
On the Applicability of More
Accurate Page Access Information

Masterarbeit
von

Julian Faude
an der Fakultät für Informatik

Erstgutachter: Prof. Dr. Frank Bellosa
Zweitgutachter: Prof. Dr. Wolfgang Karl
Betreuender Mitarbeiter: Dipl.-Inform. Marc Rittinghaus

Bearbeitungszeit: 1. Februar 2014 – 31. Juli 2014

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, den 31. Juli 2014

iv

Contents

Contents 1

1 Introduction 3
1.1 Outline . 5

2 Background 7
2.1 Paging . 7

2.1.1 Address Translation and Page Faults 8
2.1.2 Paging Policy . 10

2.2 Paging Algorithms . 11
2.2.1 Page Replacement Algorithms 12
2.2.2 Page Replacement and Multitasking 15

2.3 Dynamic Miss Ratio Curve . 16
2.3.1 Mattson Stack Algorithm 17

2.4 IA-32e Architecture Memory Management 18
2.5 Memory Tracing using Full System Simulation 20

2.5.1 Full System Simulation 21
2.5.2 Independent Data Store 22

3 Analysis 25
3.1 Accessed Flag Inaccuracies . 27

3.1.1 Accessed Flag Temporal Inaccuracies 27
3.1.2 Accessed Flag Reference Counting Inaccuracies 29

3.2 Potential Performance Improvements 30
3.2.1 Paging Algorithm Performance Assessment 31
3.2.2 Extended Page Table Entry Format 33

3.3 Conclusion . 34

4 Design 37
4.1 Detecting Reference Counter Inaccuracies 37

4.1.1 Data Acquisition . 39

1

2 CONTENTS

4.1.2 Data Refinement . 42
4.1.3 Conclusion . 44

4.2 Simulating Paging Algorithms 46
4.2.1 Data Acquisition . 46
4.2.2 Memory Management Model 47
4.2.3 Simulation Design . 48
4.2.4 Summary . 51

5 Implementation 53
5.1 Enforcing Local Page Replacement in Linux 54

5.1.1 Cgroups . 55
5.2 Data Refinement for Linux Guests 55

5.2.1 Filtering the Memory Access Stream 56
5.2.2 Filtering Test-and-clear Operations 58

5.3 Reconstructing Inaccuracies . 59
5.4 The Stack Simulation . 60

5.4.1 The Optimal Page Replacement Algorithm 62
5.5 Conclusion . 64

6 Evaluation 67
6.1 Evaluation Setup . 67

6.1.1 System Configuration 67
6.1.2 Benchmarks . 69

6.2 Page Reference Counter Inaccuracies 70
6.2.1 Visualizing Reference Counter Inaccuracies 71
6.2.2 Quantifying Reference Counter Inaccuracies 77
6.2.3 Discussion . 79
6.2.4 Conclusion . 81

6.3 Paging Simulation . 81
6.3.1 Binary Search . 82
6.3.2 Quicksort . 83
6.3.3 MySQL . 84
6.3.4 pbrt . 85
6.3.5 zlib . 86
6.3.6 Discussion . 87
6.3.7 Conclusion . 90

7 Conclusion 91
7.1 Future Work . 92

Bibliography 95

Chapter 1

Introduction

Paged virtual memory management introduces a classical allocation problem. The
computer system is equipped with x fast physical page frames and runs an operat-
ing system and a number of processes. The memory requirements of the operating
system and the processes amount to y > x virtual memory pages. Pages that do
not fit into physical memory at a point in time, must be buffered on slow external
storage. The operating system is tasked to constantly decide which pages should
reside in fast physical memory and which pages should be pushed to slow external
storage until they are needed again. The operating system’s objective is to reduce
page traffic, that is the number of times a page must be brought from external stor-
age into physical memory, without knowledge of the future memory needs of the
operating system and processes. To this end, it applies a paging algorithm. Paging
algorithms use page access information describing past memory usage provided
through the system’s page tables, acting as an interface between the hardware and
software. Paging algorithms employ assumptions about memory usage in order to
extrapolate future memory usage from past memory usage. However, the IA-32e
architecture page table format reserves only a single bit of access information for
each page.

The objective of this work is to assess the nature of potential inaccuracies and
whether this 1 bit capacity provides sufficiently accurate page access information
to the paging algorithm. In case 1 bit proves in fact insufficient, thereby intro-
ducing inaccuracies into the operating system’s perception of past memory usage,
it yet remains unclear whether or not this inaccuracies worsen the paging algo-
rithm’s allocation decisions preventing it from performing at its best. A second
objective of this work is thus to assess whether or not the paging algorithm may
potentially benefit from more accurate page access information.

3

4 CHAPTER 1. INTRODUCTION

To achieve this objective, as a first step, we trace the memory usage of an entire
computer system, running an instrumented guest operating system and a number
of processes, including a set of benchmarks. Additionally, we record the inter-
actions between the operating system’s paging algorithm and the hardware page
tables. In order to learn to which extend the limited storage capacity of the page
tables introduces inaccuracies into the operating system’s perception of memory
usage, we replay the recorded memory usage and interaction between the paging
algorithm and page tables. This allows us to reconstruct and compare the operat-
ing system’s different perceptions of the benchmark’s memory usage, with respect
to both the limitations of IA-32e page tables as well as hypothetical, less limited
pages tables. To this end, we define the perception induced by IA-32e page tables
as distorted in case it differs from the hypothetical perception based on higher
resolution access information.

As a second step, we conduct a paged virtual memory management simulation of
the recorded memory usage of a number of benchmarks and record the number
of page faults it generates. The simulation employs paging algorithms like least
frequently as well as least recently used page replacement. It provides them with
either low resolution but authentic 1 bit page table page access information or
higher resolution page access information based on hypothetical, higher capacity
page tables. The simulation results for different paging algorithms operating on
page access information with different resolutions allow us to assess whether or
not they benefit from higher capacity page tables. In case they do, we take this
as an indication that the paging algorithms suffer from inaccurate page access
information provided by low capacity page tables.

We employ five benchmark programs: a custom program performing a series of
binary searches, a custom program sorting an array of integers using the quicksort
algorithm, a database undergoing a series of complex transactions, physically-
based rendering, and a custom program compressing an archive using the zlib
library. We assess the interaction between the Linux paging algorithm and the
IA-32e page tables for the binary search as well as the quicksort benchmark very
closely. The evaluation confirms that the operating system’s perception of mem-
ory usage induced by 1 bit page access information provided by IA-32e page ta-
bles is in fact distorted as it significantly differs from the hypothetical perception
based on completely accurate access information. The evaluation also finds that
the induced perception not only does not improve but potentially loses accuracy
with moderately increased page table capacity. We find that only increasing the
page table’s capacity to at least 16 bit for every page actually improves the operat-
ing system’s perception of memory usage significantly, to the point where it does
not further suffer from distortion.

1.1. OUTLINE 5

The evaluation of the paging simulation, however, reveals that paging algorithms
do not benefit from more accurate page access information. For four out of five
benchmarks the simulation shows that more accurate page access information
does not effect the paging algorithms performance at all, regardless of the ex-
tend to which we increase the page table’s capacity. For the fifth benchmark, the
quicksort benchmark, the simulation shows that the number of page faults drops
by less than 4% when comparing the results of 1 bit page access information for
each page to inaccuracy free 16, bit page table page access information.

1.1 Outline

Following the introduction, Chapter 2 provides background of paged virtual mem-
ory management, common page replacement approaches and the IA-32e architec-
ture. Furthermore, it gives an overview of the Mattson stack algorithm [21] as an
approach to paging simulation. The chapter is supplemented with an introduction
to full system simulation and tracing using Simutrace [11,25]. Chapter 3 analyzes
what inaccuracies the limitations of IA-32e architecture page tables introduce into
the paging algorithm’s perception of memory usage. Furthermore, it suggests ex-
tended page table formats providing more accurate page access information and
discusses key aspects of paging algorithm performance assessment. Subsequently,
Chapter 4 presents our proposed analysis method for analyzing the distortions that
inaccurate page access information introduce into the operating system’s percep-
tion of memory usage. Additionally, it outlines our approach to paging simula-
tion. Chapter 5 discusses the setup of the simulator as well as the simulation guest,
the trace data postprocessing and the implementation of the memory perception
reconstruction as well as the paging simulation. An evaluation is performed in
Chapter 6. Finally, we close with a conclusion and prospect of future work in
Chapter 7.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

The purpose of this chapter is to give short explanations of the technical concepts
and terminology used throughout this work as well as to discuss related work. The
chapter begins with a introduction of the concept of paged virtual memory, i.a.,
paging, in Section 2.1. Section 2.2 discusses the purpose of paging algorithms
and outlines a number of prominent algorithms and their workings. Section 2.3
discusses the Mattson stack algorithm as a mean to simulate paging algorithms.
The workings of memory management in the IA-32e architecture is presented in
Section 2.4. The chapter closes with a discussion of Simutrace, a toolchain for
operating system introspection and memory tracing using full system simulation
in Section 2.5.

2.1 Paging

Paging is a memory management mechanism introduced in order to achieve a) iso-
lation between processes and b) high utilization of memory resources. The Atlas
computer [10] was the first computer to support paging. Paging is based on break-
ing virtual memory as well as physical memory into fixed-sized blocks called page
and pages frames respectively. Paging also introduces a level of indirection be-
tween the logical memory addresses, referred to as virtual addresses, and physical
addresses. Each virtual address falls into exactly one page whereas each physical
address falls into exactly one page frame. In order to reference a page, a page
frame must be allocated to hold the contents of said page. For the purpose of
translating a virtual to its corresponding physical address paging employs a page
map. Aho et al. [3] formalize this concept as follows: N = {1, . . . , n} denotes the
set of virtual pages. The set M = {1, . . . ,m} denotes the physical page frames.

7

8 CHAPTER 2. BACKGROUND

Then the page map is a function f : N →M given by

f(i) =

{
j if page i is mapped onto page frame j
undefined otherwise

for page to page frame translation.

Through this level of indirection paging achieves the desired level of isolation.
Every isolation domain (e.g., a process) operates in its own virtual memory ad-
dress space 1. Thus, effectively every address space a is linked to an exclusive set
of pages Na translated by an exclusive page map fa. However, all address spaces
compete for the same set M of page frames.

For the purpose of high utilization paging also allows for overcommitment. Virtual
memory may comprise more pages than the system supports page frames. In
general it holds 1 ≤ m ≤ n. In that case only a subset of the pages may be
assigned a page frame. The other pages must temporarily be held on external
storage and the page map indicates f(i) = undefined for any page i not present
in memory. In the event of an reference to such a page a page fault is issued. The
system then finds a suitable page frame for the page for allocation and potentially
pulls [10] the page into memory. Before the pull is performed it may be necessary
to push a page that is currently residing in memory to external storage, effectively
freeing the page frame it occupies.

Another of the advantages of paging is page sharing. Several identical pages
may get allocated a common page frame. For contentwise identical pages i and i′

sharing a page frame holds f(i) = f(i′). i and i′ share a page frame.

Figure 2.1 illustrates those aspects of paging. On the left there are processes
represented as logical memory split into several pages. The physical memory
(RAM) is shown on the right and likewise split into page frames. Arrows between
pages and page frames depict the allocation of page frames as indicated by the
page map. As discussed before, some pages share a common page frame, while
others do not reside in memory at all.

2.1.1 Address Translation and Page Faults

As a program runs on the CPU it generates memory accesses in the form of ref-
erences to virtual addresses. In order to retrieve the data identified by a virtual
address, first, the address must be translated to the corresponding physical address

1In the remainder address space and process are used interchangeable.

2.1. PAGING 9

Address Space A

Address Space B

Memory

Figure 2.1: Example of pages of two processes A and B being mapped on physical
page frames.

using the page map. It is a physical address that identifies the location in mem-
ory where requested data is currently stored. This process of translating virtual
addresses to physical addresses is referred to as address translation.

Aho et al. [3] define address translation as follows: Given a page size of z, the set
of pages N and the set of page frames M , address translation finds for any valid
virtual address the page i the address falls into and the offset w within said page
with i ∈ N and 0 ≤ w < z. Afterwards it queries the page map for f(i) ∈M and
hence finds the corresponding physical address as (f(i)− 1) ∗ z + w 2.

A page fault occurs in case of a reference to page i with f(i) = undefined , that is
i is not allocated a page frame. A page fault causes the execution of the process
to be interrupted while the paging algorithm handles the page fault. The time the
execution remains interrupted is called the page wait time [3]. It includes the time
it takes to select and potentially free a page frame to hold the page, to potentially
load the page contents from external storage into the page frame, as well as the
time it takes to adjust the page tables accordingly. Hence, the page wait time
depends greatly on two factors: a) whether or not a push is necessary to free a
page frame for allocation, and b) whether or not a pull is necessary to bring page
contents from external storage into memory.

However, virtual memory is comprised of pages of different types. The differ-
ences stem from differences in the semantic context of the pages and greatly af-

2Page i includes addresses [(i− 1) ∗ z, . . . , i ∗ z).

10 CHAPTER 2. BACKGROUND

fect the necessary effort of moving pages out of or into memory. Pages whose
contents is exclusively defined by the execution of a program at runtime are called
anonymous. The contents of anonymous pages is initially undefined and only
generated at runtime. Since in general the contents of anonymous pages is inde-
pendent of data from external storage, at runtime such pages must be considered
unique. Pages whose contents is determined by data from external storage are
called named. Such pages include first of all the text sections of processes but
also memory mapped files.

Whether or not a push is necessary to remove a page from memory is determined
by the page type. On the one hand anonymous pages have to be pushed to external
storage in order to safe their unique contents for future use since their content
is only present in memory. On the other hand named pages do not have to be
pushed when removed from memory because their content is determined by data
on external storage and therefore, already present on external storage, ready for
subsequent pulls.

Whether or not a pull is necessary to bring a page into memory also depends on
the page type. Since the initial contents of anonymous pages is initially undefined,
no pull is necessary for the initial fault. Instead, the page is filled with zeros so
any prior page frame content is lost for the sake of process isolation. However,
subsequent page faults on anonymous pages do require a pull in order to bring
the contents from external storage into memory. Named pages also require a pull
when brought into memory. Since the inital content of named pages is not unde-
fined but determined by data from external storage, this even holds for the initial
page fault.

2.1.2 Paging Policy

According to Aho et al. [3] a paging policy specifies how to use the paging mech-
anism. A paging policy includes three subpolicies.

The fetch policy is used to decide when to map a page to a page frame, thereby
effectively bringing it into memory. In case the policy states that a page should
not be brought into memory before it is referenced for the first time the policy is
referred to as a demand fetch policy. Otherwise it is called a nondemand fetch
policy.

Once the fetch policy causes the paging mechanism to bring a page into memory,
the placement policy finds it a suitable page frame among the set of readily avail-

2.2. PAGING ALGORITHMS 11

able page frames3. Such a policy might for example have all free page frames
organized into a list and said page assigned to the first page frame in it.

The third policy is called the replacement policy and determines which pages
should be removed from memory, effectively freeing pages frames for new allo-
cation. A page selected by the replacement policy is called a victim. According to
Section 2.1.1 the page wait time partially depends on the page type of the victim
page.

An implementation of the paging policy and hence the three subpolicies is called
a paging algorithm [3]. A special class of paging algorithms are demand paging
algorithms. As the name suggests demand paging algorithms employ a demand
fetch policy, that is never allocate a page frame for a page until it is actually ref-
erenced. Furthermore, such algorithms never free a page frame unless absolutely
necessary. Put differently, a demand paging algorithm only invokes its replace-
ment policy in case its placement policy finds that it has no free page frame avail-
able. Finally, the placement policy places pages in arbitrary page frames as long
as there is a number to choose from or accepts any page frame the replacement
policy frees.

2.2 Paging Algorithms

Aho et al. [3] also give a formal definition of a paging algorithm. It boils down to
a state machine processing the reference string. The authors define the reference
string as a sequence ω = r1, . . . , rt of page references4 with rx ∈ N and some t.
The states correspond to the current page allocation and a control state which is
used to encode information about past state transitions. For each page reference rx
in the reference string a state transition occurs. The transition potentially adjusts
the page map and updates the control state as specified by the page replacement
policy. In case no unused page frame is available on a page fault, it applies its page
replacement algorithm on its current control state to select a victim page.

Additionally, Aho et al. [3] present two important findings. The authors state that
in general, when studying paging algorithms, the objective is to minimize the total
time required to execute a process. However, they find that replacing this criterion
for optimality with a slightly different one benefits their studies without signifi-
cantly limiting the generality of their following conclusions. As a new criterion

3In this case readily available page frames refers to a frame which is not allocated to any page.
4Page replacement algorithms relocate memory on granularity of pages, not virtual addresses.

However, a sequence of accesses to virtual memory address implies a sequence of page references.

12 CHAPTER 2. BACKGROUND

Aho et al. suggest the minimization of aggregate page wait time instead of ex-
ecution time and argue that both criteria are effectively equivalent for a demand
paging algorithm [3].

Their second finding follows as extension of the first one. A page wait interval
always corresponds to a page fault that caused the interruption. Hence, the authors
conclude that under a demand paging algorithm minimization of page wait time
is only achieved through minimization of the number of page faults and suggest to
direct the study of paging algorithms towards the study of replacement policies.
[3]. However, this correlation only holds in case page wait times are fixed. Yet,
Section 2.1.1 argues that page wait times greatly vary on the page types of both
faulted page and victim. This finding suggests that the suitability of a page as
victim not only depends on the likeliness of future references but also on the
necessary effort to move it out of memory. Yet, this work adopts minimization
of the number as page faults as criterion for optimal page replacement for the sake
of simplicity.

2.2.1 Page Replacement Algorithms

Let S = {n ∈ N | f(n) 6= undefined} ⊆ N be the subset of pages residing in
memory. The page replacement algorithm selects a victim n ∈ S to be freed for
use by a different page5.

In general, there are two classes of page replacement algorithms. The first class
of algorithms are offline algorithms. In this context an algorithm qualifies as of-
fline algorithm in case it has a priori knowledge of the entire reference string. The
reference string may for example be obtained from a pre-run of the program in
question [4]. The remainder of this section includes a discussion on how knowl-
edge about future references lead to an optimal replacement algorithm.

The second class of replacement algorithms are online algorithms. Such algo-
rithms are given no information about future reference. They base replacement
decisions on the past history of references. Online algorithms resort to making
assumptions about page reference behavior. Furthermore, they employ heuristics
to estimate the probability of future references using the past history. In other
words, they extrapolate future reference behavior from past reference behavior.

5In order to free a page frame the replacement algorithm must move every page the frame
is allocated to out of memory. In case the algorithm selects a shared page frame m ∈ M , it
effectively turns all pages n ∈ N with f(n) = m into victims. Hence, all potential victims
implied by a certain page frame must be taken into account during selection.

2.2. PAGING ALGORITHMS 13

Examples of online algorithms include random page replacement, least recently
and least frequently used page replacement.

Optimal and Worst Page Replacement

The Optimal page replacement (OPT) algorithm is discussed in great detail in [4].
It is a offline algorithm as it requires a priori knowledge about the reference string
and operates as follows: In case one of the pages in S will not be referenced any
further it is an obvious victim. However, if there is no such page OPT selects page
n ∈ S which is referenced only after any other page n′ ∈ S with n 6= n′ has
already been referenced before.

Analogous to OPT the Worst page replacement (WORST) algorithm selects page
n ∈ S which is referenced before any other page n′ ∈ S.

Random Page Replacement

The Random page replacement (RAND) algorithm capitalizes on the assumption
that page references are evenly distributed among all pages n ∈ N [4]. In other
words, at any point in the reference string a reference to a page n ∈ N is as likely
as a reference to any other page n′ ∈ N with n′ 6= n. Because of S ⊂ N this
also holds for any pages of S. In that case information for a good candidate can
neither be learned from the past nor the future of references. Hence RAND selects
a random victim among the pages in S.

Working Set and Least Recently Used Page Replacement

Denning et al. [8] present another assumption about page reference behaviour: the
working set model. The authors define the working set of pages as the minimum
collection of pages that must reside in memory for a process to operate efficiently
without unnecessary page faults and argue that it is a subset of the set of least
recently used pages. Their assumption about page reference behavior is that once
a page is referenced, further references to the same page are to be expected and
hence the working set is a good predictor for the immediate future of references
[8]. Thus, the working set model suggest to replace pages which are not member
of the working set whenever possible.

Memory is not necessarily larger than the working set and hence all pages in S
may be in fact part of the working set. However, under the assumption that there

14 CHAPTER 2. BACKGROUND

is at least one page in S that is not part of the working set, according to Denning
et al. [8] that page must be the least recently used page of S.

The least recently used page replacement algorithm (LRU) always replaces the
page of which did not receive a reference for the longest time of all pages in
S. For that purpose it maintains as control state an ordered sequence of S [3].
It is ordered according to the last reference to the pages with the most recently
referenced page at the front and the least recently referenced pages at the end.
An example is S = {y1, . . . , yk}. In case of an reference to page x = yi ∈ S
the sequence is updated to {x, y1, . . . , yi−1, yi+1, . . . , ys}. In case of a page fault
x 6∈ S the least recently referenced page yk is replaced and the sequence updated
to {x, y1, . . . , yk−1}. However, Sleator et al. [27] find evidence that LRU performs
poorly compared to OPT.

Belady et al. [4] find that the complete reordering may be costly but also non-
essential. The authors argue that instead of an ordered sequence a partition of S
into a set S1 of recently referenced pages and a set S0 = S \S1 of pages that have
not been referenced recently is of interest. Initially all pages are part of the set of
unreferenced pages (S0 = S, S1 = ∅). Any time a page x ∈ S0 is referenced it
is moved to set S1. In case a page needs to be pushed a victim is selected among
the pages in S0. In the event that S0 becomes empty (S0 = ∅, S1 = S) the sets are
exchanged and the process starts again.

LRU-K Page and Least Frequently Used Page Replacement

O’Neil et al. [23] present another assumption about page reference behavior6 that
may help to extrapolate the immediate future of references from the past history.
The authors assume that the reference string of a program may be partitioned into
relatively long disjoint phases with the following property: Within a phase the
probability bn that the at position t referenced page is n ∈ N , is independent of
position t. Put differently, at a point t − 1 in the reference string the probability
that page n is referenced next (at position t) is constant over the course of a phase
[23].

This assumption suggests the following heuristic: Always replace the page n ∈
S which has the lowest reference probability bn of all pages in S since for any
upcoming reference in the current phase it is the least likely target. However,
this leaves the question on how to learn the reference probability of the pages in
S. O’Neil et al. [23] propose to estimate the expected reference interarrival time

6The authors limit their attention to database programs.

2.2. PAGING ALGORITHMS 15

In = b−1n instead of estimating np directly. The authors present the backward K-
distance, the backward distance to the K th most recent reference to a given page.
The page n ∈ S with the maximum backward K-distance is assumed to also have
the maximum interarrival time and is therefore replaced7.

The least frequently used page replacement algorithm (LFU) operates under the
same assumption about reference behavior. However, it employs a different heuris-
tic to estimate the reference probability. Instead of metering the backward K-
distance, LFU counts the number of references to the individual pages. In case
the duration of the reference string subsequence in which a certain number of ref-
erences to a pages n occurred is known, it is possible to estimate the reference
probability of n. On the other hand, in case the reference counts for every page
in S are compiled from the same last K references, the page with the fewest ref-
erences also appears to have the minimum reference probability and is therefore
replaced.

2.2.2 Page Replacement and Multitasking

Multitasking is the concept of executing multiple tasks (processes) concurrently
within a single computer system. Since multitasking does not necessarily imply
the ability to run processes in parallel8 it usually employs time sharing where
each process executes only for short time slices one at a time. At the end of a
time slice a process looses control of the CPU and another process is dispatched
to start one of its slices. The entire set of processes running concurrently is called
the workload. Paging contributes memory isolation to multitasking. Each process
executes in its own exclusive virtual address space specified by its private set of
page tables. Another important aspect of multitasking is the method by which
processes are allocated time slices, referred to as scheduling.

In a scheduled environment memory accesses are generated on behalf of possi-
bly many processes. References to an individual address space are clustered in
time according to the allocation of time slices to corresponding processes. Hence,
the definition of the reference string is extended so it does not only include bare
references to pages but also name the address space a reference belongs to, e.g.,
(a1, r1), . . . , (a1, rx), (a2, r1), . . . , (a2, ry) with address spaces ai and references
ri ∈ Nai .

Under the assumption that scheduling operates independently of paging it pro-
duces an extended reference string which serves as input to the paging algorithm.

7Maximum In is equal to minimum bn.
8The ability of a computer system to run processes in parallel is referred to as multiprocessing.

16 CHAPTER 2. BACKGROUND

However, in case of a page fault, the page replacement algorithm has two options.
It either considers all loaded pages as potential victims or only loaded pages be-
longing to the faulting address space. The former option is referred to as global
replacement, the latter as local replacement. As discussed in Section 2.2.1 the
optimal replacement policy pushes the loaded page which is referenced only after
any other loaded page has already been referenced before. Hence, the optimal
candidate does not necessarily belong to the faulting address space.

Replacement algorithms employ heuristics based on assumptions about page ref-
erence behavior in order to overcome the lack of knowledge about future refer-
ences. However, those assumptions only apply to behavior (reference string) of
individual processes, not page reference behavior of an entire workload running
concurrently under scheduling. In other words, time sharing obfuscates page ref-
erence behavior. Thus, the aforementioned replacement algorithms are at best
suited to select a local victim. This finding suggests a two step process to handle
page faults in a multitasking system: First, select a victim address space, possibly
with additional information about future scheduling. Second, rely on a suitable
replacement algorithm to select a victim locally.

2.3 Dynamic Miss Ratio Curve

Zhou et al. [30] offer another point of view to memory management. The authors
stress that in an multitasking environment, virtual memory management must ad-
dress in fact two core issues. On the one hand, it is the purpose of replacement
algorithms to select a victim page for replacement, that is, to to determine what
pages should be evicted. On the other hand, it is also necessary to determine
how to allocate page frames to processes so the overall system performance meets
some criterion of optimality. The authors refer to this aspect of efficient memory
management as memory allocation [30]. In fact, this point of view matches the
two step approach to paging in a multitasking environment (Section 2.2.2).

Zhou et al. [30] focus on the memory allocation problem. They argue that addi-
tional memory should be allocated only to processes whose performance signifi-
cantly benefits from extra memory9. To that end, the authors suggest to employ the
dynamic miss-ratio curve (MRC) to encode the dynamic memory needs of pro-
cesses. The MRC plots the process’s cache miss-ratio of a process against varying
amounts of physical memory, e.g., varying number of page frames. In this con-
text, the cache miss-ratio refers to paged memory as a fully associative cache.

9By implication, the paging algorithm should withdraw memory only from processes that do
not perform significantly worse with fewer memory.

2.3. DYNAMIC MISS RATIO CURVE 17

Furthermore, the authors suggest to reassign page frames to the process with the
highest gradient in the MRC at its current number of allocated page frames.

2.3.1 Mattson Stack Algorithm

The authors further elaborate on the Mattson stack algorithm [21] as a method for
dynamically tracking MRC at runtime. The Mattson stack algorithm simulates
the processing of a page reference string by fully associative caches (e.g., paged
memory) of various sizes simultaneously and outputs the number of misses for ev-
ery size. It is based on the inclusion property10 for cache replacement algorithms
which applies to both LRU and LFU.

The Mattson stack algorithm uses a stack to store the pages referenced so far. The
algorithm orders elements in the stack according to the expected future reference
behavior as indicated by the underlying assumption and heuristic. In case of LRU
replacement the most recently used page is on the top of stack while the least
recently used one is at the bottom. For each reference in the reference string the
Mattson stack algorithm performs the following three steps:

1. Search the referenced page within the stack. If the page is the ith element
from the top its stack distance is i. If it is not in the stack its stack distance
is∞.

2. Increment a hit counter for stack distance i (respectively∞).

3. Add the referenced page to the stack if necessary and reorder the elements
in the stack to reflect the changed “priorities”. In case of LRU replacement
the newly referenced pages goes to the top of the stack thereby moving all
pages formerly on top of it down by one position.

According to the inclusion property, at any time, the first m pages from the top
of the stack embody the set of pages the simulated replacement algorithm allo-
cated a page frame in case there are exactly m page frames. Hence, the number
of misses (page faults) for a specific number of page frames m is given by the
sum of all hit counters for stack distances d > m. However, the ordering of the
pages in the stack does not depend on the size of the stack. The Mattson stack
algorithm, therefore, simulates paging behavior for any given number of pages
frames simultaneously.

10The inclusion property states that a replacement algorithms given memory of size k+1 never
selects a page as victim that the same algorithm given memory of size k or less rules out. In other
words, given more memory an algorithm always includes at least the set of pages that it includes
given less.

18 CHAPTER 2. BACKGROUND

2.4 IA-32e Architecture Memory Management

The Intel IA-32e architecture is a widely used 64 bit architecture also known as
Intel64 or AMD64. The IA-32e architecture’s memory management facilities im-
plement demand paging virtual memory. The Intel Developer Manual [14, Vol.
3A 3] refers to virtual addresses as discussed in Section 2.1 as linear addresses.
In the IA-32e architecture the page size is usually 4 KiB. Hence a page com-
prises 4096 = 212 linear addresses. A linear address is 64 bit wide and subject
to the canonical form requirement. The canonical form requirement limits us-
able linear address space to 48 bit since at most 256 TiB of linear-address space
may be accessed at any given time. It states that for a linear address to be in
canonical form bits 48 through 63 must be a copy of bit 47. Hence, it parti-
tions the linear-address space into a 128 TiB bottom half and a 128 TiB top half.
The bottom half contains addresses with the 47th bit cleared, starts at address
0x0000000000000000 and ends at 0x00007fffffffffff. The top half
contains addresses with the 47th bit set, starts at 0xffff800000000000 and
ends at 0xffffffffffffffff. All other addresses are uncanonical and there-
fore illegal.

IA-32e implements page maps as hierarchical data structures residing in physical
memory, referred to as page tables [14, Vol. 3A 4]. Pages tables function as inter-
face between the OS and the hardware. On the other hand the hardware Memory
Management Unit (MMU) translates linear addresses transparently using the page
tables. The MMU also enriches said page tables with access information and, in
case of a page fault, interrupts normal execution and invokes the appropriate OS
fault exception handler with details about the nature of the fault. On the one hand
the OS implements the fetch, placement and replacement policies, that is manages
pages as well as page frames and populates the page tables accordingly. Although
the OS is not generally involved in performing memory accesses and therefore
cannot directly learn what pages are in use, it polls the hardware supplied access
information within the page tables.

The IA-32e architecture uses the 52 most significant bits11 of a linear address to
identify the corresponding page table entry (PTE). The entry contains some flags
for allocation information and potentially the physical address of the page frame
that the corresponding page occupies. The format of page table entries is further
discussed later on in this section. The 12 least significant bits identify the specific
address within the page and are called page offset.

11The canonical form requirement effectively reduces this to the 36 lower bits of the 52-bit
chunk.

2.4. IA-32E ARCHITECTURE MEMORY MANAGEMENT 19

Page Table Entry Format

Figure 2.2 outlines the format of an IA-32e page table entry that maps a 4 KiB
page. The bit at position 0 is called the P bit. It encodes whether a page is present
in physical memory or not. In case it is set the page currently resides in memory
and bits at position 12 to 47 hold the 36 bit address of the page frame allocated to
it. In case its cleared the page is not present resulting in a page fault.

PAPhysical Address

05124763

Figure 2.2: Scheme of the IA-32e architecture page table entry format for 4 KiB
pages.

Also of interest is the bit at position 5. Is is called the accessed flag. The IA-
32e architecture provides the flag for use by memory management software such
as paging algorithms to manage the transfer of pages into and out of physical
memory [14, Vol. 3A 4-31]. The accessed flag is set every time the given page
table entry is used to translate a linear address to a physical address. It is also
referred to as a sticky bit since it is set by the hardware but never cleared. Figure
2.3 illustrates the usage of the accessed flag. Every time the CPU generates a
linear address the MMU sets the accessed bit of the PTE it used for translation.
Afterwards the requested data is retrieved from the resulting physical address,
effectively causing an access to the page frame that currently holds the linear
address’ page. Hence, a PTE indicates whether or not its corresponding page and
therefore also corresponding page frame has been accessed.

Figure 2.3 also includes a shared page frame. A shared page frame is allocated to
at least two pages. Each of those pages have individual PTEs referring to said page
frame and also record references individually. Hence, in order to learn a certain
page frame has been accessed, as necessary for page replacement in a page sharing
environment, the OS must consult all PTEs referring to it since every single PTE
may be used to access the page frame.

The operating system may read from as well as write to the accessed flag. Anal-
ogous the concept of a test-and-set operation, we refer to atomically reading and
resetting the accessed flag as a test-and-clear operation.

20 CHAPTER 2. BACKGROUND

Address Space A

Address Space B

Memory

Figure 2.3: Example of pages of two processes A and B being mapped on physical
page frames. One of the page frames is shared among two pages. Memory accesses
going to the shared page frame therefore cause either the accessed flag of the page
belonging to A or the page belonging to B to be set. Which flag is set depends on
the linear addresses of the memory accesses.

2.5 Memory Tracing using Full System Simulation

Gröninger [11] investigate the possibility to make memory deduplication scan-
ners more efficient. To this end, the author employs a toolchain called Simutrace
for recording memory semantics and ongoing memory modifications of a live
system previously presented in [25]. The toolchain records memory writes and
written data, memory semantics and system state on a non-interfering level. This
ultimately allows the author to analyze sharing opportunities, memory access fre-
quencies, and access patterns [11]. Hence, the author actually presents a method
to record a partial reference string, namely all the write accesses since they are one
of reasons for memory content changing over time. Thus, the findings about data
acquisition prove valuable for the study of page replacement algorithms.

The author evaluates a number of approaches and finds that full system simulation
enables the analysis of system memory operations without interrupting the data
flow and hence without changing memory content or timing. The author further
compares a number of full system simulators and conclude that QEMU [5] is fast,
functional correct and allows for memory inspection as well as OS introspection

2.5. MEMORY TRACING USING FULL SYSTEM SIMULATION 21

through further modifications. Section 2.5.1 discusses the findings concerning
data acquisition in more detail.

The general design of the analysis framework the author presents follows a three
step process, 1) system simulation and trace data collection, 2) independent data
storage and 3) offline data analysis. The second step is accomplished using a full
data store which provides a simple storage interface for producers and consumers
but also hides storage details such as compression, pre- and post-processing. Sec-
tion 2.5.2 examines the full data store in more detail.

2.5.1 Full System Simulation

Gröninger [11] identifies memory inspection and OS introspection functionali-
ties, an accurate timing source to correlate system events with memory accesses
and acceptable simulation speed as the three main requirements a simulator must
meet.

First of all they discuss the advantages and disadvantages of different levels of
simulation detail ranging from system call emulation over functional simulation
to micro-architectural simulation. While micro-architectural simulation simulates
architecture internals like for instance CPU pipelines and memory buses func-
tional simulation exclusively simulates results of operations and hence is much
faster.

Further, the author finds that functional simulation based on dynamic binary trans-
lation allows memory inspection and OS introspection. The first step of dynamic
binary translation has guest code disassembled and translated into an intermediate
representation (IR). It is later used to produce a semantically identical instruction
sequence of the host’s instruction set architecture. Since an IR typically include
explicit load and store instructions the authors add interception points (hooks) for
store instructions in order to track memory content.

In order to collect semantic information for guest OS introspection Gröninger
present a hypercall interface. A hypercall refers to a magic instruction which calls
right into the simulator without altering the system state. As magic instruction the
authors employ get and set instructions for model specific registers included in the
IA32 architecture and intercept them during the translation process. The hook also
receives a pointer to a data buffer and a hypercall ID via general purpose registers.
For example annotating a memory mapping operation with a hypercall allows to
identify the initial memory content of named pages which is not generated through

22 CHAPTER 2. BACKGROUND

explicit store instructions12.

Additionally the authors introduce a new virtual instruction counter into simula-
tion. It counts only the guest instructions without considering the overhead caused
by binary translation. However, every operation is counted exactly once and hence
such a counter does not provide micro-operation accuracy.

Gröninger [11] chooses QEMU [5] as basis for the modifications since it is a
functional correct, fast, open-source full system simulator based on dynamic bi-
nary translation.

2.5.2 Independent Data Store

Gröninger [11] decouples the simulation and data collection from data analy-
sis using a full data store. It provides a storage interface for the data producing
simulation and the data consuming analysis. The interface structures trace data
logically and semantically.

The smallest unit of trace data is called a trace entry. A single trace entry corre-
sponds to, for example, a single memory access or a single system event. How-
ever, every kind of system event uses a dedicated fixed-sized trace entry type to
hold associated data. In order to correlate events and accesses, every type contains
timing information.

Trace entries of the same type of event are grouped into fixed-size segments. Since
the type of a trace entry implies a fixed-sized storage layout, a segment allows
random access in O(1) to the trace entries it contains by index. Segments serve
as smallest allocation, management and compression unit. They are presented to
each client through a middle-ware API as a contiguous memory buffer.

On external storage, segments, in turn, are grouped into contiguous streams. There
is a single stream for every type of trace event. Since segments have a fixed
maximum size, they hold up to a fixed number of entries. Given a stream of n
segments, by convention, the first n− 1 segments are fully populated, that is hold
the maximum number of entries. Depending on the total number of entries in the
stream, only the last segment is not fully populated. Analogous to segments and
trace entries, streams allow random access to the segments they hold. However,
retrieving a segment is an expensive operation since it involves disc I/O, in order
to bring the segment into memory, and decompression.

12DMA is another example for memory content not detectable via explicit store operations.

2.5. MEMORY TRACING USING FULL SYSTEM SIMULATION 23

The data store interface effectively allows random access to trace entries by type
and index. The trace entry type determines the stream which stores the entry. The
entry’s index, together with the maximum capacity of segments, translates into
the target segment to retrieve and an index into it.

24 CHAPTER 2. BACKGROUND

Chapter 3

Analysis

Section 2.2 discusses the definition of a paging algorithm as state machine with
states comprised of the page map and a control state. In this definition each page
reference causes a state transition including control state and potentially page map
updates. Thus, it implies that the state machine implementing the paging algo-
rithms processes the entire page reference string as input.

As discussed in Section 2.4, in the IA-32e architecture performs memory accesses
using linear addresses transparently, i.a., without operating system (OS) interfer-
ence. The hardware memory management unit (MMU) translates linear addresses
using the page tables. Only in case the MMU fails to translate a linear address,
e.g., because the correspond page is not present in memory, it issues a page fault
exception for the OS to handle. However, it is the OS that implements the paging
algorithm. Therefore, according to the definition of paging algorithms as a state
machine, the operating system needs to acquire the entire page reference string as
input to the algorithm, not only a sequence of faulted page reference.

As a result, the original definition of a paging algorithm as a state machine pro-
cessing the reference string does not apply to the IA-32e architecture. In IA-32e,
the OS directly observes only page faults, not the entire reference string. Hence,
state transitions and especially control state updates cannot occur on every mem-
ory access, but at least on every page fault. As an attempt to overcome this limita-
tion, the IA-32e MMU caches page access information in the corresponding page
table entry accessed flag and makes it accessible to the operating system and the
paging algorithm.

With respect to the workings of the IA-32e architecture, we model paging algo-
rithms as follows: Instead of processing the page reference string as input, a pag-
ing algorithm processes the sequence of page fault exceptions the MMU generates

25

26 CHAPTER 3. ANALYSIS

on the current state of the page table and the page reference string. However, in
order to account for the accessed flags, each page fault exception does not only
include the faulted page but also grants the algorithm access to the cached page
access information in the form of optional test-and-clear operations.

This slightly adapted definition limits the information the paging algorithm ac-
quires about reference behavior to the page access information cached by the page
table. Therefore, the paging algorithm relies on the page table entries’ accessed
flags to record and reflect page access information accurately in order to make in-
formed replacement decisions. This introduces the page table entry format and its
semantics as a influencing factor into the study of paging algorithm performance.
Hence, the performance of paging algorithms is mainly determined by two fac-
tors: a) how well its underlying assumptions about page reference behavior apply
to a given program’s reference string and b) the accuracy of the page access in-
formation the paging algorithm acquires through the page table entries’ accessed
flags.

However, the IA-32e architecture’s page table entry format reserves only a single
bit for caching page access information. It remains unclear whether or not this sin-
gle bit constitutes enough cache capacity to record access information sufficiently
accurate for the replacement algorithm to employ its heuristic. Hence, the scope
of this thesis is to examine the influence of the IA-32e page table entry format on
the performance of given paging algorithms. To this end, this thesis as a first step
studies how the page table entry format affects the operating system’s perception
of page reference behavior. In other words, we try to learn whether or not the
operating system’s perception suffers from operating system’s inability to observe
the reference string directly.

An entirely different question is whether or not potentially inaccurate page access
information in fact exerts negative influence on the paging algorithm’s perfor-
mance. In other words, this thesis as a second step explores whether or not given
paging algorithms show potential to benefit from more accurate page access in-
formation.

To this end, this chapter proceeds as follows: Section 3.1 analyzes the page ta-
ble entry’s limited capabilities to cache page access information. It identifies two
different kinds of inaccuracies: temporal inaccuracies, the inability to accurately
reflect page reference timings, as well as counter inaccuracies, the inability to ac-
curately count the number of references a page receives. Furthermore, Section 3.2
analyzes paging algorithm performance characteristics and explores means to ex-
plore the potential performance improvements due to more accurate page access
information.

3.1. ACCESSED FLAG INACCURACIES 27

3.1 Page Table Entry Accessed Flag Inaccuracies

As discussed in 2.4 the IA-32e page table entry (PTE) format includes single bit
for recording access information, referred to as the accessed flag. It is set in case
the entry is used for translation and never cleared by the hardware. The accessed
flag thus records whether or not the page for which it stores address translation
information for has been accessed since its last test-and-clear operation.

This section models the usage of the accessed flag as a sequence of accesses to
the PTE’s page, that is set operations, intermixed with test-and-clear operations.
A test-and-clear interval is the period of time between two consecutive test-and-
clear operations on a given PTE. We illustrate the intermixed sequences as figures
which resemble timelines of different pages. The figures depict memory accesses
as circles, test-and-clear operations as squares. Throughout this section we as-
sume that every page is allocated an exclusive page frame. Section 3.1.1 exam-
ines how the limited storage capacity of the accessed flags affects the operating
system’s perception of reference timings. Section 3.1.2 discusses to which extend
the accessed flag allows to estimate the real number of page references.

3.1.1 Accessed Flag Temporal Inaccuracies

Denning et al. [8] find that memory accesses tend to cluster in time. This finding
suggests to estimate the probability of a future reference to a page based on the
recency of the page, i.a., the time passed since its most recent reference. For
example, LRU evicts the page which has not been accessed for the longest time.
However, without access to the reference string, LRU relies on the accessed flag
ability to accurately reflect the recency of a page. Section 2.2.1 discusses an
implementation of LRU which partitions loaded pages into two sets: S0, the set of
not recently referenced pages, and S1, the set of recently referenced pages. Pages
whose accessed flag is set are members of S1, pages whose accessed flag is cleared
belong to S0.

However, the temporal accuracy of the accessed flag suffers from strong cohe-
sion to test-and-clear timings and interleaving with page references. The accessed
flag encodes whether or not the page is referenced within a test-and-clear inter-
val. Hence, comparing pages on the basis of test-and-clear intervals of different
durations proves ineffective. Figure 3.1 shows a timeline for two pages n1 and n2.
n1 is actually referenced more recently than n2. Still, its most recent reference
occurs before the relevant test-and-clear interval and so the relevant test-and-clear
operation returns a cleared flag. In case the paging algorithm’s control state does

28 CHAPTER 3. ANALYSIS

n1

n2

Time

Page Reference

test-and-clear

Effective Recency

Figure 3.1: Timeline of two pages n1 and n2. The diagram depicts page references as
circles and test-and-clear operations as squares. The effective recency is the period
of time between a current test-and-clear operation and the last reference to the target
page. In this example, the two most recent test-and-clear operations fail to reflect
that n1 is in fact more recently referenced than n2

not reflect that n1 has been successfully test-and-cleared lately, there is no way to
determine that actually both pages have been referenced recently.

Unfortunately, test-and-clear operations even experience inaccuracies in case the
paging algorithm test-and-clears all PTEs simultaneously. A test-and-clear oper-
ation returns a set flag for every page which was referenced at least once within
the past test-and-clear interval. However, the actual recency of the last reference
still strongly varies for different pages since this last references may occur at any
point in the interval without changing the result of the test-and-clear operation.
The last reference within an interval is henceforth referred to as canonical refer-
ence, the lapse of time between the canonical reference and the end of the interval
as effective recency. Figure 3.2 illustrates this concept. Pages n3 and n4 are both
referenced within the last interval but n3’s canonical reference occurs earlier than
n4’s canonical reference. Belady’s [4] definition of the sets S0 and S1 holds but
the effective recency may vary among their members. Hence, the accessed flag
cannot distinguish between the recency of two recently referenced pages. Infor-
mation on the timing of the most recent reference to a page is lost. However, since
the effective recency cannot grow beyond the duration of a test-and-clear interval,
shorter intervals narrow down the effective recency of pages more precisely.

Both issues stem from the relative definition of recency associated with the ac-
cessed flag. The first issue is not severe with respect to our model of paging
algorithms because it allows to paging algorithm to test-and-clear pages simulta-
neously. Furthermore, the paging algorithm may encode the timings and results
of earlier test-and-clear operations in a more advanced control state. However, the

3.1. ACCESSED FLAG INACCURACIES 29

n3

n4

Time

Page Reference
test-and-clear

Effective Recency

Figure 3.2: Timeline of two pages n3 and n4. The diagram depicts page references as
circles and test-and-clear operations as squares. The effective recency is the period
of time between a current test-and-clear operation and the last reference to the target
page. In this example, the two most recent test-and-clear operations fail to reflect
that n4 is in fact more recently referenced than n3, although no redundant test-and-
clear operation are issued.

accessed flag’s inability to reflect the effective recency of the pages cannot be mit-
igated as easily. A single bit accessed flag only allows the paging algorithm to de-
termine a page’s recency with a maximum accuracy of an interval duration.

3.1.2 Accessed Flag Reference Counting Inaccuracies

Other findings suggest to replace pages based on the frequency of reference to
them [23]. As discussed in Section 2.2.1 LFU identifies the page with the lowest
reference frequency as the page with the fewest number of accesses within an
interval of past history. Hence, LFU requires the ability to count references to
pages individually. To this end, LFU employs the accessed flag as a reference
counter. It is effectively used to learn how many references occurred since the last
test-and-clear operation.

However, the accessed flag implements only a single bit and therefore saturates
after the first reference. Further references go unnoticed. Again, the information
the accessed flag captures is effectively reduced to the presence or absence of a
reference within an interval. Hence, LFU implemented with an one bit accessed
flag effectively resembles LRU with an one bit accessed flag. Figure 3.3 depicts
the timeline of two pages n5 and n6. n6 is referenced three times in total within
the interval while page n5 is referenced only once. However, the single access bit
fails to reflect the different reference counts and LFU is unable to distinguish the
two pages in terms of reference frequency.

30 CHAPTER 3. ANALYSIS

n5

n6

Time

test-and-clear

Unrecorded

Page Reference

Recorded Page

Reference

Figure 3.3: Timeline of two pages n5 and n6. The diagram depicts unrecorded ref-
erences as empty circles. n5’s accessed flag fails to record the last two references
because it already saturates after the first one. Therefore, the test-and-clear opera-
tions cannot reveal that n5 is more frequently referenced than n6.

LFU is also vulnerable to test-and-clear intervals of different duration. Compar-
ing pages based on reference counts bears limited relevance in case the counters
captured access information for different subsequences of the reference string.
However, an approach to overcome this vulnerability is to test-and-clear pages si-
multaneously or to extend the control state to store test-and-clear timings so the
paging algorithm may learn individual interval durations.

The counter inaccuracies stem from the limited counting capacity of the accessed
flag. This shortcoming cannot be mitigated by fixed test-and-clear intervals nor
by extending control state. Still, analogous to the temporal inaccuracies, the op-
erating system’s perception of page reference behavior benefits from smaller test-
and-clear intervals since they reduce the likelihood of saturated counters.

3.2 Potential Improvements in Paging Algorithm Per-
formance

Section 3.1 outlines how the limited storage capacity of the IA-32e accessed flags
deteriorates the accuracy of page access information they provide to the paging
algorithm. However, the actual impact on the performance of a given paging al-
gorithm remains unclear. In other words, another question is whether or not more
accurate page access information allows to improve page replacement decisions.
One way to answer this question is to extend the page table entry format to pro-
vide more accurate page access information, to provide the paging algorithms with
accurate page access information, and to examine the resulting performance for

3.2. POTENTIAL PERFORMANCE IMPROVEMENTS 31

improvements.

To this end, Section 3.2.1 analyzes means to assess the performance of paging
algorithms and to identify potential for improvement. Section 3.2.2 outlines pos-
sible extensions to the IA-32e page table entry format so it provides more accurate
page access information.

3.2.1 Paging Algorithm Performance Assessment

Section 2.2 defines the objective of a paging algorithm as the minimization of page
faults. This suggest the number of page fault a paging algorithm generates on a
given input as indicator for performance. However, when assessing the applicabil-
ity of more accurate memory access information for page replacement, two further
aspects are crucial: First of all, online page replacement algorithms employ as-
sumptions about page reference behavior in order to extrapolate the probability of
future references from the past history. However, each program, that is a process
to be, shows individual page reference behavior based on the algorithms and data
structures it uses. Thus, page replacement algorithms perform differently well on
different programs in execution, i.a., produce more or less page faults. Hence,
the performance of a page replacement algorithm cannot be assessed based on its
applicability to the reference behavior of a single program.

Second, we cannot assess a paging algorithm’s performance based on the absolute
number of page faults it generates on various inputs. Thus, an evaluation requires
well defined baselines for relative comparison. Section 2.2.1 establishes OPT as
the optimal page replacement algorithm. Furthermore, it introduces WORST, the
worst possible replacement algorithm, and RAND, a trivial algorithm. The ulti-
mate objective of an online replacement algorithm is to match the performance of
OPT. In case LRU or LFU already performs close to OPT on a given input, there is
few room for improvement. Hence such input does not allow to explore possible
improvements based on more accurate page access information. In case a pag-
ing algorithm performs considerably worse than OPT for a given program, there
is much room for improvement. Such programs are ideal for our performance
improvement assessment.

Even if there is much room for improvement, it still remains unclear whether the
algorithm performs worse because the lack of accurate information or because
its underlying assumption does not apply to the program’s page reference string.
However, the random replacement algorithm RAND may help to estimate the ex-
tend to which an assumption about page reference behavior applies to a given
program’s reference string. The fact that RAND performs better than a given al-

32 CHAPTER 3. ANALYSIS

gorithm is evidence that the underlying assumption does not apply properly. Since
more accurate page access information removes more randomness from the pag-
ing algorithm’s decisions, it seams unlikely that the algorithm benefits from more
accuracy. Another reason for comparing paging algorithms to RAND is efficiency.
Assuming there is an efficient implementation of RAND, the additional effort the
operating system invests to run a more complicated algorithm is in vain, in case the
complicated algorithm does not perform considerably better than RAND. Hence,
a suitable program for evaluating the applicability of more accurate information
causes the algorithm under assessment to perform considerably worse than OPT,
but at the same time better than RAND.

P
a
g

e
 F

a
u
lt

s
[f

a
u
lt

s]

Time

Other Algorithm RAND OPT

Figure 3.4: Example performance assessment. The x-axis shows the execution time
of a selected process. The y-axis show the accumulated number of page fault the
paging algorithm generates for a fixed number of page frames allocated to the pro-
cess.

Figure 3.4 illustrates an example performance assessment of three paging algo-
rithms. It shows some arbitrary paging algorithm under assessment, OPT and
RAND. The diagram shows the execution time of a selected process on the x-
axis. The y-axis shows the accumulated number of page fault the paging algorithm
generates for a fixed number of page frames allocated to the process. It shows the
number of accumulated page faults instead of the page fault rate because this way,
it is easier to determine which algorithm performs best in the end. The curves of
the algorithm under assessment should run below the curve of RAND, but above

3.2. POTENTIAL PERFORMANCE IMPROVEMENTS 33

the curve for OPT. Therefore, the example program renders a suitable program for
our performance assessment.

3.2.2 Extended Page Table Entry Format

Section 3.1 discusses two different types of inaccuracies page table entry accessed
flags suffer from: temporal inaccuracy and counter inaccuracy. Since LRU is
primarily based on learning the recency of pages and LFU relies on the ability to
count page references, the two types of inaccuracies affect these algorithms to a
special degree. Therefore, we focus our efforts on assessing these two algorithm
in the light of the accuracy of page access information. To this end, this section
outlines two extensions to the IA-32e page table entry format which are design to
provide more accurate page access information in order to study whether or not
this improves the performance of either LRU or LFU.

Least Frequently Used Replacement

LFU uses accessed flags as reference counters in order to learn the reference fre-
quencies of the pages. As discussed in Section 3.1.2, the capacity of an one bit
counter is very limited and references go unnoticed because it saturates after the
first reference. An extended PTE format increases the number of bits reserved for
the accessed flag in order to enable it to increase the counter’s capacity. However,
it remains unclear how many additional bits the extended PTE format should fea-
ture exactly. This effectively boils down to the question of up to which number of
bits LFU actually benefits from the additional capacity.

Page

Memory Access

Figure 3.5: Two example memory accesses operating on three adjacent pages. The
diagram depicts memory accesses as dark rectangles, pages as light rectangles. The
with of the rectangles denotes the hypothetical size of both accesses and pages. The
left memory access does not causes only a single page references as all data is located
on a single page. The second memory access causes references to two adjacent pages
since the data is spread on both pages.

34 CHAPTER 3. ANALYSIS

However, in order to answer this question, we must first elaborate on how the
MMU is supposed to count references exactly. According to Section 2.4, the
IA-32e architecture MMU sets the accessed flag every time the corresponding
PTE is used for address translation, i.a., every time a memory access stretches
over a linear address belonging to the page in question. Furthermore, the In-
tel Developer Manual states that in IA-32e the fundamental data types are bytes,
words, doublewords, quadwords, and double quadwords ranging in size from one
to 16 Byte [13, Vol. 1 4-1]. Although alignment improves performance, data
types do not have to be aligned in memory. Therefore, it is possible for memory
accesses to affect two adjacent pages in case the datum is not aligned in memory
and is located to the last linear address of a page. Figure 3.5 gives an example.
We consider such a memory access as two page references, one reference to each
page.

Least Recently Used Replacement

LRU uses accessed flags in order to learn the recency of a page, i.a., the time
passed since its last reference. As stated in Section 3.1.1 a single bit accessed flag
reduces the recency resolution to the duration of a test-and-clear interval. One
approach to increase the accuracy is to overcome the correlation between test-
and-clear operation and reference timings.

To this end, an extended PTE format enables the page table entry to store exact ref-
erence times instead of only indicating whether or not a reference occurred. To be
exact, said extended PTE format extends the accessed flag so it is capable of stor-
ing a full timestamp. Furthermore, we assume the MMU to update the timestamp
every time it uses the PTE to translate a linear address. This allows the paging
algorithm to learn the effective recency of a page completely accurate.

3.3 Conclusion

This chapter analyzes the workings of paging algorithms relating to the limitations
imposed by the IA-32e architecture. We find that the definition of a paging algo-
rithm as a state machine processing the page reference string of a process does not
apply to the architecture because it does not allow the paging algorithm to observe
the reference string. Consequently, we outline a slightly adapted model. Instead
of processing the reference string, our model has the paging algorithm process the
sequence of page faults the paging hardware generates while performing memory
accesses. In order to overcome the implied lack of page access information, the

3.3. CONCLUSION 35

model grants the algorithm access to the cached page access information provided
by the page table entries. However, the IA-32e page table entry format reserves
only a single bit of access information, rending the page table entries essentially
unable to accurately reflect page recency as well as to serve as accurate page ref-
erence counters.

Furthermore, we explore means to evaluate the potential of more accurate page ac-
cess information to improve the performance of paging algorithms. We argue that
running paging algorithms of interest on more accurate page access information
and to examine the resulting performance for improvements is a viable option to
do so. To this end, we conclude that the performance of a paging algorithm must
be assessed based on the number of page faults it generates on a number of exe-
cutions of different processes. Finally, we outline two extensions to the page table
entry format that allow the page table entries to provide either accurate page re-
cency information or accurate page reference counts, potentially benefiting LRU
and LFU, respectively.

36 CHAPTER 3. ANALYSIS

Chapter 4

Design

Section 3.1 finds that the IA-32 architecture’s page table entry format eventually
introduces inaccuracies into the page access information the page tables provide
to the paging algorithm. The accessed flag fails both to reflect the effective re-
cency of a page as well as to function as a page reference counter. The purpose
of this chapter is to design a method of analysis which allows to quantify the in-
accuracies as they arise in a real system. In this context, we choose to focus our
efforts on page reference counter inaccuracies and leave the study of the page ta-
ble’s inability to reflect reference timings accurately to future work. To this end,
Section 4.1 outlines the design of an analysis which allows us to observe both the
actual reference counts of a real system as well as the number of references the
IA-32e page tables in fact record.

Furthermore, we find that we cannot assess the applicability of more accurate page
access information to improve paging decisions by quantifying the reference count
inaccuracies only. Section 3.2 suggests to assess the applicability experimentally
by running a number of paging algorithms on different workloads and comparing
the results. To this end, Section 4.2 outlines the design of a paging simulation
which allows us to simulate a number of paging algorithms running on page tables
of varying capacities.

4.1 Detecting Reference Counter Inaccuracies

Section 3.1 discusses two inaccuracies caused by the limited capacity of the ac-
cessed flag. However, it remains unclear to which extend those inaccuracies dis-
tort the operating system’s (OS) perception of page reference behavior of a certain

37

38 CHAPTER 4. DESIGN

process. We consider the following scenario: A process’s address space consists
of a number of pages. On the one hand, each page corresponds to a single page
table entry (PTE) which is test-and-cleared zero or more times. On the other
hand, each test-and-clear operation operates on a single PTE. The timings and
target PTEs of test-and-clear operations are specified by the paging algorithm
implementation, i.a., the operating system1. We consider them implementation
details and therefore, a fixed, external effect. In this case, we define the operating
system’s perception of page reference behavior as the accumulated page access
information it gathered through past test-and-clear operations. In order to assess
the significance of the inaccuracies in page access information, we employ a three
step approach.

First, we need an indicator to quantify the degree of inaccuracy of an individual
test-and-clear operation. This indicator also allows us to compare the degree of
inaccuracy of several test-and-clear operations. The second step is to accumulate
the inaccuracies that the pages experience over the course of the entire process
lifetime for every page individually. To do so, it is necessary to examine all PTE
test-and-clear operations that operate on the PTE of a given page.

The third step is to quantify the distortion in the perceived page reference behavior
caused by the accumulated inaccuracies. However, the operating system’s percep-
tion of page reference behavior depends both on the timings and target PTEs of the
test-and-clear operations as well as the degree of inaccuracy these test-and-clear
operations experience. Since the timings and targets of test-and-clear operations
are considered an external effect, this factor must be excluded from the assess-
ment of the distortion. To this end, we define the baseline for the perception of
page reference behavior as the perception the OS arrives at in case none of the
test-and-clear operations suffers from any inaccuracy. Consequently, we refer to
every perception that differs from this baseline because of test-and-clear operation
inaccuracies as distorted. However, whether or not this distortion causes changes
in the replacement algorithm’s extrapolation of future page reference behavior de-
pends not only on the degree of distortion, but also on the underlying assumption
about page reference behavior.

Section 3.1.2 outlines how test-and-clear operations suffer from counter inaccu-
racies as the accessed flag fails to function as a reference counter. In the IA-32e
architecture the accessed flag comprises only a single bit. Hence, it saturates after
the first reference and it is unable to record any further references. The express the
counter inaccuracy, the number of unrecorded references is a suitable candidate
for an indicator of the degree of inaccuracy an individual test-and-clear operation

1Even in case the replacement algorithm is only allowed to issue test-and-clear operations on
page faults, yet it not necessarily test-and-clears all PTE on every page fault.

4.1. DETECTING REFERENCE COUNTER INACCURACIES 39

experiences. The reasoning is the following: The operating system tries to learn
how often a page is referenced. The inaccuracy increases as the number of un-
recorded references increases. Then, in order to accumulate the inaccuracies, we
sum the number of unrecorded references to the pages individually.

In order to count the number of unrecorded references for a given test-and-clear
operation, we need to learn the number of references that occur between the test-
and-clear operation of interest and the preceding test-and-clear operation to the
same PTE, i.a., the number of page references falling into the test-and-clear in-
terval of interest. Hence, it is sufficient to learn the reference string intermixed
with the test-and-clear operations and their targets. Another option is to learn the
reference string and the test-and-clear operations separately, but to include timing
information for both events.

4.1.1 Data Acquisition

We define the operating system’s perception of page reference counts as distorted,
in case the perceived reference counts of individual pages differ from the genuine
number of references the pages receive. In order to assess the accuracy of the
operating system’s perception, we opt to observe the actual page reference counts
of the pages of a single target process and to compare them to the OS’s perception
of these reference counts. To this end, we employ the following scenario: An
operating system runs on an IA-32e architecture system. The OS runs the single
target process. However, the target process is assigned too few page frames to have
every page allocated a page frame to reside in. Hence, the target process produces
page faults and pages have to be pushed to external storage. The operating system
handles those page faults using a local replacement policy. In order to select
victim pages, the OS tries to observe the page reference behavior of the target
process. To this end, it test-and-clears the pages of the target process’s address
space. A data acquisition method suitable for a thorough analysis as described
above must extract the following information from the outlined scenario:

a) the reference string of the target process’ virtual pages including both reads
and writes,

b) all test-and-clear operations issued on pages belonging to the target process
and

c) a reliable and consistent timing facility in order to correlate the recorded
events.

40 CHAPTER 4. DESIGN

Gröninger [11] discusses two methods to collect memory accesses2 of single pro-
cesses. The first method is step-by-step execution. This method has any page
of a process mapped as inaccessible and the page fault handler modified to trace
accesses. This causes every instruction accessing memory to fault. After the page
fault handler traced the access(es), it marks the requested page(s) accessible and
restarts the instruction in single-step execution mode. After the instruction com-
pletes the debug exception handler marks the page(s) inaccessible again so any
future instruction also faults. The IA-32e architecture also causes page fault ex-
ceptions for instruction fetches [14, 4-30 Vol. 3A]. Therefore, this method might
be able to capture not only memory accesses triggered by the instruction flow but
also memory accesses caused by instruction fetch operations. The second method
is to utilize precise event based sampling (PEBS) [15, 18-16 Vol. 3B]. PEBS
allows to call a handler routine after every memory access. This routine might
be able to trace and record the preceding memory access. However, both meth-
ods suffer from significant overhead. Furthermore, they neither provide an out of
the box timing facility nor a solution to efficiently record the tremendous amount
of collected data. Additionally, both methods cannot provide means to capture
test-and-clear operations.

Marathe et al. [20] present another method to record memory access traces of
single processes. The authors employ dynamic binary rewriting in order to instru-
ment single instructions or entire blocks of instructions, thereby realizing hooks
within the instruction flow. However, Marathe et al. argue that software trac-
ing incurs high overhead, rendering reasonable datasets infeasible. Thus, they
resort to partial traces, tracing only a subset of the memory accesses. Addition-
ally, Marathe et al. [20] outline how to compress and store trace data on stable
storage. Yet, their approach also neither includes any timing facility nor allows to
record test-and-clear operations. Altogether, their approach proves unsuitable for
our scenario.

All approaches presented so far suffer from two recurring shortcomings: 1) They
acquire only a subset of the required information, e.g. they fail to record test-and–
clear operations. 2) They show significant overhead. Full system simulation offers
the means to overcome at least the first shortcoming, insufficient data acquisi-
tion, as it easily allows monitoring one or more entire systems [25]. Magnusson
et al. [19] and Yourst et al. [29] present micro-architectural simulators. Micro-
architectural simulation simulates the inner workings of parts or the even the en-
tire architecture. They allow to record memory accesses at a hardware level, i.a.,
within the simulated memory access facilities. They also provide a timing facility

2Collecting memory access is also sufficient since the starting address and the size of a memory
access indicates the page references it causes.

4.1. DETECTING REFERENCE COUNTER INACCURACIES 41

operating at micro-operation accuracy. However, micro-architectural simulation
fails to overcome the second shortcoming, significant overhead. The overhead
produced by micro-architectural simulation renders the simulation of an entire
system for the lifetime of the target process infeasible.

Simutrace

However, functional simulation is known to perform several orders of magnitude
faster than micro-architectural simulation [28]. Section 2.5 outlines how Ritting-
haus [25] and Gröninger [11] employ full system simulation based on function
simulation to trace memory writes and internal system state of a live system on
a non-interfering level. Their approach adds hooks to the binary translation step
of the full system simulator QEMU [5] to collect hardware events, such as mem-
ory writes. Hypercalls allow the simulation guest to trap into the host and pass
on internally collected system state information. Additionally, the authors also
implemented an instruction counter in QEMU to annotate every traced event, ex-
ternally or internally collected, with consistent timing information. Finally, all
collected data is recorded in the form of trace entries to a data store to enable
offline analysis.

This approach proves promising because it out of the box provides means to col-
lect test-and-clear operations and a consistent timing facility. Furthermore, the
existing memory hooks already include a previously unused read hook3, thus al-
low recording the full reference string as required in this work.

In addition, hypercalls provide the means to record test-and-clear operations. On
the guest’s side hypercalls appear as extensions added to the guest OS kernel at
certain points of interest. The purpose of those extensions is to collect required
information, e.g., the page a test-and-clear operation is issued on, and to trap
into the simulation host to pass on the collected information. The simulator then
receives the information, adds timing information, records it to the data store and
finally resumes the simulation guest.

While this approach can deliver all required information for our analysis, it also
comes with a number of drawbacks. As discussed in Section 2.5.1 the virtual
instruction counter does not allow to track time with micro-operation accuracy. It
counts executed instructions in the instruction flow. Hence, every instruction is
modeled to take the same time, that is the same number of cycles, to complete. In
fact, the virtual instruction counter only provides only an indirect timing facility

3The authors intended to record memory content and therefore did not pay any attention to
non-modifying operations, such as memory reads.

42 CHAPTER 4. DESIGN

causing distortions in the temporal distance between events. Yet, this does not
break the ordering of events. Hence, this drawback does not prevent us from
reconstruction the intermixed sequence of memory accesses and test-and-clear
operations.

QEMU, the full system simulator used in this approach, employs dynamic bi-
nary translation in order to achieve functional simulation [5]. It translates guest
instructions to an intermediate representation (IR), mapping any load and store
operations triggered by the instruction flow to explicit single IR instructions. As
a consequence, this excludes any memory operations that do not appear in the
instruction flow, e.g, instruction fetch operations. However, instruction fetches
are effectively read operations on text segments. Therefore, the approach fails to
provide the entire reference string.

In most cases4, instruction fetches and operand fetch/write operations rarely tar-
get the same chunks of the address space. In other words, the distinction between
instruction fetch and other memory operations usually also implies a segmenta-
tion of the address space into text segments, targeted only by instruction fetches,
and data segments, used only for operands. Consequently, Simutrace records all
accesses to data segments and no accesses to text segments, essentially blocking
out any activity on one part of the address space without interfering with activity
on the other part. This is an acceptable restriction.

Altogether, only the approach presented by Rittinghaus [25] and Gröninger [11]
constitutes a ready solution capturing the required information, enriching recorded
events with consistent timing information, and processing the recordings for of-
fline analysis. All other approaches provide only partial or infeasible solutions.
Therefore, we adopt Simutrace as our method for data acquisition.

4.1.2 Data Refinement

As discussed in Section 2.5.2, Simutrace stores every recorded event as a trace
entry. Every kind of event, e.g., a memory access, corresponds to a dedicated trace
entry format. Entries of the same format and therefore, events of the same kind,
are grouped into streams. Entries of different format go into different streams.
Hence, a stream basically forms the ordered sequence of events of a certain kind.
This results in separate streams for memory access trace entries and test-and-clear
operation trace entries. Since every trace entry is annotated with an instruction
count, it is possible to reconstruct the intermixed sequence of memory accesses
and test-and-clear operations.

4QEMU’s binary translator is a prominent example of applications mixing text and data.

4.1. DETECTING REFERENCE COUNTER INACCURACIES 43

Simutrace employs QEMU as a full system simulator that supports the IA-32e
architecture. QEMU runs an entire, potentially unmodified guest OS. In turn,
the guest OS runs numerous processes, only one of. However, traces are cap-
tured in the simulation at the hardware-level, leading to the following four conse-
quences:

1. Whether the guest OS employs local or global replacement is up to the guest
OS.

2. The guest OS does not necessarily issue test-and-clear operations on pages
belonging to the target process only. Hence, Simutrace records all test-and-
clear operations, not only ones affecting pages of interest.

3. Simutrace captures all memory accesses the CPU emulator detects while
processing the instruction flow. Therefore, it effectively records a sequence
of intermixed memory accesses of not only the target process but all pro-
cesses.

4. For the same reason, Simutrace also records all memory accesses of the
guest operation system itself. In fact, it records a sequence of intermixed
memory accesses of both all processes and the guest operating system itself.

Consequence 1 is OS specific and calls for an OS specific solution. Either the OS
allows to configure which replacement policy to use or we run a guest OS that
only supports local replacement.

According to consequence 2, Simutrace records all test-and-clear operations. How-
ever, we are only interested in test-and-clear operations for PTEs belonging to the
target process’s address space. We identify pages by their base virtual addresses.
Since virtual addresses are not unique, they cannot identify the target address
space. Therefore, beside target page and timing, Simutrace must also record an
address space identifier so the offline analysis is able to identify remove opera-
tions to other address spaces. However, this address space identifier is also OS
specific.

Filtering the Recorded Memory Accesses

According to consequence 3 and 4, the recorded sequence of memory accesses
contains all accesses QEMU’s dynamic binary translation step detects in the in-
struction flow. However, the instruction flow includes both memory accesses gen-
erated by processes as well as the guest OS itself. The questions remains how

44 CHAPTER 4. DESIGN

to remove the memory accesses of the other processes and the operating sys-
tem5.

The guest OS partly controls the instruction flow as it schedules processes to run
on the CPU. QEMU emulates a single CPU [5]. Thus, only a single process exe-
cutes at all times. As discussed in Section 2.2.2, this causes memory accesses to
the same address space to cluster in time. In order to identify the page references
issued by the target process we must identify clusters and the processes they be-
long to. However, instead of clustering randomly, the memory accesses cluster as
the guest OS schedules processes to run on the CPU. Therefore, it is sufficient to
record dispatch6 events via hypercalls in order to identify clusters. The recorded
dispatch events enable the offline analysis to reconstruct which process ran on the
CPU at a given point in the simulation and hence, to remove accesses made by
other processes from the recorded sequence of memory accesses.

This leaves the memory accesses the operating system performs. OS memory ac-
cesses also cluster. Interrupts and exceptions arrive in any context but must be
handled by the OS. Therefore, clusters of OS memory accesses are either con-
tained within a single cluster of process accesses or separate two distinct process
clusters. Figure 4.1 gives an example of the entire filtering process. However, OS
access clusters are not necessarily encompassed by dispatch events. Therefore,
the offline analysis cannot identify those accesses using recorded dispatch events.
This is no problem as long as the OS memory accesses do not fall into the times-
lices of the target process. The offline analysis removes all accesses falling into
the timeslices of other processes, even OS memory accesses. However, potential
means to identify clusters of OS memory accesses depend on the implementations
details of the guest OS.

4.1.3 Conclusion

In order to quantify the page reference counter inaccuracies as they arise in a
IA-32e architecture computer system, we choose to reconstruct the interaction
between the memory management hardware and the paging software. We indent
the offline analysis to replay a intermixed sequence of memory accesses of a sin-
gle target process and the operating system’s test-and-clear operations targeting
the page table entries of said pages. This allows us to learn both the actual but

5OS memory access potentially happen on behalf of a process, e.g., in case the OS copies file
contents into a process’s address space. However, it remains unclear how to identify whether an
OS memory access is issued on behalf of a process or which process in fact benefits.

6The dispatcher puts scheduling decisions into effect as it prepares the CPU to run the selected
process.

4.1. DETECTING REFERENCE COUNTER INACCURACIES 45

Time

Dispatch Event

OS Code

Execution

Process A Target Process Target ProcessProcess B Process A Process B

Figure 4.1: Example of the entire filtering process. The diagram shows an hypothet-
ical memory access stream at the top. It shows periods of process memory activity
instead of individual accesses. The recorded raw memory access stream is shown
at the top. The stream contains periods of target process memory activity (lightly
colored periods), periods of other processes’ memory activity (striped periods) and
periods of OS memory activity (dark periods). The diagram also illustrates recorded
dispatch events as triangles. A first step removes all memory accesses not falling
into a target process timeslice, including OS memory accesses. The second step
removes the leftover OS memory accesses based on a OS specific solution.

potentially inaccurate results of the test-and-clear operations as well as perfectly
accurate hypothetical results.

For the purpose of data acquisition we employ full system simulation and Simu-
trace for tracing memory accesses and test-and-clear operations as the simulation
guest issues them. The scenario is the following: We run a yet to be selected
operating system as guest in QEMU, execute a benchmark as target process and
after it finishes, shut the guest down. Yet, Simutrace traces at a hardware level

46 CHAPTER 4. DESIGN

and therefore records all memory accesses, regardless of which process or even
the guest operating system itself issues them. In addition, we add a hypercall to
the guest operating system which records test-and-clear operations.

We need to refine the recorded data in order to extract the intermixed sequence of
target process memory accesses and corresponding test-and-clear operations. To
this end, we use dispatch events, which Simutrace already records, to identify the
timeslices of processes running on the CPU. This allows us to remove all memory
accesses not falling into the timeslices of the target process. Yet, we leave other
consequences of full system simulation, such as causing memory pressure on the
target process, to Chapter 5.

4.2 Simulating Paging Algorithms on Extended PTE
Format

According to Section 3, the performance of paging algorithms is mainly deter-
mined by two factors: a) how well its underlying assumptions about page refer-
ence behavior apply to a given program and b) how accurately the paging algo-
rithm perceives the actual page reference behavior. The first is expressed through
the paging algorithm (e.g., LFU). However, the limited capacity of the IA-32e
accessed flag introduces inaccuracies into the operating system’s perception of
page reference behavior. Section 3.2 suggests to simulate page replacement using
LRU as well as LFU on reference string acquired from several programs given an
extended PTE format in order to access the applicability of more accurate page
access information.

However, several issues must be addressed before simulation. First, Section 4.2.1
discusses why memory accesses we acquire for the analysis of reference counter
inaccuracies are also sufficient as input for our simulation. Second, Section 4.2.2
outlines a memory management model to be used as basis for our simulation.
Section 4.2.3 finally presents the design of our paging algorithm simulation.

4.2.1 Data Acquisition

Before it is possible to simulate a paging algorithm, it is necessary to acquire page
reference strings generated by a number of programs. Although, the least recently
used page replacement algorithm (LRU) additionally requires timing information
of memory accesses, it does not depend on exact page reference timings. LRU

4.2. SIMULATING PAGING ALGORITHMS 47

aims at replacing the least recently referenced page. In order to identify this page,
a definite order of the page references is already sufficient. The reference string
itself already provides this order.

A memory access given as start virtual address and size implies the page refer-
ences it invokes. Therefore, the sequence of memory accesses a program pro-
duces is equally useful as the reference string. The sequence of memory accesses
is also sufficient as input to the simulation. Section 4.1.1 already describes how
to acquire the sequence of memory accesses of a target process using full system
simulation and Simutrace. In addition, Section 4.1.2 outlines how to filter the
recorded memory accesses so the implied reference string does not include any
references performed by other processes or the operating system itself.

4.2.2 Memory Management Model

According to Section 2.1, paging requires a set of page frames, at least one virtual
address space, i.a., a process, and a page map. The objective is to simulate local
page replacement for a single process. Hence, there is only a single address space
and a single page map.

Paging usually allows for page sharing. As discussed in Section 2.2.1, page shar-
ing changes the paging algorithm’s approach to replacement. In order to free
a shared page frame, every page it is allocated to must be moved out of mem-
ory. This further complicates replacement decisions but does not offer any more
insight on the page table entries capability to reflect page reference behavior. Ad-
ditionally, the purpose of the simulation is not to find the minimum number of
page frames necessary to run a given process efficiently. It is to assess whether
or not more accurate page access information benefits the replacement decisions.
Therefore, the paging simulation does not simulate page sharing. Every page is
considered unique and allocated an exclusive page frame. Hence, moving a page
out of memory effectively frees its former page frame for reassignment.

Page Fault Model

As discussed in Section 2.1.1, page faults occur in case address translation fails.
Besides access permissions, address translation fails because a requested page
is not present in memory, that is it has no page frame allocated to it. A page
fault causes a delay in process execution referred to as page wait time. The page
wait time depends both on the state of the selected page frame, as it determines
whether or not a push is necessary, as well as the faulting page itself, as it might

48 CHAPTER 4. DESIGN

not require a pull from external storage. However, the paging algorithm influences
the page wait time only through the victim it selects. The time it takes to prepare
the selected page frame for the new mapping is constant for all page frames.

As discussed in Section 2.2, the paging algorithm’s general objective is to mini-
mize aggregate page wait time. Therefore, differences in page wait time suggest
to select victims based on both expected future page reference behavior as well as
the necessary effort to evict a page from memory. Only assuming fixed page wait
times, leads to the conclusion that demand paging algorithms achieve minimal
page wait time through minimization of the number of total page faults.

Yet, this thesis studies the applicability of more accurate page access information
to improve the prediction of future page reference behavior. The quality of the
prediction, in this context, is determined purely by the number of page faults the
replacement algorithm produces given a reference string as input. Therefore, the
simulation does not need to model the page wait time at all and can ignore whether
a victim page must be pushed or not.

4.2.3 Simulation Design

A paging algorithm is the implementation of the three subpolicies: the fetch pol-
icy, the placement policy and the replacement policy (see Section 2.1.2). A simple
demand paging algorithm implements a demand paging policy. It does not bring
any page into memory until it is accessed for the first time and never moves a
page out of memory unless it is inevitable. Furthermore, its placement policy
places pages in arbitrary, free page frame or queries the replacement policy for
one. Its implementation of the replacement policy, the replacement algorithm, is
the only non-trivial component.

Section 2.3.1 introduces the Mattson stack algorithm as a method to simulate the
behavior of an online demand paging algorithm. It performs the following three
steps on every page reference: First, it determines the stack distance of the ref-
erenced page. Second, it increments a hit counter. As the third and final step, it
reorders the elements of the stack according to the replacement algorithm.

The order of the pages in the stack effectively encodes an allocation priority.
For an arbitrary number of page frames m, the Mattson stack algorithm allocates
these m page frames to the top m pages in the stack. In case it reorders the stack
according to the replacement algorithm, it changes the allocation priorities and
potentially reallocates a page frame. Figure 4.2 given an example for m = 4.
Moving a page with stack distance i > m to the top of the stack, in fact allocates
it a page frame. However, every page with stack distance i′ < i is pushed down

4.2. SIMULATING PAGING ALGORITHMS 49

1

2

3

4

5

6

5

1

2

3

4

6

Figure 4.2: Processing of a page reference on a mattson stack for m = 4. Page 5 is
being referenced. Its stack distance is 5 > 4 = m. After it is moved to the top of the
stack, page priorities shifted so that page 4 looses its page frame.

by one position. Hence, the page with stack distance j = m looses its page frame
and is moved out of memory. This newly freed page frame is the one allocated to
the new page at the top.

Adapted Stack Simulation

The Mattson stack algorithm operates on the reference string. It uses every mem-
ory access to reorders the stack and therefore, to update the allocation priority it
assigns to the individual pages. In case a page fault occurs, the stack already in-
corporates preprocessed information of past page reference behavior so the paging
best decision is to replace the loaded page with the lowest priority.

However, in the IA-32e architecture the paging algorithm cannot learn the refer-
ence string directly. The paging algorithm may only query the page table entries
for recorded page access information. Our simulation is essentially designed to
answer the question whether or not a certain page table entry format is able to
cache sufficiently accurate page access information for the paging algorithm to
restore the correct allocation priorities.

This simulation employs an adapted stack algorithm. With respect to the hardware
architecture it differs from the Mattson stack algorithm in the following three
ways:

a) The simulation also includes the accessed flags of the pages. It updates the
accessed flag of the referenced page as described by the PTE format.

b) It is given a definite number of page frames m. This is also the maximum

50 CHAPTER 4. DESIGN

size of the stack. Hence, a page fault occurs in case a page is not part of the
stack.

c) It is only allowed to update the stack on a page fault7. In return, it is granted
access to the accessed flags of the loaded pages.

The adapted stack algorithm still operates on the references string. However, only
faulting references can be used to reorder the stack and therefore, update the al-
location priorities. The simulation performs the following steps on every page
reference in the string:

1. Determines whether or not the reference issues a page fault. In case it does,
increments the page fault counter and proceeds to step 2. In case it does not,
skips step 2 and proceeds to step 3 immediately.

2. Sorts the stack according to the state of the accessed flags and the replace-
ment policy. To that end, test-and-clears every page in the stack and caches
the results for sorting. Then replaces the page at the bottom of the stack for
the requested page.

3. Finally, updates the accessed flag of the referenced page.

Figure 4.3 shows an example of an single page references. The adapted algorithm
is given a fixed number of page frames in order to render the decision whether or
not a page reference issues a page fault explicit. Furthermore, according to the IA-
32e hardware limitations, the adapted algorithm may only update its stack based
on the page access information provided by the (extended) page table entries. The
page table entries effectively cache the page access information which the Mattson
stack algorithm immediately incorporates into its stack.

However, depending on the evaluation baseline, there is another point of view to-
wards the simulation. In case the baseline is set to the number of page faults the
simulation reports for the IA-32e single bit accessed flag, replacing the accessed
flag with an extended accessed flag allows to evaluate whether or not more accu-
rate page information in fact reduces the number of page faults. In other words,
given an individual page reference string, a replacement heuristic, and an extended
page table entry format, the simulation allows to evaluate whether the heuristic in
fact benefits from more accurate page access information or not.

7As a result, it looses its ability to simulate multiple memory sizes simultaneously.

4.2. SIMULATING PAGING ALGORITHMS 51

1

2

3

4

5

2

5

1

4

3

6

2

5

1

4

Figure 4.3: Example of the processing of a single page references to page 6 for
m = 5. On the left the diagram depicts the stack right before it processes the
upcoming references. The circles illustrate the state of the page table. The number
of circles encode the number of page references the page tables counted since the
last page fault. Step 1 determines that page 6 is not present in the stack and, since
the stack is fully utilized, sorts the stack according to the LFU paging algorithm.
Therefore, it test-and-clears all loaded pages. The new order is shown in the middle.
It removes page 3, the page at the bottom of the stack, and in return loads page 6.
On the right side the diagram shows the third step as it records the page reference to
the page table.

4.2.4 Summary

In order to assess the potential of more accurate page access information to im-
prove paging decisions, we employ a paging simulation similar to the Mattson
stack algorithm for a single process. We find that the Mattson stack algorithm
models the paging algorithm in accordance with the definition of demand paging
algorithms presented in [3] as it reorders the stack at every page reference. Yet,
this does not fit our model of paging algorithms which does not allow the paging
algorithm to observe every memory access.

Our adapted stack simulation restricts the paging algorithm to reorder the stack
only on page faults, however, grants it access to simulated page table entries to
acquire cached page access information. This allows us to assess whether or not
a certain page table entry format is able to cache sufficiently accurate page access
information for the paging algorithm to restore the correct stack order before mak-
ing a replacement decision. Since the simulation is designed to use the sequence
of memory accesses of the target process as input, we are able to recycle the trace
data the inaccuracy analysis produces.

52 CHAPTER 4. DESIGN

Chapter 5

Implementation

In order to study the applicability of more accurate page access information, we
have to consider two separate questions (Chapter 3): 1) to which extend the out-
lined page access information inaccuracies disrupt the operating system’s ability
to perceive page reference behavior accurately and 2) whether or not paging al-
gorithms show improved performance, in case they are provided more accurate
information. Chapter 4 presents two methods of analysis. To address the first
question, we choose to reconstruct the interaction between IA-32e memory man-
agement hardware and the operating system (OS) paging software in the context
of a benchmark process in order to detect page reference count inaccuracies us-
ing full system simulation and Simutrace [11, 25]. In order to address the sec-
ond question, we employ a paging simulation similar to the Mattson stack algo-
rithm [21] using a memory access trace also acquired from a benchmark process.
This chapter presents implementation details for both designs. Later on, we select
a number of benchmark algorithms and perform both analyses for each of them
for evaluation. As of now, we keep referring to the benchmark process to be, as
target process.

Since the data requirements for reconstructing the interaction between hardware
and software subsumes the requirements of the paging simulation, we discuss the
details of data acquisition and refinement only in the context of the former anal-
ysis. Section 4.1.1 and Section 4.1.2 leave a number of issues concerning data
acquisition and refinement unaddressed. First of all, we choose Linux as the sim-
ulation guest running in QEMU because it is a widely used, free open source
operating system which allows us to incorporate the necessary hypercall exten-
sions without much effort. Another open question is how to cause the simulation
guest to perform local page replacement on the target process, forcing it to issue
test-and-clear operations on the target process’s address space in the first place. To

53

54 CHAPTER 5. IMPLEMENTATION

this end, Section 5.1 outlines how we use the Linux control group mechanism in
order to confine the target process to a fixed but insufficient number of exclusive
page frames. Afterwards, Section 5.2 discusses the data refinement steps neces-
sary to extract the reference string intermixed with test-and-clear operations of
interest from the trace date.

Finally, Sections 5.3 and 5.4 present the implementation details of the actual anal-
yses, both the reconstruction of interaction between memory management hard-
ware and paging algorithm as well as the paging simulation.

5.1 Enforcing Local Page Replacement in Linux

The scenario outlined in Section 4.1 aims at the question whether or not the IA-32e
architecture’s page table entry format enables the OS to reconstruct page reference
behavior for the purpose of page replacement without witnessing the generated
memory accesses directly. Page replacement becomes necessary in case there are
not enough page frames available in order load all virtual pages simultaneously.
However, Linux generally performs global page replacement. On a page fault,
Linux does not only look within the running process’s address space for potential
victims, but also considers pages belonging to other processes. To this end, Linux
aims at learning the reference behavior of all processes, not only our dedicated
target process. Therefore, in order to conduct our analysis, we must both limit the
target process’s page frame allocation without causing other processes or Linux
itself to produce page faults on their own.

The ideal solution for both issues is to cause Linux to voluntary limit only the
number of page frames it allocates to the target process. This way, the target pro-
cess produces non-demand page faults1 but at the same time plenty of free page
frames remain for the rest of the system so Linux does not need to reclaim one
of the target process’s frames to service a page fault of another process. Further-
more, this also enforces local page replacement. After the target process hits its
maximum number of page frames, Linux cannot allocate it another one and there-
fore needs to free one already allocated to it. Linux already provides the means to
do so in the form of control groups.

1Such page faults are also referred to as capacity page faults.

5.2. DATA REFINEMENT FOR LINUX GUESTS 55

5.1.1 Cgroups

Linux control groups (cgroups) provide a mechanism for partitioning sets of pro-
cesses into groups [22]. A cgroup contains zero or more processes and comes
with a number of parameters to control the resource allocation of its processes.
Cgroups allow to limit the allocation of a number of resources, in particular the
memory allocation.

For our purposes we employ the memory resource controller [9] subsystem. This
cgroup subsystem allows to limit the combined memory usage of the processes in
the cgroup in granularity of bytes. In addition, the documentation [9] guarantees
local replacement within memory control groups. Listing 5.1 illustrates how to
set up a memory control group called “test” and to run a program as a member of
the group using cgcreate, cgset and cgexec utilities.

c g c r e a t e −g memory : t e s t
c g s e t −r memory . l i m i t _ i n _ b y t e s =512K t e s t
cgexec −g memory : t e s t benchmark a rg1 a rg2

Listing 5.1: Creating, configuring and populating a memory cgroup.

For our purposes, we confine the target process to its own cgroup and restrict its
memory allocation appropriately. Thereby, the exact allocation limit obviously
depends on the selected target process’s memory demands and page reference
behavior.

5.2 Data Refinement for Linux Guests

In order to reconstruct the interaction between IA-32e memory management hard-
ware and the OS’ paging algorithm we need both the sequence of memory ac-
cesses the target process generates as well as the sequence of test-and-clear op-
erations performed on its pages. However, Simutrace traces memory access on a
hardware level and therefore records all memory accesses of all processes and the
operating guest system itself. It also records via the hypercall interface all test-
and-clear operations, regardless of the process the target page belongs to. Hence,
we must filter both streams before we can run our analysis. To this end, Sec-
tion 5.2.1 outlines how to identify and remove redundant memory accesses. In
addition, Section 5.2.2 discusses how to filter the recorded test-and-clear opera-
tions target process pages.

56 CHAPTER 5. IMPLEMENTATION

5.2.1 Filtering the Memory Access Stream

Section 4.1.2 suggests to record dispatcher activity in order to reconstruct the al-
location of timeslices to the processes. This allows to match memory accesses to
processes since only the active process generates memory accesses at the time.

In general, the terms address space and process refer to the same manifestation
of ongoing computational activity They appear in a 1:1 relation. Linux, however,
knows no distinction between multitasking, the concurrent execution of multiple
processes by rapidly switching between timeslices, and multithreading, a mecha-
nism for processes to have multiple independent execution flows operating in the
same address space. Linux implements kernel-level threads as independent pro-
cesses sharing parts of their execution context, e.g., execute in a shared address
space. Therefore, in Linux, processes and addresses spaces actually appear in a
m:1 relation.

Linux identifies each process by an unique process ID (PID). The various threads
of a multithreaded program appear as multiple processes, each identified by an
unique PID. They perform memory accesses independently to the same address
space. Although, it is sufficient to record the PID of dispatched processes in order
to identify the active process, it is however not sufficient to identify which address
space receives the memory accesses. The IA-32e memory management hardware
identifies the active address space using the CR3 register. The CR3 register stores
the physical address of the first table in the currently active page table hierarchy,
referred to as the page global directory (PGD). More importantly, the CR3 register
together with a generated linear address identifies the page table entry (PTE) to use
for address translation, therefore also the accessed flag to set. Since the dispatcher
needs to set the CR3 register to prepare a process to run, Linux also keeps track of
the PGDs. For this reason, for every dispatch event, instead of the PID, we record
the PGD .

In order to filter memory accesses or test-and-clear operations based on the active
address space, first of all, it is necessary to determine the PGD of the target address
space. In Linux, the clone system call creates new processes2. The new process
is basically a clone of the caller and either executes in the very same address space
or receives a shallow copy of the caller’s address space. Furthermore, the exec
system call allows a process to load a new binary for execution, thereby replacing
the old address space. Hence, the execution of a new, potentially multithreaded
program takes the following steps:

1) The process designated to start the program creates a clone process using

2Therefore, it is also used to create kernel-level threads.

5.2. DATA REFINEMENT FOR LINUX GUESTS 57

the clone system call.

2) The clone loads the program’s binary using the exec system call.

3) The now executing binary potentially spawns additional threads using the
clone system call on its own.

In the above steps it is the second step that creates the target address space. Simu-
trace already records calls to the clone and exec system calls via hypercalls.
For every invocation of exec it records both the name of the binary loaded as
well as the PGD of the newly created address space. Given the name of the target
process’s binary, this allows the offline analysis to easily learn the target PGD to
filter for.

In case the binary of the target process is known in beforehand, it is possible to
apply filters based on the PGD already while recording. Since dispatch events
and memory accesses occur in order, the last dispatch event seen indicates the
active address space. In other words, the PGD set by the last seen dispatch event
for example determines whether or not the following memory accesses belong
to the target address space. Thus, it is possible to ignore unnecessary memory
accesses already while recording. The same argument applies also to test-and-
clear operations.

Operating System Memory References in Linux

This leaves memory accesses generated by the Linux kernel itself. However, the
PGD filter leaves only the OS memory accesses that coincide with target pro-
cess activity since OS memory accesses falling into the timeslices of other pro-
cesses get already filtered. In general, there are at least two methods to determine
whether the OS or a user process generated a memory access.

The IA-32e architecture distinguishes between supervisor-mode accesses and user-
mode accesses [14, Vol. 3A 4-29]. Memory accesses performed while the current
privilege level (CPL) is less then 3 are supervisor-mode accesses, every accesses
with CPL 3 are user-mode accesses. In Linux, the kernel operates with CPL 0,
referred to as kernel mode. Regular processes operate with privilege level 3, re-
ferred to as user mode. Thus, every memory accesses performed by the OS is
a supervisor-mode access, every accesses performed by a process an user-mode
access. The CPL is determined by the CS and SS segment CPU registers [14, 5-
6 Vol. 3A ff.]. However, the operating system itself still access process address
space, e.g., in order to read the parameter of a system call after control has already
been transferred. This accesses also increment the reference counter. Therefore,

58 CHAPTER 5. IMPLEMENTATION

CPL fails as a filter criterion as we cannot ignore these memory accesses.

Another option is to detect memory accesses performed by the OS based on the
linear address. The IA-32e architecture partitions the linear address space into a
top and a bottom half (Section 2.4). Linux uses the top half for kernel data and the
bottom half for user process data [17]. User mode processes cannot access kernel
data, that is linear addresses above 0x00007fffffffffff. The Linux kernel
itself accesses both kernel data as well as user data. Hence, the linear address
potentially excludes a user process as the source of a memory access. However,
in case the kernel access a bottom half address, the address does not determine
the kernel as the source. In fact, the linear address is a better filter criterion since
it does not matter whether or not a access to a bottom half address is performed
by the OS or a user process. In both cases refers the address to user process
data and therefore also contributes to the memory reference behavior of the user
process.

Additionally, this criterion allows to ignore redundant memory accesses already
while recording. For our purposes, Simutrace does not record any accesses to
linear addresses above 0x00007fffffffffff.

5.2.2 Filtering Test-and-clear Operations

In our design outlines in Section 4.1.2 Simutrace records all test-and-clear oper-
ations, regardless of the address space that the target page table entry (PTE) be-
longs to. Therefore, beside the target page’s virtual base address, Simutrace needs
to record some address space identifier so the offline analysis is able to identify
the test-and-clear operations of interest.

As discussed in Section 2.4 defines the IA-32e architecture an address space as
a hierarchical set of page tables. Each address space is identified by the physical
address of the first page table in the hierarchy, referred to as the page global direc-
tory or PGD. The dispatcher loads the PGD is into the CR3 register of the CPU
in order to identify the currently executing address space and to specify the page
map to use for address translation [14, Vol. 3A 4-19].

Linux associates every address space with a data structure called memory descrip-
tor. The memory descriptor also stores the PGD. Therefore, on the one hand, we
modify Simutrace so it records for every test-and-clear operation both the base
virtual address of the target page as well as the PGD identifying the address space
it belongs to. The offline analysis, on the other hand, processes only test-and-clear
operations with the appropriate PGD.

5.3. RECONSTRUCTING INACCURACIES 59

5.3 Reconstructing Page Reference Count Inaccu-
racies

Section 4.1 defines the baseline for the operating system’s perception of memory
reference behavior as the perception it arrives at in case none of the test-and-clear
operations suffer from any inaccuracy. Consequently, a perception of memory
reference behavior is distorted, in case it differs from the baseline. In order to
access to which extend the accessed flags capacity limits cause said distortions, it
is necessary to learn the baseline, that is the undistorted perception, as well as the
perceptions the OS arrives at given certain accessed flag capacities.

We limit our studies to a page reference count based perception of page reference
behavior. To this end, we must learn both the actual number of references to the
individual pages as well as the number of effectively recorded references. To this
end, algorithm 1 computes the number of recorded accesses the OS arrives at,
given an intermixed sequence of memory accesses and test-and-clear operations
as well as a hypothetical accessed flags bit capacity.

Algorithm 1: Count Recorded Accesses
Input: Filtered memory accesses, filtered test-and-clear operations,

accessed flag bit capacity c
Output: Number of recorded accesses for the virtual pages of the target

process

1 foreach in chronological order trace entry e do
2 if e is memory access then
3 foreach page hit p do
4 hit p
5 end
6 else if e is test-and-clear operation then
7 p← target page of e
8 hits← test-and-clear p
9 if hits > 2c − 1 then

10 hits← 2c − 1

11 end
12 record hits references for p
13 end
14 end

60 CHAPTER 5. IMPLEMENTATION

The general idea is the following: The algorithm computes the hypothetical results
of perfectly accurate test-and-clear operations by counting the actual number of
page references in between two consecutive test-and-clear operations. However, it
caps the number of recorded references according to the simulated accessed flag’s
bit capacity. The reconstruction also discards any recorded references recorded af-
ter the last test-and-clear operation to the corresponding page table entry, since the
operating system as a consequence never acquires these access information.

Line 3 to 5 process the memory accesses. Line 3 translates a memory access
into necessary page references. Line 4 updates the reference counters. Line 7
to 12 process the test-and-clear operations. Line 8 test-and-clears the unlimited
accessed flag, line 9 to 11 cap the reference count according to the simulated
accessed flag capacity. Finally, line 12 records the hypothetically recorded page
references.

5.4 The Stack Simulation

Algorithm 2 illustrates the stack algorithm used to simulate demand paging un-
der page replacement algorithm R. As input it requires the filtered sequence of
memory accesses, the number of page frames available, and the page replacement
algorithm. It outputs the number of page faults.

To do so, the algorithm in line 3 iterates the sequence of memory accesses in
chronological order. According to Section 2.5.2, this is a supported operation.
Line 4 translates a memory access into one or two page references, depending on
the size of the requested data and the linear address. Line 5 to 12 handle the stack.
In case the page is not in the stack, the page reference constitutes a page fault. In
order to add it to the stack, that is, bring it into memory, it is potentially necessary
to remove a victim page from the stack, pushing the victim to external storage. To
this end, line 8 test-and-clears the pages in order to sort the stack according to the
recorded page access information andR’s heuristic. After the stack is sorted, line
9 removes the page at the bottom of the stack, the page R’s heuristic indicates as
most suitable victim. Finally, line 11 adds the faulted page to the stack and line
13 updates the accessed flag.

The most important step, however, is the sorting of the stack in line 8. In contrast
to the original Mattson stack algorithm discussed in Section 2.3.1, this simulation
does not update the stack on every page reference. It uses the page table entry’s ac-
cessed flags in order to cache page access information, as real IA-32e architecture

5.4. THE STACK SIMULATION 61

Algorithm 2: Stack Simulation
Input: Filtered memory accesses, number of page frames m, replacement

algorithmR
Output: Number of page faults

1 faults← 0
2 s← empty stack
3 foreach in chronological order memory access do
4 foreach page hit p do
5 if p not in s then
6 faults← faults + 1
7 if |s| = m then
8 sort s according toR
9 remove bottom page from s

10 end
11 add p to s
12 end
13 hit p
14 end
15 end

hardware does. In case of a page fault, the stack simulation retrieves the recorded
page access information and tries to restore the original order, as indicated byR’s
heuristic. In case it fails to do so because of inaccurate page access information,
the algorithm potentially selects a different victim than the original algorithm.
Therefore, the algorithm basically evaluates whether or not the recorded page ac-
cess information is sufficient to restore the original order. However, in case it does
not, the inaccurate page access information may both improve as well as worsen
the replacement decisions. This, in fact, depends on whether or not the heuristic
applies well to the reference string.

We are interested in the number of page faults of the least recently used page
replacement algorithm (LRU), the least frequently used page replacement algo-
rithm (LFU), the random page replacement algorithm (RAND), and the optimal
page replacement algorithm (OPT). Overall, those algorithms only differ in the
implementation of the accessed flag and the sorting step.

LFU implements the accessed flag as an access counter with limited capacity and
saturation addition. The sorting step sorts the stack by number of recorded page
accesses in ascending order. To do so, the implementation uses a stable sorting
algorithm so pages only swap positions in case of actually different access counts.

62 CHAPTER 5. IMPLEMENTATION

As stated in Section 3.1.2, LFU based on a single bit counter is actually identical
to an implementation of LRU based on a single bit access marker.

LRU comes in two implementations. The basic implementation uses a single bit
accessed flag in order to mark whether pages have been accessed or not. It sorts the
stack using a stable sorting algorithm based on whether a page has been marked
or not. The advanced implementation has the accessed flag function as an actual
timestamp and sorts the stack by last access in ascending order.

RAND is not based on any page access information at all. RAND’s implemen-
tation of the sorting step does not sort the stack, but shuffles it. Hence, after
shuffling, the bottom page is a random victim as expected.

5.4.1 The Optimal Page Replacement Algorithm

The optimal page replacement algorithm, referred to as OPT, is an offline replace-
ment algorithm as it requires a priori knowledge of the entire reference string
(Section 2.2.1). Whenever a page fault is detected and it is asked to select a suit-
able victim page to evict from memory, OPT selects the currently loaded page
whose next reference lies farthest in the future or, if possible, a page without fur-
ther reference. This way, it ensures that, in case this push in fact causes a future
fault, the future fault occurs as late as possible.

The most prominent operation for OPT is the following: Given a set of pages S
and an index into the reference string i, find page n ∈ S whose next reference with
i′ > i is farthest away of all the next references to the pages in S. One approach to
find the page, is to learn the next references for all the pages in S and to select the
page with the next reference with the highest index. In order to find the index of
the next reference to a page, starting from the given index, we scan the following
memory accesses in order, until at least one reference to every page in S has been
discovered or the memory access stream ends.

The stack simulation has the entire reference string at hand. That is, it has ac-
cess to the stream of memory access entries via Simutrace’s storage interface.
According to Section 2.5.2, a stream effectively allows random access to its en-
tries by index. However, before it is possible to access the target entry, first it is
necessary to retrieve the segment holding it, a potentially costly operation due to
the storage I/O and decompression involved. This strongly suggests an one-pass
algorithm.

However, a simple implementation eventually scans the same portion of the ref-
erence string repeatedly in case it passes another page reference, which is going

5.4. THE STACK SIMULATION 63

to fault later, while servicing an earlier page fault. An obvious example is a ref-
erence to a page which has not been referenced before and therefore causes a
demand fault. In case the algorithm already scanned past this reference in order
to find the next reference to some other page, it must rescan the portion of the
reference string between the demand fault and its current position.

A more advanced implementation caches portions of the reference string in order
to avoid multiple passes. The purpose of the cache is, given a page and an index
i, to efficiently find the index i′ > i of the next reference to said page. To do
so, the cached portion of the reference string forms a sliding window. Figure 5.1
illustrates the concept.

2 1 11 2 2 1 3 2 3

3

2

1

i i + 2 i + 4

i

i + 1

i + 4

i + 2

i + 3

Sliding Window

Figure 5.1: Example sliding window data structure on an example sequence of page
references. The windows ranges from the reference at index i to the reference at
index i + 4. The range contains references to pages 1 to 3. The scenario is the
following: Page reference i to page 1 causes a page fault. Pages 2 and 3 are currently
loaded. Therefore, the windows must be extended to cover the next references to
these two pages and is therefore extended to index i+4. The cached page references
are sorted according to page and index. Since the indexes increase linearly, the page
lists in fact form sorted lists, allowing the algorithm to easily find the next reference
to a page as long as the window covers it by looking up the first references in the
page’s list. Extending the windows past a references causes the references to be
appended to the appropriate page’s list. In case the windows shrinks, the all page
lists are scanned for references at indexes the window already went past.

The cache is organized as follows: For every page it maintains a sorted list of
cached references to the page. Hence, given a page and an index, the cache easily

64 CHAPTER 5. IMPLEMENTATION

finds the earliest next reference by searching the page’s sorted list. The window
only grows at the end, towards the end of the reference string. It grows in case it
not yet covers the next reference to a page of interest. Every reference scanned
is appended to the appropriate list. The window shrinks only in the front. It
shrinks with every memory access that the stack algorithm successfully performed
as those accesses effectively lie in the past.

Selecting a victim in case of a page fault works as follows: The algorithm scans for
every currently loaded page the sorted list of upcoming references. The head of the
list is the next reference. In case a list is empty, the algorithm first checks3 whether
or not there is a further reference to the concerned page at all and potentially grows
the sliding windows until it covers to the next references to the concerned page.
When the next reference for every loaded page has been found, the algorithm finds
the highest index reference and selects the corresponding page as victim.

5.5 Conclusion

In this chapter we present the implementation details of both the inaccuracy analy-
sis as well as the paging simulation. We choose Linux as IA-32e simulation guest
since it is a widely used, free open source operating system which allows us to
easily add the necessary hypercall extensions. In addition, Linux provides control
groups as a mechanism to enforce local replacement to take place on the target
process. However, in order to acquire suitable input for our analyses, we need to
implement three filters for the recorded trace data.

We employ the PGD as filter criterion for removing all memory accesses that do
not fall into timeslices of the target process. Furthermore, we filter the leftover
accesses based on the linear address. We discard every memory access with an
linear address above 0x00007fffffffffff in order to free the sequence of
all operating system activity. The third filter applies to the recorded test-and-clear
operations. In this case, we also use the PGD to identify the address space a
test-and-clear operation belongs to.

Consequently, we use a slightly extended Simutrace in order to record the follow-
ing events annotated with instruction counts: 1) clone and exec system calls
in order to learn the PGD of the target process, 2) dispatch events including the
PGD of the dispatched process to identify target process timeslices, 3) all mem-

3To this end, the algorithm requires a priori knowledge of the indexes of the very last reference
to every page. However, this information can be acquired with a single run of a one-pass algorithm
and later fed to every stack simulation.

5.5. CONCLUSION 65

ory accesses with linear address not above 0x00007fffffffffff, and 4) all
test-and-clear operations including the PGD of the target address space. Since
Simutrace records all entries in order4, it is possible to apply the filters simultane-
ously with the simulation, preventing unnecessary data from being written to the
data store in the first place.

4Simutrace acquires and processes trace data in the same order as the simulation produces it.
However, it then stores it to different streams, which is why we need the instruction counts in order
to restore the global sequence of events.

66 CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation

This chapter supplements the presented approaches to access the applicability of
more accurate page access information for paging algorithms with an evaluation.
It begins with an introduction of out evaluation setups in Section 6.1. The eval-
uation proceeds in two parts: In Section 6.2 we assess the reference counter in-
accuracies introduced into the operating system’s perception of page reference
behavior on the basis of Algorithm 1 (Section 5.3) and our benchmark programs.
In Section 6.3 we evaluate the paging simulation of local replacement based on
a number of paging algorithm configuration according to Algorithm 2 (Section
5.4).

6.1 Evaluation Setup

Our evaluation setup consists of two systems and five benchmark programs. Sec-
tion 6.1.1 discusses the systems. Section 6.1.2 introduces our benchmark pro-
grams.

6.1.1 System Configuration

We use QEMU [5], a full system simulator, for data acquisition. The evalu-
ation setup includes two systems: The simulation host executing QEMU and
Simutrace’s full data store as well as the simulation guest executing the bench-
marks.

67

68 CHAPTER 6. EVALUATION

The host system is equipped with a single Intel Core i7-920 processor with four
physical and eight logical cores as well as 24 GiB RAM. It runs runs Ubuntu
Server [18] 13.04 with Linux kernel 3.11.0-19-generic. The host system runs
QEMU 1.3.1 with extensions for memory hooks, the hypercall interface and the
instruction counter. Table 6.1 summarizes the host system configuration.

Component Model / Specification

CPU 1x Intel Core i7-920 processor
Available Cores 4 (8 logical)
Memory 24 GiB DDR3-1333 (6x4 GiB)
Operating System Ubuntu Server 13.10
Kernel Ubuntu 3.11.0-19-generic
Architecture 64 Bit (IA-32e)
Simulator QEMU Version 1.3.1
Simulator Extension Memory hooks, hypercall interface, instruction counter

Table 6.1: The host system configuration running QEMU and Simutrace’s full data
store.

The simulated guest system contains a single simulated CPU and 256 MiB of
RAM. The guest system also runs Ubuntu Server 13.04 with a Linux vanilla kernel
3.9.2 with activated OS introspection. Table 6.2 summarizes the simulated guest
system configuration.

Component Model / Specification

CPU 1x simulated
Available Cores 1
Memory 256 MiB
Operating System Ubuntu Server 13.04
Kernel Vanilla Linux kernel 3.9.2 with OS introspection
Architecture 64 Bit (IA-32e)
Simulated Architecture x86-64
Simulation Mode softMMU, TCG, icounter, optimized build
Libraries glibc v2.17, zlib v1.2.7
Build Tools gcc v4.7.3

Table 6.2: The guest system configuration running the benchmarks.

6.1. EVALUATION SETUP 69

6.1.2 Benchmarks

Both parts of the evaluation evolve around the page reference behavior of a num-
ber of programs. For the first part, those programs run under memory pressure
as we try to access how well the IA-32e page table entry accessed flag is suited
to reflect the program’s page reference behavior. For the second part, we employ
said programs in order to collect page reference strings for offline analysis. This
section introduces the benchmark programs.

Binary Search The binary search benchmark is based on glibc’s binary search
implementation. The benchmark allocates an array b of integers and initial-
izes it to [0, . . . , len − 1]. Furthermore, it memory maps a file of random
data as array of integers and performs a binary search for x ≡ random int
(mod len) on b for every integer in the array. We refer to x as the search
key. The file of random data is obtained once from the /dev/urandom pseu-
dorandom number generator. The benchmark is build using gcc v4.7.3, -O0
flag, and glibc v2.17.

Quicksort The quicksort benchmark is based on glibc’s [1] implementation of
quicksort [12]. The benchmark memory maps a file of random data as
array of integers and sorts it using glibc’s quick sort implementation. The
memory mapping uses the MAP_PRIVATE flag, so no changes are written
back to the file. The random data is obtained once from the /dev/urandom
pseudorandom number generator. The benchmark is build using gcc v4.7.3
with -O0 flag and glibc v2.17.

MySQL MySQL [7] is an open-source relational database management system
(RDBMS). Sysbench [2] is a modular, multithreaded benchmark tool. Sys-
bench includes multiple test modes, one of them oltp for benchmarking
database performance. oltp’s prepare stage creates and populates a
specific database table and performs a series of SQL statements on it. In
our case this table holds 10000 rows on top of the MyISAM storage engine.
The run stage performs 128 complex transactions using LOCK TABLES
and UNLOCK TABLES statements in two threads. We record the MySQL’s
reference string for the entire process lifetime, including startup, bench-
marking and shutdown. The guest system runs MySQL v5.5.34 and sys-
bench v0.4.12.

Compression with zlib This benchmark is also a custom program. It memory
maps an archive of the Linux kernel version 1.3.100 source files and uses
zlib’s [26] compress utility function to compress the archive at default
compression level. This function both reads the input data as well as writes

70 CHAPTER 6. EVALUATION

the output data to memory buffers. The benchmark is build using gcc v4.7.3,
-O0 flag, and zlib v1.2.7.

Physically-based Rendering with pbrt pbrt [24] is an open-source physically-
based renderer. The guest system runs pbrt v2.0.0. We collect pbrt’s ref-
erence string with -ncores 1 flag when rendering the prt-teapot scene
from the example scenes included with pbrt. However, we use a modified
prt-teapot scene so rendering completes faster1 Figure 6.1 shows the result-
ing image. pbrt is build using gcc v4.7.3.

Figure 6.1: Rendered image of pbrt example scene prt-teapot.

6.2 Page Reference Counter Inaccuracies

The purpose of this first part of the evaluation is to assess the degree of inac-
curacy that the IA-32e’s page table entry accessed flag’s limited storage capacity
introduces into the operating system’s perception of page reference behavior. Sec-
tion 4.1 describes the evaluation methodology. The inaccuracies in the operating
system’s perception of page reference behavior stem from two factors: 1) the tim-
ings and targets of the test-and-clear operations and 2) the degree of inaccuracy
the test-and-clear operations experience. However, this thesis studies the impacts
of the hardware’s limited capability to cache page access information upon the
inaccuracies that the test-and-clear operations experience. Therefore, we consider
paging algorithm implementation details such as test-and-clear timings external
effects. To this end, Section 4.1 defines the operating system’s perception of page

1We apply the following modification: 1) The image resolution is reduced to 100 x 100 pixel.
2) The surface integrator’s parameters lmax and nsamples are set to 5 and 128, respectively.

6.2. PAGE REFERENCE COUNTER INACCURACIES 71

reference behavior distorted, in case any of the test-and-clear operations experi-
ences inaccuracy. Thereby, the operating system’s perception of page reference
behavior is the number of references it notices for the individual pages of the
address space.

In this case, the terminology “noticing page references” refers to the process of the
page table entries counting the number of page references by using the accessed
flag as a counter as described in Section 3.1.2 and the OS test-and-clearing the
counters. As algorithm 1 outlines, there are two reasons why a page reference
goes unnoticed: 1) because a accessed flag counter has limited capacity and cannot
increment any further or 2) because the OS does not issue another test-and-clear
operation on an accessed flag and hence does not read the counter. To any other
references we refer as noticed references.

6.2.1 Visualizing Reference Counter Inaccuracies

This section discusses the operating system’s perception of page reference counts
of the binary search as well as the quicksort benchmark (Section 6.1.2). It vi-
sualizes the OS’s perception of page reference counts and presents a number of
artifacts introduced by the accessed flag’s limited storage capacity. To this end,
we calculate the number of noticed page references to the pages holding the two
arrays as indicated by the recorded intermixed sequence of memory accesses and
test-and-clear operations. Then, we plot the noticed reference counts against dif-
ferent accessed flag counter capacities as discussed in Section 3.2.2. We use the
same recorded intermixed sequence of a benchmark for every assessed counter
capacity. This way, we exclude varying test-and-clear timings, e.g., the timing of
the last test-and-clear operation to a page, as sources of distortion. Since this only
leaves the influence of the accessed flags’ counter capacity, we use the terminol-
ogy of accessed flags noticing page references interchangeably to the OS noticing
page references via test-and-clear operations.

We obtain an intermixed sequence of memory accesses as well as test-and-clear
operations as described in Section 4.1.1. It is then refined as discussed in Sec-
tion 5.2. Furthermore, Section 5.3 outlines the algorithm for counting noticed
page references given the intermixed sequence and a hypothetical accessed flag
counter capacity.

72 CHAPTER 6. EVALUATION

Binary Search

The binary search benchmark performs a number of binary searches on an array
of sorted integers. In this case, it performs 65536 binary searches using glibc’s
bsearch function for random integers on the array [0, . . . , 218− 1 = 262143] of
262144 integers. Since the search keys randomly fall into the range of the integers
in the sorted array, we expect them to distribute uniformly among 262144 integers
in the array.

The array of sorted integers takes up 1 MiB of memory, that is 256 4 KiB pages. In
order to cause memory pressure on the benchmark and force the operating system
to perform local page replacement, we run the benchmark in a cgroup with limited
memory allocation (Section 5.1.1). We limit the allocation to 1 MiB, the number
of pages it takes to hold the sorted array alone. In addition to the sorted array,
the address space also includes the stack, the heap, the text, and global variables.
Hence, page replacement becomes necessary as the benchmark executes.

Figure 6.2 shows the number of noticed page references into the sorted array given
virtual accessed flags of 16 bit, 8 bit, and 4 bit capacity. The x-axis shows the 256
pages used to hold the sorted array. The y-axis shows the number of noticed ref-
erences. The figure depicts the noticed references for 16 bit accessed flags as blue
bars, for the 8 bit accessed flags as orange bars and for 4 bit accessed flags as green
bars. All bars are generated using algorithm 1 with the same intermixed sequence
but different accessed flag capacities as input. Hence, an accessed flag with larger
capacity counts at least as many references without saturating as an accessed flag
with smaller capacity. Therefore, we plot the bars for smaller capacities on top of
bars for larger capacities.

For 16 bit capacity accessed flags the figure clearly shows the access pattern of
the interval bisection method for uniformly distributes search keys. Every search
references the page holding the middle array element first. Then, it proceeds either
to the left or the right interval depending on the search key and references the page
in the middle of that interval and so on. At some point in that process the interval
shrinks to the size of a single page. From this point on, every further iteration
references the same page. Hence, at least for the first log 256 = 8 iterations,
the number of noticed references basically form a geometric pattern since every
search references the middle page, every other search references the middle page
of the left interval, every fourth search references the middle page of the left half
of the left interval and so on.

The 8 bit bars differ significantly from the 16 bit bars only for the middle page.
This page’s 8 bit accessed flag caches only about half of the references as a po-

6.2. PAGE REFERENCE COUNTER INACCURACIES 73

 0

 20000

 40000

 60000

 80000

 100000

 0 50 100 150 200 250

N
o
ti

ce
d

 R
e
fe

re
n
ce

s
[r

e
fe

re
n
ce

s]

Pages [page]

16 bit Acsd. Flag 8 bit Acsd. Flag 4 bit Acsd. Flag

Figure 6.2: Number of noticed page references for binary search benchmark (1 MiB
array, 65536 binary searches): page references into sorted array given virtual ac-
cessed flags of 16, 8, and 4 bit capacity. Bars for smaller capacities overlay bars for
larger capacities.

tential 16 bit accessed flag does. Still, the 8 bit capacity accessed flags show a
difference between the middle page and the two second most referenced pages. In
general, they also allow the OS to recognize the reference pattern of the interval
bisection method. The 4 bit accessed flags, however, do not show the pattern at
this scale.

An interesting detail is that for the first about 60 pages the diagram does not show
differences between the 16 bit and the 8 bit accessed flags. In fact, these pages
show in general less noticed references than their counterparts in other parts of
the array. We suspect this to be an artifact introduced by the implementation
details of the Linux paging algorithm.

Figure 6.3 depicts the same kind of chart, only for accessed flag capacities of 4, 2
and 1 bit. Again, the x-axis shows the 256 pages, the y-axis shows the number of
noticed references. This figure shows the number of noticed references for 4 bit
accessed flags as blue bars, for 2 bit accessed flags as orange bars and for 1 bit, the
capacity that the IA-32e architecture currently implements, as green bars.

The 1 bit accessed flag bars shows the page reference counts that the operating sys-
tem actually collects till the end of the benchmark when running on IA-32e. The

74 CHAPTER 6. EVALUATION

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250

N
o
ti

ce
d

 R
e
fe

re
n
ce

s
[r

e
fe

re
n
ce

s]

Pages [page]

4 bit Acsd. Flag 2 bit Acsd. Flag 1 bit Acsd. Flag

Figure 6.3: Number of noticed page references for binary search benchmark (1 MiB
array, 65536 binary searches): page references into sorted array given virtual ac-
cessed flags of 4, 2, and 1 bit capacity. Bars for smaller capacities overlay bars for
larger capacities.

green bars do not present the geometric reference pattern of the interval bisection
method. The 1 bit accessed flags basically identify two categories of pages: less
referenced pages and more referenced pages. Less frequently referenced pages
and more frequently referenced pages occur alternately. The 2 bit accessed flags
in orange already identify three categories of pages. Every second page belongs
to the least frequently referenced pages. Between those pages alternate medium
and most frequently referenced pages. The later two categories coincide with the
more frequently referenced pages of the 1 bit accessed flags, forming two subcat-
egories.

The 4 bit accessed flag already appears in Figure 6.2 as green bars. At this scale,
the 4 bit accessed flag bars show four categories of pages, forming smaller peaks.
This pattern suggests the geometric page reference pattern of the interval bisection
method, but yet does not recognize it. Basically the four categories of pages are
the same three categories as the 2 bit accessed flags, plus a fourth category, com-
prised of every other page of the 2 bit accessed flags’ most frequently referenced
pages category.

6.2. PAGE REFERENCE COUNTER INACCURACIES 75

Quick Sort

The quick sort benchmark memory maps an array of random integers and uses
glibc’s [1] qsort function to sort it with quicksort [12]. In this case, the array
has a size of 1 MiB, that is 262144 integers or 256 4 KiB pages. In order to cause
memory pressure and to force the operating system to perform local replacement,
we run the benchmark in a cgroup with memory allocation limited to 512 KiB,
that is half the pages required to hold the array of integers alone.

Figure 6.4 shows a bar chart of the number of noticed page references into the
array of integers given virtual accessed flag capacities of 32, 16, and 8 bit in
blue, orange and green, respectively. Again, the x-axis shows the pages, the y-
axis shows the number of noticed references and bars for lower capacity accessed
flags overlay the bars for higher capacity accessed flags. All bars are generated
using algorithm 1 with the same intermixed sequence but different accessed flag
capacities as input.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 50 100 150 200 250

N
o
ti

ce
d

 R
e
fe

re
n
ce

s
[r

e
fe

re
n
ce

s]

Pages [pages]

32 bit Acsd. Flag 16 bit Acsd. Flag 8 bit Acsd. Flag

Figure 6.4: Number of noticed page references for quicksort benchmark (1 MiB
array): page references into array given virtual accessed flags of 32, 16, and 8 bit
capacity. Bars for smaller capacities overlay bars for larger capacities.

The 32 bit accessed flags notice approximately the same number of references
for all pages. The only exceptions are four smaller intervals of pages that show
slightly less noticed references, potentially because the missing references occur

76 CHAPTER 6. EVALUATION

after the last test-and-clear operation on said pages. The 16 bit accessed flags no-
tice almost as much references as the 32 bit accessed flags. However, they show
a fourth interval of pages, between pages 150 and 200, receiving less references.
Additionally, they show even less references for the pages in the previously men-
tioned page intervals.

In green, the 8 bit accessed flag bars show way less noticed references over the
entire array. Compared to the 16 and 32 bit accessed flags, the noticed references
are less evenly distributed among the 256 pages. Some intervals, e.g., between
200 and 250, show disproportional variations in relation to the overall number of
noticed references.

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250

N
o
ti

ce
d

 R
e
fe

re
n
ce

s
[r

e
fe

re
n
ce

s]

Pages [pages]

4 bit Acsd. Flag 2 bit Acsd. Flag 1 bit Acsd. Flag

Figure 6.5: Number of noticed page references for quicksort benchmark (1 MiB ar-
ray): page references into array given virtual accessed flags of 4, 2, and 1 bit capacity.
Bars for smaller capacities overlay bars for larger capacities.

Figure 6.5 also depicts the number of noticed page references, for accessed flag
capacities of 4, 2 and 1 bit. Although the accessed flags with higher counter capac-
ities indicate that the pages approximately receive the same number of references,
the 4, 2 and 1 bit accessed flags altogether show considerable variations in refer-
ence counts. However, the strongest downward variations at about page 60, pages
110 to 120 and 225 to 235 coincide with the intervals of less frequently referenced
pages from Figure 6.4. Other pages show upward variations, e.g., pages 15 to 20
and 190 to 210. Overall, the accessed flags with less counter capacity show very
similar patterns in reference counts.

6.2. PAGE REFERENCE COUNTER INACCURACIES 77

Yet, the chart shows minor differences. An example are the leftmost pages 0 to
50. The first few pages show an equal reference count for all counter capacities.
At about page 15, the figure shows three peaks. Given 4 bit accessed flags, the
first two peaks show approximately 135 noticed references, the third peak only
approximately 130. The 2 and 1 bit accessed flags also show the peaks, however
no difference between the first two and the third one. Other intervals, e.g., pages
155 to 165, show similar patterns.

6.2.2 Quantifying Reference Counter Inaccuracies

Earlier sections capitalize on visual assessment of how well the perception with
lower capacity accessed flags, potentially suffering from higher individual inaccu-
racy, resembles the hypothetical perception with higher capacity accessed flags,
suffering from lower individual inaccuracy. However, a more generic approach
that also applies to benchmarks with unknown references behavior is to quantify
the resemblance between two perceptions, the perception gained via lower capac-
ity accessed flags and high, preferably unlimited, capacity accessed flags.

The selection of an appropriate quantifier for the resemblance strongly depends
on the page replacement algorithm implemented on top of the perception of page
reference behavior. Least frequently used (LFU) page replacement (Section 2.2.1)
replaces pages based on reference frequencies. It prioritizes more frequently ref-
erenced pages over less frequently referenced pages. In other words, LFU ranks
pages according to reference counts. Hence, in case of LFU, different percep-
tions of page references behavior show strong resemblance, if the implied page
reference count rankings correlate well.

Kendall [16] introduces a measure of rank correlation referred to as Kendall tau
rank correlation coefficient. It takes two rankings of individuals, in this case,
pages ranked according to noticed reference counts, from two different observa-
tions, in this case page table entry accessed flags with different counting capacity.
It then assesses whether or not the two rankings are sufficiently alike to indicate
similarities between the observers [16].

For our purposes, for one of the two rankings we use the ranking indicated by the
accessed flags with unlimited counter capacity, our baseline for page reference
behavior perception using references counters. As the second ranking we use a
ranking indicated by limited capacity accessed flags, e.g., the reference counts
as perceived by 1 bit capacity accessed flags. The resulting correlation coefficient
then quantifies the resemblance between the two rankings within the interval [0, 1],
0 indicating no resemblance and 1 indicating perfect resemblance. In other words,

78 CHAPTER 6. EVALUATION

the kendall correlation provides us the means to assess whether or not limited ca-
pacity accessed flags cause the operating system to arrive at a inherently different
perception of page reference behavior, namely different page priorities based on
reference counts.

 0

 0.2

 0.4

 0.6

 0.8

 1

Binary Search Quicksort zlib pbrt

C
o
rr

el
at

io
n
 C

o
ef

fi
ci

en
t

Benchmark

1 bit 2 bit 4 bit 8 bit 16 bit

Figure 6.6: Kendall rank correlation between page rankings as indicated by accessed
flags with limited counter capacity and unlimited capacity. Every bar gives the corre-
lation coefficient between two rankings for the same benchmark, one acquired using
accessed flags of capacity as given by the color, the other using accessed flags of
unlimited counter capacity. The x-axis gives the benchmark, the y-axis the correla-
tion coefficient. 0 states no resemblance, 1 perfect resemblance. High resemblance
indicates similar page priorities.

Figure 6.6 shows the kendall correlation coefficient between the page rankings as
indicated by accessed flags with given capacities and the page ranking as indicated
by accessed flags with unlimited counter capacity. The x-axis gives the accessed
flags counter capacity in bits. The y-axis gives the correlation coefficient between
the page ranking obtained by ranking pages according to the number of noticed
references given accessed flags with x bit and the page ranking according to ac-
cessed flags with unlimited counter capacity. A coefficient close to 1 indicates
high resemblance, a coefficient close to 0 indicates poor resemblance. In this case,
high resemblance stands for similar page priorities in LFU. Hence, the coefficient
does not meter whether or not limited counter capacities introduce inaccuracies
into the perception of page reference behavior but whether or not potential inac-
curacies distort the perception in a way that changes page priorities, potentially

6.2. PAGE REFERENCE COUNTER INACCURACIES 79

leading to different page replacement decisions.

The first cluster of bars shows the correlation coefficients for the binary search
benchmark with the same parameters as described in the last section. However,
in this case, we do not limit the consideration to the pages holding the sorted
array but include all pages in the rankings. The 1 bit accessed flags produce poor
resemblance. Interestingly, increasing the accessed flags counter capacity to 2 bit
results in even worse resemblance in page rankings. 4 bit and 8 bit accessed flags
result in only barely better resemblance. Only increasing the counter capacity to
16 bit accessed flags improves the result significantly. In fact, 16 bit produce the
same page ranking as accessed flags with unlimited capacity.

The second cluster of bars gives the correlation coefficient for the quicksort bench-
mark given the same parameters as described in the last section. Again, this time
we include all pages of the address space in the consideration, not only pages
holding the array to be sorted. For 1 bit accessed flags show medium correlation.
However, the correlation coefficients shrink slightly with increasing accessed flag
counter capacities. Only 16 bit accessed flags improve the correlation between the
rankings. Yet, not even 16 bit produce a page ranking that perfectly resembles the
baseline ranking.

The third cluster gives the correlation coefficients for the zlib benchmark. In or-
der to force the operating system to perform local page replacement, we limit
the cgroup to 2048 KiB, that is 512 4 KiB pages, which is not even sufficient to
hold the approximately 22 MiB Linux kernel v1.3.100 archive. The fourth cluster
gives the correlation coefficients for the pbrt benchmark. In this case, we limit
the cgroup also to 2048 KiB. Both benchmarks show results similar to the quick-
sort benchmark. Increasing the accessed flag counter capacities shows almost no
effect on the coefficient. Only 16 bit accessed flags improve the correlation sig-
nificantly.

6.2.3 Discussion

From the content of the array and the distribution of search key in the binary search
benchmark we know that pages receive references with constant, well known fre-
quencies depending on their location in the array. Effectively, the array pages
break up into sets of pages with very similar reference frequencies. The bench-
mark shows that accessed flag counter capacity and test-and-clear interval dura-
tions impose an upper limit on detectable page references frequencies. It is not
possible to distinguish the reference frequencies of two pages with above detec-
tion limit, but different frequencies. The 1 bit accessed flag suffer from this effect

80 CHAPTER 6. EVALUATION

the most. As a consequence, they are unable to reflect the expected page refer-
ence behavior. However, the results illustrate that increasing the accessed flags’
counter capacity, for this benchmark, improves the operating system’s ability to
match pages to sets. In this case, the findings suggest that higher capacity ac-
cessed flags, even 4 or 2 bit, improve the operating system perception of memory
reference behavior.

In case of the quicksort benchmark, high capacity accessed flags indicate very
few and barley relevant variations in reference counts. The 1 bit accessed flags, as
currently implemented in the IA-32e architecture, cannot reproduce this charac-
teristic. Instead of few variations, they show considerable and frequent variations
in reference counts. However, increasing the counter capacities to 2 or 4 bit does
not yield any improvements. The accessed flags still fail to reproduce the stable
reference counts of high capacity accessed flags. If anything, they worsen the vari-
ations relative to the absolute reference counts. This suggests that low capacity
accessed flags are more exposed to ill timed test-and-clear operation as they can-
not compensate for reference bursts nor long periods of low reference frequency
without being test-and-cleared. Only accessed flags with high counter capacity,
such as 16 or 32 bit, allow the operating system to arrive at a better perception of
page reference behavior.

In contrast to assessing the perception of page reference behavior by absolute ref-
erence counts, the kendall correlation coefficient constitutes a weaker criterion
for resemblance, more relevant for least frequently used page replacement. How-
ever, it seemingly disproves the positive results of the visual assessment of the
binary search algorithm. With increasing capacity, it shows less improvement in
correlation as expected. A potential reason for this is the following: The visual
assessment suggests better separation of the sets of pages with similar reference
frequencies. Assigning pages to sets does not imply a total order of pages. How-
ever, the kendall correlation evaluates the similarities between two total orders.
Hence, the disappointing results are potentially caused by a wrong page order
within the sets.

Furthermore, the assessment of the kendall correlation coefficients endorses the
negative findings of the quicksort benchmark. Increasing the accessed flags’
counter capacity only slightly, effectively does not improve the operating system
perception of page reference behavior, e.g., reference counts. Only increasing the
capacities to at least 16 bit results in significant improvements as, in case of rank-
ing based on reference counting, 16 bit accessed flags produce rankings closely
resembling the rankings produced by unlimited accessed flags.

6.3. PAGING SIMULATION 81

6.2.4 Conclusion

In order to assess the degree of inaccuracy in page access information found in
IA-32e accessed flags we replay the interaction between a page replacement im-
plementation, embodies by Linux, and the IA-32e accessed flags in a process’
page table. As a first step, we assess the inaccuracies visually by comparing the
operating system’s perception of page reference behavior at the end of the bench-
marks for accessed flags with different reference counter capacities. We find that
single bit accessed flags provide significantly inaccurate page access information
causing the operating system to arrive at a distorted perception of reference be-
havior. As a second step, we quantify the inaccuracies based on the kendall rank
correlation coefficients between the references counts limited capacity accessed
flags provide and reference counts unlimited capacity accessed flags provide. We
find that reference counts accessed flags with limited capacity, especially 1, 2 and
4 bit, show little resemblance to the accurate reference count. We conclude that
the findings endorse the negative conclusions from the visual assessment.

6.3 Paging Simulation

The purpose of the first part of the evaluation is to assess whether or not limited
capacity accessed flags cause page access information inaccuracies and changing
perception of page reference behavior, in this case, reference counts. It finds
that this, in fact, is the case as, without extensively increasing the accessed flags’
capacities, the operating system is unable to rank the pages according to reference
counts. However, it remains unclear whether or not the inaccuracies in fact worsen
performance of the paging algorithm, that is increase the number of page faults in
generates. The purpose of the second part of the evaluation is to learn whether or
not increasing the accessed flags’ counter capacities yields less page faults.

Section 4.2 outlines our approach to a paging simulation which receives both a
reference string and a number of available page frames as input and outputs the
number of generated page faults. The simulation translates the memory accesses
into page references and makes sure that all required page are loaded. In case
a page fault occurs and no free page frame is available, the simulation selects a
victim based on the simulated page replacement algorithm, which only receives
page access information cached in the simulated page table. It synchronously
replaces the pages and continues with the next reference. Section 4.2.3 designs the
algorithm that drives the simulation, Section 5.4 gives an implementation.

We refer to the combination of paging algorithm and underlying accessed flag

82 CHAPTER 6. EVALUATION

format as configuration. There are six candidate configurations: 1) least frequent-
ly/recently2 used page replacement (LFU/LRU) simulated on 1 bit accessed flags
as currently implemented in the IA-32e architecture, 2) to 5) LFU on extended
page table entry format with 2, 4, 8, and 16 bit accessed flags (LFU x) and, 6) LRU
on accessed flags storing a timestamp of the last access (timest. LRU).

However, as discussed in Section 3.2.1, we cannot assess a paging algorithm’s
performance based on absolute number of page faults. Therefore, we assess it
relative to two baselines, the optimal page replacement algorithm (OPT, Section
2.2.1) and the random page replacement algorithm (RAND, Section 2.2.1) for all
of our benchmarks.

Our figures show the number of accumulated page faults sampled at equidistant
points in the simulated execution of the benchmarks. To this end, we use the
number of memory accesses a benchmark performs as indicator for execution
progress and sample the number of page faults in intervals of a fixed number
of memory accesses. The exact step size, however, depends on the individual
benchmark. We connect the sampling points by straight lines in order to clarify
on the trend. Furthermore, we cut the curves after the last complete sampling
interval. Since we use for each benchmark the same recorded reference string as
input to the simulation, the position of a memory access in the reference string
constitutes an appropriate indicator for benchmark progress. In case of RAND,
we run the same simulation ten times and give for every sample point the mean
number of page faults.

6.3.1 Binary Search

Figure 6.7 shows the simulation results for the binary search benchmark given
256 4 KiB pages, that is 1 MiB of memory. In this case, the benchmark performs
262144 binary searches on an array of 262144 integers3. As the figure shows
a constant increase in page faults, all configurations experience a constant page
fault frequency over the entire simulations. This is the expected result, as the
search keys are uniformly distributed among the integers in the array. Hence,
every iteration descends into the left or right interval with 50% probability. As
expected, OPT performs best with less than 2500 page faults in total. RAND per-
forms worst with in total almost 25000 page faults, 10 times the number of OPT.
LRU/LFU, the original 1 bit replacement algorithm implementation, performs at
about 8000 total page faults significantly better than RAND, yet a lot worse than

2LFU and LRU degrade to the same algorithm in case of 1 bit accessed flags (see Section 3.1.2).
3Again, every search key is taken randomly out of the array.

6.3. PAGING SIMULATION 83

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10 12 14 16 18

P
a
g

e
 F

a
u
lt

s
[f

a
u
lt

s]

Benchmark Progress [5 * 106 accesses]

timest. LRU
LFU 2

LFU 4
LFU 8

LFU 16
LFU/LRU

RAND
OPT

Figure 6.7: Number of page faults the binary search benchmark (1 MiB array,
262144 searches) simulation generates on 256 4 KiB page frames. X-axis shows
benchmark progress as the number of performed memory accesses, y-axis the num-
ber of page faults. LRU/LFU overlaps other simulation candidates.

OPT. However, the simulation shows almost no improvement for the rest of the
configurations. Increasing the capacity of the accessed flags to 2, 4, 8 or even
16 bit does not noticeably reduce or increase the number of page faults.

6.3.2 Quicksort

Figure 6.8 shows the simulation results for the quicksort benchmark, sorting 4 MiB
of integers on 256 4 KiB page frames (1 MiB). All configurations show similar re-
sults. The accumulated page fault numbers jump sharply at four dedicated points
in the execution of the benchmark. This is no surprise as the 1 MiB physical mem-
ory cannot hold more than one fourth of the array to be sorted. Hence, those four
jumps most probably coincide with quicksort moving from one of the four second
level partitions to another one, causing almost all pages to be replaced.

Once again, OPT performs best. RAND performs worse by approximately 30%
compared to OPT. Still, LFU/LRU performs a little worse. However, in this case,
the extended page table entry formats seemingly improve the paging algorithms’
performances. LFU 16, LFU based on 16 bit accessed flags, halves the distance

84 CHAPTER 6. EVALUATION

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2 4 6 8 10 12 14 16 18

P
a
g

e
 F

a
u
lt

s
[f

a
u
lt

s]

Benchmark Progress [25 * 106 accesses]

ext. LRU
LFU 2

LFU 4
LFU 8

LFU 16
LFU/LRU

RAND
OPT

Figure 6.8: Number of page faults the quicksort benchmark (4 MiB array) simulation
generates on 256 4 KiB page frames. X-axis shows benchmark progress as the num-
ber of performed memory accesses, y-axis the number of page faults. The curves of
LFU 2, 4 and 8 run exactly below LFU/LRU.

to RAND. Timest. LRU, LRU based on accessed flags storing a timestamp of the
last reference to the corresponding page, shows similar improvements. LFU 2, 4
and 8 perform a little worse than LFU/LRU.

6.3.3 MySQL

Figure 6.9 illustrates the results of the MySQL benchmark simulation for 1024
4 KiB page frames. This benchmark performs 128 complex transactions in two
threads on a 10000 row table driven by the MyISAM storage engine. The recorded
reference string includes the startup of MySQL, the described transactions sys-
bench performs as database benchmark as well as the shut down of MySQL. The
small jump in page faults after about 80∗ 106 memory accesses supposedly marks
the start of the benchmark transactions.

As expected, OPT performs best at approximately 25000 page faults. RAND
performs worst at approximately 42000 faults, almost twice as many faults as
OPT. LFU/LRU finishes in between at approximately 34000 page faults, about
20% worse than OPT. However, for the increased capacity configurations, we see

6.3. PAGING SIMULATION 85

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 2 4 6 8 10 12 14 16

P
a
g

e
 F

a
u
lt

s
[f

a
u
lt

s]

Benchmark Progress [20 * 106 accesses]

ext. LRU
LFU 2

LFU 4
LFU 8

LFU 16
LFU/LRU

RAND
OPT

Figure 6.9: Number of page faults the MySQL sysbench benchmark (10000 rows,
128 complex transactions) simulation generates on 1024 4 KiB page frames. X-axis
shows benchmark progress as the number of performed memory accesses, y-axis the
number of page faults. LRU/LFU overlaps other simulation candidates.

no improvement whatsoever. They perform almost exactly as 1 bit accessed flag
LFU/LRU.

6.3.4 pbrt

Figure 6.10 depicts the results of the pbrt benchmark simulation for 1024 4 KiB
page frames. The benchmark renders the 100 x 100 pixel image of a teapot de-
picted in Figure 6.1. All configurations present similar behavior. At the beginning
of the benchmark, the simulation produces pages faults at a fast rate. The page
fault rate drops after about 150 ∗ 106 memory accesses and finally levels out at a
low rate after about 550 ∗ 106 memory accesses.

OPT performs best at approximately 15000 page faults. RAND performs about
25% worse, producing approximately 20000 page faults in total. LFU/LRU per-
forms worst at approximately 22000 page faults. Yet, once again, the higher
capacity configurations show no improvements compared to LFU/LRU whatso-
ever.

Figure 6.11 depicts the results of the simulation of the pbrt benchmark again, how-

86 CHAPTER 6. EVALUATION

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10 12 14

P
a
g

e
 F

a
u
lt

s
[f

a
u
lt

s]

Benchmark Progress [150 * 106 accesses]

ext. LRU
LFU 2

LFU 4
LFU 8

LFU 16
LFU/LRU

RAND
OPT

Figure 6.10: Number of page faults pbrt benchmark (prt-teapot) simulation gen-
erates on 1024 4 KiB page frames. x-axis shows benchmark process as number of
performed memory accesses, y-axis number of page faults. LRU/LFU overlaps other
simulation candidates.

ever this time for 512 instead of 1024 4 KiB page frames. This simulation pro-
duces very similar results, yet this time, LFU/LRU performs better than RAND.
This indicates, that LFU’s assumptions about page reference behavior at least to
some extend apply to the recorded pbrt’s reference string. Nevertheless, increas-
ing the accessed flags’ storage capacities does not improve the overall paging
performance.

6.3.5 zlib

Figure 6.12 depicts the results of the 256 4 KiB page frame simulation of the zlib
benchmark. This benchmark compresses an 22 MiB archive of the Linux kernel
1.3.100 source in memory. All configurations show a constant rate of page faults.
RAND performs worst at approximately 9000 page faults. All other configura-
tions perform almost identically. Both OPT, LFU/LRU and all other configura-
tions produce approximately 7000 page faults. Since LFU/LRU already performs
as well as OPT, there is no room for improvement. No configuration can produce
less page faults than OPT. Therefore, this benchmark does not provide any in-
sight into whether or not more accurate page access information improve paging

6.3. PAGING SIMULATION 87

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10 12 14

P
a
g

e
 F

a
u
lt

s
[f

a
u
lt

s]

Benchmark Progress [150 * 106 accesses]

ext. LRU
LFU 2

LFU 4
LFU 8

LFU 16
LFU/LRU

RAND
OPT

Figure 6.11: Number of page faults the pbrt benchmark (prt-teapot) simulation gen-
erates on 512 4 KiB page frames. X-axis shows benchmark progress as the number
of performed memory accesses, y-axis the number of page faults. LRU/LFU over-
laps other simulation candidates.

performance.

6.3.6 Discussion

Table 6.3 summarizes the simulation results described in the last section. The
discussion of the results is oriented towards the following two aspects: whether
or not the results of the assessment of the kendall correlation promise improve-
ments and whether or not the base case LFU/LRU performs better or worse than
RAND.

The binary search benchmark is a suitable candidate for the paging simulation.
According to the kendall assessment, 4 bit and 8 bit accessed flags show improve-
ments in correlation towards the 1 bit accessed flags. 16 bit accessed flags show
perfect correlation, that is, provide completely accurate page access information.
Furthermore, LFU/LRU, the configuration based on 1 bit accessed flags, performs
much better than RAND, which according to Section 3.2.1 indicates that the un-
derlying assumptions of the replacement algorithm apply well to the observed
page reference behavior. Still, it performs considerably worse than OPT, which

88 CHAPTER 6. EVALUATION

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 5 10 15 20

Pa
g
e

Fa
u
lt
s

[f
au

lt
s]

Benchmark Progress [50 * 106 accesses]

ext. LRU
LFU 2

LFU 4
LFU 8

LFU 16
LFU/LRU

RAND
OPT

Figure 6.12: Number of page faults the zlib benchmark (22 MiB archive) simula-
tion generates on 256 4 KiB page frames. X-axis shows benchmark progress as the
number of performed memory accesses, y-axis the number of page faults.

Configuration Binary S. Quicksort MySQL pbrt 512 zlib

LRU/LFU 8594 15420 34233 24058 7127
LFU 2 8613 15422 34339 24046 7127
LFU 4 8610 15425 34039 24034 7127
LFU 8 8630 15425 34060 24026 7127
LFU 16 8616 14934 33999 24033 7127
Timest. LRU 8674 15077 34290 24028 7127
RAND 23402 14268 42074 25652 9665
OPT 2060 10015 24931 18985 7097

Table 6.3: Summary of the simulation results presented in Section 6.3. pbrt column
gives simulation results of the pbrt benchmark for 512 4 KiB page frames. The
results include all page faults instead of being cut at the end of the last full interval
of memory accesses.

leaves plenty of room for improvement. However, the binary search benchmark
simulation shows no improvement for increased accessed flag capacity whatso-
ever.

The MySQL as well as the zlib benchmark paging simulations are other examples

6.3. PAGING SIMULATION 89

where 1 bit LFU/LRU performs already better than RAND. Yet, both simulations
show also no improvements at all. However, in this case of the zlib benchmark
simulation, LFU/LRU already perform optimal, which leaves no room for im-
provement and renders the benchmark futile.

In Section 6.3 we present two simulations of the pbrt benchmark. One simulation
on 1024 4 KiB page frames and one on 512 4 KiB page frames. In case of the for-
mer, RAND performs better than 1 bit LFU/LRU. In case of the latter, it performs
worse. Yet, both cases show no improvements with increasing capacity accessed
flags. This suggests that comparing LFU/LRU to RAND does not allow any con-
clusion towards the applicability of more accurate page access information.

The only benchmark showing improvements in simulation results is the quicksort
benchmark. It shows insignificant improvements for 16 bit accessed flags LFU as
well as timestamp LRU. However, LFU 16 outperforms LFU/LRU by not even
4%.

 0.1

 1

 10

 100

 1000

 10000

Binary Sort Quicksort MySQL pbrt zlib

P
a
g

e
 F

a
u
lt

s
[f

a
u
lt

s]

16 bit LFU Simulations

0 < 10 < 50 < 100

Figure 6.13: Number of page faults for which 0, < 10, < 50, and < 100 loaded
pages have not been referenced since the last page fault. X-axis gives the benchmark.
Y-axis gives the number of page faults with less than x pages without reference. The
diagram covers only the 16 bit LFU simulation for each benchmark. It excludes early
demand page faults populating the stack, for which no page replacement takes place.

On the one hand, the benchmark simulation altogether suggest that page replace-
ment algorithms seemingly do not benefit from more accurate page access infor-

90 CHAPTER 6. EVALUATION

mation. On the other hand, the results also suggests by implication that page re-
placement does not suffer from inaccurate page access information, e.g. provided
by limited capacity 1 bit accessed flags. Figure 6.13 provides a potential expla-
nation. It depicts how often the paging simulation’s page replacement algorithms
select a victim page which has been referenced since the last page fault. This
happens only once for every 16 bit accessed flag LFU simulation. In other words,
except for one page replacement taking place, every other replacement replaces a
page which has not been referenced since the last page fault.

An overwhelming number of page faults happen on a simulated page stack that
includes numerous pages without any reference since the last page fault, that is
the last time the pages in the simulated page stack had been test-and-cleared. In
case of a page without any reference within the current test-and-clear interval,
the page access information is always correct, regardless of the accessed flag’s
storage capacity. In case of reference counting, even single bit accessed flags
provide enough resolution to identify those pages. Accordingly, high capacity
accessed flags pay off only if the number of references exceeds the resolution of
lower capacity accessed flags.

Since our paging simulation selects only one victim at a time, the replacement
algorithms look for the single page which comes last according to some replace-
ment heuristic. Both LFU and LRU always select a victim without references if
possible. Therefore, except for one, none of the page replacement decisions ac-
tually benefit from the more accurate page access information provided by higher
capacity accessed flags since they select a page without reference anyway. They
are able to identify this page even without more accurate information.

6.3.7 Conclusion

In order to assess whether or not page replacement suffers from inaccurate page
access information, we ran paging simulations for our benchmarks and counted
the total number of page faults. We simulated different benchmarks, subject to
different page replacement algorithms which received differently accurate page
access information from the accessed flags. However, we found that the accuracy
of the page access information does not affect the quality of the page replace-
ment decisions, embodied by the number of resulting page faults. Therefore, we
concluded that page replacement in general does not suffer from inaccurate page
access information.

Chapter 7

Conclusion

Page replacement refers to the process of selecting a currently loaded page victim
to vacate its page frame in favor of a faulted page. Page replacement algorithms
are tasked with selecting victims to push to external storage in a way that reduces
the total number of page faults the system experiences. Offline paging algorithms
employ assumptions about page reference behavior of processes in order to ex-
trapolate future reference behavior from past reference behavior. Since the paging
algorithm does not observe reference behavior directly, it relies on the page table
entries used for address translation to cache page access information until it is able
to process it. However, the IA-32e architectures page table entry format reserves
only a single bit for said purpose, introducing temporal as well as counter inac-
curacies into the page access information page table entries supply to the paging
algorithm.

In this work, we analyzed how the page tables inability to accurately count refer-
ences between two consecutive paging algorithm invocations alters the operating
system’s, strictly speaking the paging algorithm’s, perception of page reference
behavior. In order to reconstruct the operating system perception, we traced and
later on replayed the interactions between the operating system and the IA-32e
page table entries using full system simulations and Simutrace. We concluded
that a single bit of access information cache is generally insufficient to provide
the operating system with an accurate perception of reference behavior. We also
concluded that moderately increasing the number of bits in the page table entry
format reserved for counting page references not only not helps to overcome the
inaccurate perception but potentially worsens it. Only a counter capacity of 16 bit
allows the operating system to acquire an accurate perception of page reference
behavior.

91

92 CHAPTER 7. CONCLUSION

Furthermore, we analyzed how the inaccurate perception of page reference be-
havior affects the performance of paging algorithms, namely the number of page
faults it generates for a given reference string, page table entry format and num-
ber of physical page frames. To this end, we employed a paging simulation very
similar to the Mattson stack algorithm. However, our simulation had the paging
algorithm rely on simulated page table entries to provide access information in
order to reconstruct the stack order of the Mattson stack algorithm. We found that
inaccurate page access information, such as provided by IA-32e page table en-
tries, does not negatively affect the paging algorithm’s replacement decisions as
we could not reduce the number of page faults by providing more accurate page
access information.

We explained our findings as follows: The paging algorithm’s assumption about
page reference behavior, e.g., frequently referenced pages are more likely to be
used in the future as infrequently referenced pages, imposes a priority on loaded
pages to which pages should remain in memory. Page table entries that fail to
count page references for frequently referenced pages because of saturation affect
the ranking order of high priority pages only. This is largely because, for infre-
quently referenced pages, the page table entries provide perfectly accurate access
information. However, the page replacement algorithm is tasked to single out a
single victim page. It finds this victim among the low priority, that is infrequently
referenced or entirely unreferenced pages. Hence, we concluded that paging al-
gorithms do not benefit from more accurate page access information.

7.1 Future Work

We showed that more accurate page access information fails to improve the per-
formance of demand paging algorithm according to Aho et al. [3] because it is
not needed in order to single out the most suitable victim page. However, our
simulation model did not yet cover the time requirements of paging algorithms.
Our simulation allowed the paging algorithm to retrieve access information from
every loaded page and to reevaluate the entire priority ranking order, a potentially
time consuming operations increasing the algorithms response time. It remained
unclear whether or not the simulation presents different results in case the paging
algorithm is only allowed to evaluate the access information of a limited set of
loaded pages, thereby reducing its response time in favor of accuracy.

Another aspect of paging our simulation did not cover are asynchronous pushes.
The definition of demand paging algorithms presented in [3] requires the memory
to be kept as utilized as possible. Although this potentially reduces the number of

7.1. FUTURE WORK 93

page faults, it at least increases the page wait time since it forces the paging algo-
rithm to process page faults synchronously. Before a faulted page can be brought
into memory, first a victim must be selected and pushed to external storage in or-
der to free a page frame. However, this is not always desirable or even suitable.
Therefore, other paging algorithms opt to start evicting multiple pages once the
number of free page frames drop below some threshold. Operating systems such
as Linux perform periodic page frame reclaiming in order to keep the number of
free page frames above the threshold [6, 707ff.], thereby selecting multiple pages
as victims at a time. When evicting multiple victims at a time, page replacement
algorithms potentially must resort to higher priority pages, pages whose page ac-
cess information actually benefits from an extended page table entry format.

Another aspect not covered in this work is non-uniform memory access (NUMA).
NUMA is an organization scheme for memory in multiprocessor systems where
each processor provides its local memory to a shared address space of physical
page frames. However, this scheme implies that the processors access different
parts of the address space with different speed, depending on the actual location
of the memory. An operating system running on a system that does not employ
NUMA is tasked with separating pages into two sets: pages in use, which there-
fore should remain in fast memory, and pages currently not in use, which may
be pushed to slow external storage. However, in a NUMA scenario there are at
least three potential locations for pages: fast memory attached to the processor the
process is scheduled to run on, not so fast memory attached to another processor,
and slow external storage. Those three locations imply three sets of pages. Since
the assumptions about page reference behavior, which paging algorithms employ,
are designed to predict future reference probabilities, they may also be suitable to
separate pages into said three sets. In order to separate pages of the first and sec-
ond set, the operating system depends on the accuracy of the entire page ranking,
not only on the order of the least prioritized pages at the bottom of the ranking.
Hence, it requires accurate page access information on both less frequently refer-
enced pages as well as frequently referenced pages, potentially benefiting from an
extended page table entry format.

94 CHAPTER 7. CONCLUSION

Bibliography

[1] The gnu c library (glibc). http://www.gnu.org/software/libc/.
accessed 2014-18-07.

[2] Sysbench: a system performance benchmark. https://launchpad.
net/sysbench. accessed 2014-18-07.

[3] Alfred V. Aho, Peter J. Denning, and Jeffrey D. Ullman. Principles of
optimal page replacement. J. ACM, 18(1):80–93, January 1971. http:
//doi.acm.org/10.1145/321623.321632.

[4] L. A. Belady. A study of replacement algorithms for a virtual-storage com-
puter. IBM Syst. J., 5(2):78–101, June 1966. http://dx.doi.org/10.
1147/sj.52.0078.

[5] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Proceed-
ings of the Annual Conference on USENIX Annual Technical Conference,
ATEC ’05, pages 41–41, Berkeley, CA, USA, 2005. USENIX Association.
http://dl.acm.org/citation.cfm?id=1247360.1247401.

[6] Daniel Bovet and Marco Cesati. Understanding The Linux Kernel. Oreilly
& Associates Inc, 2005.

[7] Oracle Cooperation. Mysql. http://www.mysql.com/. accessed
2014-18-07.

[8] Peter J. Denning. The working set model for program behavior. Commun.
ACM, 11(5):323–333, May 1968. http://doi.acm.org/10.1145/
363095.363141.

[9] Linux Kernel Documentation. Memory resource controller.
https://www.kernel.org/doc/Documentation/cgroups/
memory.txt. accessed 2014-18-07.

95

http://www.gnu.org/software/libc/
https://launchpad.net/sysbench
https://launchpad.net/sysbench
http://doi.acm.org/10.1145/321623.321632
http://doi.acm.org/10.1145/321623.321632
http://dx.doi.org/10.1147/sj.52.0078
http://dx.doi.org/10.1147/sj.52.0078
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://www.mysql.com/
http://doi.acm.org/10.1145/363095.363141
http://doi.acm.org/10.1145/363095.363141
https://www.kernel.org/doc/Documentation/cgroups/memory.txt
https://www.kernel.org/doc/Documentation/cgroups/memory.txt

96 BIBLIOGRAPHY

[10] John Fotheringham. Dynamic storage allocation in the atlas computer, in-
cluding an automatic use of a backing store. Commun. ACM, 4(10):435–436,
October 1961. http://doi.acm.org/10.1145/366786.366800.

[11] Thorsten Gröninger. On statistical properties of duplicate memory pages.
Diploma thesis, System Architecture Group, Karlsruhe Institute of Technol-
ogy (KIT), Germany, October31 2013. http://os.ibds.kit.edu/.

[12] C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10–16,
1962. http://comjnl.oxfordjournals.org/content/5/1/
10.abstract.

[13] Intel, Santa Clara, CA, USA. Intel 64 and IA-32 Architectures Software
Developer’s Manual Volume 1: Basic Architecture, May 2011.

[14] Intel, Santa Clara, CA, USA. Intel 64 and IA-32 Architectures Software De-
veloper’s Manual Volume 3A: System Programming Guide, Part 1, Septem-
ber 2013.

[15] Intel, Santa Clara, CA, USA. Intel 64 and IA-32 Architectures Software De-
veloper’s Manual Volume 3B: System Programming Guide, Part 2, Septem-
ber 2013.

[16] M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):pp.
81–93, 1938. http://www.jstor.org/stable/2332226.

[17] Andi Kleen. Linux x86_64 mm layout, July 2004. https://www.
kernel.org/doc/Documentation/x86/x86_64/mm.txt. ac-
cessed 2014-18-07.

[18] Canonical Ltd. Ubuntu. http://ubuntu.com. accessed 2014-18-07.

[19] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full system
simulation platform. Computer, 35(2):50–58, Feb 2002.

[20] Jaydeep Marathe, Frank Mueller, Tushar Mohan, Sally A. Mckee, Bro-
nis R. De Supinski, and Andy Yoo. Metric: Memory tracing via dynamic
binary rewriting to identify cache inefficiencies. ACM Trans. Program.
Lang. Syst., 29(2), April 2007. http://doi.acm.org/10.1145/
1216374.1216380.

[21] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques
for storage hierarchies. IBM Syst. J., 9(2):78–117, June 1970. http://
dx.doi.org/10.1147/sj.92.0078.

http://doi.acm.org/10.1145/366786.366800
http://os.ibds.kit.edu/
http://comjnl.oxfordjournals.org/content/5/1/10.abstract
http://comjnl.oxfordjournals.org/content/5/1/10.abstract
http://www.jstor.org/stable/2332226
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
http://ubuntu.com
http://doi.acm.org/10.1145/1216374.1216380
http://doi.acm.org/10.1145/1216374.1216380
http://dx.doi.org/10.1147/sj.92.0078
http://dx.doi.org/10.1147/sj.92.0078

BIBLIOGRAPHY 97

[22] Paul Menage. Cgroups. https://www.kernel.org/doc/
Documentation/cgroups/cgroups.txt. accessed 2014-18-07.

[23] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. The lru-
k page replacement algorithm for database disk buffering. SIGMOD
Rec., 22(2):297–306, June 1993. http://doi.acm.org/10.1145/
170036.170081.

[24] Matt Pharr and Greg Humphreys. pbrt. http://http://www.pbrt.
org/index.php. accessed 2014-18-07.

[25] Marc Rittinghaus. Runtime benefits of memory deduplication. Diploma
thesis, System Architecture Group, Karlsruhe Institute of Technology (KIT),
Germany, July5 2012. http://os.ibds.kit.edu/.

[26] Greg Roelofs and Mark Adler. zlib. http://www.zlib.net/. accessed
2014-18-07.

[27] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update
and paging rules. Commun. ACM, 28(2):202–208, February 1985. http:
//doi.acm.org/10.1145/2786.2793.

[28] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C.
Hoe. Smarts: Accelerating microarchitecture simulation via rigorous statis-
tical sampling. In Proceedings of the 30th Annual International Symposium
on Computer Architecture, ISCA ’03, pages 84–97, New York, NY, USA,
2003. ACM. http://doi.acm.org/10.1145/859618.859629.

[29] M.T. Yourst. Ptlsim: A cycle accurate full system x86-64 microarchitectural
simulator. In Performance Analysis of Systems Software, 2007. ISPASS 2007.
IEEE International Symposium on, pages 23–34, April 2007.

[30] Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghuraman,
Yuanyuan Zhou, and Sanjeev Kumar. Dynamic tracking of page miss ra-
tio curve for memory management. In Proceedings of the 11th International
Conference on Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS XI, pages 177–188, New York, NY, USA, 2004.
ACM. http://doi.acm.org/10.1145/1024393.1024415.

https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://doi.acm.org/10.1145/170036.170081
http://doi.acm.org/10.1145/170036.170081
http://http://www.pbrt.org/index.php
http://http://www.pbrt.org/index.php
http://os.ibds.kit.edu/
http://www.zlib.net/
http://doi.acm.org/10.1145/2786.2793
http://doi.acm.org/10.1145/2786.2793
http://doi.acm.org/10.1145/859618.859629
http://doi.acm.org/10.1145/1024393.1024415

	Contents
	Introduction
	Outline

	Background
	Paging
	Address Translation and Page Faults
	Paging Policy

	Paging Algorithms
	Page Replacement Algorithms
	Page Replacement and Multitasking

	Dynamic Miss Ratio Curve
	Mattson Stack Algorithm

	IA-32e Architecture Memory Management
	Memory Tracing using Full System Simulation
	Full System Simulation
	Independent Data Store

	Analysis
	Accessed Flag Inaccuracies
	Accessed Flag Temporal Inaccuracies
	Accessed Flag Reference Counting Inaccuracies

	Potential Performance Improvements
	Paging Algorithm Performance Assessment
	Extended Page Table Entry Format

	Conclusion

	Design
	Detecting Reference Counter Inaccuracies
	Data Acquisition
	Data Refinement
	Conclusion

	Simulating Paging Algorithms
	Data Acquisition
	Memory Management Model
	Simulation Design
	Summary

	Implementation
	Enforcing Local Page Replacement in Linux
	Cgroups

	Data Refinement for Linux Guests
	Filtering the Memory Access Stream
	Filtering Test-and-clear Operations

	Reconstructing Inaccuracies
	The Stack Simulation
	The Optimal Page Replacement Algorithm

	Conclusion

	Evaluation
	Evaluation Setup
	System Configuration
	Benchmarks

	Page Reference Counter Inaccuracies
	Visualizing Reference Counter Inaccuracies
	Quantifying Reference Counter Inaccuracies
	Discussion
	Conclusion

	Paging Simulation
	Binary Search
	Quicksort
	MySQL
	pbrt
	zlib
	Discussion
	Conclusion

	Conclusion
	Future Work

	Bibliography

