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Traces are frequently used in the development and evalua-
tion of software components and operating systems. During
execution, events and state information of interest are cap-
tured in traces for later offline analysis. Traces can provide
valuable insight into the dynamic behavior of a software and
deliver empirical support to focus optimization and debug-
ging efforts.

Depending on the intended use of a trace, the type and num-
ber of collected events and properties vary. Memory traces,
that is recordings of a processor’s memory accesses, leap out.
While they proved to be very effective for driving memory hi-
erarchy simulations [7, 8, 10, 11, 12, 13, 16, 17] or gathering
statistics about an application’s memory access patterns [14,
18], memory traces pose an extraordinary demand on the
tracing components. This is due to the fact that the rate
at which new events are generated—i.e., the rate at which
the processor accesses main memory—is inherently higher
than the rate of function calls, MPI messages or other sys-
tem events that are typically recorded. Memory traces thus
quickly become very large in size, consuming gigabytes of
storage. A Linux virtual machine (VM) running a mini-
mal Linux kernel build for instance produces approximately
145 billion trace entries. The same system completing the
Postmark benchmark from Phoronix Test Suite [2] even gen-
erates around 175 billion write events alone. Memory traces
therefore heavily depend on an efficient encoding, a scalable
trace format and a tracing mechanism that is capable of
dealing with a high rate of incoming events.

Over the years, various memory tracing frameworks have
been developed [4, 7, 13, 15, 20]. A major limitation of these
frameworks is however their restriction to track only selected
processes and their inability to monitor privileged system
components. Profiles generated with these tools therefore do
not encompass memory references performed by the operat-
ing system (OS), system daemons or (kernel-mode) drivers.
That raises questions concerning the accuracy of results ob-
tained through such narrow traces [6] as the interaction of
tracked processes and the system is completely left out. Fur-
ther distortions can originate from the incurred slowdown
through instrumentation and tracing, which influences the
relative timing between processes and the system. Tracing
tools able to capture events in the OS kernel [3, 9, 19] on the
other hand do not offer memory tracing capabilities. These
limitations make current tracing frameworks not applicable
to memory centric operating system research.

Contribution. We present Simutrace, a novel tracing tool-
kit, which has been conceived with full length, no-loss mem-
ory tracing in mind. Simutrace captures memory accesses
at the hardware level using functional full system simula-
tion, thus including all user-space programs, the operating
system, drivers and direct memory access (DMA) opera-
tions. Through the use of full system simulation, Simu-
trace fully supports tracing of just-in-time (JIT) as well as
self-modifying code and requires no special modification or
preparation of the target system. Tracing is non-intrusive,
as the simulation preserves the timing between running work-
loads and the underlying OS.

Simutrace employs an aggressive but fast compression of
recorded traces by using a modified version of VPC4 [5]—one
of the best memory trace compressors reported in current
literature—and combining it with LZMA [1]. At the same
time, Simutrace implements a scalable and flexible storage
format, which easily handles traces of hundreds of gigabytes
in size while maintaining fast access through partial decom-
pression. Moreover, in-memory indices based on the timing
information in the trace allow to quickly locate specific time
spans.

Simutrace uses a flexible streaming model to separate trace
entries of different types, thus allowing traces to contain
arbitrary data—including variable-sized data. We take ad-
vantage of this feature by supplementing memory access
traces with introspection information such as process cre-
ation/destroy or context switch events. That allows us to
correlate memory accesses in the simulation with the origi-
nating process.
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Figure 1: An extension in a full system simulator
collects events. Simutrace receives the data, stores it
and provides access for later analysis and inspection.



Talk. The proposed talk will cover the concepts behind Simu-
trace and provide a more detailed insight into the challenges
of memory tracing such as a scalable storage format, effec-
tive compression and flexibility in the type of recordable
data. To round off our talk, we will give an overview of
practical research, where we used Simutrace to analyze the
characteristics of redundant memory pages.
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