
KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association

SimuBoost:
Scalable Parallelization of Functional System Simulation

KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

System Architecture Group
http://os.itec.kit.edu/

Marc Rittinghaus, Konrad Miller, Marius Hillenbrand, Frank Bellosa

Motivation
Want: Operating system performance analysis
Application and kernel interaction, memory access patterns, …

Need: Functional full system simulation to monitor system non-intrusively

Challenges:
Functional system simulation too slow for long-running workloads.

Loss of interaction with non-simulated remote hosts.

Existing Techniques
Sample and extrapolate
[Sherwood et al. SimPoints]

Not all applications show phase behavior (gcc) [Weaver et al.].
Less probable for whole system.
How to find phases without using simulation first?

Parallel multi-core simulation 
[Ding et al. PQEMU]

Only scales in number of simulated CPUs.

Reduce workload
[KleinOsowski et al. MinneSPEC]

Not always possible.

Approach

Virtualization Simulation

KVM QEMU Simics

~ 1x ~ 100x ~ 1000x
Average slowdown for: Kernel build, SPECint_base2006, LAMMPS

Sim.
Nodes

Simulationi[1] i[k] i[n]

Node
1

Node
k

Node
n

Speedup and Scalability
Speedup depends on speed difference between
virtualization and simulation, and interval length

Minimize virtualization overhead… 
(logging and checkpointing)

…and calculate optimal interval length from
speed difference and overheads.

 Predicted speedup for 1h workload: 84x @ 90 nodes (94% parallel efficiency)
100x slowdown, 100ms downtime/checkpoint [Sun et al. Remus], 8% logging overhead, 1s start-up delay

Goals:
Short downtime, small checkpoints
Easy & fast access

Copy-on-write checkpointing
Resume VM before saving memory & HDD.

Incremental, hash-based checkpointing
Deduplicate within and across checkpoints.
Of modified data, we can deduplicate:

RAM pages: 5%-40%
Disk blocks: 35%-80%

http://simutrace.org/

Functional Continuity

Virtualization introduces non-determinism
Different I/O timing and data between stages.

 Virtualization and simulation drift apart

(1) Trap and log non-deterministic events
Interrupts, timing instructions, …

(2) Precisely replay events in the simulation
[Dunlap et al. ReVirt, Sheldon et al. Retrace], Overhead: <8%

 Virtualization and simulation stay sychronized

i[1] i[2]

≠ 

Virt.

i[1] Simulation

States 
mismatch

Interrupt

W
it

h
 D

ev
ia

ti
o

n

i[2]

i[1]

=i[1]

States 
match

Interrupt
log

replay2

1

i[2]

i[2] Virt.

W
it

h
o

u
t 

D
ev

ia
ti

o
n

Simulation

(1) Split simulation time

(2) Simulate intervals in parallel

 Scales with the run-time of the workload.
 Applicable to single-core simulations.

Basic Idea

Run workload in virtual machine
Preserves interactivity and network connectivity.

Create checkpoints at interval boundaries
to bootstrap simulations

Run simulations in parallel
Distribute jobs across machines.

SimuBoost

How to bootstrap the simulation of i[2..n]?

Virtualizationi[1] i[k] i[n]Node 0

Node 1

Node k

Simulationi[n]Node n

Simulationi[k]

Simulationi[1]

a)

b)

c)

Virtualization

Virtualization

Virtualization

Sim

Simulation

Simulation

Total run-time

Optimal
length

Lightweight CheckpointingPreserving Functional Continuity

Checkpoint 
downtime

Virtualization Simulation
start-up

Simulation

Goal: Scale-out single-core functional full system simulation

Virtualization

i[k]
Downtime
Activate CoW

Hash and compare 
modified pages

O
w

n
 t

h
re

ad

Resume execution
Copy pages on first write

VM RAM

!

CCC
GGG
AAA

QQQ

QQQ

!

! AAA

BBB

Send new pages
to key-value store

<hash, AAA>
<hash, BBB>

KV Store
<hash, CCC>!

Checkpoint
CPU state

Hashes of RAM
...

Simulation ...

Access via key-value store
Store <hash, page/block data>-pairs.
Checkpoint = list of hashes.


