
Name Matriculation no. Tutorial no.

Operating Systems 2013/14
Assignment 5

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marius Hillenbrand

Dipl.-Inform. Marc Rittinghaus

Submission Deadline: Monday, January 27th, 2014 – 9:30 a.m.

T-Question 5.1: Caches
a. Which of the following statements are correct, which are incorrect? (correctly mar-

ked: 0.5P, not marked: 0P, incorrectly marked: -0.5P) 2 T-pt

correct incorrect

� � Virtually indexed, virtually tagged caches must be flushed when
the address space is switched.

� � Virtually indexed, physically tagged caches must be flushed
when the address space is switched.

� � Virtually indexed, physically tagged caches do not suffer from
the alias problem.

� � Modified cache lines of a physically indexed, physically tagged
cache must be written back to main memory immediately after
a context switch.

b. Explain, and point out the differences between, the write-allocate and write-to-
memory policies! 3 T-pt

c. What kinds of cache-misses do exist? What can you do to reduce the number of
cache misses of each type? 3 T-pt

1

Name Matriculation no. Tutorial no.

T-Question 5.2: Paging

a. Where does the MMU know the page directory’s base address from in IA-32 sys-
tems? Where does the OS kernel know the faulting address from when handling a
pagefault? (+1 bonus for the latter) 1 T-pt

b. How many page tables exist when using inverted page tables and single level for-
ward page tables in the operating system, respectively? Briefly explain how you
derived your answer. 2 T-pt

c. Consider a system with 32-bit virtual addresses, a page/frame size of 4kB, and a
single-level page table where each entry is 4 bytes in size. Calculate the total me-
mory consumption of the page table. 1 T-pt

d. Now assume that a 2-level page table hierarchy is used, where each table consists
of 1024 4-byte-wide entries. Calculate the maximum memory consumption of the
page table hierarchy. 1 T-pt

2

Name Matriculation no. Tutorial no.

e. Consider a system with three-level page tables and a hardware-controlled TLB. As-
sume that a TLB access takes 2 nanoseconds, an access to main memory takes
80 nanoseconds. What is the effective memory access time if we assume a TLB hit
ratio of 97%? (You may ignore all caches apart from the TLB.) 1 T-pt

T-Question 5.3: Page Replacement

a. Explain Belady’s anomaly. Give an example (must be different from the one pre-
sented in the lecture). 2 T-pt

3

P-Question 5.1: Page Replacement Algorithms

In this assignment you are going to write a simulator for two page replacement algo-
rithms. Your program will run two simulations side by side: Two systems otherwise
being equal, one using the page replacement algorithm least-recently-used (LRU),
the other using clock. Your simulator will read a trace of memory accesses from
stdin and feed those accesses into the two simulations. Then, it will output the
resulting behavior to stdout. Using this setup, you will be able to directly compare
both page replacement algorithms, as both will handle the same accesses.
Assume main memory has the amount of frames defined by the macro FRAMES (in
access.h). Page numbers range from 0 to 255 (see macro PAGES).
At program start, no pages are mapped. Both systems must start allocating page
frames from the lowermost frame 0 up. Once all page frames are occupied, pages
have to be evicted to provide frames for unmapped pages.
Report the following events and use the provided functions upon page accesses:

• reportMiss(a, x); to indicate a pagefault for page x; parameter a specifies
from which of the simulations (LRU or CLOCK) the event gets reported.

• reportHit(a, x, y); to indicate that page x is in page frame y

• reportEviction(a, x, y); to indicate that page x has been evicted from
page frame y

Don’t print directly or modify the format of the provided reporting output! Make
sure you report a “miss” before reporting an “eviction” upon a pagefault!

a. Implement the least-recently-used (LRU) page replacement algorithm. Choose an
implementation based on counters or with a stack, as presented in the lecture.
Complete the function void access lru(int pn). 4 P-pt

b. Implement the clock algorithm in access clock(int pn). The main() function
will run the simulators for both algorithms side by side, so make sure that you
design your datastructures properly: Keep in mind that LRU and clock can result
in different mappings of pages to frames.
Clock (aka “second chance”) is a popular page replacement algorithm that works
as follows:
“[...] keep all the page frames on a circular list in the form of a clock, [...]. A hand
points to the oldest page. When a page fault occurs, the page being pointed to by the
hand is inspected. If its R bit is 0, the page is evicted, the new page is inserted into
the clock in its place, and the hand is advanced one position. If R is 1, it is cleared
and the hand is advanced to the next page. This process is repeated until a page is
found with R=0. Not surprisingly, this algorithm is called clock.” [1]

[1] Andrew S. Tanenbaum, Modern Operating Systems
Do not forget to set R to 1 on a reference! The clock hand should initially point to
frame 0. 4 P-pt

4

P-Question 5.2: Memory-Mapped Files

Write a program that performs an in-place encryption of lower-case letters in a
file (ignore all other characters). Use memory-mapped file I/O to access the file.
Read man 2 mmap to prepare for the assignment. The direction (encrypt/decrypt),
the filename, the cipher, and the encryption key are supplied by commandline
parameters (in argv[1], . . . argv[4], in the order given here).

a. Write code that parses the parameters and memory-maps a file. Then implement
the caesar encryption method. If you place the letters a-z in a circle, the Caesar
cipher transposes each letter by rotating it to another letter. A single letter serves
as the key and determines how far each letter is rotated during encryption. The key
’a’ means that characters are not changed; the key ’b’ means that ’a’ is rotated to
’b’, ’b’ to ’c’, . . ., and ’z’ to ’a’; the key ’c’ means that ’a’ is rotated to ’c’, ’b’ is rotated
to ’d’, . . ., and ’y’ to ’a’, and so on. Your code must support both encryption and
decyption. 6 P-pt

b. Implement the Vigenere encryption method. The Vigenere method employs the Cae-
sar cipher for each letter. Instead of a single letter, it uses a string of letters (e.g., a
word) as the key. The first letter is encrypted with the Caesar method according to
the first letter in the key, the second letter according to the second letter in the key,
and so on. When you encrypt texts that are longer than the key, you wrap around
and use the key repeatedly. Skip over bytes that are no lowercase letters without
moving along in the key string. 2 P-pt

Total:
16T-pt
16P-pt

5

