
GI-Fachgruppentreffen 2014 - Proposed Talk:

Efficient Full System Memory Tracing with Simutrace

Marc Rittinghaus Thorsten Groeninger Frank Bellosa
System Architecture Group

Karlsruhe Institute of Technology (KIT)
firstName.lastName@kit.edu

Traces are frequently used in the development and evalua-
tion of software components and operating systems. During
execution, events and state information of interest are cap-
tured in traces for later offline analysis. Traces can provide
valuable insight into the dynamic behavior of a software and
deliver empirical support to focus optimization and debug-
ging efforts.

Depending on the intended use of a trace, the type and num-
ber of collected events and properties vary. Memory traces,
that is recordings of a processor’s memory accesses, leap out.
While they proved to be very effective for driving memory hi-
erarchy simulations [7, 8, 10, 11, 12, 13, 16, 17] or gathering
statistics about an application’s memory access patterns [14,
18], memory traces pose an extraordinary demand on the
tracing components. This is due to the fact that the rate
at which new events are generated—i.e., the rate at which
the processor accesses main memory—is inherently higher
than the rate of function calls, MPI messages or other sys-
tem events that are typically recorded. Memory traces thus
quickly become very large in size, consuming gigabytes of
storage. A Linux virtual machine (VM) running a mini-
mal Linux kernel build for instance produces approximately
145 billion trace entries. The same system completing the
Postmark benchmark from Phoronix Test Suite [2] even gen-
erates around 175 billion write events alone. Memory traces
therefore heavily depend on an efficient encoding, a scalable
trace format and a tracing mechanism that is capable of
dealing with a high rate of incoming events.

Over the years, various memory tracing frameworks have
been developed [4, 7, 13, 15, 20]. A major limitation of these
frameworks is however their restriction to track only selected
processes and their inability to monitor privileged system
components. Profiles generated with these tools therefore do
not encompass memory references performed by the operat-
ing system (OS), system daemons or (kernel-mode) drivers.
That raises questions concerning the accuracy of results ob-
tained through such narrow traces [6] as the interaction of
tracked processes and the system is completely left out. Fur-
ther distortions can originate from the incurred slowdown
through instrumentation and tracing, which influences the
relative timing between processes and the system. Tracing
tools able to capture events in the OS kernel [3, 9, 19] on the
other hand do not offer memory tracing capabilities. These
limitations make current tracing frameworks not applicable
to memory centric operating system research.

Contribution. We present Simutrace, a novel tracing tool-
kit, which has been conceived with full length, no-loss mem-
ory tracing in mind. Simutrace captures memory accesses
at the hardware level using functional full system simula-
tion, thus including all user-space programs, the operating
system, drivers and direct memory access (DMA) opera-
tions. Through the use of full system simulation, Simu-
trace fully supports tracing of just-in-time (JIT) as well as
self-modifying code and requires no special modification or
preparation of the target system. Tracing is non-intrusive,
as the simulation preserves the timing between running work-
loads and the underlying OS.

Simutrace employs an aggressive but fast compression of
recorded traces by using a modified version of VPC4 [5]—one
of the best memory trace compressors reported in current
literature—and combining it with LZMA [1]. At the same
time, Simutrace implements a scalable and flexible storage
format, which easily handles traces of hundreds of gigabytes
in size while maintaining fast access through partial decom-
pression. Moreover, in-memory indices based on the timing
information in the trace allow to quickly locate specific time
spans.

Simutrace uses a flexible streaming model to separate trace
entries of different types, thus allowing traces to contain
arbitrary data—including variable-sized data. We take ad-
vantage of this feature by supplementing memory access
traces with introspection information such as process cre-
ation/destroy or context switch events. That allows us to
correlate memory accesses in the simulation with the origi-
nating process.

Simutrace ServerFull System Simulator

E
xt

e
n

si
o

n

Trace Data

Store

Analysis Client

Y
-A

xi
s

X-Axis

Simutrace

Figure 1: An extension in a full system simulator
collects events. Simutrace receives the data, stores it
and provides access for later analysis and inspection.



Talk. The proposed talk will cover the concepts behind Simu-
trace and provide a more detailed insight into the challenges
of memory tracing such as a scalable storage format, effec-
tive compression and flexibility in the type of recordable
data. To round off our talk, we will give an overview of
practical research, where we used Simutrace to analyze the
characteristics of redundant memory pages.

1. REFERENCES
[1] Lzma sdk. http://www.7-zip.org/sdk.html.

[2] Phoronix test suite.
http://www.phoronix-test-suite.com/.

[3] Solaris dtrace.
http://wikis.oracle.com/display/DTrace/DTrace.

[4] S. Budanur, F. Mueller, and T. Gamblin. Memory
trace compression and replay for spmd systems using
extended prsds. The Computer Journal, 55(2):206–217,
2012.

[5] M. Burtscher, I. Ganusov, S. J. Jackson, J. Ke,
P. Ratanaworabhan, and N. B. Sam. The vpc
trace-compression algorithms. Computers, IEEE
Transactions on, 54(11):1329–1344, 2005.

[6] H. W. Cain, K. M. Lepak, B. A. Schwartz, and M. H.
Lipasti. Precise and accurate processor simulation. In
Workshop on Computer Architecture Evaluation using
Commercial Workloads, HPCA, volume 8, 2002.

[7] L. DeRose, K. Ekanadham, J. K. Hollingsworth, and
S. Sbaraglia. Sigma: A simulator infrastructure to
guide memory analysis. In Supercomputing,
ACM/IEEE 2002 Conference, pages 1–1. IEEE, 2002.

[8] J. Edler and M. D. Hill. Dinero iv trace-driven
uniprocessor cache simulator, 1998.

[9] P.-M. Fournier, M. Desnoyers, and M. R. Dagenais.
Combined tracing of the kernel and applications with
lttng. In Proceedings of the 2009 linux symposium,
2009.

[10] M. Holliday. Techniques for cache and memory
simulation using address reference traces.
International journal in computer simulation,
1(1):129–151, 1991.

[11] H. Kang and J. L. Wong. vcsimx86: a cache simulation
framework for x86 virtualization hosts. 2013.

[12] J. Marathe, F. Mueller, T. Mohan, B. R. de Supinski,
S. A. McKee, and A. Yoo. Metric: Tracking down
inefficiencies in the memory hierarchy via binary
rewriting. In Code Generation and Optimization, 2003.
CGO 2003. International Symposium on, pages
289–300. IEEE, 2003.

[13] J. Marathe, F. Mueller, T. Mohan, S. A. Mckee, B. R.
De Supinski, and A. Yoo. Metric: Memory tracing via
dynamic binary rewriting to identify cache
inefficiencies. ACM Transactions on Programming
Languages and Systems (TOPLAS), 29(2):12, 2007.

[14] R. C. Murphy and P. M. Kogge. On the memory
access patterns of supercomputer applications:
Benchmark selection and its implications. Computers,
IEEE Transactions on, 56(7):937–945, 2007.

[15] A. Snavely, N. Wolter, and L. Carrington. Modeling
application performance by convolving machine
signatures with application profiles. In Workload
Characterization, 2001. WWC-4. 2001 IEEE
International Workshop on, pages 149–156. IEEE,
2001.

[16] R. A. Uhlig and T. N. Mudge. Trace-driven memory
simulation: A survey. ACM Computing Surveys
(CSUR), 29(2):128–170, 1997.

[17] J. Weidendorfer, M. Kowarschik, and C. Trinitis. A
tool suite for simulation based analysis of memory
access behavior. In Computational Science-ICCS 2004,
pages 440–447. Springer, 2004.

[18] J. Weinberg, M. O. McCracken, E. Strohmaier, and
A. Snavely. Quantifying locality in the memory access
patterns of hpc applications. In Proceedings of the
2005 ACM/IEEE conference on Supercomputing,
page 50. IEEE Computer Society, 2005.

[19] R. W. Wisniewski and B. Rosenburg. Efficient, unified,
and scalable performance monitoring for
multiprocessor operating systems. In Supercomputing,
2003 ACM/IEEE Conference, pages 3–3. IEEE, 2003.

[20] Q. Zhao, R. Rabbah, S. Amarasinghe, L. Rudolph,
and W.-F. Wong. Ubiquitous memory introspection.
In Proceedings of the International Symposium on
Code Generation and Optimization, pages 299–311.
IEEE Computer Society, 2007.


