.7%.

These optimizations produce a fairly optimized memory access pattern which
utilizes most of the available memory bandwidth. However, on modern systems,
a single core often cannot saturate the memory bandwidth anymore. On our
prototype platform, parallelizing the preheating code on two cores results in a
10% performance gain.

4 Evaluation

We have conducted a prototypical evaluation of our design, in order to answer
the following questions: Can cache preheating be used to reduce the response
time to network requests when the caches have been flushed? Is such preheating
efficient enough so that it is a viable technique when combined with existing
network architectures?

In this paper, we present a proof of concept based on a limited prototype
which, while not being functionally complete, is able to show that cache preheating
is a viable technique. Our prototype is designed to run on a system with ARM
Cortex-A15 cores, and all benchmarks are executed on a Hardkernel Odroid-XU3
single board computer. This system provides a Samsung Exynos 5422 SoC with
four Cortex-A15 cores and four Cortex-A7 cores.

The system’s network support is limited to an USB ethernet adapter, which
prevents any meaningful network latency benchmarks. Therefore, our prototype
is not yet integrated with a real predictable network architecture, but instead
simulates the network architecture in the benchmark client. The benchmarked
server application is executed on a Cortex-A15 along with the cache preheating
software, whereas the benchmark client is executed on a Cortex-A7 core on the
same system, connected by a local TCP connection. As the SoC provides separate
last-level caches for the different types of cores, this setup mostly isolates the
cache footprints of the two processes. For the response time comparisons below,
the benchmark client optionally flushes the caches of the Cortex-Al5 cores to
simulate CPU sleep states and optionally triggers cache preheating before issuing
any request. The Cortex-Al5 cores have private 64 KiB L1 caches as well as a
shared 2 MiB L2 cache. The latter has shown to be large enough to accomodate
the working sets of our benchmarks. Applications with a larger working set
require a more complex approach to working set estimation.

4.1 Response Time Reduction

We measure the response time of several benchmark applications to show that
preheating effectively mitigates the performance penalty of cold caches. We



Reducing Response Time with Preheated Caches 9

compare the response time with warm caches, flushed caches, and after caches have
been first flushed and then preheated. Our three main benchmark applications
are the nginx web server and the memcached key-value store, both serving static
data, and a more complex dynamic TPC-C-like workload (DBT-2) executed on
the MariaDB database.
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Fig. 3: Cumulative histogram of the response time with and without cache
preheating.

response time (ps) CPI working set|preheating

warm| cold|preheated|warm| cold|preheated
nginx|367.6/498.0 388.5| 3.63|5.78 4.12| 235.8 KiB 77.4 ps
memcached|178.8|238.8 188.5| 3.81(5.66 4.30| 142.3 KiB| 53.0 ps
MariaDB| 3970| 4320 4069| 2.20(2.44 2.29| 621.8 KiB| 146.4 ps

Table 1: Averaged benchmark results with cold, warm and preheated caches as
well as the corresponding cycles per instruction, predicted working set size and
preheating costs.

Figure 3 shows the cumulative histogram of the response time of 100000
requests to the three applications. In all three cases, the average response time
of requests is significantly reduced by cache preheating compared to when the
requests hit cold caches as shown in Table 1. On average, the response time
overhead (difference between response times for cold and warm caches) is reduced
by 79.8%. To show that this improvement can be attributed to cache preheating,
we also measure the average number of cycles per instruction (CPI). The CPI
are a good indicator for the effectiveness of cache preheating, because a reduced
number of cache misses is only beneficial for performance if it in turn reduces
the number of CPU stall cycles. Our experiments show that the response time
improvement is accompanied by 66% less cache misses (on average) as well as
significantly improved CPI.
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4.2 Preheating Cost

Packets are only announced several dozens of microseconds in advance, thereby
limiting the time available for loading the working set into the caches. Along
with the response time, we have also measured the time required for preheating
(in the “preheating” column of Table 1). The cost of preheating is approximately
linear to the size of the predicted working set.

We have stated in Section 3.3 that preheating must not take more than 30
microseconds. Our prototype clearly violates this limit for all selected benchmarks,
with preheating taking between 53.0 and 146.4 microseconds. The achieved
average memory throughput is 3.17 GiB/s, which is close to the maximum
throughput which can be achieved with well optimized code.

5 Discussion

Our evaluation shows that cache preheating improves response time significantly
over cold caches. The potential response time reduction is large enough that the
resulting energy savings should compensate the energy cost of preheating. In our
prototype, however, cache preheating requires up to four times more time than
is available between the CPU waking up and the request packet arriving. As a
result, the cache would not be completely preheated by the time the network
request arrives. In this section, we make the case that our preheating design
provides a benefit even in these scenarios. Further, we argue that server hardware
should be able to preheat cache working sets before the network request arrives.

In our prototype, network requests would arrive with preheating still in
progress. At that time, our system could naively complete preheating and process
the request afterwards. From our experiments, we can deduct that our approach
still improves response times over cold caches: The delay from preheating’s
tardiness is less than the reduction of request processing time it achieves, causing
a net improvement of response time.

With memcached for example, we found preheating to overshoot the 30 ps
available (see Section 3.3) by 23 ps. However, preheating reduced the request
processing time by 50us (see Table 1), thereby lowering the response time by 27
ns (11%) overall. Similarly, even for the MariaDB benchmark which overshoots
the preheating deadline by almost 120 ps, our preheating approach would still
provide a 130 ps response time reduction.

In practice, server hardware will require significantly less time, though, and
can preheat the caches in time for the arriving network packets. Current server
systems provide significantly higher memory bandwidth than the hardware
platform of our prototype. The memory throughput of the Hardkernel Odroid-
XU3 system is merely 3.17 GiB/s in our benchmarks, and even the pmbw
parallel memory bandwidth benchmark only achieves slightly better results for a
completely sequential access pattern. According to the pmbw benchmark, a recent
Intel Skylake system with dual-channel memory in contrast provides almost 8
times more bandwidth. This performance increase should allow preheating to
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be completed in time before the corresponding network packet arrives, even for
complex workloads such as the presented MariaDB benchmark.

6 Conclusion and Outlook

Deep CPU sleep states have negative effects on server response times, yet such
power management methods are required in order to improve overall performance
in a world with significant amounts of dark silicon. We have identified frequent
cache flushes as the most problematic side effect of aggressive power management.
Previous work usually suggested different power management methods which
keep the cache state intact, but waste significant amounts of energy instead or
which reduce performance. We argue that a more efficient system can be built if
the operating system is in charge of cache content management.

We propose a system which preheats the caches in anticipation of events
which cause the system to resume from a deep sleep state, in order to mitigate
the effect of cold caches. When the arrival time of the next wakeup event is
known, the estimated working set can be loaded into the cache in order to reduce
the cache miss rate shortly after the event. We also describe a method to predict
future incoming network packets with the help of a centrally arbitrated network
architecture. Benchmarks show that such cache preheating can mitigate most
of the overhead caused by cold caches. The time required to preheat the caches
is too long in our current prototype though, due to the low memory bandwidth
of our prototype platform. We show that cache preheating still results in a net
response time reduction, and we argue that current server hardware provides
enough memory bandwidth that cache preheating is completed quickly enough.

Our working set estimation code is currently limited to certain ARM CPU
cores. On Intel CPUs, we are therefore evaluating whether PEBS—despite its
limitations—can be used to trace all cache misses and to derive the working
set from them. Additionally, we are currently integrating our cache preheating
system with the Fastpass [10] network architecture, in order to be able to use
cache preheating in a representative server system and to evaluate its effect on
power usage in such a system.
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