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Abstract

With the general availability of PCI Express 3.0 slots in both consumer and
server hardware today, more and more devices making use of the fast transfer
speed are being released. These devices read and write directly into the main
memory using Direct Memory Access (DMA).

Other works [2] have already determined that memory-intensive applica-
tions running in parallel on a multi-core platform may slow each other down
due to the memory controller reordering requests. In this work, we analyze
interference of high-bandwidth DMA operations with applications running
in parallel on the CPU. To generate DMA load, we design and implement a
load generator based on NVMe solid-state drives.

Our experiments show that high-bandwidth DMA transfers indeed have
an in�uence on memory-intensive applications. Additionally, we characterize
bandwidth and command rate of our NVMe device and analyze last-level
cache usage with performance counters.
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Chapter 1

Introduction

All applications running on modern computers are accessing the main mem-
ory more or less extensively. With multicore CPUs, multiple programs will
access the memory at the same time. Due to the organization of DRAM,
some requests can be ful�lled faster than others. Making use of this fact,
the memory controller reorders memory requests, improving overall mem-
ory throughput. However, this may reduce performance of a process whose
memory requests are ful�lled less often.

This e�ect is similar to issues with preemptive CPU scheduling: A �fair�
usage share of CPU time for every process is often desired. Priorities can
usually be given to processes by di�erent criteria, for example to make sure
that an interactive application runs more often than a background process.

Managing memory bandwidth on the application level is already possible
with MemGuard [2]. This method relies on an estimate of the worst-case
memory bandwidth available, distributing the bandwidth to processes based
on hardware performance counters built into newer CPUs. These counters
measure the bandwidth each CPU core is using.

The maximum memory bandwidths of current CPUs vary a lot. Con-
sumer CPUs usually have a maximum bandwidth of about 25 GB/s [4],
while upcoming high-end server CPUs support up to 100 GB/s [9]. Our two
test systems used for this thesis (see Section 5.1) support 21 GB/s (Sandy
Bridge) and 59 GB/s (Haswell). However, the actual achievable bandwidth
depends a lot on the memory access pattern. For example, randomly ac-
cessing small chunks of memory has less throughput than a long sequential
read.

The MemGuard authors focused on the memory usage of applications
and did not take another important contender to memory bandwidth into
account: Modern I/O devices transfer data to the CPU by writing directly
to main memory (Direct Memory Access, DMA).

3



4 CHAPTER 1. INTRODUCTION

For their system, the MemGuard authors estimated a worst-case band-
width of only 1.2 GB/s, which is roughly equal to the rate of 10 Gigabit
Ethernet. Consequently, their algorithm may not be able to distribute mem-
ory bandwidth properly while a DMA transfer from the network card is in
progress.

With devices such as solid-state drives (SSD) and Ethernet controllers
getting faster, DMA transfers can now take a signi�cant proportion of the
available memory bandwidth shared with the CPU.

Newer SSD models based on NVMe [12] are promising data transfers
with up to 3.2 GB/s [15]. On a desktop computer with a quad-core CPU
and a memory bandwidth of 25.6 GB/s, each core usually has 6.4 GB/s
available. Thus, a full-speed DMA transfer would cut a single core's memory
bandwidth in half. As real-world limits are likely smaller depending on the
access patterns, the actual in�uence may be even larger.

The main contribution of this work is a �exible and extendible DMA
load generator based on NVMe. In the following Chapter 2, we provide
background information on technologies we used, such as DMA and NVMe.
In Chapter 3, we discuss the design, and in Chapter 4 the implementation
of our load generator. Chapter 5 contains our evaluation: We analyze the
maximum bandwidth of our SSD, evaluate the use of performance counters
to characterize NVMe tra�c, and test interference with several benchmark
programs. Finally, we summarize our results in Chapter 6, presenting a
conclusion and proposing future work.



Chapter 2

Background

This chapter provides background information on technologies and tools used
in this work: We �rst explain some details on DMA (Section 2.1). In Section
2.2, we then give an overview on the NVMe interface. Finally, we present
tools we used for the evaluation: Intel's Performance Counter Monitor (Sec-
tion 2.3), the PARSEC benchmark suite (Section 2.4) and the Silo in-memory
database (Section 2.5).

2.1 DMA

Direct memory access (DMA) allows external devices to access the main
memory independently from the CPU. Usually, the CPU requests a transfer
from an external device. The device then can transfer its data directly from
or to the main memory. During the transfer, the CPU is not blocked and
can do other work. When the transfer �nishes, the device noti�es the CPU
using an interrupt.

During the transfer, requests from both the CPU and the external device
may reach the memory controller. Thus, memory accesses by the CPU may
be slowed down. We analyze this interference in Section 5.5.

Another issue with DMA is cache coherency: In contrast to the CPU with
its cache hierarchy, the external devices access the main memory directly.
Consequently, devices may read stale data, which the cache has not written
back yet, or the caches may serve the CPU data that changed in memory
in the meantime. To solve these issues, the cache needs to be invalidated as
part of the DMA operations, slowing down reads and writes by the CPU and
adding load to the memory controller.

Intel's DDIO technology [3] aims to improve this situation. It makes the
last-level cache (LLC) the primary target of DMA operations. This solves

5



6 CHAPTER 2. BACKGROUND

the cache coherency issue, as mechanisms for coherency with the higher-
level caches, which are speci�c to the individual CPU cores, are already in
place for multicore systems. Memory controller contention is also improved:
Especially for frequent, small transfers such as those from network cards, the
main memory is not involved in the transfers at all, speeding up processing
considerably.

Having DMA writing to the LLC directly may reduce the amount of
cache available to applications. However, Intel also greatly increased the
total amount of last-level cache, making up to 20 MB cache possible [5].
Thus, this LLC usage is unlikely to slow down applications compared to
CPUs without DDIO.

Our Sandy Bridge test system does not support the DDIO technology,
but the Haswell system does (see Section 5.1 for an overview of our systems).
In Section 5.4.3, we analyze LLC usage on the Haswell system.

2.2 NVMe

Non-Volatile Memory Express (NVMe) [12] is a communication interface de-
signed for solid-state drives (SSD) connected via PCI Express. It allows
for higher transfer rates with more parallelism compared to the older SA-
TA/AHCI interface, which was primarily designed for hard disk drives. The
NVMe speci�cation de�nes a command set consisting of Admin and IO com-
mands.

The Admin commands are primarily used by the NVMe driver to set up
drives for data transfers. They allow querying drive-speci�c information as
well as setting options, such as power management.

The IO commands are used for the actual data transfers. The NVMe
speci�cation de�nes three mandatory commands: Read, Write, and Flush.
The Read and Write commands take a location in main memory as well as
a logical block address and transfer data to or from the SSD. The Flush
command instructs the SSD to write any changes from previous commands
from its caches to non-volatile media.

All communication with the SSD happens with submission and comple-
tion queues located in main memory. The driver submits its commands to a
submission queue. The SSD accesses commands from this queue via DMA.
After processing a command, the SSD submits a completion entry to the com-
pletion queue, again with DMA. The driver usually waits for the completion
entry, allowing other threads to run in the meantime.

Each NVMe controller has a single Admin Submission Queue and an
Admin Completion Queue. IO commands are managed in separate IO Sub-
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mission and Completion queues. With Admin commands, the NVMe driver
can create multiple of them on demand.

Multiple queues improve performance as they allow the SSD to process
requests in parallel. The NVMe Linux driver usually creates one IO Submis-
sion and one IO Completion Queue per CPU core.

IO operations work analogous to the Admin operations: The driver sub-
mits an IO command to one of its IO Submission Queues. The SSD then
performs the data transfer and noti�es completion to the driver by posting
a completion entry to one of the IO Completion Queues. So in addition to
the user data, an NVMe command of 64 B is transferred to the SSD and a
completion entry of 16 B is transmitted from the SSD per operation.

Each IO operation can transfer multiple logical SSD blocks. The max-
imum number of blocks is speci�c to the SSD; our model (see Section 5.1)
allows transferring 32 blocks of 4096 B per command.

With hard drive disks, the transfer block size is given by the organisation
of the physical disk in sectors. In contrast, the logical block format is not
�xed by the NVMe speci�cation. With the Format admin command, it is
possible to select a block format from a list of supported formats speci�c to
the SSD. The Identify Admin command lists the available formats, indicating
the expected relative performance of the formats to each other. Our SSD
supports both 512 B and 4096 B blocks. It indicates �Good� performance
for 512 B blocks and �Best� performance for the larger block size of 4096 B.
Additionally, up to 64 B of metadata can be stored per block. This metadata
is not used by the SSD; applications such as the �le system can write any
additional data there. However, we do not use any metadata for our DMA
transfers.

Intel provides a Linux tool for sending both Admin and IO commands
to an SSD from the command-line [10]. This tool is very useful for setting
the SSD's block format. NVMe SSDs can be organized in multiple names-
paces, dividing the available storage. However, our SSD only supports a
single namespace. The command nvme id-ns -h /dev/nvme0n1 lists the
available formats for the �rst NVMe namespace of the �rst NVMe device on
the system. For example, nvme format -l 3 /dev/nvme0n1 then formats
the �rst namespace to use the third format, deleting all data. Figure 2.1
shows the formats as reported for our SSD.

2.3 Performance Counter Monitoring

The Performance Counter Monitor (PCM) [11] is a technology by Intel for
monitoring speci�c CPU-related events. For our purposes, Uncore Perfor-
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# nvme id -ns -h /dev/nvme0n1

[...]

LBA Format 0 : Metadata Size: 0 bytes - Data Size: 512 bytes

- Relative Performance: 0x2 Good

LBA Format 1 : Metadata Size: 8 bytes - Data Size: 512 bytes

- Relative Performance: 0x2 Good

LBA Format 2 : Metadata Size: 16 bytes - Data Size: 512 bytes

- Relative Performance: 0x2 Good

LBA Format 3 : Metadata Size: 0 bytes - Data Size: 4096 bytes

- Relative Performance: 0 Best (in use)

LBA Format 4 : Metadata Size: 8 bytes - Data Size: 4096 bytes

- Relative Performance: 0 Best

LBA Format 5 : Metadata Size: 64 bytes - Data Size: 4096 bytes

- Relative Performance: 0 Best

LBA Format 6 : Metadata Size: 128 bytes - Data Size: 4096 bytes

- Relative Performance: 0 Best

Figure 2.1: Abridged output of the nvme id-ns command for our SSD.

mance Monitoring counters located at the last-level cache (LLC) are inter-
esting. These counters count read and write accesses to the LLC. As with
DDIO (see Section 2.1) all main memory accesses by the CPU and by ex-
ternal devices need to pass the LLC, we can use these counters to estimate
the memory bandwidth used by applications and devices. In contrast to the
more common CPU counters, the Uncore counters are only available for some
CPUs [7].

A performance counter is essentially a simple integer variable. It can be
tuned to a speci�c event.1 Whenever this event occurs in a cache line, the
variable is incremented by one. The events are further divided in cache hits
and cache misses. In case of a cache miss, the LLC fetches the cache line
from main memory, recording a cache hit afterwards (see Section 5.4.3). The
CPU can read the counter's current value at any time. However, a counter
may only monitor a single event at a time. Consequently, we either have
to switch the counter rapidly between multiple events or run the measured
program multiple times with di�erent events.

As the events are triggered per cache line, which are 64 B, a single event
usually means a read or write of 64 B of data. However, some events are
also triggered for partial reads or writes, occurring when data is unaligned or
when the access size is smaller than 64 B. Therefore, a single event indicates

1In fact, we are only looking at a single event in the sense of the Uncore documentation.

This event is �ltered by Opcode and Thread-ID. When we say �event� here, we are actually

referring to a speci�c combination of Opcode and Thread-ID.



2.4. PARSEC 9

a data transfer of 64 B or less.
On our Haswell platform (see Section 5.1), the following events are avail-

able:

PCIeRdCur �PCIe read current transfer� � This event is triggered when a
PCIe device reads from a cache line. It does not distinguish between
full and partial reads, so the reported number is likely higher than
estimates from transfer size.

RFO �PCIe partial write� � This event is shared with the CPU, but can be
�ltered for activity from PCIe. In this context, it counts partial writes
(i.e., writes smaller than 64 B) to cache lines.

ItoM �PCIe write full cache line� � Just like RFO, this event is shared with
the CPU and can be �ltered. It counts full writes of 64 B to cache lines.
The sum of RFO and ItoM corresponds to what PCIeRdCur reports
for reading.

CRd �Demand Code Read�

DRd �Demand Data Read� � CRd and DRd are read events occurring when
the CPU reads code or data from the last-level cache. These events are
not directly related to PCIe tra�c.

PRd �MMIO read�

WiL �MMIO write� � PRd and WiL events are recorded when the CPU does
memory-mapped IO (MMIO) read or write. While this mechanism is
used for communication with devices, it does not convey information
about NVMe activity where the SSD device communicates using queues
in memory.

2.4 PARSEC

PARSEC [1] is a benchmark suite with a focus on multithreaded applica-
tions. It consists of 13 workloads, of which we tested all except facesim and
fluidanimate (see Section 5.5.1).

As we are using the benchmark programs to analyze interference of mem-
ory accesses, we are especially interested in workloads that have high levels
of main memory usage. Figure 4.7 of the PARSEC overview paper [1] gives
a breakdown of o�-chip tra�c (i.e., memory accesses that cannot be satis�ed
by a cache) of the PARSEC workloads. Note that the raytrace workload is
missing from the graph.
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The top workloads regarding memory usage in the graph are streamclus-
ter, canneal, and facesim. The streamcluster and canneal workloads,
along with raytrace, are also the workloads that showed interference in our
evaluation in Section 5.5.1.

2.5 Silo

Silo [18] is an in-memory database designed to achieve high performance on
multicore systems. Its authors demonstrate that Silo scales almost linearly
to multiple cores.

An in-memory database is well suited to analyze DMA interference as
its core objective is to store and retrieve large amounts of data from main
memory as quickly as possible.



Chapter 3

Design

This chapter describes the design of a DMA load generator based on NVMe.
The load generator needs to satisfy several goals: We want it to support
di�erent memory access patterns (Section 3.1.1) and it needs to support
con�guration options such as the number of workers used (Section 3.1.2).
Additionally, it should support using performance counters to evaluate its
performance (Section 3.2).

3.1 DMA Load Generator

In this section, we describe our DMA load generator.

The standard way of transferring data from and to an SSD works by
reading and writing �les on a �le system. While this works �ne for generating
some load, there is little control over the exact size and memory location of
the transfers as the operating system provides a cache between the device
and client applications. Additionally, having as little overhead as possible
is important as the load generation runs in parallel to the benchmarking
applications.

Therefore, we decided to bypass the operating system and issue NVMe
commands to the SSD directly. The core of the NVMe command set are the
three commands read, write, and flush. The read and write commands
transfer data from or to the SSD. The flush command instructs the SSD
to persist anything written in previous commands and does not transfer any
data.

In addition to these I/O commands, NVMe speci�es an admin command
set whose commands are used to identify features speci�c to the SSD and to
con�gure the SSD.

In order to generate DMA load, we allocate a memory bu�er of �xed size

11



12 CHAPTER 3. DESIGN

in our load generator, which is then used directly as target of the NVMe
commands. We can then transfer data using read or write commands.
These commands share a memory layout and are both given a block range
on the SSD identi�ed by a logical block address and count, and an address
in memory. Switching between reading and writing thus is only a matter of
changing the opcode.

The maximum number of blocks that can be transferred per command is
constant per SSD and can be determined using the identify admin com-
mand. In our case, the SSD allows transferring up to 32 blocks of 4096 byte
per command.

3.1.1 Memory Access Patterns

For our purpose, not only the bandwidth used by the load generator is impor-
tant, but also the pattern of memory accesses. Supporting di�erent patterns
allows imitating di�erent devices other than SSDs, such as network cards.

For our tests, we used three major patterns. All patterns can be set to
either use read or write commands with a single bu�er of con�gurable size.

single The single pattern transfers a single block with each NVMe com-
mand. It accesses the memory bu�er sequentially. In addition to the
data transfer, this pattern produces a large number of NVMe com-
mands per second. It is meant to be similar to the way networking
devices write incoming packets into a bu�er, although network packets
are usually a lot smaller than the 4 kiB blocks the SSD uses.

random This pattern is meant to resemble the way the operating system
caches transfers from block devices. As there is no dedicated memory
region for these transfers, they end up in random memory locations.
The random pattern chooses a pseudo-random position in the memory
bu�er as source or destination for transfers. To achieve the maximum
possible transfer rate, it always instructs the SSD to transfer the max-
imum number of blocks per command.

�ush The �ush pattern does not transfer any user data. Instead, it only
sends flush commands to the SSD. This results in an even larger com-
mand rate than with the single pattern. The bandwidth is only used
by the NVMe commands sent to the SSD and completion queue entries
sent back.



3.2. PERFORMANCE COUNTER ANALYSIS 13

3.1.2 Con�guration Options

In addition to access pattern and bu�er size, the load generator allows further
shaping of transfers with the following options:

Caching In systems with Intel DDIO (see Section 2.1), DMA transfers go
directly to the last-level cache (LLC) instead of the main memory. This
can speed up both the transfers and the subsequent CPU access in case
of written data. The load generator can ensure parts of the memory
bu�er are in the LLC already by reading the memory region before
issuing a transfer command.

Parallelism A major feature of the NVMe command set is its ability to
process commands in parallel by having multiple command submis-
sion queues. The load generator allows issuing multiple commands in
parallel, increasing the overall bandwidth.

Bandwith and command limiting When analyzing the e�ects of the dif-
ferent access patterns, it may be desirable to keep bandwidth or com-
mand rate constant between the patterns. The load generator allows
this by limiting the bandwidth or command rate to a level that is pos-
sible with both patterns.

3.2 Performance Counter Analysis

In this section, we amend the design of the load generator with speci�c
performance counters provided by the hardware.

When generating arti�cial load, we have precise control and feedback
about the amount of data transferred to and from the SSD. In addition to
the user data stored on the SSD, this also includes the commands sent to,
and transfer completion entries received from the SSD.

In other applications, especially when a �le system is involved, this is
not possible. Raw NVMe commands will only be generated in the driver,
translating higher-level read or write system calls. One way of inspecting
those transfers is by employing the PCIe performance counters available in
Intel's newer Xeon processors. These counters can be analyzed using the
Intel Performance Counter Monitor (PCM) tool, which is provided as free
software by Intel [11].

All PCIe counters used by us are located at the last-level cache (LLC).
They count di�erent sources of access to the cache lines. Thus, the readings
are only accurate to multiples of the cache line size 64 B. See Section 2.3 for
more information about the counters available on our system.
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In its standard operation mode, the PCM tool shows several event types
related to PCIe transfers aggregated per second. While our hardware sup-
ports having multiple performance counters running at the same time, the
tool will only use a single one at a time. Consequently, it has to switch rapidly
between the available events, extrapolating the readings to the full second.
Although this is su�cient to get a general feeling of the events involved, an
exact reading is desirable to get more accurate results.

For this purpose, we added a performance counter mode to the load gener-
ator. In this mode, a counter is set to monitor a single event source. Analysis
of the di�erent counters is then possible over separate runs, each of which can
last multiple seconds. This is possible because our generated load is uniform
over time and between runs.



Chapter 4

Implementation

In this chapter, we present our implementation for Linux. Section 4.1 in-
troduces our load generation tool nvme-memload. During development, we
became concerned that our tool may be slowed down by its interface with
the NVMe Linux driver, so we implemented a workaround described in Sec-
tion 4.2. Finally, Section 4.3 details the integration of performance counter
measuring in nvme-memload.

4.1 DMA Load Generation

In Section 3.1 we described the design of a DMA load generator. In this
section, we will present our implementation called nvme-memload, published
on GitHub [19].

Using the ioctl system call, the Linux NVMe driver allows bypassing
the usual kernel stack by sending NVMe commands directly to the SSD.
It only does minimal processing: The driver sets up the source or target
memory pages for DMA access, puts the command in one of the SSD's NVMe
command submission queues and then blocks, waiting for a response in the
completion queue.

nvme-memload uses this system call to send raw NVMe I/O commands
as fast as possible. It allocates a single bu�er of con�gurable size. It then
instructs the SSD to read or write to parts of the bu�er according to the
pattern loaded.

In nvme-memload, reading always starts at the SSD's �rst block. In con-
trast, permanently writing to the same SSD blocks has a big performance
impact as SSDs have to delete blocks before they can be rewritten. Thus,
nvme-memload picks a random location on the SSD to keep the in�uence low.

The SSD can be reset using the Format NVM command. This will quickly

15
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erase all data written on the SSD, returning it to a fresh state. Doing this
between tests is advisable when writing to the SSD. Otherwise, write perfor-
mance severely degrades during long test runs, as the SSD runs out of free
blocks, to which it can write without erasing.

4.1.1 Patterns and Parallelization

The patterns described in 3.1.1 are implemented as shared objects, allow-
ing them to be loaded independently from the main program. The worker
threads call into the shared object, receiving a structure describing the next
operation. The parameters are the NVMe operation (read, write, �ush), the
memory location, and the number of blocks.

Patterns such as the single pattern are required to hold state for sequential
access, as they have to remember their previous position. This can lead
to race conditions when multiple worker threads try to retrieve their next
operation at the same time. To keep the patterns simple, access to them is
protected by a mutex. This does not have a negative e�ect on performance,
as the worker threads are blocked on their NVMe commands most of the
time.

When multiple worker threads are active, the SSD will receive commands
in parallel on its command queues. Consequently, no guarantee can be made
about the actual ordering of operations. For read commands, the SSD is
unlikely to bene�t from reordering though as all requests are for the same
SSD block.

4.1.2 Bandwidth and Command Limiting

nvme-memload allows limiting the throughput by data bandwidth or by com-
mand count, as described in 3.1.2.

The limit is implemented by counting commands for a con�gurable sub-
second timespan, blocking when the con�gured limit is reached. As all worker
threads need to reliably stop when the limit is reached, this involves another
mutex and a condition variable to restart the threads for the next time slot.

With this design, the workers only have to do little additional work,
keeping the maximum possible throughput high. The con�gurable timeslot
size allows for short, focussed load bursts as well as continuous load with
small pauses in between.
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4.1.3 Caching

nvme-memload implements two caching modes designed to force usage of the
last-level cache in the SSD's DMA operations. These modes are intended
to work in conjunction with the Intel DDIO technology (see Section 2.1); it
should not have an in�uence on other systems without this feature. When
the CPU reads a memory location, it is fetched into its caches. A subsequent
DMA operation on the same memory location will then only operate on the
LLC until the cache lines are evicted from the LLC.

In the once mode, the whole bu�er is read once before starting to send
NVMe commands. This mode obviously only makes sense as long as the
whole bu�er can �t into the LLC. As will be seen in Section 5.4, this mode
does not actually make a di�erence.

With the always mode, the worker threads will read the relevant part of
the memory bu�er before each command is sent o� to the SSD. Consequently,
the SSD will always operate on memory in the LLC, even when the whole
bu�er is too large to �t. With this mode, cache misses only occur in memory
accesses by the CPU.

4.2 NVMe Linux Driver Customization

One concern with nvme-memload was the high overhead from the ioctl sys-
tem call. When writing single blocks per command to memory, up to 300 000
commands are issued per second; each command will use a separate system
call. To rule out slowdown from a system call and accordingly trap limit,
we added another ioctl command to the NVMe Linux driver. Instead of
a single NVMe instruction, this command accepts an arbitrarily-sized array
of instructions, similar to the readv family of system calls [13]. When de-
tecting the custom driver, nvme-memload will use batching, calling ioctl at
a reduced rate. The driver then loops over the array and processes them
one-by-one, just like the regular command.

While the custom driver successfully shifts a lot of the CPU time to the
kernel, it does not have any positive or negative impact on the performance
(see 5.3). Thus, the system call limit is not an issue for our work.

4.3 Performance Counter Analysis

In Section 3.2, we described the addition of performance counter monitoring
to nvme-memload. In this section, we explain the actual implementation and
operation of this feature.
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With a few tweaks, Intel's PCM tool can also be built as a library. We use
this and link it into nvme-memload to provide exact readings synchronized
with the actual transfers. As the performance counters are not available on
all platforms, the library is only included when requested to allow operation
without the counters.

Our tool allows specifying a single event source per run. On Haswell, the
following event sources are available: PCIeRdCur, RFO, CRd, DRd, ItoM, PRd,
and WiL. See Section 2.3 for an explanation of the individual events. For
each event source, either last-level cache hits or misses can be counted.

For precise measurements, nvme-memload can stop after a time limit or
after a certain number of commands or blocks has been transferred. This
makes comparison of the di�erent event sources possible, even when the
actual command rate di�ers between runs.



Chapter 5

Evaluation

In this chapter, we present our experimental results with high-bandwidth
DMA load. First, we analyze the possible bandwidth with nvme-memload on
our test systems (Section 5.2) and evaluate our NVMe driver modi�cation
(Section 5.3). In Section 5.4, we then correlate bandwidth and command
counts with performance counters. Finally, we analyze interference from
DMA load using the PARSEC benchmark suite (Section 5.5.1) and some
in-memory databases (Section 5.5.2).

5.1 Test Systems

In our tests, we generated DMA load using the Intel SSD 450 with a
capacity of 400 GB. The SSD is connected via four lanes of PCI Express
3.0. The SSD supports two block sizes: 512 B and 4096 B. Using the NVMe
Identify admin command, the SSD indicates that 4096 B is its preferred
block format for best performance. Consequently, we formatted it to use the
larger block size of 4096 B. The NVMe SSD was exclusively used for DMA
load generation; the operating system and benchmark programs resided on
a conventional SATA SSD.

We ran our tests on two systems with di�erent hardware con�gurations:

1. A 2011 Sandy Bridge system with an Intel Xeon CPU E3-1230 with
four cores clocked at 3.20 GHz [6]. It has 8 MB of cache available.
This CPU only supports the older PCIe 2.0 standard, limiting possible
maximum bandwidth from the SSD to 2 GB/s. DMA on this machine
does not hit the last-level cache.

2. A 2014 Haswell system with two Intel Xeon CPU E5-2630 v3 with
eight cores clocked at 2.40 GHz each [8]. Each CPU has 20 MB of

19
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cache available and supports the PCIe 3.0 standard. All our tests were
pinned to the �rst socket for both CPU and memory. The performance
counters used in Section 5.4 were only available on this system. Addi-
tionally, it supports Intel DDIO, so DMA transfers go to the last-level
cache (see Section 2.1).

We disabled Hyper-Threading on both systems to reduce noise in results.

5.2 DMA Load

In this section, we analyze the achievable bandwidth with our three access
patterns single, random, and �ush from Section 3.1.1 with di�erent levels of
parallelism.

As the Linux driver processes NVMe commands synchronously, blocking
the calling user process, we are able to precisely measure the bandwidth
used by each worker thread. In the following experiment, we ran each of
our patterns for 10 s, summing the number of commands and the number of
blocks transferred. We reset the SSD before each run with the NVMe Format
command.
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Figure 5.1: DMA bandwidth used by nvme-memload with di�erent amounts
of worker threads sending NVMe commands.

Figure 5.1 shows the results as average bandwidth per second.
For the patterns transferring data, both a read and write variant is listed.

These are given relative to the main memory, so read means reading from
main memory and writing to the SSD.

In addition to data blocks transferred, the bandwidth displayed also in-
cludes transfers from NVMe commands. For each operation, the SSD reads a
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64 B NVMe command from main memory and then writes a 16 B completion
queue entry back to main memory. In summary, the bandwidth is calculated
as follows:

avg bandwidth =
number of blocks ∗ 4096B + number of commands ∗ (64B + 16B)

runtime

The PCIe 2.0 bandwidth limit on the Sandy Bridge system is clearly visi-
ble: random-write transfers are capped below 1400 MiB/s, whereas the same
con�guration on the PCIe 3.0 Haswell system achieves more than 3000 MiB/s.

The patterns behave very di�erently when given more commands in par-
allel. On both systems, the random-write pattern reaches maximum band-
width usage with two workers. It stays constant as more workers are added.
In contrast, the single-write pattern, which transfers only a single block per
command, only caps on the Sandy Bridge system with three or more work-
ers. On Haswell, single-write performance keeps gradually increasing. Still,
the random-write pattern performs at roughly double the bandwidth of the
single-write pattern on both systems.

This gap is a lot smaller for the read variants. These both perform below
their write counterparts. They also do not have a clear cap on either system.

The �ush pattern's bandwidth usage only becomes noticeable compared
to the actual data transfers with more than four workers. As our goal is to
analyze interference from high-bandwidth DMA transfers, we only use the
high-bandwidth patterns single and random for the experiments in Section
5.5.
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Figure 5.2: NVMe command rate of nvme-memload with di�erent amounts
of worker threads.
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In contrast to the bandwidth graphs, the command rates in Figure 5.2
look very similar on both our systems. The random pattern only sends very
few commands as most of the time is spent waiting for the SSD to transfer
the data. The two single patterns show very clearly where the PCIe 2.0 limit
on Sandy Bridge comes into play: The command rates for single-read are
roughly identical on both systems, whereas the single-write pattern starts
similarly on both systems but clearly caps out on Sandy Bridge after three
workers.

The �ush pattern has the most striking curve. Along with the single-
write pattern, it has the highest command rate among our test set. The
flush NVMe command instructs the SSD to commit data from previous
I/O commands to non-volatile media. However, as this is the only command
we send, it is essentially a no-op and can thus be answered very quickly.
Similarly, the single-write commands �nish fast because only little data needs
to be transferred for them. In contrast to the single-write pattern, the �ush
curve shows a huge jump in command rate between 4 and 5 (Sandy Bridge)
or 3 and 4 (Haswell) workers. The �nal command rate is identical on both
systems.

Considering the results above, we decided to use 4 worker threads on
the Sandy Bridge system and 8 worker threads on the Haswell system for
the DMA interference experiments in Section 5.5. With this con�guration,
we miss only very little bandwidth on the Sandy Bridge system and go for
maximum bandwidth on Haswell. We did not consider more threads as all
load generator threads will be pinned to a single CPU core for the interference
experiment.

5.3 Syscall Batching

In Section 4.2, we described a modi�cation to the NVMe Linux driver where
the ioctl system call used to send commands to the SSD is amended with
batching functionality. This reduces the rate of system calls our application
does and may improve performance. To verify this, we repeated the tests
from the previous section, sending sets of 1000 commands to the driver.

In Figure 5.3 we see the command rate with our modi�ed driver. Com-
paring to Figure 5.2a, it is clearly visible that even with the �ush pattern,
having the highest command throughput, there is no improvement with our
modi�cations. Thus, for our application, the system call rate limit is not an
issue.

In the following benchmarks, we use the standard driver without modi�-
cations.
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Figure 5.3: NVMe command rate on Sandy Bridge with our modi�ed Kernel.

5.4 Performance Counter Monitoring

In this section, we analyze results from the Performance Counter Monitor
integrated in nvme-memload as described in Section 4.3. We only did those
tests on the Haswell system as the Sandy Bridge system does not have the
necessary performance counters.

In the following experiments, we ran nvme-memload with Performance
Counter monitoring enabled. For each run, it sets up a single counter, then
issues a �xed number of NVMe commands. At last, it records the �nal
number in the counter. Consequently, separate runs of the same con�guration
are necessary to test multiple events.

We tested our single and random patterns for both reading and writing,
and the �ush pattern as described in Section 3.1.1. To assess the base load,
we also added a noop pattern, which just runs the performance counters
without doing transfers.

Figure 5.4 shows the results from the noop pattern run over 5 s. The CRd
(Demand Code Read) and DRd (Demand Data Read) events are shared with
the CPU and cannot be �ltered for PCIe tra�c. As explained in Section
2.1, the PRd (MMIO Read) and WiL (MMIO Write) events carry no usable
information about NVMe transfers.

The remaining events are PCIeRdCur (PCIe read current transfer), RFO
(PCIe partial write), and ItoM (PCIe write full cache line). The last two of
them are shared with the CPU as well, but can be �ltered for PCIe tra�c.
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Figure 5.4: Performance counter results of running the counters for 5 s with-
out any load on a logarithmic scale.

Only little base activity is visible for these events. We decided to keep the
test duration between 5 s and 10 s to keep this base load low. For this
runtime, we can expect less than 50 unrelated events for each event type.

5.4.1 NVMe Command Counts

Immediately visible from the results is the correlation between the command
count and the RFO-hits event. Figure 5.5 compares command count and
RFO-hits for each pattern. This correlation only occurs when the target
memory bu�er the SSD writes to is aligned at 64 B boundaries, matching
LLC cache lines.

The RFO event counts partial cache line writes. Our SSD works with
4096 B blocks, �tting exactly in 64 cache lines. Accordingly, no RFO events
are recorded when all transfers are properly aligned.

However, there is another data transfer: The SSD writes completion en-
tries into memory after every NVMe operation. These are 16 B and emit
a single RFO event each. Consequently, we are actually counting completion
entries here.
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Figure 5.5: Comparison of the command count and RFO-hits events for each
pattern.

5.4.2 Bandwidth

In addition to NVMe command counts, we can also estimate transfer sizes
using performance counters. In Section 5.2, we give a formula for calculating
the total bandwidth. The performance counters distinguish between tra�c
to the SSD (PCIeRdCur) and tra�c from the SSD (ItoM). PCIeRdCur counts
both full and partial cache line, so it includes NVMe commands (64 B each)
regardless of their alignment. The completion entries (16 B each) are smaller
than a cache line. Thus, they are not included in the ItoM events, which are
only triggered for full cache line writes, but in the RFO events (see Section
5.4.1).

The performance counters work with cache lines, which are 64 B in size.
Thus, the expected counter values are as follows:

PCIeRdCur =
blocks read from memory ∗ 4096B + commands ∗ 64B

64B

ItoM =
blocks written to memory ∗ 4096B

64B
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The counters further divide these events into cache hits and misses. The
graphs in Figure 5.6 compare our estimated event count with the combined
number for cache hits and misses.
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Figure 5.6: Comparison of actual and expected counter values.

For the events including data blocks (Figure 5.6a), the accuracy of our
estimate depends on the pattern. With the random pattern, which transfers
multiple blocks per NVMe command, the counter values and our estimate
are very close. On the other hand, the counter results for the single pattern
are twice our estimates.

In Figure 5.6b, only bandwidth from NVMe commands and completion
entries is recorded. For the ItoM event, the performance counters do not
record any events. This con�rms that the completion queue entries are not
included here. For the PCIeRdCur event, the performance counters match the
expected number of events with the �ush pattern. For the other patterns
that transfer data, the actual counter value is a lot higher. Thus, when
writing from SSD to memory, additional PCIeRdCur events are generated.
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5.4.3 Caching

The performance counters distinguish between cache hits and misses. By
reading the target memory area with the CPU beforehand, we can reduce
the amount of cache misses signi�cantly; cache misses then only occur when
the CPU accesses the memory. DMAmemory accesses triggering a cache miss
will record both a cache miss and a cache hit in the performance counters.
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Figure 5.7: Comparison of PCM event counts with di�erent bu�er sizes and
caching modes in nvme-memload. Only events including transferred data
blocks are shown.

Figure 5.7 shows counter results for di�erent con�gurations of nvme-mem-
load. The small bu�er, which was also used in the tests above, has a size of
1000 blocks (approximately 3 MiB). Thus, it �ts completely in the 20 MB
last-level cache of our Haswell test system and only few cache misses occur.

In the second con�guration, the whole bu�er is read once by the CPU
before any NVMe commands are sent, putting it completely into the cache.
However, this does not change the number of cache misses signi�cantly. Con-
sequently, DMA transfers always allocate cache lines in the LLC; a write
allocate write policy is used.
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The large bu�er used in the other two con�gurations has exactly 1 GiB
and thus cannot be cached completely. Without any additional work by
nvme-memload, a large number of cache misses is recorded. The observed
numbers are consistent with how the patterns operate: With the single pat-
tern, the SSD reads or writes its blocks sequentially in memory. Thus, blocks
are more likely to be in memory already due to prefetching. In contrast, the
random pattern always picks a random location in the memory bu�er. This
location is unlikely to be cached, so almost every memory access produces a
cache miss.

In the last con�guration, each memory location is read by the CPU before
issuing an NVMe command. Consequently, cache misses mainly happen when
the CPU accesses the memory and not as part of the DMA transfer. Still,
the number of cache misses recorded is larger than with the small memory
bu�er.

The values of the hits bars do not change between our con�guration
options. They only depend on the number of blocks transmitted by each
pattern. Therefore, even for cache misses, the performance counters record
a cache hit after the memory area has been loaded into the cache. This also
reveals that all DMA operations are processed via the LLC, occupying cache
rows even when the CPU never accesses the data.

5.5 DMA Interference

In the following sections, we analyze interference from our DMA load gener-
ator. As test programs, we used several benchmarking programs.

We ran the benchmark programs in parallel with multiple con�gurations
of nvme-memload. We pinned the load generator process to a single CPU
core, excluding the benchmark processes from that core. For most con�g-
urations, this did not have a signi�cant e�ect on the achieved DMA load,
while eliminating all in�uence of CPU scheduling. Some of the benchmark
programs we used overwrite their pinning con�guration on startup. Specif-
ically, they pin some of their threads to the �rst CPU core. By pinning
nvme-memload to the last core, we were able to prevent con�icts.

An additional run per con�guration without any DMA load but with the
same pinning is used as baseline.

We varied the following parameters through several con�gurations:

Number of memory channels We can make di�erent amounts of memory
channels available to the CPU by physically adding or removing RAM.
On the Sandy Bridge system, there are two memory channels available;
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on the Haswell system four. For both systems, we tested the minimum
(1) and the maximum (2 or 4) number of memory channels. Note that
with fewer memory channels, there is less memory available for the
system. We had to adjust some benchmarks to reduce memory usage.

Last-level cache usage Although we determined in Section 5.4 that putting
the whole bu�er in cache once does not improve cache usage on the
Haswell system, reading the bu�er before issuing each NVMe com-
mands does. Consequently, we tested with and without doing this. On
the Sandy Bridge system, the caching con�guration does not a�ect the
DMA transfer itself, but still adds load by the CPU to the memory
controller.

Patterns From the access patterns introduced in Section 3.1.1, we used both
the single and random patterns for our tests. We only set the patterns
to write to main memory as higher bandwidth can be achieved com-
pared to reading. The �ush pattern does not transfer any data besides
the commands and thus will not cause any meaningful interference.

Bu�er size We tested two bu�er sizes. The small bu�er has 1000 blocks
(about 3 MiB) and will thus always �t in the LLC of both our test
systems. The large bu�er has 1 GiB, providing a very large target
area. As seen in Section 5.4.3, this con�guration causes a large number
of cache misses due to bad cache locality.

We combined the parameters above into four con�gurations. For each
con�guration, we �rst did a baseline run without any load (�plain�), then a
run with the random pattern and �nally one with the single pattern. To
detect random noise in the results, we ran this cycle ten times for each
con�guration. The other parameters of the four con�gurations are listed
below:

default The maximum number of memory channels, no caching, and the
small bu�er size.

big bu�er Same as default, but with the large bu�er of 1 GiB.

caching Same as big bu�er, but caching enabled as explained above.

single channel Same as default, but with only a single memory channel.
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5.5.1 PARSEC

PARSEC is a benchmark suite with a focus on multithreaded applications.
Its authors intended its workloads to be similar to real-world tasks [1]. There-
fore, it provides a good basis for estimating the impact of high-bandwidth
DMA transfers to applications.

The full benchmark results are in Appendix A. Plain is the benchmark
result without any load, random is with the random pattern, and single is
with the single pattern. The graph bars indicate averages; individual results
are noted as dots. We measured wall-clock time from launch to exit of the
benchmark programs; the graphs depict the time in seconds.

For most of the benchmarks on both systems, no di�erence is visible when
adding DMA load. The interesting benchmarks that show a di�erence are
canneal, raytrace, and streamcluster. The swaptions benchmark shows
a lot of variation, which is not helpful for our analysis; it only shows a clear
di�erence in a single con�guration on Haswell.

(a) Sandy Bridge (b) Haswell

Figure 5.8: Results of the canneal workload.

The canneal benchmark shows an average di�erence of 3.2% on Sandy
Bridge and 2.7% on Haswell when adding either DMA load pattern in the
default con�guration (Figure 5.8). When increasing the bu�er size to 1 GiB,
the di�erence increases to 6.0% on Sandy Bridge; keeping the target bu�er in
cache does not change this. As DMA transfers never go to the cache on our
Sandy Bridge system, we expect the �caching� con�guration to be equivalent
to the �big bu�er� one.

On Haswell with the large bu�er, canneal gets slower by 6.5% with the
random pattern and 4.6% with the single pattern. When adding caching, the
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di�erence increases signi�cantly to 14% with the random pattern and 10%
with the single pattern. This big di�erence to the results on Sandy Bridge
con�rms that DMA transfers work di�erently on the Haswell system due to
Intel DDIO.

With only a single memory channel, the random and single pattern results
diverge: On Sandy Bridge, the random pattern slows down canneal by 4.2%
and the single pattern by 7.4%. On Haswell, the numbers are similar (4.7%
and 6.3% respectively).

(a) Sandy Bridge (b) Haswell

Figure 5.9: Results of the raytrace workload.

Figure 5.9 shows the results with the raytrace workload. On both sys-
tems, it shows no signi�cant di�erence in the default and single channel
con�gurations.

On the Sandy Bridge system, a slim di�erence of 1.2% is visible with the
large bu�er and the single pattern, and of 2.0% with caching and the random
pattern. On the Haswell system, the di�erence is slightly larger with about
1.8% for both patterns in the big bu�er con�guration. When adding caching,
this di�erence disappears.

The streamcluster benchmark shown in Figure 5.10 has the biggest
di�erences. On the Sandy Bridge system, there is a di�erence of 5.1% and of
5.4% for the random and single patterns in the �rst two con�gurations. With
caching, this di�erence rises slightly by one percentage point for the random
pattern. Limiting to a single memory channel increases the di�erence a lot
to 23% for the random pattern and 24% for the single pattern. This suggests
that the benchmark program is indeed slowed down because of limitations of
the memory bus.
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(a) Sandy Bridge (b) Haswell

Figure 5.10: Results of the streamcluster workload.

In contrast, on the Haswell system (Figure 5.10b), the results are counter
to our expectations. While the single pattern shows almost no di�erence to
the plain time, the random pattern actually improves the benchmark result
by 2.5%. With the large bu�er, the improvement doubles to 5.0%. With
caching enabled, this e�ect disappears and the random and single patterns
are slightly slower than the baseline. With only a single memory channel, we
get results similar to the Sandy Bridge system. However, the single pattern
has a bigger in�uence than the random pattern with 13.2% to 7.9%.

In conclusion, our results coincide with the evaluation of the PARSEC
authors (see Section 2.4): The DMA load only a�ects the memory intensive
workloads. With streamcluster su�ering the most from interference, we
were also able to roughly reproduce their relative ranking.

5.5.2 In-memory Databases

In addition to the PARSEC benchmark suite, we also tested interference of
some in-memory databases. As multithreading was the main concern for
the PARSEC benchmarks, they tend to be heavy on CPU usage, but not
necessarily on memory accesses. In contrast, in-memory databases usually
do very little processing on the CPU but are optimized to read and write
large amounts of data from memory as quickly as possible. Consequently, we
expect that any interference from DMA would be especially heavy on those
applications.

Redis [16] is an in-memory datastore. It handles requests to store or
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(a) Sandy Bridge (b) Haswell

Figure 5.11: Results of the memtier-redis benchmark. The default and
single channel con�gurations are with the small bu�er of 1000 blocks; big
bu�er and caching are with the 1 GiB bu�er.

retrieve data synchronously on a single thread. The memtier benchmark
program [14] acts as client to Redis, sending requests to store or retrieve data
concurrently on multiple threads.

We ran Redis in its default con�guration, but with persistence disabled.
The memtier benchmark was set to do a �xed number of requests. The re-
sulting runtimes are shown in Figure 5.11. For all con�gurations, the baseline
run without DMA load is the fastest and the run with the single pattern the
slowest.

On Sandy Bridge (Figure 5.11a), the di�erence between patterns is only
small. However, the single pattern creates a lot of variation in the results,
with a single run being almost two times slower than the median of the
big bu�er con�guration. The biggest di�erence is visible with the reduced
memory channel con�guration: The random pattern slows down Redis by
2.8%, and the single pattern by 8.4%.

On Haswell (Figure 5.11b), the di�erences are more signi�cant. We ran
the benchmark with more worker threads there, increasing the overall com-
mand count and runtime. In the default con�guration, the random pattern
is 13% slower and the single pattern is 41% slower than the baseline. With
the big bu�er, these numbers are similar. When enabling caching in addition
to the big bu�er, the random pattern slows the benchmark down as much as
the single pattern does. The caching does not have an e�ect on the single
pattern though.
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Silo [17] is another in-memory database. It is designed to be very e�cient
on modern multicore systems, achieving high memory throughput (see Sec-
tion 2.5). Silo's source includes a couple of benchmarks; we used the TPC-C
and YCSB benchmarks here.

The TPC-C benchmark, shown in Figure 5.12, shows a lot of noise on our
Sandy Bridge system, but is very consistent on the Haswell system. Never-
theless, a curious pattern is visible on both systems: with the DMA load,
Silo actually gets slightly faster than without DMA load in all con�gurations.
On the Haswell system in the default con�guration, Silo is 1.9% faster with
the random pattern and 5.2% faster with the single pattern. The numbers
are similar for the big bu�er con�guration. In the caching con�guration, the
benchmark is once again slightly slower with DMA load. With only a single
memory channel, the plain and random times get slower compared to the
default con�guration, while the single time stays roughly at the same level,
increasing the di�erence to 8.2%.

Due to the noise, the di�erences are a lot less visible on the Sandy Bridge
system (Figure 5.12a). The clearest di�erence is in the single channel con-
�guration, where the single pattern speeds up Silo by 17%.

With the YCSB benchmark, the runtimes are all within 1% of each other
on the Haswell system, showing little interference. In contrast, on the Sandy
Bridge system the DMA load speeds up the benchmark again. In the default
con�guration, the random pattern makes the benchmark faster by 3.2% and
the single pattern by 13%. Apart from noise, the results are similar with
the big bu�er and single channel con�gurations. When adding caching, the
benchmark with the random pattern also drops down and is 14% faster than
the baseline. This signi�cant change is curious, as DMA transfers on the
Sandy Bridge system do not go to the cache (see Section 2.1).

In conclusion, the in-memory databases indeed all show interference from
our arti�cial DMA load. However, the databases often get faster with added
load, which is the opposite of what we expected to see.
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(a) Sandy Bridge (b) Haswell

Figure 5.12: Results of the silo-tpcc benchmark.

(a) Sandy Bridge (b) Haswell

Figure 5.13: Results of the silo-ycsb benchmark.
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Chapter 6

Conclusion

In this work, we analyzed the in�uence of high-bandwidth DMA transfers on
running programs. We chose solid-state drives based on NVMe to generate
the synthetic DMA load and used raw NVMe commands to shape tra�c
precisely. This allowed us to simulate access patterns resembling both block
storage devices (with the random pattern) and networking cards (with the
single pattern). Making sure that the load generator is only limited by
our hardware, we also modi�ed the Linux kernel to eliminate a potential
bottleneck in the NVMe driver; this did however not improve performance.

In our evaluation, we �rst analyzed the DMA bandwidth our load genera-
tor can achieve. Using two test systems, we showed the bandwidth di�erences
of PCI Express 2.0 and 3.0, and presented the performance characteristics
of our SSD at di�erent levels of parallelism. We revealed that when aiming
for maximum transfer bandwidth, only two parallel workers are currently
required; this is likely to change with future devices though.

We used Uncore performance counters to further evaluate our synthetic
DMA load, showing ways to estimate NVMe command counts as well as
data transfer sizes without modifying the program issuing the commands.
Additionally, we were able to see e�ects of Intel's DDIO technology, which
uses the last-level cache as end point of DMA transfers instead of the main
memory. When working with small amounts of data on an SSD, the main
memory is never directly involved; this likely improves overall performance.

Finally, we used the PARSEC benchmark as well as the in-memory data-
bases Redis and Silo to assess interference with our synthetic DMA load. We
found that only processes doing very large and frequent memory transfers are
a�ected at all. Our expectation that DMA transfers would only slow down
processes was not con�rmed; in fact, several benchmarks showed a signi�cant
speedup.

Our results show that, if contention of memory accesses is a concern�for
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example in the situation the MemGuard authors describe in their evaluation
[2]�then high-bandwidth DMA transfers will indeed in�uence the running
processes as well. A bandwidth reservation system thus should not only
manage the memory bandwidth that applications use directly, but also the
bandwidth used by I/O operations.

6.1 Future Work

This work was mainly concerned with the generation of DMA load. Our
results with the interference warrant further analysis of the causes. Perfor-
mance counters located at the memory controller may help identifying the
bottlenecks in the memory system. Especially the benchmarks speeding up
with added DMA load need additional investigation.

In our evaluation, we only used a single solid-state drive per system. On
our Haswell system, the DMA load was only limited by the read and write
performance of the SSD. Additional tests with multiple DMA devices could
explore limitations of DMA and the memory bus. Such a setup is interesting
because of its resemblance with real-world servers receiving requests from a
networking card and serving data from an SSD.

While one of our test systems had two sockets, we did not test any ef-
fects from non-uniform I/O access (NUIOA). For our experiments, we always
pinned both the load generator and the benchmark to the socket the SSD was
connected to. When the load generator runs on the other socket instead, the
DMA I/O �rst has to traverse a QPI link, which may be another bottleneck
causing interference. Additionally, the Intel DDIO technology does not work
in this setup [5].



Appendix A

Full PARSEC Results

(a) Sandy Bridge

(b) Haswell

Figure A.1: PARSEC benchmark results in the default con�guration.
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(a) With a big 1 GiB target bu�er

(b) With caching enabled

(c) With only a single memory channel

Figure A.2: PARSEC benchmark results on the Sandy Bridge system.
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(a) With a big 1 GiB target bu�er

(b) With caching enabled

(c) With only a single memory channel

Figure A.3: PARSEC benchmark results on the Haswell system.
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