NIT

Karlsruher Institut fur Technologie

On Statistical Properties of
Duplicate Memory Pages

Diplomarbeit
von

cand. inform. Thorsten Groninger

an der Fakultat fir Informatik

Erstgutachter: Prof. Dr. Frank Bellosa
Zweitgutachter: Prof. Dr. Hartmut Prautzsch
Betreuender Mitarbeiter: Dipl.-Inform. Marc Rittinghaus

Dipl.-Inform. Konrad Miller

Bearbeitungszeit: 1. Mai 2013 — 31. Oktober 2013

\

KIT — Universitat des Landes Baden-Wirttemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft WWW. klt-ed U

Abstract

In this work, we investigate the possibility to make memory deduplication scan-
ners more efficient. Modern memory scanners equipped with hinting mechanisms
merge large amounts of duplicate memory pages originating from disk, but still
lack to harvest other replicas equally fast. We analyzed the properties of this re-
maining sharing potential and aim to decrease the amount of scanned pages by
directly focusing memory scanners to stable page content. Stability is necessary
to share content, or otherwise the sharing is instantly broken. With a metric to
exclude unstable pages, it is possible to speed up merging.

We acquired memory modifications and semantic information with a full-
system simulation to analyze sharing opportunities, memory access frequencies,
and access patterns which lead to stable pages. We implemented a toolchain that
allows to gather such information quickly and scalably. Our evaluation shows that
up to 89% of all pages are stable and can be shared with other VMs executing the
identical file benchmark. Furthermore, a heuristic for CPU or I/O bound work-
loads can only exist for a small sub-set of examined workloads, e.g., kernel builds.
General page state prediction seems impossible.

Our findings show that memory write frequencies correlate with page stability,
even in otherwise unpredictable workloads. About 78% of all pages experience a
low access frequency before they stabilize. A memory scanner should therefore
prioritize pages that show a low write access frequency. A reasonable threshold
appears to be about 4 accesses within a window of 1.5 seconds. Pages with high
memory access frequencies such as device associated page frames can be excluded
permanently from scans, if their overall busy time exceeds 15 seconds. We fur-
ther conclude that a scanner should focus on pages leaving the write working set
instead of linear scanning all pages. These pages (on average about 1,800 pages
per 480 ms) are guaranteed to have been recently modified, but are not currently
written and are thus candidates for further examination by a scanner.

11

I hereby declare that this thesis is my own original work which I created without
illegitimate help by others, that I have not used any other sources or resources than
the ones indicated and that due acknowledgment is given where reference is made
to the work of others.

Thorsten Groninger
Karlsruhe, October 31th 2013

v

Deutsche Zusammenfassung

Heutige Computersysteme werden mit immer mehr Arbeitsspeicher ausgestattet,
allerdings wichst gleichzeitig auch der Speicherbedarf durch Virtualisierung, In-
Memory Datenbanken und Cloud Computing. Obwohl Speicher erschwinglich
erscheint, bleibt er (zu einem gewissen Grad) eine begrenzte Ressource. Insbeson-
dere Virtualisierung erzeugt redundante Daten; grof3e Teile des physischen Spei-
chers enthalten identische Inhalte und konnten eigentlich dedupliziert werden. Al-
lerdings sind die heute verfiigbaren Deduplikationslosungen fiir Arbeitsspeicher
nur eingeschrankt nutzbar. Zum einen benotigen sie speziell angepasste Betriebs-
systeme, Virtualisierungslosungen und Programme. Zum anderen verbrauchen sie
sehr viel Rechenleistung um redundante Speicherseiten zu finden und zusammen-
zulegen, dieser Vorgang kann durch verschiedene Ansitze verbessert werden.

XLH (Cross Layer Hints) [35] benutzt den in Linux verfiigbaren Deduplikati-
onsmechanismus und kombiniert ihn mit Informationen aus dem virtuellen Datei-
system um schneller den Speicherverbrauch einer virtuellen Maschine zu reduzie-
ren. Verschiedenste empirische Untersuchungen [9, 35, 36] haben gezeigt wie er-
folgreich Speicherseiten, deren Inhalt von der Festplatte geladen wurden, dedupli-
ziert werden konnen. Allerdings miissen die anderen Speicherseiten, z.B. anony-
mer Gastspeicher, immer noch linear durchsucht werden. Grofe Teile des theore-
tisch teilbaren Speichers bleiben unberiicksichtigt oder werden nur sehr langsam
zusammengelegt, dies sind, abhéngig von den jeweils ausgefiihrten Programmen,
bis zu 50% aller theoretisch teilbaren Speicherseiten.

Diese Arbeit beschiftigt sich mit diesem ungenutzten Deduplikationspotenti-
al, dessen Eigenschaften und Verbesserungsmoglichkeiten fiir Memory Scanner.
Wir untersuchen das Potential von duplizierten Speicherseiten, ihre Stabilitit und
Speicherzugriffsmuster die zu (in-)stabilen Seiten fithren, um jene zeitweise oder
dauerhaft von einem Scan auszuschlief3en.

Um eine tiefergehende Untersuchung dieser Speicherseiten durchzufiihren,
wurden die entsprechenden Daten, z.B. alle Speicherzugriffe, aufgezeichnet. Hier-
fiir wurde ein Systemsimulator verwendet, um eine ungewollte Beeinflussung der
ausgefiihrten Benchmarks auszuschlieBen. Dieser simuliert Hardware auf der un-
modifizierte Betriebssysteme ausgefiihrt werden konnen, erlaubt somit auch alle

vi DEUTSCHE ZUSAMMENFASSUNG

Speicherzugriffe transparent zu unterbrechen und aufzuzeichnen. Fiir diese Ar-
beit wurde eine Version des freien, quelloffenen Simulators QEMU verwendet,
der um die benétigten Schnittstellen erweitert wurde. Da eine Simulation um min-
destens zwei Grolenordnungen langsamer lduft als ein reales System, haben wir
die Aufzeichnung der Daten von der Analyse getrennt. Die Speicherzugriffe und
die semantischen Informationen innerhalb des Betriebssystems werden erfasst,
iber einen Speicherserver komprimiert und fiir die spédtere Verwendung abgelegt.
Unsere Analysen nutzen die aufgezeichneten Daten und rekonstruieren ein Spei-
cherabbild fiir die eigentliche Duplikatsanalyse. Diese wird wiederum mit seman-
tischen Informationen aus dem untersuchten Linuxkern erginzt. Dieses Vorgehen
ermoglicht eine verfilschungsfreie Untersuchung des noch nicht genutzten Dedu-
plikationspotentials, auch unter Einbeziehung der eigentlichen Verwendung einer
Speicherseite innerhalb des Betriebssystems.

Unsere Untersuchungen bestitigen das Potential, das in Speicherseiten steckt,
die von der Festplatte eingelesen wurden. Gleichzeitig zeigen sie aber auch die
Abhiéngigkeit von den ausgefiihrten Programmen, z.B. konnen Datenbankanwen-
dungen, die hiufig ihre Daten modifizieren und zuriick auf den Hintergrundspei-
cher schreiben, nur im geringeren Umfang davon profitieren. Das verbleibende
Deduplikationspotential, das nicht vom Hintergrundspeicher stammt, ist noch we-
sentlich instabiler und variiert stark bei unterschiedlichen Anwendungen, z.B. ver-
ursachen Simulationen, wie sie in der Physik Anwendung finden, groe Mengen
an identischen Speicherseiten. Allerdings verdndern sich diese derartig schnell,
dass selbst ein spezialisierter Speicherscanner nicht in der Lage ist diese Seiten zu
vereinen.

Ein Speicherscanner sollte sich allerdings die Tatsache zu Nutze machen, dass
Speicherseiten unterschiedlich oft beschrieben werden und cache-affine Program-
me nur iiberschaubar viele Speicherseiten in einem Zeitinterval @ndern. Die meis-
ten von uns untersuchten Anwendungen dndern im Mittel ungefdhr 1.850 Seiten
(7,25 MiB) innerhalb einer halben Sekunde. Dieser modifizierte Arbeitsbereich
kann von einem Scanner leichter bewiltigt werden, als den gesamten Arbeitsspei-
cher regelméfig eines aufwendigen Vergleichs zu unterziehen.

Mit der gleichen Methode wie sich das Working Set ermitteln ldsst, konnen
auch Speicherzugriffsfrequenzen ermittelt werden. Unsere Untersuchung zeigt,
dass Seiten die stabil werden, also ihren Inhalt fiir ein gewisses Zeitfenster nicht
dndern, in liber 80% aller Fille bereits vorher eine sehr niedrige Zugriffsfrequenz
hatten. Leider reicht es nicht aus die Stabilitit einer Speicherseite zu ermitteln,
um direkt auf einen Kandidaten zur Deduplizierung zu schlielen, dies gilt nur fiir
Dateien die von einem identischen Festplattenabbild geladen wurden. Allerdings
erweist sich Stabilitit als sehr wichtig, denn sie stellt sicher, dass eine Seite nicht
direkt nach dem Zusammenlegen wieder kopiert werden muss und so unnotige
Rechenleistung vergeudet wird.

vii

Im Laufe unserer Untersuchungen hat sich des Weiteren gezeigt, dass ein Me-
mory Scanner, ungeeignete Speicherbereiche, die fiir Kernelstacks oder Gerite
verwendet werden, dauerhaft von einem Scan ausschliefen sollte, da diese Seiten
sich hiufig dndern und keine ausreichende Stabilitiit zeigen, um sie gegebenenfalls
zu deduplizieren.

Wir haben festgestellt, dass die einzige nutzbare Eigenschaft von redundaten
Speicherseiten ihre Stabilitét ist. Allerdings lédsst sich trotzdem nicht allgemein
sagen, ob sich stabile Speicherseiten in Zukunft zusammenlegen lassen.

Contents

Abstract

Deutsche Zusammenfassung

1

2

Introduction

Background and Related Work

2.1 Memory Deduplication Techniques
2.2 Duplicate Memory Content
2.3 Full-System Simulation

Analysis

3.1 Analyzing Sharing Opportunities
3.2 Required AnalysisData
3.3 DataAcquisition
34 Simulation. L
35 Conclusion

Design

4.1 General Design
4.2 Trace Organization and Storage
43 Conclusion

Implementation

5.1 QEMU Modifications
5.2 Storage Server e
5.3 Trace Data Processing
54 Conclusion L

Evaluation
6.1 Methodology
6.2 EvaluationSetup

1X

iii

13
14

23
24
26
27
31
33

35
36
37
42

43
43
52
57
63

6.3 Benchmark Evaluation
6.4 Sharing Opportunities

6.5 Memory Access Analysis
6.6 Semantics and Stability
6.7 Write Working Set
6.8 Conclusion

7 Conclusion
7.1 Future Work

Appendix

Bibliography

CONTENTS

104

Chapter 1

Introduction

The demand for main memory is increasing every year. In-memory databases and
virtualization push the demand for memory even further. As virtualization has
become widely used in cloud computing, memory consumption and data redun-
dancies have reached a high level, for example, up to 79% [11] of data is redundant
in such scenarios.

Although main memory is not a rare resource in most server systems, it still
can be used for more virtual machines (VMs) than holding replicated data. The
only justifiable redundancies are found on different non-uniform memory access
(NUMA) nodes, where memory access comes at different costs and a local copy
increases performance. In other cases, memory footprints of VMs and applica-
tions can be reduced by using memory deduplication techniques.

There are two different kinds of deduplication mechanisms. Firstly, systems
that try to prevent the replication of data by proactively establishing shared pages
instead of copying content. Widely used techniques are shared libraries and fork-
ing with copy-on-write (COW), or in a virtualized environment: VM forking [27].
Secondly, deduplication systems actively search all pages, identify replicated con-
tent and merge them to a single copy. This method is called memory scanning.

Memory scanning reduces the memory footprint of applications and VMs by
detecting identical memory content on page granularity and remapping them to
a single copy-on-write page. A recent empirical study shows that the amount of
redundant data ranges from 11% up to 79% [11]. If this sharing potential can
be harvested, the reduced memory footprint allows more VM instances to run in
parallel. Furthermore, the CPU cache utilization and its hit ratio increases [41]
and thus allows faster program execution.

Although, the sharing potential is already harvested by different deduplica-
tion approaches, there is still room for improvement. Even the most promising
techniques, for example, Cross Layer Hints (XLH), still fail to fetch about 50%

1

2 CHAPTER 1. INTRODUCTION

of theoretically shareable content in some workloads [35]. XLH uses hints from
the I/0O layer of the hosting OS and focuses its memory scan on pages originating
from file operations. Although, these hints speed up deduplication for page cache
pages in different VMs, other sharing opportunities must still be collected through
periodical linear memory scanning.

Objectives

This thesis focuses on properties of unharvested sharing potential and tries to find
new hinting sources to improve scanner based memory deduplication. We ex-
amine options to focus scanners on promising memory regions and determine
memory pages that can be excluded from the scan.

The effectiveness and efficiency of a scanner depends on the stability of scanned
and merged pages, we clarify the relations between semantics and stability.

Contributions

To analyze sharing opportunities and to identify new hinting sources, we collect
memory modifications and semantic information from within a guest operating
system (OS). We regard memory operations, trace OS page frame allocations, and
the OS system state without influencing the guest OS by using a full-system sim-
ulator for our experiments. A simulator does not only hide memory inspection
overhead from the guest OS, it is also the only feasible method to collect all mem-
ory modifications. Therefore, we augmented a simulator to allow flexible and fast
recording of memory accesses and semantic information, store them efficiently,
and replay memory modifications to reconstruct memory content for every point
in time. We were able to perform false positive free sharing analyses, memory
access frequency and pattern measurement, and enriched these data with semantic
information.

Our evaluation is based on data acquired with the fast, open-source simu-
lator QEMU and analyzed with an adapted framework of a previous research
project [41]. To cover a wide-range of different use-case scenarios, we evaluated
I/O-, CPU- and memory bound workloads, and a mixture of realistic database and
filesystem benchmarks.

Our findings show that memory write frequencies correlate with page stability,
even in otherwise unpredictable workloads. About 78% of all pages experience a
low access frequency before they stabilize. A memory scanner should therefore
prioritize pages that show a low write access frequency. A reasonable threshold
appears to be about 4 accesses within a window of 1.5 seconds. Pages with high
memory access frequencies such as device associated page frames can be excluded

permanently from scans, if their overall busy time exceeds 15 seconds. We fur-
ther conclude that a scanner should focus on pages leaving the write working set
instead of linear scanning all pages. These pages (on average about 1,800 pages
per 480 ms) are guaranteed to have been recently modified, but are not currently
written and are thus candidates for further examination by a scanner. Memory
access patterns, however, do not show any predictability for sharing opportunities
or at least stability. In contrary they mispredict the future development of pages
and are often beaten by normal distributed random numbers. Fine-grained pre-
dictions, based on a hidden Markov model, which show good prediction rates for
file deduplication, suggest that memory stability can only be predicted for each
workload individually.

Organization

The thesis is structured as follows. In Chapter 2 we describe memory dedupli-
cation techniques and recent memory deduplication systems, and introduce full-
system simulation. In Chapter 3 we discuss our analysis objectives and define the
data required for these analyses. Our design is presented in Chapter 4 followed
by the description of our implementation in Chapter 5. The results of our evalu-
ation can be found in Chapter 6 followed by our conclusion and future work in
Chapter 7.

Chapter 2

Background and Related Work

Memory is a valuable resource and the demand for memory is increasing as more
data is continuously produced and stored. Virtualization in conjunction with cloud
computing, in-memory databases, and big data increase the demand for memory.
Deduplication of files is a common technique for efficient background storage
devices [32]. Similar techniques can be applied to main memory as well.

This chapter presents an overview of memory deduplication techniques, from
early memory sharing approaches (forking), to the latest developments and im-
provements for VMs (Cross Layer Hints), and native applications (Page Combin-
ing). Additionally, this chapter gives an introduction to full-system simulation,
its fundamental modes of operation (binary translation), and different simulation
modes (functional and micro-architectural). It provides an overview of recent
simulators, e.g., Quick Emulator (QEMU).

2.1 Memory Deduplication Techniques

Many techniques have been developed to reduce memory footprints of applica-
tions, virtual machines (VMs), or complete systems.

The overall sharing potential varies with the operating system (OS) and the
executed workloads. It further depends on the mixture of workloads executed in
different VMs. These redundancies vary from 11% to 79% [4, 11, 26] of all pages,
considered for sharing.

Figure 2.1 presents an overview and relations between the different approaches
to reduce memory footprints. We differentiate between two categories of dedupli-
cation. In the first category, a VM or application is aware of the deduplication, and
must be modified, and therefore cooperate, to benefit from deduplication, e.g., a
paravirtualized OS. In the second category, deduplication can be applied without
any cooperation and therefore tasks and VMs can benefit.

5

6 CHAPTER 2.

Memory Footprint
Reduction

BACKGROUND AND RELATED WORK

v
Memory
Scanning
Sub-page
Granularity

Page

v
Memory
Sharing
v

Block Device

Memory
Compressmn

/ Page

Forking Shared

Granularity 1/0 Segment \ompressron
I
/leference\‘ “/ Task \‘ “/ File Shared
/ v / / v \ Engine / v _Creation / ‘\Mapping v Libraries
Page \ KSM \ VMWare >) /NamedSaved\
\Eomblnlng \\ \\SX Server VM Forking —+ \\ System
Para-
Z ote
\\ b / virtualization
Singl \ 4 XLH \ /S Flock /I; kil \
ingleton |) | SnowFlock | (Potemkin
\Greeen) (2)
\ 4

B v
Disco Satori

No cooperation
needed

D Cooperation D

needed
Figure 2.1: Overview and relations of memory footprint reduction tech-
niques.

Memory deduplication aims to reduce the amount of consumed physical mem-
ory in two ways. Firstly, memory sharing, such system prevents the replication of
data to different page frames proactively, i.e., it establishes shared pages instead
of copying the content. Secondly, memory scanning, already replicated data is
identified and merged re-actively to a single copy. Both methods reduce the mem-
ory redundancy. The amount of computational power of both approaches diverge:
Where proactive mechanisms typically consume less CPU resources as re-active
ones.

2.1.1 Conventional Approaches

Virtual memory was invented in the 1950s and became available for commer-
cial computers during the late 1970s. The virtualization of address spaces iso-
lates programs from each other, allows paging content to disk, to increase the
amount of available memory, and simplifies programming [29]. However, it also
consumes more physical memory, since parts of programs have to be kept in re-
dundant copies, compared to a single address space. As physical memory was
much more limited than today, the first ideas of deduplication were invented, e.g.,
forking with copy-on-write to share memory content.

Traditional approaches contain two categories of proactive sharing. Firstly,
semantic sharing, which considers libraries and files and secondly, forking.

2.1. MEMORY DEDUPLICATION TECHNIQUES 7

Semantic sharing An OS can benefit from shared libraries, as an application
only must be linked dynamically. The operating system’s binary loader can map
libraries into every address space, but must only retain a single copy in physical
memory. Sharing is possible at per library granularity. Slightly different versions
require an extra copy of all library associated pages, although only few pages
might have changed. (Although different instances of such applications can still
share their executable image.)

The idea of sharing libraries can be extended to all files. Commodity OSes
provide mechanisms, e.g., file caches, for this purpose, but as for shared libraries,
the application must explicitly use the file mapping mechanisms. Applications
cannot rely on standard file APIs, or the standard C library, which make private
copies into supplied buffers, rather than mapping the file’s content into its address
space. Afterwards two identical copies occupy memory, one in the address space
and one in the file cache of the OS. These issues and the impossibility of sharing
memory not backed by files (anonymous memory) with child processes led to the
idea of forking with copy-on-write semantic [45].

Forking The process creation on POSIX-compatible operating systems invokes
the fork system-call, which makes a shallow copy of the calling process’ virtual
address space (VAS). After this call, two identical virtual address spaces exist,
sharing all content [45]. Both page tables point to the same physical memory, but
to retain address space isolation all pages are marked as copy-on-write (COW).
The OS creates a private copy of COW pages, if a write access occurs. That
allows tasks to work without modification. However, as long as a identical task
continues to execute inside the VAS, large parts of memory remain shared and
only few pages, typically on the stack and heap, are copied.

2.1.2 Initial Sharing Across Domains

The traditional deduplication techniques rely on relations between objects, such
as libraries and files. This information is not available from outside hardware-
accelerated VMs without guest modifications. A VM forms an isolation domain
with an independent system state, which separates the guests from its host. There-
fore, the virtual machine monitor (VMM) lacks semantic information about mem-
ory allocations or open files within the guest operating system. It might not even
be able to distinguish files on the used virtual disk image (VDI). As a result the
traditional techniques cannot be applied to non-paravirtualized VMs, and new
content deduplication schemes are necessary to deal with this situation.

8 CHAPTER 2. BACKGROUND AND RELATED WORK

VM Cloning VM cloning was first implemented in Potemkin [51]. It leverages
the same concept for VMs as the traditional fork for standard processes. Instead
of allocating and booting a new VM. Potemkin creates an identical copy of an
already running — pre-warmed — VM. This way, the virtual machines can share
large parts of their allocated memory, e.g., the operating system kernel image.
VM cloning, as done by Potemkin, allows a fast instantiation of VMs and over-
committing of physical memory. Although the primary intention was malware
analysis in honey pot server farms, it has influenced cloud computing and other
hypervisors.

Snowflock [27] extends this approach and includes a hypercall interface so
every VM can signal the need of more resources or a further instance to cope
with, e.g., incoming connections in a virtual server environment. The hypervisor
can create a shallow copy of the VM, sharing most of their associated pages and
keeping the memory consumption low.

The most prominent use of VM forking is the Zygote process of Android [8].
Since Android needs to run on energy and memory limited devices, it has to pre-
serve resources whenever possible. To prevent content duplication, the DalvikVM,
the Java runtime environment of Android, is hosted inside the Zygote process and
forked on demand. This pre-warmed VM has already produced its common data
structures and mapped all necessary libraries and resource files into its virtual ad-
dress space. Thus, a fork enables a newly started application to share nearly all
pages and the contained resources with its parent. Only few and typically fast
changing pages are private to each process; in the case of the DalvikVM, the run-
time generated code, as well as, heap and stack pages diverge.

Named Saved System (NSS) A different approach available on IBM’s System
7. are Named Saved Systems (NSS)[22]. NSS are similar to shared libraries. A
NSS contains an OS binary image and the hypervisor maps it during VM initial-
ization into the guest memory. These segments are shared across a large amount
of VMs, with only one backing copy in memory. A Discontinuous Saved Segment
(DCSS) [21] can also contain more shareable memory regions, e.g., parts of an al-
ready booted VM, which is instantiated and reinitialized by the z/VM hypervisor,
allowing cloned, pre-warmed VMs with content sharing.

In-place Execution A slightly different concept available for Linux on System
Z,is In-place execution [21]. Originally designed for embedded systems with lim-
ited RAM, it allows different VMs to load executable files from background stor-
age without copying the content into VM private memory, instead it can directly
execute them from a single copy in memory. Thus large and common binaries can
be easily shared between different VMs without consuming additional memory.

2.1. MEMORY DEDUPLICATION TECHNIQUES 9

A drawback is that the guest OS must be aware of this technique and requires a
modified filesystem driver to allow direct execution.

2.1.3 Paravirtualized Deduplication

A major drawback of VM forking — and forking in general — is, that once a COW
page’s content has changed, it is never shared again, although the contents might
be redundant in memory or change back in the future. In paravirtualized environ-
ments the guest OS is aware of running inside a VM and communicates directly
with its hypervisor. The hypervisor can therefore easily gain information about
guest memory operations and can, for instance, intercept memory copy operations
and instead establish respective page mappings to prevent memory duplication. It
can further provide host to guest file cache sharing.

DISCO Bugnion et al. extended the DISCO hypervisor to serve as the basis
for transparent page sharing [9]. This technique allows, in conjunction with a
copy-on-write virtual disk, to share the content of the host’s and guest’s page
caches. Copying the file content into each virtual machine instance is unneces-
sary; instead DISCO just maps the corresponding pages. All instances share a
single copy of the disk content on a block granularity. As long as the same virtual
disk image (VDI) is used and no write access takes place, no further copy oper-
ation is required. If file content is modified a private copy is created. Although
this approach is limited to paravirtualized systems with special COW disk images
and only available for few operating systems, it still influenced further memory
deduplication techniques [52].

Satori Satori [36] extents the Xen hypervisor with similar capabilities as DISCO,
but does not rely on a single shared disk. In a common usage scenario, every VM
has its private VDI, therefore sharing content based on the same logical address is
impossible. To overcome this limitation Satori allows sharing based on a page’s
content, rather than on disk block addressing. Every page gathered from back-
ing store is hashed and inserted into a look-up structure. A request for identical
content, from a different VM, causes a look-up and verification. On success the
matching page frames are mapped into the requesting VM directly. It ensures that
read-only data is present only once in system memory and not scattered in various
copies across different VMs. A huge limitation of Satori and DISCO is that they
cannot track changes in anonymous memory such as heaps and can only utilize
data emerging from I/O requests in a paravirtualized environment.

10 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.4 Memory Scanning

Memory scanners detect shareable content by periodically scanning memory pages,
typically uncorrelated to a certain system event. Furthermore, memory scanners
need no cooperation of the guest OS running inside a VM. Memory scanning can
therefore be applied to OSes were paravirtualization is unavailable, or even im-
possible, due to lack of source code or copyright issues. Furthermore, it can also
be applied to native applications, even to applications which do not benefit from
traditional sharing techniques, i.e., forking or shared libraries. Memory scanners
primarily focus on anonymous memory—pages allocated for heaps and stacks.

Although memory scanners differ in their heuristics, scanning intervals, merg-
ing granularity, and look-up structures for identical page identification, their com-
mon goal is to minimize memory usage of applications and VMs. Once a scanner
has identified a pair of duplicate pages, it transparently replaces them with a single
copy-on-write protected page, freeing the redundant page copies.

VMWare ESX Server The hypervisor VMWare ESX Server includes one of
the first memory scanners [52]. Its primary aim is to reduce the memory con-
sumption of VMs and allow more VM instances to run on the same system—for
server consolidation. It does not require any adaptations of the guest OSes. The
scanner works on page granularity and uses the hash of a page’s content as an in-
dex into a hash map. This look-up structure reduces identification and verification
complexity. The scanner is invoked periodically, i.e., every 20 minutes, or just
before the hypervisor has to swap-out pages to comply with memory demands of
VMs. This solution is dedicated to VMs only.

Kernel SamePage Merging (KSM) The Linux kernel has been extended with
a memory scanner, which is upstream since Linux kernel version 2.6.32. It is
called Kernel Samepage Merging (KSM)[3]. Its main purpose is to re-actively
share anonymous memory across different virtual address spaces. Sharing is pos-
sible between regular tasks and VMs — hosted on the Kernel Virtual Machine
(KVM). That is possible since every KVM-hosted machine allocates only anony-
mous memory to provide guest physical memory. KSM considers pages inside
previously marked virtual memory regions and ignores file-backed pages, since
Linux does not yet provide a method to merge them.

KSM runs in a single kernel thread that wakes up periodically to scan a config-
ured amount of pages, ignoring current CPU utilization and resource limitations.
It utilizes red-black trees to identify possible shareable pages. For this purpose,
KSM maintains an unstable tree, containing all scanned pages, and a stable tree,
which includes all pages already shared. The index into these trees is formed by
the content of pages. A major drawback of this indexing scheme is that changes to

2.1. MEMORY DEDUPLICATION TECHNIQUES 11

a page and therefore to the index are not tracked. The unstable tree can degener-
ate drastically since it is only rebuilt after a full scan of all advised pages [3]. The
chances of finding mergeable pages declines rapidly [35] and ignores many share-
able pages. As in VMWare ESX Server and other scanners, Linux uses copy-on-
write to protect merged pages from modifications. The efficiency of KSM depends
heavily on the workloads executed. CPU- and memory bound workloads are least
likely to benefit from KSM’s scanning mechanism, whereas an I/O bound job,
using large amounts of the guest’s page cache, can benefit to a greater extent [11].

Page Combining Recent versions of Windows — namely Windows 8 and Win-
dows 2012 Server — also include a memory deduplication technique for anony-
mous memory. This mechanism is called Page Combining [19]. It aims to reduce
the memory consumption of user land programs. In contrast to KSM, Page Com-
bining operates on page frames and not on virtual address space regions, thus,
reducing the quantity of scanned content and the overhead caused by page table
walks. It does not provide a mechanism to explicitly include or exclude page
frames. Instead a default filter is integrated in the Windows kernel. It decides
whether a frame is compatible for merging or not. In general, it excludes all
frames dedicated to device drivers, working sets, free or zeroed memory lists, and
pages already shared by file mappings or shared libraries. Another difference to
KSM is its runtime behavior. Whereas KSM wakes up periodically and scans a
certain amount of pages, Page Combining, once activated, wakes up in idle peri-
ods and scans the whole physical memory in a burst, as long as no other activity
interrupts the scan. The background service responsible to host the scan thread
wakes up and scans each NUMA node of the system. It acquires the necessary
locks, to inhibit memory allocations and scans the page frame database of each
node. Checksums for every suitable page frames are calculated and sorted to
speed-up duplicate detection. Afterwards all identical page frames are merged to
a single copy. The kernel maintains a simple hash table with binary trees to iden-
tify merging candidates in future passes more quickly. However, as noted earlier,
Windows excludes driver associated page frames and focuses on user land pro-
grams. Due to this limitation, VMs cannot benefit from shareable pages between
different VMs [46]. Instead, Page Combining is intended to run within the VMs,
opposed to KSM.

Difference Engine The memory scanners, work on page granularity. Differ-
ence Engine [18] takes a different approach and identifies identical content on a
sub-page granularity. For each found pattern, it creates shareable patched pages.
That decreases the memory footprint of VMs beyond the other scanners, but it
comes at a cost. Difference Engine has to ensure that the correct page content is

12 CHAPTER 2. BACKGROUND AND RELATED WORK

present on each memory access, thus, all patched pages are mapped inaccessible.
Therefore, it can only be applied to pages, neither read nor written. Otherwise,
page restoration overhead might easily exceed its benefits.

2.1.5 Hinting

Pure memory scanning consumes lot of computational power and still it takes
long periods of time — up to minutes — to identify identical memory content [35].
Thus, a hinting mechanism, utilizing semantic information, e.g., disk accesses,
can focus a scanner to promising pages, avoiding exhaustive scans.

Cross Layer Hints (XLH) Previous research suggested a strong correlation be-
tween sharing opportunities and named memory [36]. To overcome the limitations
of memory scanners and paravirtualized guests, Cross Layer Hints (XLH) [35]
combines an improved scanning mechanism of KSM, with hints from the host’s
I/O layer. Regular scans take a long time — up to five minutes for small amounts
of memory (1 GiB) [35]. This time penalty — for only one pass — prohibits KSM
to harvest short living (between 10 and 30 seconds) identical memory pages. Fur-
thermore, it cannot share them, because the unstable tree degenerates fast and is
seldomly rebuilt. XLH introduces two improvements to KSM. Firstly, it prevents
the degeneration of the unstable tree by tracking page content changes. Secondly,
every time an I/O operation takes place, the virtual file-system layer issues a hint
to XLH. These hints point to potentially shareable pages, and are therefore consid-
ered before any other page in the linear scan. On average, such I/O related pages
are merged five times faster than with the pure improved scanning mechanism.

Singleton A different optimization of KSM is taken by Singleton. Singleton
utilizes the merging capabilities of KSM [44] and also uses hints from the I/O
layer of the hosting hypervisor. In contrast to XLH, it uses the hints to search
KSM'’s stable tree for a match and on success, it tries to remove these identical
pages from the host’s page cache. It only retains a single content copy for all guest
page caches, in contrast to XLH, where an additional copy is still available in the
host’s page cache. It, therefore, reduces overall memory consumption further than
the I/0 based hinting scheme of XLH can. It also avoids modifying large parts of
the Linux memory subsystem, which otherwise must be adapted to allow sharing
named memory pages with anonymous pages and vice versa.

2.2. DUPLICATE MEMORY CONTENT 13

2.1.6 Conclusion

Although there are many different approaches, which reduce the memory foot-
print of applications and VMs, all of these techniques are far from perfection or
concentrate their afford only on parts of the deduplication potential.

Memory sharing proactively avoids content duplication, but is either limited to
named memory such as DISCO and Satori, or cannot reunify duplicated content,
for example, VM forking or Saved Named Systems. In contrast, memory scanning
re-actively merges identical memory content, but consumes much computational
power to harvest shareable content.

For instance, even a reasonable configured memory scanner can only fetch less
than 50% of anonymous guest pages [35]. There is no system yet, which harvests
nearly all shareable pages with low overhead. Furthermore, to avoid exhaustive
scanning, a guest OS must still be instrumented to re-actively share anonymous
pages, which is in general not a satisfying solution.

2.2 Duplicate Memory Content

As most applications and VMs produce redundant data on a page, or sub-page
granularity, previous work tries to reduce memory footprints by merging content
into a single copy [3, 18, 35]. This identical and redundant content is called a shar-
ing opportunity. Deduplication tries to harvest these opportunities to decrease the
memory consumption. There are two different types of sharing opportunities, an
intra-domain sharing opportunity — also called self-sharing — and an inter-domain
sharing. They differ mainly in the pages considered for merging, as depicted in
Figure 2.2.

Intra-domain In this case, only pages within the same domain, e.g., NUMA
node or the same VM are considered for merging. These sharing opportunities
are always available, whether a similar workload is executed or not. Intra-domain
sharings are similar to compressed files, where only a single file is used to find
compressible patterns, and all other files are ignored. In most cases these sharings
are by a magnitude smaller than inter-domain sharings [26]. Their primary sources
are redundancies within files and typical desktop workloads such as browsers,
office applications, etc. [41].

Inter-domain In contrast to intra-domain sharings, all content of all accessi-
ble VMs is considered for matches. In a non-virtualized environment, inter- and
intra-domain sharings are identical, since there is no additional domain. The inter-
domain sharing heavily depends on the workloads residing inside the VMs. Har-

14 CHAPTER 2. BACKGROUND AND RELATED WORK

vesting inter-domain sharings must be done with care. Merging pages for instance
across different nodes in a NUMA system, might slow down overall application
performance. Furthermore, depending on the deduplication mechanism, security
concepts such as strict domain isolation might be weakened [48]. Intra-domain
sharings do not interfere with protected resources and remain in their own restric-
tion boundary, whereas inter-domain sharings break this boundary. However, their
sharing potential is higher and can reduce memory usage up to 79 % [41].

Domain Boundary Domain Boundary Domain Boundary
User Space
Virtual Machine Virtual Machine - -
Browser Office Suite
N Memory Memory Memory Memory
<7 — > >
I_-_> -———=—+pi] I
L —ip | > g
| n
€
€ — P |
< « > j
|
= — >
L, «—> “«———— >
Intra-domain Inter-domain
sharing sharing

Figure 2.2: The figure shows two VMs (two semantic domains), and
native applications, a domain of its own. Pages can be shared within
the same domain (intra-domain) and across domain boundaries (inter-
domain).

2.3 Full-System Simulation

Full-system simulation enables a thorough analysis of computer systems from
coarse- to fine-grained detail. They enable the analysis of program behavior,
memory operations, and other properties without interrupting the data flow, chang-
ing memory content or the timing of the guest system. In contrast to user land
introspection tools, i.e., Valgrind [38] or Pin [30], full-system simulators provide
a compatible system environment — a bare simulated hardware — for the guest OS.
They further offer different levels of simulation detail, starting from pure system-
call emulation, over functional simulation, to timing accurate micro-architectural
simulation. There are two kinds of execution modes for this purpose: An in-
terpretive mode, where each guest instruction is directly emulated via respective
simulator routines and a translation mode, where, prior to execution, instructions

2.3. FULL-SYSTEM SIMULATION 15

from the guest system are translated into a semantically identical instruction se-
quence of the host’s instruction set architecture (ISA) [S]. The primary aim of the
interpretive mode is typically a complex simulation of pipelines, CPU models and
timing, whereas the translation mode favors speed and emulates only the result
of an operation at a function level. Both approaches can be combined to achieve
different levels of detail and increase execution speed.

2.3.1 Binary Translation

Every simulator has to decode and transform guest instructions into an operation,
which can be executed on the host system. As illustrated in Figure 2.3, the primary
step is to disassemble the guest code, and then feed this information into a binary
translator. The binary translator will produce a semantically identical code se-
quence, which can be executed directly on the target platform. All produced code
sequences alter only guest memory and the simulated system state [5].

Binary translation is the core element of most simulations. It reduces the bot-
tleneck of conventional, interpretive emulation and speeds-up the execution of a
simulated system [5]. Binary translation can be done in two flavors, statically or
dynamically [40]. Static binary translation is done in advance, and no extra in-
struction decoding or compilation must be done during runtime. However, it has
major drawbacks; it cannot translate all code paths correctly, since some informa-
tion such as conditional jumps or privileged operations depending on the current
CPU state are unknown in advance. Furthermore, dynamic code generation, often
used by Just-In-Time compilers or self-modifying code cannot be used at all. Static
code translation is thus not applicable to all programs and especially not feasible
for whole operating systems. Full-system simulators thus typically execute guest
code in an interpretive mode or switch to dynamic translation.

Dynamic binary translation (DBT) has been used in many system simulators
and in early x86-compatible VMMs (VMWare Workstation, VirtualPC, etc.)[1]
before hardware accelerated virtualization became available. It overcomes the
drawbacks of static translation and enables the simulation to provide all features
as present in the simulated ISA. The translation process, as depicted in Figure 2.4,
is executed during the simulation and transforms the guest code on demand, fol-
lowing the current program flow of the guest. That allows the guest OS to run
unmodified. However, it can be transparently extended with introspection func-
tionalities. That is because, the resulting binary code, with modification and ex-
tensions, is invisible for the guest system.

The translator breaks the guest code down into basic code blocks [S0]. A code
block contains consecutive instructions till the next jump instruction. A jump ter-
minates each basic block, since the jump’s destination is unknown in advance and
has to be evaluated after execution. This code partitioning allows to translate a

16 CHAPTER 2. BACKGROUND AND RELATED WORK

Simulator
4 Guest Operating System A
Simulated
Guest Physical Memory Hardware
4 |
| Guest Binary Code |
o
| || | N\
@ Disassembler))
> Simulated

Binary Translation > CPU State

= = 9
/" Host compatible N

t i
_ Instructions Y,

'\—}17

CPU

Figure 2.3: The general work-flow of a simulator using binary transla-
tion. The guest code is disassembled, translated, typically instrumented,
and executed on the hosting platform. All memory accesses have been
modified to point into the guest assigned memory regions.

complete block into its host equivalent. During the execution of the translated
block, program exceptions or CPU state changes can occur, which require a code
block to be modified and re-executed. For instance, if a divide-by-zero excep-
tion occurs, the following instructions cannot be executed without handling it.
Therefore, the translator creates a new slightly different code block handling the
exception and re-executes it. If a code block has been successfully executed, the
translator can add it to its optional translation cache [40] to by-pass the complex
block creation in the future. However, to support self-modifying code, already
cached code blocks must be invalidated, if the guest code changes. Afterwards,
the translation cycle starts again, at a new Instruction Pointer (IP).

2.3. FULL-SYSTEM SIMULATION 17

Host Binary |_

Code
Y Load from Execute Recreate
= Cache Code Code
X X
YC)
Increment
Emit p- N Creat Handl -
m “ Instructions No-»>| reate an -e Instruction
operation Code Exception .
Pointer
A X
. Yes
Emit Helper
Function
@ No->| Add to cache

Figure 2.4: Dynamic binary translation and the typical work-flow of dis-
assembling, translation, and execution to correspond to the guest ISA.
The binary translator must recreate a code block, if an exception, e.g.,
a page fault has occurred. A successfully executed block is added to a
cache to speed up re-execution.

In more detail, the dynamic binary translation for full-system simulators fol-
lows the following four basic steps.

Disassembling The guest code is disassembled, split up into its instructions
and its operands. Some ISAs, e.g., ARM, are easier to disassemble than others,
e.g., x86. The decoding of instructions can only be done as far as no conditional
jump is encountered [40]. As jumps change the instruction pointer, all following
instructions might become invalid and can therefore only be decoded after the
execution of the jump. A problem of the x86 ISA is its variable instruction length.
An instruction ranges from one up to 15 bytes, and are not aligned on a machine
word boundary [23], which makes decoding even more complicated [1]. Once an
instruction has been successfully decoded, it can either be directly passed to the
recompilation, or it can form an intermediate representation (IR) [5]. An IR aims
to match two different instruction set architectures. It typically consists of much
simpler operations (load, store, arithmetic, branch instructions, etc.) — a sub-set
of all supported instructions.

18 CHAPTER 2. BACKGROUND AND RELATED WORK

Recompilation and Instrumentation The disassembled code or its intermedi-
ate representation cannot run unmodified, since it still contains wrong, or incom-
patible memory addresses, privileged, or even unsupported instructions. They
would alter the state of the host system, rather than the state of the simulation.
Thus, addresses must be recalculated to map into the guest’s memory, or at least
comply with the simulated memory management unit (MMU). All privileged in-
structions have to be replaced with equal functionality, otherwise they cannot be
executed at all. Furthermore, modifications to a simulated device state or the con-
figuration of a simulated CPU would be unavailable, since typically these instruc-
tions can only be executed in a privileged execution mode. The simulator also
needs to add exception handling code to cope with faulty memory accesses or to
comply with the guest ISA’s exception mechanisms. After these necessary modi-
fications to the guest code, the simulator can further add instrumentation code, for
system state inspection. That allows to add tracing functionality such as memory
or instruction hooks. The resulting code blocks can either be directly executed or
passed to a relinking procedure.

Relinking In this step the previously generated code blocks are linked, if possi-
ble. To achieve better performance, the relinking [S] can make use of previously
compiled blocks and produce in the best case a long phase of uninterrupted pro-
gram execution.

Execution The execution of the recompiled binary code is straight forward. All
critical operations have been replaced and only conditional jumps, exceptions such
as page faults and illegal operations, or interrupts might alter the instruction flow.
In such conditions, the code block is typically discarded and recreated, starting
from the faulting instruction and extended with exception or interrupt handling
routines. A different approach is to directly jump to a suitable handling func-
tion and continue afterwards. Once the available blocks have finished execution,
the translator typically adds them to a translation cache and determines the new
instruction pointer and starts decoding from this point.

2.3.2 Full-System Simulators

A variety of full-system simulators exist. They are designed to simulate differ-
ent aspects of a system in more or less detail. Simulators vary from emulation —
functional simulation — at the instruction level to provide functional correctness
to timing accurate micro-architectural simulation. The following list of simula-
tors is not complete, since various variations exist and many different research

2.3. FULL-SYSTEM SIMULATION 19

projects [37, 39] have extended or adapted them to their needs. We therefore give
an overview of the most commonly used simulators.

Bochs Bochs [28] was one of the first freely available system simulators, provid-
ing the facilities to run unmodified x86-compatible operating systems on different
CPU architectures. To allow these OSes to run, Bochs simulates PC-compatible
hardware. However, due to its interpretive mode, each instruction’s equivalent is
directly executed after disassembly. Bochs thus remains a factor of 30x slower
than other simulators using DBT [5]. In general, it is a slow virtual machine,
providing functional correctness, but no timing accuracy or micro-architectural
simulation.

GemS GembS is a fusion of the M5 and the GEMS simulator and combines M5’s
CPU and interconnection model with GEMS’s memory and cache coherent pro-
tocol simulation [6]. It forms a highly flexible simulator with a fine to coarse
grained simulation. GemS5 is capable of emulating different ISAs such as ARM
or x86, on different host architectures. It offers two operation modes: A system-
call emulation only suitable for user land programs and a full-system simulation.
The system-call emulation is very high level and does only intercept system ser-
vice requests, similar to a sandbox and is therefore limited. The full-system mode
presents a bare machine with a wide range of emulated devices necessary to run
commodity operating systems, such as Linux. This mode of GemS5 is slower com-
pared to other simulators, since it does not use a sophisticated binary translator [6].
Instead, it creates a list of virtual calls to emulate functionality of each disassem-
bled instruction. Although, this approach is faster than a pure interpretation due
to saving repeated disassembling, it cannot compete with full DBT; especially if a
functional simulation is sufficient for a particular analysis. However, an advantage
lies in its flexibility in terms of simulation detail and extensibility.

MARSSx86 In contrast to the previously described simulators, MARSSx86 [39]
utilizes a dynamic binary translator and augments its code with cache, pipeline, in-
and out-of-order CPU simulation functionality. It provides support of single- as
well as multi-core configurations. It simulates complete cache hierarchies down to
the cache synchronization protocol level, similar to the micro-architectural simu-
lation mode of Gem3, but combined with a faster instruction simulation. Although
it is based on the open-source simulator QEMU, it is far more flexible and allows
switching from a fast result driven simulation to a more complex micro architec-
tural accurate mode. However, it is only available for x86.

20 CHAPTER 2. BACKGROUND AND RELATED WORK

WindRiver Simics WindRiver Simics [31] is a commercial simulator, used in
various scenarios, from debugging faulty programs, to malware analysis, and
hardware simulation. It allows deterministic, cycle accurate simulations and sup-
ports various, flexible hardware configurations. Simics supports binary translation
for various instruction sets, generic parametrized cache simulations, and runtime
inspection of CPU and memory. The simulation guarantees functional correctness
with optional accurate timing. A pipeline simulation, as in MARSSx86, is omit-
ted for performance reasons, CPU models comprising a pipeline simulation can
however conceptionally be added. The performance of an un-introspected func-
tion level simulation varies from 2.1 MIPS to 5.7 MIPS on an ancient Pentium III
processor [31]. On recent hardware, intercepting every memory access leads to a
simulation speed of about 3 MIPS [42].

2.3.3 Quick Emulator (QEMU)

In contrast to the previous described simulators, Quick Emulator (QEMU) [5] is
widely used for virtualization in Linux environments. As hardware-virtualization
became available on a wide range of processor architectures, the DBT is only used
to simulate a different architecture, e.g., ARM on x86. QEMU is often used in
conjunction with the Kernel Virtual Machine (KVM), but just provides emulated
I/0 devices. The instruction stream is directly executed on the processor and only
privileged operations fallback into QEMU for handling. QEMU still comprises a

Qemu Main Thread

Dynamic Binary I

Translation /Lj‘> Translation
N Cache Guest Physical - Ry

RAM [Block

i§ \\\%Devicti
Memory Access){ SoftMMU @ <
Simulated

CPU BIOS ROM

A

)\ 4

Graphics Card /
1/0 Request

<
I/o [Framebuffer
Simulated APIC |« Thread
Interrupt
<—JT

Figure 2.5: The organization of QEMU. It consists of two threads, one for
CPU simulation and one for device emulation. The interaction is similar
to a real system, but interrupt delivery can be postponed.

2.3. FULL-SYSTEM SIMULATION 21

dynamic binary translation (Tiny Code Generator (TCG)) and can be extended to
provide similar simulation features as present in Gem3 or Simics [37, 39].

The simulation mode of QEMU uses DBT with an intermediate representa-
tion (IR), to translate the guest ISA to the host ISA. The IR enables QEMU to
support a sub-set, common denominator of all ISAs. The used intermediate rep-
resentation consists of micro operations, a subset of all possible instructions of
different architectures.

Figure 2.5 shows the general organization and operation of QEMU. QEMU
provides two threads of execution. The main thread simulates the CPU state and
executes the resulting code from the DBT. If QEMU simulates multi-core CPUs
it schedules them to this thread in a round robin fashion, avoiding complex syn-
chronization and locking mechanisms. A second thread handles DMA and I/O re-
quests and triggers interrupts on completion, which will be processed after every
successfully executed code block. QEMU emulates the behavior of real hardware,
with a DMA controller and asynchronous operations, but with a slightly different
timing, since interrupts can be postponed for longer periods, as they would do in
areal system.

Chapter 3

Analysis

Previous research has been concentrated on pages related to the Linux page cache
and I/O operations, since these pages are a primary source for duplicate page
content in a virtualized environment [9, 35, 36]. The page cache buffers content
read from or stored to block devices. Thus, in a virtualized environment identical
page content resides in guest and host page caches. Existing page deduplication
approaches either prevent duplication proactively, e.g., Satori [36], or merge the
replicas instantly, e.g., XLH [35]. The hypervisor can easily collect page frames
associated with the guest page cache by simply monitoring I/O operations — i.e.,
data transfers from and to virtual block devices — even without paravirtualization.
That is because every I/O operation must be handled in the hypervisor or the
host OS. It is an example of how information about pages can help to focus on
promising memory regions and how these information can be collected.
However, there might be even more sources, which can easily be harvested to
increase the efficiency and effectiveness of memory scanners. Although XLH and
Singleton exploit nearly all sharing opportunities stemming from the guest page
caches up to five times faster than regular memory scanners [35], they still can-
not merge other sharing opportunities with similar speed. Their memory scanners
still consume a large amount of time and computational power trying to identify
and merge identical pages originating from anonymous guest memory. As sug-
gested [41], some pages (e.g., about 54% of pages in desktop workloads) even
change too fast to be harvested through periodical scans at all, while at the same
time they are stable long enough to justify merging. Scanning with higher scan
rates and more computational power might already solve some of these prob-
lems, but as memory can always be used for better purposes, the same is true for
CPU resources; including the energy they consume when active. A direct hint to
fetch moderate changing pages as quickly as possible or to exclude unstable pages
could concentrate memory scanners on more promising regions and increase their
effectiveness beyond what solely I/O focused scanners achieve today. To avoid ex-

23

24 CHAPTER 3. ANALYSIS

pensive and futile scans, a restricted scan domain, with a high sharing probability
is advisable. Otherwise, all pages of a VM have to be considered during scanning,
even if a region contains stacks or virtual device memory and the probability of a
stable memory page is low. Non-paravirtualized VMs lack semantic information
and a memory scanner can therefore not exclude memory regions based on their
internal allocation.

There are different ways to bridge this semantic gap. Firstly, a paravirtualized
OS can be used to report allocation changes and other relevant system events. Sec-
ondly, techniques for VM migration and memory reclamation can collect similar
information without modifying the guest OS. One way is to analyze the VM guest
memory, searching for memory management structures and parsing the contained
information [12]. Another way, is taken by XLH [35], as it monitors I/O opera-
tions to and from virtual block devices inside a hypervisor to identify and prior-
itize a VM’s page cache pages. Another source of information are page tables,
e.g., dirty bits might indicate changing page contents. Additionally, a statistical
analysis might bridge the semantic gap as well and provide (workload specific)
heuristics, minimizing the scan regions or prioritizing regions with high sharing
probabilities.

As previous work showed, if a scanner focuses on pages with high sharing
potential [35, 44], it achieves better and faster memory footprint reduction. How-
ever, there are still pages, which are shareable, but cannot be harvested due to
slow scanning. We aim at discovering correlations between duplicate memory
pages and statistical information to either focus on stable regions or to exclude
unsuitable pages, permanently or temporarily from the scanning process and thus
increase the effectiveness of memory scanners.

3.1 Analyzing Sharing Opportunities

We focus our research on sharing opportunities not yet harvested by a hinting
mechanism, and thus, if merged at all, need to be fetched by a periodical memory
scan. A requirement for merging sharing opportunities is stability. Otherwise,
the likeliness of breaking a merged page is very high. Less is known about other
properties of these remaining sharing opportunities.

Sharing Opportunities As we want to focus a memory scanner to unused shar-
ing potentials, at first we have to detect all sharing opportunities in examined
workloads. Without this quantification of the overall sharing potential an anal-
ysis of their properties is impossible. Sharing analyses, comparing every page’s
content with every other page, can be done in two ways. They can consider only

3.1. ANALYZING SHARING OPPORTUNITIES 25

a single system and detect content duplicates within its own domain — an intra-
domain sharing. Another way is to perform an inter-domain sharing analysis.
It considers not only a single system, but also many systems, e.g., all VMs on a
host, and detects sharing opportunities in all systems, which drastically increases
the available sharing potential [41].

Semantic Information As shown in previous research [35, 36, 41], semantic
information can help to provide better hints for a memory scanner. If a memory
deduplication system is aware of a page frame’s allocation, it can easily decide
whether it should consider it during a scan, or leave it unexamined. For example,
a scanner would be able to exclude stacks and virtual device memory permanently
from its scans, as these regions have shown no sharing potential in the past [41].

Memory Access Frequency A frequently written page frame is an unsuitable
candidate for memory sharing. Even if a sharing partner exists, it is most likely
that the content will change in the near future and an already established sharing
would break. Thus, a write access frequency for every page frame might help to
determine pages, which should be skipped (at least for one scan pass), as long
as they are changing fast. Low frequencies indicate probably more stable page
frames.

Memory Access Patterns Extending the idea of memory access frequencies, it
is possible that a distinct memory access pattern directly indicates the usability
of a page frame for sharing. Memory access patterns use the temporal or spatial
distribution of memory write accesses to provide a more complex identification
scheme. It could be possible that different write access patterns directly lead to
stable and shareable pages, whereas other patterns indicate the contrary. It is
unclear, if more information about the history of each page helps to identify stable
regions, or if access patterns show no statistically significant correlation to page
(in-)stability. If such correlations exist and a scanner discovers such patterns, it
might focus its scan operations on these pages, or skip them.

Semantics and Stability The conjunction of semantic information and stability
of a page frame should improve scanning even further. Thus, as already shown,
page cache pages remain stable for long periods of time [36, 41], the same might
be true for, e.g., heap pages with a specific write frequency, access pattern, or
write history. We have to examine, if and to what extend such correlations exist
and if they can be used to improve memory scanning.

26 CHAPTER 3. ANALYSIS

Write Working Set A working set describes the amount of accessed memory
pages in a time interval [14]. It indicates the amount of memory and the pages
used within the last observed period. As working sets are often estimated to de-
termine, which pages can be evicted from physical memory and moved to swap
space, it might also be useful for a memory scanner. We slightly modify this idea
and consider only modified pages, which form a write working set. We exclude
read pages, since reading a page does not change its stability, nor its sharability.
Only write operations change content, and therefore break shared pages. If a page
leaves a write working set, it could be considered for a memory scan, as we as-
sume it to remain stable, i.e., unmodified. Afterwards for a sufficiently long time
period to justify examination by a memory scanner.

3.2 Required Analysis Data

To verify if memory access patterns and stability criteria for duplicate memory
pages exist, we have to collect different data for analysis. First of all, we have
to ensure, we can identify sharing opportunities. Therefore, we have to collect
memory content of the analyzed system. Information on memory accesses build
the foundation for analyses of memory access frequencies and patterns as well as
page stability. In contrast to reads, write operations may invalidate the information
a scanner has about pages or even leads to breaking already shared pages. In
consequence, at least every memory modification needs to be tracked.

Memory Content As program execution progresses memory content is modi-
fied. To be able to analyze sharing opportunities, a consistent memory image for
every point in time must be available. Otherwise, shareable page content might
be missed. Memory content is modified in two ways. Firstly, a program running
on a CPU issues store operations, which change the content of main memory.
Secondly, devices utilize direct memory access (DMA) to move content to and
from main memory. To maintain a consistent memory view, these two operations
must be traced. Monitoring these operations provides us also with the information
necessary to analyze the memory access frequency, write access patterns and the
access history of each page frame.

Memory Semantics To allow a more thorough and detailed analysis, we require
additional semantic information associated with each page frame. Every page
and its corresponding page frame have semantics associated with them. Most
prominently, each page is allocated for a specific purpose, for instance to serve as
a page for named or anonymous memory. The allocation of a page is important,
but it can be further enriched with mapping information and page table flags. Only

3.3. DATA ACQUISITION 27

this combination allows us to tell stacks and heaps apart, since both are allocated
as anonymous memory. To further understand memory access patterns it might be
helpful to distinguish the source of a memory operation, i.e., if it has been issued
by the kernel or by a user-land program.

System State To trace store operations back to the issuing address space and in
conjunction with scheduling information even back to the issuing thread, it is nec-
essary to consider the current state of the examined system’s OS. We, therefore,
consider all address space events, regardless whether an address space is created,
modified, or destroyed. The same is true for task creation and destruction. Fur-
thermore, we want to track kernel events to be able to correlate different store
operations to the dedicated kernel sub-system.

To improve memory scanning, we must identify new hinting sources or pat-
terns, which allow to reduce the scanning overhead, by including or excluding
pages. We came to terms that at least the information in Table 3.1, must be con-
sidered for our analyses.

3.3 Data Acquisition

To analyze sharing opportunities, page stability, and memory access patterns, all
data for these analyses should be captured on a non-interfering level to avoid
distortions of the examined workloads. As our analyses require different data
sources, they should be collected in a single pass. Otherwise, correlation of se-
mantic data, with memory accesses becomes difficult or might be impossible.

To measure the sharing potential some approaches regularly dump the memory
of (hardware accelerated) VMs [35, 36], but typically that changes guest timing,
affects the CPU caches, and scheduling policies. In the worst case it changes the
complete behavior of a workload and cannot produce reliable data for analyses.
Furthermore, memory dumps require large amounts of disk space and suffer from
low temporal resolution. In the case of Satori, their snapshot resolution was only
30 seconds [36]. In contrast to Satori, we require every memory modification
to calculate memory access frequencies in a high temporal resolution, not only
long lasting sharing opportunities. To acquire memory accesses different methods
come to mind.

One way to collect memory accesses is to map pages inaccessible in every
referenced page table and modify the page-fault handler to trace read or write
accesses. Then, a faulting instruction must be restarted in a single-step execu-
tion mode, with a temporally accessible page to perform the actual operation.

28 CHAPTER 3. ANALYSIS

Purpose Data to collect

e Memory Writes

Memory Content
e DMA Writes

e Memory Accessor (Kernel or User space)
e Guest Memory Allocations

Memory Semantics
e Mapping Information

e Page Flags

e Task Creation and Destruction
e Scheduling Information

System State e Address Space Creation, Modification,
Destruction

e Kernel Events

Table 3.1: The three major data categories for a thorough, semantically
enriched, sharing opportunity and pattern analysis.

Immediately after this operation the debug-exception handler can reset the page
table bits to mark it inaccessible. These modifications are not only very complex
and come with a high overhead, they also require a disassembler to decode the
faulting instruction and to determine the performed operation. Another way is to
utilize performance counters, which issue an interrupt every time a memory ac-
cess occurs which is processed by a handler routine. This routine must analyze
the operation, but might not be able to determine the actual written data, since it
happens after a memory access. These two methods are not only expensive due to
overhead, they typically miss memory accesses, e.g., from DMA capable devices.
However, a VM might be able to ensure that no accesses are missed, but that im-
plies a radical change of the hosting OS and the hypervisor. Furthermore, it still
disturbs scheduling, guest timing, and CPU caches. A better and more reliable
way to retrieve memory content without distortions, is a simulation.

3.3. DATA ACQUISITION 29

Previous research clearly showed the capabilities of full-system simulators and
their advantages over other data acquisition methods (for a detailed analysis of
different techniques see [41]). In contrast to a hardware-accelerated VM, tracing
memory accesses is simple in a full-system simulator and does not affect the tim-
ing, execution order, or scheduling within the guest system, at all. We therefore
decided to use a full-system simulation.

A great drawback of this approach is the slow execution of simulated systems.

They tend to be slower by magnitudes than real systems [42]. As they are already
slow — even without complex introspection — a data analysis during simulation
becomes even more expensive and reduces flexibility as online analyses require
a rerun of a simulation for every considered question. Therefore, and to allow a
simple correlation of different analyses, it is best to only collect data during sim-
ulation, save it and process it offline.
A full-system simulation can simulate various aspects of a system and recording
all information is unfeasible. As we focus on memory access patterns and se-
mantic information, we only collect all necessary information. The required data
fits into three groups. Firstly, direct recordable data produced by a simulation,
e.g., memory accesses. Secondly, semantic information from within a guest OS,
such as memory allocations. The third group consists of data which can be in-
ferred from memory content or semantic information by an analysis, e.g., sharing
opportunities and must therefore not be recorded explicitly.

3.3.1 Memory Content

The first category of data is sufficient to analyze memory access frequencies and
memory patterns, or to infer sharing opportunities. In a full-system simulator,
memory accesses are traceable without any change of operating system code. This
important data can therefore be collected independent of guest OSes, workloads,
and simulated ISAs.

In contrast to many previous works [4, 35, 36], we cannot rely on periodi-
cal memory dumps. Although dumps are sufficient to provide sampled statistics
about the sharing potential in a system, they are not a basis we can draw conclu-
sions about the memory access frequencies or patterns on. That is because dumps
only capture memory content, but not modifications, and write operations must
not lead to changed content!. We therefore need to instrument the simulation to
provide information on every write operation to be able to analyze access frequen-
cies and access patterns afterwards. At the same time, we still need to be able to
find sharing opportunities based on these information.

'Previous work reported that up to 34% of write accesses do not change memory [41].

30 CHAPTER 3. ANALYSIS

There are two ways to store memory modifications: Firstly, like in previous
work [41], after each memory modification event, a hash can be calculated for the
target page frame and stored for later retrieval. In that case, identifying sharing
potential is based on page hash comparisons. Secondly, memory operations can
be traced directly with destination address and data. That allows to replay every
memory modification and recreate a complete memory image. Both methods are
in general suitable to base our measurements on.

The first method is inspired by previous studies on memory duplication, which
are mostly done with hashes or checksums [1, 36, 41]. That suggests to save page
content hashes and avoid a memory content rebuild during analyses. Although it
seems to speed-up sharing opportunity analysis, this method has two major draw-
backs. Firstly, a suitable hash, with nearly no hash collisions, consumes at least
the same amount of memory as the data actually written by a memory operation.
Secondly, a hash calculation for every memory modification slows down simula-
tions by a magnitude. A fast hash function such as CRC32 on the other hand, is
not sufficient to avoid false positives — 1.e., wrongly identified duplicate page con-
tent — during recording. Although a cryptographic hash function or larger hash
value might minimize this probability, it is harder to compress, due to its higher
entropy and thus less suited to be recorded.

The second method stores every write with its destination address and the ac-
tual written data. Thus, the complete memory content can be restored and different
questions can be answered with the same trace data. As stored write operations
can rebuild the complete memory content on different temporal and spatial res-
olutions, they allow flexible inter-domain sharing analysis, and furthermore, an
extraction of instructions and loaded file content if needed. Identifying sharing
potential from a reconstructed memory image is trivial and precise. A drawback
of a memory rebuild is however, that the analysis requires at least the same amount
of memory as the examined simulation did. We conclude that storing memory
writes directly, will provide most flexible trace data for an offline analysis.

A subsumed comparison of both methods can be found in Table 3.2.

3.3.2 Memory Semantics and System State

As mentioned earlier, important semantic information, e.g., memory allocations,
must be recorded. It is not directly included in a memory image and complicated
to extract with tools, such as crash [2] or Volatilitux [17]. Such an extraction from
a reconstructed memory image, can be erroneous due to missing symbols or par-
tially written data structures. Furthermore, it is slow. Directly recorded operating
system events allow to reconstruct the system state faster. Therefore, we explicitly
record memory allocations and system events changing the current system state

3.4. SIMULATION 31

Stored Data Pro Contra
False Positives
. . High Entropy
Hash Fast Sharing Analysis Low Flexibility

Fast Simulation
Good Compression
High Flexibility
Memory Content

Actual Data High Memory Utilization

Table 3.2: A comparison of how to store memory modifications. Storing
actual written data is fast and allows most flexible analyses. Our chosen
method is in bold.

from within the analyzed OS. That does not only reduce the reconstruction over-
head, it also allows flexible OS introspection.

3.4 Simulation

Many different simulators are available with a coarse- to fine-grained simulation
detail, providing function level to micro-architectural simulation modes. As a
micro-architectural simulation must simulate, for instance, a CPU pipeline, the
memory bus, and cache coherency protocols, it has to execute more code per sim-
ulated instruction, whereas a functional simulation can just simulate the result
of an operation. Thus a functional simulation is faster. We focus on execution
speed, since previous work [25, 41] clearly showed simulation speed as a bottle-
neck in the analyses process. If simulations take up to weeks, and making only
little progress, simulating complex and long-running workloads becomes unfeasi-
ble. Rittinghaus et al. compared different simulators and measured their execution
speed, which ranges from 3 MIPS up to 93 MIPS for memory inspection [42].

There are three main goals, which a simulator should provide. Firstly, it should
be able to allow memory inspection and pass information from within the guest
OS to the tracing infrastructure. Secondly, it should be able to provide an accu-
rate timing source to correlate system events with memory accesses. Thirdly, the
simulation should run as fast as possible.

32 CHAPTER 3. ANALYSIS

3.4.1 Full-System Simulator Comparison

All described simulators in Chapter 2 are, in general, suitable for our research, but
they greatly differ in adaptability and extensibility, simulation detail, and execu-
tion speed. A suitable simulator should provide necessary interfaces to intercept
memory accesses and record system events. For this purpose a functional correct
simulation should be sufficient. All considered simulators already provide these
interfaces or can be extended to do so. Thus, the main goal is to find a fast sim-
ulator to allow long-running and complex workloads, e.g., SPEC benchmarks, to
complete within reasonable time. With a far too complex simulation — simulating
processor pipelines or cache hierarchies — such workloads run up to weeks [25].
As the implemented functions directly affect the maximal achievable simulation
speed, a simulator has either to provide a flexible configuration interface or source
code; thus, allowing to modify the simulation, the simulation level, and its details.
If that is not the case, the simulator is most likely unsuitable for our purposes.

Most commercial simulators, e.g., Simics, provide a rich introspection inter-
face with a wide-range of simulation features. As Simics is used for different
kinds of simulations, for debugging, for development of new hardware, and for
malware analysis, it provides many features, which are gratuitous for our analy-
ses. For instance, Simics provides only a single hook for memory operations. Al-
though, we are only interested in write accesses, the hook is called for every load
operation and thus unnecessarily reduces simulation speed. On each hook invoca-
tion Simics collects a variety of information, e.g., flags from the page tables and
page attribute tables, to ease access to these values. That, however, introduces an
extra overhead, whereas we only need such attributes, if they actually change and
not for every write operation. Furthermore, each memory access is modeled as an
object for a timing accurate cache simulation, which decreases simulation speed
even further. Simics does not provide interfaces to change this behavior and as
source-code is not available, we cannot adapt it and increase its execution speed.
A simulation with active memory inspection progresses with 3 MIPS [42] and is
far too slow, although it utilizes dynamic binary translation (DBT).

Open-source simulators, such as MARSSx86 and Gem5 allow to simulate
complex systems and support inspection. These primarily micro-architectural
simulators with multi-core, pipeline, and cache coherency protocol support, pro-
vide a far too complex and slow simulation. The details are superficial for our
memory analyses. Both MARSSx86 and Gem5 allow to switch between micro-
architectural and a fast-forward functional simulation mode during runtime. In
addition, Gem5 provides an extensible interfaces and can be configured without
complex source-code changes. The functional simulation in addition with a flex-
ible configuration interface would make GemS a suitable candidate. However, its
primary weakness, is the lack of a full dynamic binary translation [6]. Instead, it

3.5. CONCLUSION 33

uses a list of virtual function calls, which decreases the maximal achievable speed
by a magnitude. That leaves only two remaining simulators for our data recording.

Even without a configuration interface open-source simulators have one ad-
vantage over commercial simulators; gratuitous features can be deactivated, sim-
plified, or adapted to meet specific needs. Although, available source code does
not ensure an easy extension [20], it is possible. The major problem of many open-
source functional simulators is their lack of inspection and introspection hooks.
As Bochs and QEMU were originally designed to emulate hardware and provide
an early implementation of virtual machines for x86 architecture, they completely
miss memory inspection and tracing capabilities.

Bochs cannot be used, since it interprets every instruction and is therefore very
slow [5] — 30x slower than QEMU. Thus, the only remaining candidate for data
acquisition is QEMU. Although, it does not provide the necessary interfaces, nor
the inspection functionality on instruction level — required for memory hooks and
OS introspection, it is fast and has been extended in various research projects [37,
39] in the past. Rittinghaus et al. claim that the simulation speed of QEMU is
about 93 MIPS [42] even with implemented memory inspection.

Considering the different aspects of various simulators and the requirements
for our data acquisition, QEMU appears to be well suited. It is open-source and
extensible, in contrast to other simulators, it is fast, and data acquisition should
not take weeks to complete. And as functional correctness suffices for memory
inspection and OS introspection, we chose QEMU as basis for further modifica-
tions. Table 3.3 summarizes the pros and cons of the considered simulators.

Simulator Extensibility ~Simulation Detail Speed

QEMU Source Functional DBT - 93 MIPS
Gem5 Source Both Modes Interpretive Translation
Simics Commercial Functional DBT - 3 MIPS
Bochs Source Functional Interpretive Mode
MARSSx86 Source Both Modes DBT

Table 3.3: Considered simulators sorted by their suitability for our data
acquisition. The most suitable (QEMU) is mentioned first.

3.5 Conclusion

Different memory deduplication systems use memory scanning as the discovery
mechanism for sharing opportunities. As they are unable to identify shareable
content fast, some improvements using I/O hints have been achieved [35], but

34 CHAPTER 3. ANALYSIS

they still cannot harvest all theoretically detected potential. We want to improve
memory scanning even further, by either focusing on stable pages or excluding
unstable pages temporarily or permanently.

To analyze properties of this remaining sharing potential, we want to quan-
tify it and find correlations between stability of page frames with memory access
frequencies and memory access patterns. To do that, it is necessary to trace all
modifications of main memory. We, therefore, record all write accesses to each
memory address and utilize a reconstruction of the full main memory image and
its temporal progression to do the sharing and access pattern analyses. Addition-
ally, we collect semantic information from within the guest OS. That allows a
more thorough analysis of sharing opportunities and their properties, as we can
link stability with internal allocations. To successfully correlate memory seman-
tics with each page frame’s content, we have to collect all data in single pass.

The main problem of tracing memory modification is the potential distortion
of the examined workloads by the employed monitoring mechanism. To avoid
distortions, we use a full-system simulation. The simulator only needs to provide
interfaces to collect the analysis data, e.g., write operations, a timing source for
correlation and simulation time, and functional correctness — a complex micro-
architectural simulation is unnecessary. After data collection, offline analyses al-
low to answer questions about the correlation of sharing potential and page access
characteristics.

Previous research showed that simulation speed can be a bottleneck, and pre-
vents long-running workloads to be recorded. We favor a simulator with high sim-
ulation speed and low simulation overhead. Therefore, we have selected QEMU—
a fast and extensible simulator. It is the basis for our data acquisition, although it
lacks the required interfaces, it can, as previous work shows [37, 39], be extended
and still retain a higher simulation pace than other simulators.

Chapter 4

Design

In this chapter, we discuss the design considerations. We review previous trace
data acquisition, analyze its limitations and suggest improvements. A previous
research project [41], which is strongly related to our research, is designed to an-
alyze sharing opportunities in memory and CPU caches, and utilizes OS intro-
spection to acquire semantic information. It is based on a two step model, (1) a
full-system simulation with trace data recording and (2) a separate framework for
offline data analysis. The data acquisition is based on Simics a full-system simu-
lator. It records memory modifications on a hash basis and semantic information
retrieved from a modified Linux kernel. This data is semantically grouped into
sequential data streams and stored in a trace file. In a second step, the analysis
framework retrieves the trace data and performs offline analyses on them.

As we want to examine sharing potential with semantic information and mem-
ory access patterns, we base our work on the proposed design and available anal-
ysis framework. Although many basic blocks of this design can be reused, e.g.,
the idea of stream oriented storage and the separation of simulation and analysis,
many parts must be modified and improved to ensure that all analyses described
in Chapter 3 can be performed.

A main problem of the previous design was the slow execution speed of the
chosen simulator (Simics). It made simulation of long-running workloads infeasi-
ble. Therefore, the low simulation speed led to relatively short traces and resulted
in scalability problems when a faster simulator is employed that produces longer
traces. To overcome these limitations and use QEMU some adaptions are neces-
sary. We also had to re-implement parts of the offline analysis framework to avoid
cumbersome analyses for our use case.

In the remainder of this work, we will refer to the design in [41] through the
terms ’original’ or ’previous design’.

35

36 CHAPTER 4. DESIGN

4.1 General Design

In contrast to the original design, our design follows a three step process, (1) sys-
tem simulation and trace data collection, (2) independent data storage, followed
by (3) offline data analysis. Our overall design is shown in Figure 4.1.

‘ Simulation ‘ ‘ Storage Server ‘ ‘ Analysis ‘

//\\\ N\
Y — > | H0e
S &/
O 8 o

2/

Figure 4.1: Our three step design. Data acquisition, storage and offline
analysis.

We moved the saving and loading of trace data into a dedicated stage (i.e.,
component), because that made changing the storage format, which we needed
to adapt, easier. It also contributed to a cleaner overall design. The component
responsible for the second stage is the storage server. The server runs alongside
the simulation, collects information about memory accesses and semantics and
stores them on disk.

In the original design a minimal storage server had already been introduced to
overcome address space limitations of a 32 bit simulator, and thus, allowing more
buffer space for trace data and asynchronous compression. However, the original
server only handles saving traces and does not offer any interfaces for reading
previously recorded data. Instead, the original design integrates a separate loader
into the analysis framework.

We stuck to the fundamental idea of a storage server, but extended it to a
full data store, which provides a simple storage interface for producers and con-
sumers. It hides trace buffer management and storage details such as compression,
pre- and post-processing, and integrity checks form all clients—i.e., the simulator
and analysis tools. This way, producers and consumers are able to store or load
trace data without considering the actual background storage and its format. To
upgrade the previous storage server design, we had to improve portability, com-
patibility, and scalability as well.

4.2. TRACE ORGANIZATION AND STORAGE 37

In the original design, the Windows version of Simics had been used to gather
all data required for analysis. For that reason, the previous tracing and storage
components had been tailored to run on Windows through the use of OS-specific
APIs and mechanisms (e.g., /O completion ports). As mentioned in Section 3.4.1,
we chose to base our simulations on QEMU. Although QEMU can be built for
Windows, the process is cumbersome and the OS support is still in an alpha stage.
We therefore decided to base our work on the Linux version of QEMU, which
is currently the best supported and stable one. Since we also wanted to maintain
compatibility with Windows to be able to use the Windows-based analysis tools
already present in the previous design, we decided to adapt the storage server to
be OS independent. We achieved that by moving OS-specific components in the
storage server into a respective abstraction layer. In its present form, the layer
supports newer versions of Windows (XP+) as well as POSIX-compatible operat-
ing systems.

Besides changing the operating system, moving from Simics to QEMU as
simulator also required changes in the interface exposed by the storage server. To
ensure compatibility to other simulators, we decided to provide a generic inter-
face to the storage server. It exposes buffer space via shared memory for trace
data collection and RPC communication for interaction between client and server.
These two mechanisms are encapsulated in a small library, allowing an easy inte-
gration into a client. The library and the storage server manages data storage and
communication. The client just needs a minimal integration layer to write trace
data into the supplied buffers.

Further changes were necessary to increase the scalability of the storage for-
mat, the details can be found in the next section.

4.2 Trace Organization and Storage

In the original design, Simics was used as a simulator, but due to its slow simu-
lation pace only short workloads could be examined. The resulting trace files are
comparatively small with 30 GiB (compressed). We replaced Simics with QEMU
to focus on long-running workloads, therefore we expect more data and larger
trace files. Initial experiments showed that the traces for our evaluation can easily
grow beyond 500 GiB (compressed). However, the original file format does not
offer adequate scalability and we had to change some crucial aspects.

An original trace file, as seen in Figure 4.2, consists of a linked list [41]. This
linked list is conceptionally divided into streams with variable-sized trace-lists
containing variable-sized and compressed trace entries. We stick to this concept

38 CHAPTER 4. DESIGN

and continue to use streams and segments (previously called trace-lists). The main
scalability problem originates from a missing indexing scheme and variable-sized
trace entries. Thus, scanning a file is necessary to access contained trace data.

File List Compressed List Compressed List Compressed List Compressed
Header Header| Trace Entries Header| Trace Entries Header| Trace Entries Header| Trace Entries

Figure 4.2: The previous trace file format stores a linked list of variable-
sized trace-lists. Each list comprises a header and compressed trace
entries. The lists are tagged to associate them with the corresponding
streams [41].

Instead of variable-sized structures, we use fixed-sized trace entries to store
the recorded data. Trace entries are grouped into fixed-sized segments to allow
random access to trace data through segment-wise decompression.

In contrast to the previous design, mixing trace entry types is not allowed. That
enables us to access an entry in O(1) simply by its index. Each segment in turn is
associated with a dedicated stream, which partitions data according to its semantic
connection and type of information. We added an indexing scheme, which allows
direct access to every segment in a data stream, without pre-scanning the complete
trace file. Figure 4.3 shows the indexing scheme and the structural dependencies
of trace entries, segments, and streams.

Segment The smallest allocation and management unit is a segment. It is man-
aged by the storage server and presented to each client through a middle-ware API
as a contiguous memory buffer. Segments store the actual data in the granularity
of fixed-sized and probably compressed trace entries.

Stream Segments form linear data streams. Each stream is exposed to a sim-
ulation, as to an analysis client and helps to structure logically and semantically
linked data. It further allows to associate meta-information with stored trace data.
For example, every system event of a guest OS has its own dedicated data stream,

4.2. TRACE ORGANIZATION AND STORAGE 39

which allows more flexible access as in the original design. For an analysis all re-
lated streams can be opened without the need to parse unrelated data, which was
originally necessary to de-multiplex the trace-lists.

The original file format lacked a fast indexing scheme, which forced the anal-
ysis to pre-scan the complete file to discover included streams, segments, and the
quantity of trace entries. It took up to 2 minutes to scan a 30 GiB trace (approxi-
mately 300 GiB uncompressed data) . That initial discovery phase makes working
with long-running traces cumbersome. Therefore, we augmented the storage file
format, which is only visible to the storage server components and not exposed to
producers or clients, with a fast lookup scheme, to access any stream inside, and
every containing entry with less overhead.

'
Indexing Scheme

;/ Stream 1 \\

> ‘ Segment 1 Segment 2 Segment ... Segment n ‘ ‘
NS — 4

TE | TE | TE | TE | TE | TE | TE | TE | TE | TE | TE | TE J

;/ Stream 2

) ‘ Seg 1l Seg 2
;/ Stream 3 \

> ‘ Segment 1 Segment 2 Segment ... Segment n ‘ ‘
;/ Stream ...

—>

‘ Segment ...
\

Figure 4.3: A trace store consists of streams. Each stream consists of
segments, which contain fixed-size trace entries. A fast indexing scheme
avoids cumbersome data discovery on trace loading.

40 CHAPTER 4. DESIGN

4.2.1 Analysis

The original analysis framework is responsible for correlating the recorded shar-
ing opportunities, instead of full memory writes, with a reconstructed system state
of the simulated guest OS and contained semantic information. To achieve that,
the framework takes the trace data from the OS introspection and rebuilds the cur-
rently running processes, their associated address spaces with their internal layout
and allocations of each page frame. To determine the running process associated
with each memory event it further replays scheduling. The reconstruction runs
in parallel as depicted in Figure 4.4. For every point in time, such state can be
reconstructed and used to enrich memory events and to provide detailed usage
information for each page frame. We stuck to this fundamental principle, but al-
low to reconstruct only parts of the system state, e.g., only memory allocations.
That is necessary to increases scalability and flexibility. Further extensions were
necessary to deal with 64 bit OS environments.

Buddy Allocation Stream
%
Memory Semantics)
(Page Cache Event Stream _) Ve N Ve Page Frame History \

o J

4 N
(Page Mapping Stream) Address Space Recreation

(N (Scheduling Information ‘\\

Linux System State

Figure 4.4: The recovery of a OS system state, based on various system
event streams.

Memory Reconstruction In the original design, all sharing opportunities were
detected during simulation and a corresponding hash value was recorded. We
came to terms that recording write operations directly with their associated data
makes sharing analyses more flexible. Firstly, it allows to infer sharing opportu-
nities in different temporal resolutions. For example, only after 100 ms, as shorter
living sharings can hardly be exploited. Secondly, to analyze inter-domain sharing
potentials. If sharing opportunities are detected during simulation, inter-domain
shareable content cannot be identified correctly. Thus, a full memory image for
every point in time is necessary. The reconstructed memory content of differ-
ent recorded traces allows flexible and false positive free inter-domain sharing
analysis. Thirdly, as we want to analyze memory access frequencies and access
patterns, they can be easily tracked during the reconstruction process.

Thus, our revised design moves everything except the actual recording from
the simulation to the analysis framework. This strict separation is necessary to in-
crease simulation speed and gain the described flexibility. Our framework exten-

4.2. TRACE ORGANIZATION AND STORAGE 41

sion is capable of replaying memory modifications and rebuild the corresponding
memory image. The replayed data consists of a sequence of write operations to
the guest physical memory, either performed by direct memory accesses (DMA)
from external devices or by accesses within the current control flow. Alongside the
reconstruction sharing opportunities for a predefined time interval, are analyzed
and statistics for memory access frequency and pattern analysis are gathered.

State Compactification The memory reconstruction already provides neces-
sary information, like sharing opportunities and a memory access frequency, but
to analyze memory access patterns and stability a single memory image is not
sufficient, instead a complete history for each page frame must be retrieved. Ad-
ditionally, information from the reconstructed system state is missing, to correlate
memory access patterns with memory allocations. Since storing the system state
for every write operation is expensive, a compact representation for access histo-
ries 1s necessary. We propose a list of bit fields, which comprises write frequency,
mapping information, memory allocations (e.g., to the page cache), and the results
of the sharing opportunity analysis. Although the memory content is stripped, this
representation, still consumes large amounts of memory. To further reduce mem-
ory consumption an optional sampling step can scale the state history down.

Figure 4.5 shows the fusion of sharing analysis results with the information
of the system state recovery — most important the page frame allocations — to a
compact memory system state.

/ N ;
o~
e K K N Linux System State (\ e . R
(\ >/ ‘ ()
\Sharmg History System 1/ ‘ System 1 \ + ‘—>\7 Frame History System 1)
I _ v, \}/
| T
e N Linux System State 70 e B
(Sharing History Systemn) ’—b: -|- ——»{ Frame History Systemn)
- N System n '/ N J
N /

Figure 4.5: The recovered OS system state is fused with the information
from the memory reconstruction, to form a compact page frame history.

Simulation Adaptation As we concluded in Chapter 3, we utilize QEMU as
full-system simulator for data acquisition. However, QEMU is missing essential
features to intercept memory accesses, introspect guest OSes, or to provide reli-
able simulation time. To support our trace data requirements, we must add three
additional interfaces to QEMU.

42 CHAPTER 4. DESIGN

Firstly, QEMU does not allow to monitor memory modifications, but as we
want to analyze sharing opportunities, memory access frequencies and patterns, it
must be extended to intercept every write operation and DMA to main memory.

Secondly, QEMU does not provide an interface to transport data from spe-
cially modified guest OSes to the tracing infrastructure. As our analyses require
system events to enrich page frames with allocation information, an additional
handling mechanism is necessary.

Thirdly, the timing facilities provided by QEMU are limit and do not allow
to get a notion of simulation time, but to analyze page frame stability and access
frequencies such time source is indispensable.

4.3 Conclusion

For data acquisition and analysis we utilize the framework created by Rittinghaus.
It is suitable for our purpose and provides valuable features, e.g., to reconstruct
the recorded OS system state. However, some modifications and extensions are
necessary to allow fast and scalable data acquisition and processing. As the whole
framework was originally designed to trace data with Simics on Windows, we had
to ensure portability of the storage component to do data acquisition with QEMU
on Linux and still use the analysis framework on Windows.

Additionally, changes in the interfaces exposed by the extended storage server
are necessary to ensure that it operates with different simulators, for this purpose
a middle-ware API encapsulates communication and buffer management and ex-
poses only a compact interface to the integration layer of QEMU.

The scalability of the original design was limited, as the file format can store,
but not open the contained data within reasonable time. That would have made
analysis cumbersome. We further expect even more trace data, as we examine
long-running workloads. Hence, we redesigned the trace file format to allow fast
indexing and direct access to all data segments during analyses.

In contrast to the previous design, we moved sharing opportunity analyses out
of the simulation into the analysis framework and store actual write operations.
Therefore, we have to implement a memory reconstruction that allows to rebuild
memory content, track memory access frequencies, and detect sharing opportuni-
ties during offline analyses. To analyze temporal access patterns we further need
the history of every page frame correlated with results of the OS state reconstruc-
tion.

As we moved our data acquisition from Simics to QEMU, additional inspec-
tion interfaces and a simulation time source must be added to provide the required
data for memory content, frequency, and pattern analyses.

Chapter 5

Implementation

In the following sections we will describe the implementation details of the mod-
ifications made to the simulator and the original tool chain of Rittinghaus [41],
which we use as basis for our work. We start by presenting detailed information
on the extensions added to QEMU as source of trace data. We continue by ex-
plaining how we improved the saving and loading of traces and finish with an
overview of the internals of trace data processing.

For the remainder of this work, we refer to the simulated system with the term
“guest’. We call the system executing the simulator "host’.

5.1 QEMU Modifications

As our simulation front-end consists of QEMU a fast, open-source, full-system
simulator with functional correctness, we had to augment it with the necessary
trace hooks. QEMU’s primary development goal was to provide simulated hard-
ware to execute different OSes under various architectures, not to allow thorough
inspection of memory accesses or operating system internals. It lacks monitoring
features and an accurate simulation timing facility. Therefore, we have extended
QEMU to provide monitoring features for memory store and load operations, ac-
curate timing, and a hypercall interface to communicate semantic information
from within the guest OS to our tracing infrastructure.

5.1.1 Memory Hooks

To gather information about memory accesses performed by the simulated system,
an interception of memory operations is necessary. We found three different kinds
of memory operations that are performed by QEMU. Firstly, the most frequent op-
erations are load and store operations from within the CPU’s instruction flow. The

43

44 CHAPTER 5. IMPLEMENTATION

second most frequent memory operations are direct memory accesses (DMA). The
last group comprises memory operations performed by the emulation of complex
CPU behavior such as page table modifications triggered by the MMU. We added
interception points (hooks) for each group of memory operations, allowing us to
trace their execution at runtime (see Figure 5.1). In the following we explain each
hook in detail.

R /
4 h DMA Request | h
Interrupt -
Virtual CPU - d \ Virtual Devices
e Y l
memory |1 ‘ DMA Hook]
Hook
Software MMU
G
Store Helper
Hook
4 ™

Guest Memory

Figure 5.1: Overview over different memory hooks, as necessary to in-
tercept main memory operations in QEMU. The memory hook is invoked
most frequently.

Load / Store Hooks

The binary translation of QEMU emits load and store operations for every mem-
ory access of the virtual CPU. Our modification intercepts the code generation
and appends a call to a hook procedure as shown in Figure 5.2.

QEMU’s intermediate representation (IR!) facilitates this extension as each
load and store operation maps to a respective single instruction in the IR. This

ISee Section 2.3.3 for further details.

5.1. QEMU MODIFICATIONS 45

Guest Instructions

|
I
I
Intermediate Representation | |
I
I
I

MOV RAX, QWORD PTR[RBX] LOAD_DATA_FROM_MEMORY LOHAD
ADD RAX, 4 J ADD_REGISTER_INTERMEDIATE o Code Generation
! " - - Il/| STORE ===
HOOK CALL
MOV QWORD PTR[RBX+8], RAX_/T STORE_DATA_TO_MEMORY :
|

\ Interception 1

Figure 5.2: The binary translator disassembles guest instructions and
maps them to a compact intermediate representation. Every intermedi-
ate load or store instruction is extended with a memory hook callback.

is true even for those memory operations implicitly performed by complex in-
structions such as a store on a stack invoked by a register push (e.g., push eax).
The invocation of our hook is transparently added to QEMU’s translation of IR
instructions. In the hook we have access to the data size, address, and actually
stored or retrieved data.

«/ Filter — x86 \

> OxFEC00000

e

(
‘ Virtual Guest ‘ Guest Page | Physical Gueg PCl Space

Address Table Walk Address Store Write
\ 0x100000 — MAX_RAM

0x0 — OxFFO00

-

} Guest Memory

Guest Page
Table Page Table
Directory

|

Page Table Entry

Page Table Entry —

Ll | Page Table Entry

 —— |

Figure 5.3: Memory operations use virtual guest addresses. For our anal-
yses we translate these to their physical counterpart. Accesses on not
interesting address ranges are ignored.

46 CHAPTER 5. IMPLEMENTATION

The address visible to the intermediate operation layer, and therefore visible
to our memory hook, is a guest virtual address. As our analysis of sharing op-
portunities and the involved memory reconstruction work at the physical memory
level, a translation to guest physical addresses is required. The translation itself
is a regular walk of the currently active page table in guest memory. As we are
not interested in memory accesses addressing hardware reserved ranges (e.g., PCI
device memory), we exclude these accesses from the trace. Figure 5.3 depicts the
address translation and filtering process.

DMA Hook

To reconstruct the memory content, an important data source is Direct Memory
Access (DMA). More than two-thirds of all data stored in main memory are trans-
ferred via the DMA controller. Due to its asynchronous nature, DMA must be
treated differently from operations in the regular control flow. Once the OS re-
quires access to a specific device, it sets up a DMA transfer. QEMU intercepts
this operation and locks the source and destination pages. Afterwards, it creates
an I/O request packet, which is processed asynchronously in a different thread
(see Section 2.3.3). On completion the thread raises a simulated interrupt. The

e Py

G) . ’\\3/

DMA / \ Init Data Ve ~

Guest 0S Request 5| Virtual DMA Transfer ; Virtual Block |
< Controller P ” Device
& Interrupt ‘\ End Data N
= (7 | = Transfer
2 ® 5)
; v 2
/ N
(DMA Hook)
o J B
@
(1) Data Transfer
N
Lock Pages for DMA
@> Trace Buffer
Copy Data to Trace Buffer
Unlock Pages -
A 4 \ 4

r Guest Memory 4)‘—1‘

Figure 5.4: The typical DMA processing for storage devices in QEMU
intercepted by our hook.

5.1. QEMU MODIFICATIONS 47

hook procedure is invoked right before the interrupt request is issued. In this stage
the data has already been copied into guest memory, but the OS still does not con-
sider the operation to be complete, and will therefore not modify the page frame.
The hook copies the frame’s content to a memory buffer supplied by the trace
infrastructure; thus generating a corresponding entry in the trace that allows the
DMA operation to be replayed in the memory reconstruction during offline anal-
ysis. A simplified DMA operation and the invocation of our hook is illustrated in
Figure 5.4.

The timing of DMA operations in QEMU varies with the scheduling and the
I/O processing in the host, and it might not be identical in every run. Thus, this
part of QEMU’s full-system simulation is indeterministic, in contrast to Simics.
Every different run diverges as time progresses. We favor QEMU’s behavior as
the indeterministic timings allow more realistic workload execution.

Store Helper Hooks

Although the previous two hooks collect all memory accesses issued by a program
or the guest OS, they are not sufficient to reconstruct the complete guest memory’s
content. After a reconstruction based on these two hooks, some page frames still
have diverging content, if compared to a full memory dump. Therefore, we inves-
tigated all possible memory modifications issued by QEMU. This way, we found
QEMU to use so-called store helpers to modify memory in the course of special
system behavior—for instance, flip the dirty bit in page table entries from within
the emulated MMU or push the CPU’s execution context on exceptions. These
helpers can hardly be found from pure source code studies, as they are created
with complex pre-processor directives, a factor also discovered by other research
projects [20]. We installed hooks in all relevant store helpers.

Store helpers are different from regular memory stores, in that they use host
virtual addresses instead of guest virtual addresses. To be usable in the analysis,
our hook makes a remapping to guest physical addresses. The store helpers are
called alongside the regular instruction flow and do not increment the instruction
counter, nor change the binary translation. From a guest’s perspective these oper-
ations happen simultaneously to other instructions, as they most likely would do
in a real system.

5.1.2 Instruction Counter

An important facility is a source for timestamps to correlate trace data within dif-
ferent data streams. However, even more important is a notion of time to evaluate
memory access frequencies and page frame stability.

48 CHAPTER 5. IMPLEMENTATION

Timing Facility Source Accuracy
Wall clock time Time-of-day clock of the host Host time
Host cycle-counter Real CPU Counter Host Cycle Counter
ICounter Executed Guest Instructions Refreshed after I/O

Instruction Counter Executed Guest Instructions Refreshed before read

Table 5.1: Available time sources inside the simulation. Our implemented
time source is in bold.

QEMU makes different timing facilities available for the guest OS and there-
fore for our hook procedures. A complete list can be found in Table 5.1.

Firstly, it passes the wall clock of the host as a time-of-day clock into the guest,
which is unsuitable for guest accurate time measurement, even for an unmodified
simulator. The time visible within the simulated system, will always reflect the
scheduling of the host OS and show overhead caused by binary translation.

Secondly, the host cycle-counter can be used inside the guest as well; it is
passed through as it is, so it does not hide the cycles consumed by instrumentation,
binary translation, or even operations of different tasks in the host system. It might
only be suitable as a source for random number generators.

Thirdly, QEMU has a simulated cycle-counter called icounter. It is a virtual
instruction counter, counting only the guest instructions without considering the
overhead caused by binary translation. That is a suitable source for guest accurate
timing. However, for performance reasons, it is only updated during I/O opera-
tions and does not reflect the time in-between these periods. For our tracing, we
require a counter, which operates on instruction granularity and is available and
refreshed in every hook.

All in all, QEMU does not provide a compatible time source, which is suitable
for trace data timestamps and correlated simulation time to real time. That made a
new time source necessary, loosely based on the already available icounter. This
new counter runs alongside the translated code and is updated before an invocation
of a hook. To minimize the overhead, the code generator emits only a single
instruction to refresh the counter. It allows accurate cycle counting, with only little
runtime overhead. Every operation is counted once, and does not provide a micro-
operation accuracy. This behavior is similar to the basic timing in Simics [31] and
fully sufficient for our purposes.

5.1.3 Operating System Introspection

The memory hooks described in the last section enable us to track memory ac-
cesses, identify sharing opportunities after memory reconstruction, and infer sta-

5.1. QEMU MODIFICATIONS 49

tistical data about access frequencies and patterns. However, these results still
miss semantic correlation, which requires information from the guest OS running
within the simulation.

We modified the recent Linux kernel 3.9.2 to collect relevant semantic infor-
mation, for allocations, page mappings, and scheduling events and report it to the
tracer. A complete list of all recorded events can be found in Table 5.2. We ex-
tended the 64 bit (amd64) version of the kernel similar to previous work [41]. As
the Linux kernel is regularly extended, internal data structures as well as interfaces
change very often. We had to adapt the already available introspection from the
original design to comply with new structures. For instance, the interface for page
table manipulation was redesigned to ease porting Linux to new architectures.

To collect semantic information, the guest OS introspection requires an addi-
tional interface to communicate with the tracing infrastructure. QEMU does not
provide any interfaces or a magic instruction, like for example Simics. A magic
instruction has no function, except that it calls right into the simulator without al-
tering the system state. With such an instruction a guest OS can pass information
to the host. We refer to this simulator invocation as "hypercall’. QEMU’s binary
translator allows an implementation of such a mechanism.

QEMU distinguishes between simple operations, which can be directly con-
verted to micro operations and complex operations, which need further processing
with host code. The latter is realized with helper functions. A helper function is
called every time, a complex or privileged instruction is encountered, which can-
not be translated to simple micro instructions. We utilize these helper functions
and their architectural specific handler routines to augment them with a call to our
specific hook function. The general process is depicted in Figure 5.5.

Every instrumented Linux function collects the required data, e.g., the pro-
cess identifier and its corresponding page table directory for a process creation
event, copies the data into a buffer located on the current kernel stack and issues
a hypercall, which calls directly into the simulator.

Hypercall Interface

We focused our implementation on 1A32, compatible to x86 and its 64 bit ex-
tension. IA32 contains model specific registers (MSRs) to configure CPU states,
enable power-saving features, and to retrieve internal CPU details. It provides in-
structions (rdmsr and wrmsr) to get and set these registers via a register address.
The TA32 specification declares an unused register address range (0x400000000-
0x400000FF), which will remain unused in the future [24]. Using these instruc-
tions with an invalid register address on a real system will cause an exception,
terminating the running process or the whole OS. As QEMU handles them with
a specific helper function, we intercepted this mechanism and call our OS intro-

CHAPTER 5. IMPLEMENTATION

Purpose Data to collect

e Kernel Memory Allocations

Memory Allocations e Buddy Allocations

e Page Cache Allocations

Scheduling e Dispatch Events

e Fork Events

Task
e Exec Events

e Creation, Destruction

e VMA Allocations
Address Space)

e Memory Mappings

e Page Table Manipulations

e Static Kernel Layout
Memory Layout e Dynamic Kernel Layout

e Module Loads

Table 5.2: Recorded Linux system events. They enable a reconstruction
of the current system state and enrich recorded memory accesses with
semantic information.

5.1. QEMU MODIFICATIONS 51

Simulator ‘

Modified Linux Kernel

Fork () A Trace Hook ‘
{ Y. HyperCall *
.| mov edx, callIld ‘

Translate Buffer Address ‘

CollectInfo(); " mov rcx, data

HyperCall (FORK) ; rdmsr 0x4000000 v

} ‘ Copy Data into Trace Buffer ‘
A I

Figure 5.5: An instrumented Linux kernel collects necessary information
and issues a hypercall, which calls directly into the simulation. The simu-
lator retrieves the contained information and stores it into associated data
streams.

spection hook instead. The hook receives a pointer to a data buffer and a hypercall
ID via general purpose registers. As we try to minimize the impact on the sim-
ulated OS, we chose the rdmsr instruction as the magical instruction, because a
wrmsr might cause a CPU state change. QEMU calls the hook, when a code path
reaches a rdmsr instruction with our hypercall address (0x40000000) and redi-
rects it to the hook. Any processing of the contained information must be done
in a secondary step. The hook translates the pointer to our data structure on the
Linux kernel stack in guest memory to a host accessible address. It must further
resolve the pointers within the transferred structures before the trace hook can ac-
cess the referenced data. This is necessary, because the returned pointers are only
valid within the guest kernel’s address space. To speed-up the processing only
few instrumented functions return strings, e.g., the exec () system call contains
image name, command line parameters, and the execution environment as point-
ers to strings. Other data structures, e.g., page table modifications, can directly be
copied without a secondary address translation.

The current introspection is only compatible with Linux and a modified QEMU
version, since other VMs and simulators do not ignore the invalid register value
chosen for our hypercall and stop further code execution. A more sophisticated
approach could use breakpoints based on symbol information. Such a solution, al-
beit much more complex, might also be capable of introspecting a closed-source
OS. However, this was out of the scope of this work.

52 CHAPTER 5. IMPLEMENTATION

5.2 Storage Server

Previous implementations of the data acquisition framework showed limitations
in portability, compatibility and scalability. The original storage component of
Rittinghaus [41] consists of a simulator (Simics) and data analysis framework both
running on Windows. In the following we describe our implementation changes
to increase portability, compatibility and scalability.

As we use QEMU for data acquisition and its support for Windows is lim-
ited, we extended the previous design and implemented a storage server running
on POSIX-compatible operating system as well as on Windows. To retain com-
patibility to different simulators we introduced a small library which serves as
front-end for the storage server.

5.2.1 Storage Server Interface

The storage server provides a light-weight interface to its functionality. The in-
terface is encapsulated in a library to ease integration into different clients. Fig-
ure 5.6 shows the integration of the library into a simulator and its interaction with
the storage server.

Our library handles connections, stream registration, and hides details of trace
buffer management from both simulation and analysis framework. Once a client
connects to a server instance, the library creates a dedicated session with private
shared memory buffers. These buffers are mapped into the address space of the
client and are used for trace data exchange. A simulation, for instance just emits
trace data into these stream buffers. If a buffer exceeds its capacity, it is transpar-
ently replaced by the storage server with a newly assigned buffer, while the full
buffer is asynchronously compressed and written to disk.

Furthermore, the library provides enumeration functionality for stored traces,
its contained streams, and associated meta-data. To open a trace file, the analysis
framework establishes a connection to the storage server and opens a data store by
name. Then the server will transparently parse the trace data file and present the
contents of the trace to the client. Instead of registering a new stream, as a sim-
ulation would do, the client opens saved streams and requests meta-information,
concerning the size, the entry count, and the stream type. The stream data can
then be accessed on a per-entry basis or as a complete segment. In both cases
the library maps the data directly into the analysis framework’s address space and
presents its content as a local array, or depending on the client’s programming
language as an enumerable resource.

As described in Chapter 4, the previous file format is a complete stream ori-
ented storage with variable-sized segments and trace entries. We keep the idea of

5.2. STORAGE SERVER 53

Simulator Storage Server ‘
4 N
. . Storage Backend
Simulation
Introspection Hooks ~ \
(Integration Layer) ‘ Compression)
‘ Shared Memory Buffers ‘ ‘ Shared Memory Buffers ‘
1/ Library ﬁ

Buffer ‘
Communlcatlon Commumcatlow anagemen
l

Figure 5.6: The different abstraction layers, which provide a simple in-
tegration of the storage server into various simulators. All interfaces are
exposed through a small library.

streams, but change the general data layout to allow indexing and fast access to all
segments associated with a data stream. To achieve fast indexing the size of each
segment and trace entry must be of fixed size.

5.2.2 Revised Trace File Format

Although the storage server is not bound to a single storage back-end, recent ver-
sions implement a file based storage approach based on the original trace format
of [41]. As the primary problem of the original framework is scalability, we had
to improve the trace file format to allow fast opening and data retrieval for large
traces. Our file format comprises three distinct objects as illustrated in Figure 5.7:
A descriptive file header, containing meta-data for the complete trace file, direc-
tories, which allow fast access to each data stream and stream segments.

The file header provides statistics, file integrity check information, and di-
rect access to all directories. The statistical data include the count of streams,
the amount of trace entries, the compressed and uncompressed file sizes, for fast
integrity checks, and time information describing the recorded simulation. This
header is directly followed by an initially allocated empty directory. A directory,

54 CHAPTER 5. IMPLEMENTATION

File Description Header

Stream Segment Description > Mirror Stream Segment Description

Stream Segment Description ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Mirror Stream Segment Description

Stream Segment Description
Stream Segment Description
Mirror Stream Segment Description

Stream Segment Description

Mirror Stream Segment Description

Stream Segment Description

Stream Segment Description ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Stream Segment Description

|

Directory Pointer

Stream Segment Description

<empty>

<empty>

<empty>

<empty>

Directory Pointer <end of file>

Figure 5.7: The layout of a trace file. It consists of a file header for meta-
data, directories, for fast stream access, and stream segments, for actual
data storage.

in this file format, is similar to a regular file-system directory. It contains meta-
data describing referenced fixed-sized stream segments and a pointer to their ac-
tual storage location. The directory structure makes it possible that the complete
file content can be loaded instantly. Discovering streams and their associated
segments is by magnitudes faster than in the previous sequential file format. Ac-
cessing a segment and its trace entries, requires an initial lookup in the typically
buffered directory structure.

Trace Entry In the previous file format, trace entries are compositions of one or
more variant data blocks. A data block contains 10 bytes, one describing its con-
tent and 9 for actual data storage. Larger trace entries are a composition of these
data blocks. To overcome the slow scanning before stored data can be accessed,
we enforce that a stream contains only one type of trace entry to improve the data
accessibility and allow simple indexing.

5.2. STORAGE SERVER 55

A trace entry is the smallest unit of data. It contains elementary data types such
as integers, bit fields, and strings. Every trace entry contains at least a timestamp
to identify the temporal correlation within other data streams. Typical trace entries
used for our data collection are depicted in Figure 5.8. These structures are passed
to the storage server and retrieved by clients.

Trace Entry

Timestamp
4 4 v v
Write Entry Read Entry DMA Entry Dispatch Entry
Timestamp Timestamp Timestamp Timestamp
PhysicalAddress PhysicalAddress PFN AddressSpacelD
DataSize DMASize TaskID
Data

Data

Figure 5.8: Typical trace entries, as actually used for the data acquisition.
Every entry consists of a timestamp to correlate it with other data streams.

Although the trace entry size is fixed for each stream, variable data, e.g.,
strings can still be stored. As strings for OS introspection typically have different
length, e.g., filenames to identify page content or process environments, storing
a fixed-size char array in every entry is unfeasible. Therefore, a string is broken
down into small data portions and stored in an associated string pool.

The String Pool Strings are all pooled in a special data stream and not di-
rectly stored in a trace entry. That enables all trace entries to contain strings, or
other variable sized data and still retain their fixed-size and their simple indexing
scheme. Strings are broken down into fixed-size data blocks as seen in Figure 5.9.
Each data block comprises a control sequence of one byte, followed by the actual
string data (15 bytes). The index to the first block is returned as a unique string
id and stored in the trace entry instead. All following items belong to the same
string, till a new and therefore terminating control block is discovered. A reason
to pool string data is the possibility to deduplicate them on-the-fly and as strings

56 CHAPTER 5. IMPLEMENTATION

contain a limited set of characters, the probability to achieve better compression
ratios is higher, as if scattered across different streams.

/home/trace/dzjabase
~ 7

///// ///

_ 7 /
_~ -
el e
- P
Start Start
Length 15 /home/trace/dat Length 5 abase Length 7 bzlmage
‘ String Pool ‘

Figure 5.9: Every string is broken down into fixed-sized data blocks. Each
string is pooled to deduplicate redundant data.

Compression To cope with large amounts of data and limited backing store,
trace data is compressed. In the original implementation with a strong, but slow
compression algorithm (LZMA). Although, simulation with Simics is compara-
bly slow, there were still problems to process and compress the resulting amount
of trace data[41]. The quantity of generated data and the slow compression in-
terrupted the simulation, every time the buffer inside the simulator had been ex-
hausted. As we expect even more data from QEMU in shorter time intervals, we
chose to replace the compression algorithm with a fast version of deflate. This
version has only a slightly worse compression ratio, but is faster than LZMA [16].
Early tests with QEMU confirmed, that we can expect 24 MIPS for the guest and
about 4 million write operations per second (about 100 MiB/s uncompressed data).
To further improve compression of timestamps and addresses we augmented de-
flate with delta-compression.

As the storage server transparently compresses and decompresses trace data
with different algorithms, the simulation can chose from three different compres-
sion implementations: a null compressor, which leaves the trace data unchanged,
a deflate compressor, e.g., for the string pool, and a delta-enhanced deflate algo-
rithm.

For example, a write operation, typically writes to adjacent addresses, which
are ideal candidates for delta-compression. As every trace entry contains a times-
tamp, frequent operations can benefit from delta-compression as well. For rare
events a delta-compression, however, can decrease the compression ratio of the
deflate algorithm. In our evaluation, we observed compression ratios to vary be-
tween 1:4 for writes with random data, and 1:400 for memory zeroing operations.

5.3. TRACE DATA PROCESSING 57

5.2.3 Data Recording

A typical data recording scenario is depicted in Figure 5.10. The simulator, in our
case QEMU, uses the provided interfaces exposed by our library to connect to an
instance of the storage server and register different data streams. The minimal
amount of streams for our analyses contain memory store streams, containing all
memory modifications, a DMA stream, and all OS introspection streams?. Once
the streams are registered, the storage server allocates a suitable amount of shared
memory to provide backing store for stream segments and map these regions to
the simulation’s address space. The handling of different address space sizes is
transparently done by the storage server. As the simulation progresses, it fills
the provided buffers with trace entries, till its capacity limit is reached. The API
layer handles that transparently for the simulator. It signalizes that a segment can
be asynchronously processed in the storage server and returns a new buffer for
this stream. While the storage server compresses and stores the segment to disk,
the processing can continue without interrupting the simulation process. If the
simulation has finished its work, it releases all registered streams, and closes the
connection. The storage server will then process all outstanding requests, finalize
the storage container, and release allocated resources. Only a small integration
layer is necessary to allow inspection hooks to produce data.

5.3 Trace Data Processing

The storage server offers interfaces for storing and retrieving data. Once a simula-
tion has produced trace data, an analysis tool can access them through an instance
of the storage server. For this purpose it utilizes our library.

Once a simulation has finished, the analysis can work with the created trace
data. Although it is possible to inspect the data during recording, a full recon-
struction of the system state should be postponed, to reduce the impact on the
backing store’s bandwidth and the simulations’ progress. The client, in our case a
slightly modified version of the trace viewer 3[41], connects to the storage server,
opens a store, and accesses all required trace data streams. Since storage, com-
pression, and further processing is done transparently, the client can access all
trace data entries, as if they were contained in a local array in its own address
space. If it reaches the end of the supplied buffer, it can request the next stream
segment through the small API layer, which encapsulates buffer and meta-data
management.

2Please remember that each stream may contain only one type of trace entry (i.e., information).
For that reason, multiple streams are allocated.
3The trace viewer is a GUI application and an interface to the analysis framework.

58 CHAPTER 5. IMPLEMENTATION

Simulator Storage Server

\ Connect / Register Streams>

©

\] Creates Shared buffers

Write Stream

@ @ta Write Stream

Signal Processing »
Process Buffer

Allocation Stream Signal Processing Allocation Stream

Write Stream Write Stream

Signal Processing >

Task Exit Stream Task Exit Stream
\ Close Session >

Figure 5.10: A typical service scenario: A simulator connects to an in-
stance of a storage server and registers its streams. In return a shared
buffer is created and the simulation can produce and commit trace data.

We fed trace data into two different reconstruction units, the memory recon-
struction and the OS state recovery. After these two steps, we combine their re-
sults into a single frame history to reduce the memory requirements of the analysis
framework.

Memory Reconstruction

The memory reconstruction process uses the recorded memory accesses, to recon-
struct the original memory content with instruction count accuracy. As illustrated
in Figure 5.11, the different streams — CPU memory writes and DMA writes — are
multiplexed according to their temporal correlation. The memory reconstruction
recreates the system RAM of the simulated system by replaying the write and
DMA operations on an equally sized memory array. After each reconstruction
step, the memory content is identical to the simulated guest memory as it was at
the same point in time of the simulation. If two different recorded traces should be
correlated to each other, that is done in parallel, working with a single instance of
the storage server. The limiting factor is only the available hardware resources. To

5.3. TRACE DATA PROCESSING 59

obtain sharing opportunities, the analysis component invokes a sharing analysis
after the memory image for a specified timestamp is ready.

Reconstructed RAM |

Memory Stores |

‘11|8|7|6|4|3|2|1\i

Multiplex

I~

DMA Writes |
\13|12|1o| 9 | 5

Figure 5.11: The memory reconstitution process multiplexes different
memory streams to create a memory image for the specified timestamp.

Sharing Analysis

The main problem of discovering sharing opportunities is its exhausting and time
consuming nature, since every page’s content must be compared to every other
page’s content. That leads to a complexity of O(n?). As previous work sug-
gested [41, 52], this task can be simplified by hashing every page’s content and
using this digest as an index into a lookup structure. This can reduce the com-
plexity to O(n). Depending on the hash function, the likeliness for false posi-
tives — wrongly identified sharing opportunities — is too high for reliable analyses.
Therefore, a full page’s content comparison is needed. The approach taken by our
analysis is depicted in Figure 5.12. For the first part of the sharing analysis, we
utilize a hash map with chained entries. The index into the hash map is created
with cyclic redundancy check (CRC). As a CRC32 is fast, but not very reliable and
many hash collision exists, a hit into the hash map does not imply that an identical
page frame has been found yet. Only after a successful byte-wise comparison of
each referenced frames’ content, the page frames are considered identical. This
methodology is applied to both intra- and inter-domain sharing analyses. In the
case of the intra-domain sharing analysis, every page is hashed and inserted into
the hash map. A collision with a successful comparison marks each frame as
shareable within its own domain. For inter-domain sharings a second step fol-
lows as illustrated in Figure 5.13. After an intra-domain analysis, each hash map
represents the memory content of each trace up to this point in time. The inter-
domain sharing analysis relies on two or more reconstructed memory images and

60 CHAPTER 5. IMPLEMENTATION

Hash Map
Frame
Content 0x37£c0012 —»[PFN[o A PEN] o alpEN[o[&
\ 4
CRC32
Hasher 0x42c0££12 —»{PFN| o &
ox12carsas [>PEN] o A(PEN] o7 s

Yes—>»

No

v

Sharing Candidate Unshareable

Figure 5.12: The process from page frame content to the detection of a
sharing opportunities. The chained hash map speeds up detection and
avoids false positives.

their hashed representation. For every entry in a hash map, all other hash maps
are queried, whether they contain an identical hash or not. If a hash is found, all
pages associated with this hash map entry are compared to the matching entry’s
linked list. So every possibly page frame content is compared with all possible
changed page contents in the other hash map. On success, the frames are marked
as inter-domain shareable. This allows a fast and precise sharing analysis, without
the risk of missing sharing opportunities or producing false positives, due to hash
collisions.

Once the page frame statistics have been collected, they still lack semantic
information, i.e., their current usage inside the guest Linux. To enrich page frames
with allocation information, the OS state is reconstructed in parallel and fused
with the previously reconstruction information and the generated statistics.

5.3. TRACE DATA PROCESSING 61

N
| | Hashed g —
/~ Reconstructed Memory ™\ ashe " Intra-domain o N
(E— I Frame > Sharin — : - »(History)
Y Content \nanng e N\ 7y
C D
C > f Inter-domain Sharing }
C > [)
Hashed Ve N\ v
/~ Reconstructed Memory \l y Frame Intra-domain "/History\
G System n Y \ Sharing) N)
| | Content

J

Figure 5.13: To find possible sharing opportunities, every memory snap-
shot is fed to a hash map. These hash maps are compared to retrieve all
inter-domain shareable pages.

OS State Recovery Along the memory reconstruction, the semantic informa-
tion must be extracted and associated with each page frame. Each trace entry
contains a timestamp to correlate allocation events with a specific memory state.
This state is reconstructed and multiplexed with the memory information. The
process is similar to the original implementation, only extended to comply with a
64 bit environment. This reconstruction can be done in two ways.

In a simplified reconstruction mode, only a sub-set of OS introspection streams
are processed. It only considers buddy allocation events, page cache allocations,
and address space page frame mapping streams. This adds the missing semantics
back to each page frame.

Another and more complex way is an advanced reconstruction mode. It re-
constructs not only memory semantics, but also complete address spaces, their
associated tasks and its internal layout. Furthermore, it replays the process dis-
patching with the recorded scheduling information. That allows to correlate each
write operation to a process and corresponding thread.

While the results in our evaluation did not integrate the information available
in the advanced reconstruction, we frequently used the data to facilitate our un-
derstanding of a system’s behavior.

State Compactification

The main problem of the reconstruction processes is the vast amount of required
memory. Keeping a history of previous states, rapidly exhausts all system re-
sources, even for short time periods. As the main purpose of the reconstructed
memory image is to allow a false positive free sharing analysis, the memory con-
tent can be discarded after successfully extracting sharing information and statis-
tics collected during reconstruction.

62 CHAPTER 5. IMPLEMENTATION

To reduce the required memory even further, we use temporal sampling. For
this purpose the system state is reconstructed in fixed time-intervals or event driven,
depending on the specific question. Once a memory and system state reconstruc-
tion have reached the specified simulation time, the sharing analysis takes place
and other information, such as write count, sharing- , and semantic information
are extracted from the system state and combined to a single representation. The
time-interval for sampling has to be chosen carefully. On the one hand, a large in-
terval ignores short lived sharing opportunities as previous research did [36]. On
the other hand, a too small interval shows sharing opportunities that can hardly
be considered for sharing, because they only exist for such short periods (e.g.,
20 ms) that there is no justifiable benefit from merging them. The optimal interval
depends on the analyzed problem. To show the potential for very short lived shar-
ings, a sub second granularity is advantageous, whereas for scanner improvements
a resolution of one second is already sufficient. A well-chosen sampling rate al-
lows keeping the complete history of each page frame within reasonable storage
space. For instance a complete trace file occupying 176 GiB and containing ap-
proximately 55 billion memory modification events, can be reduced to a 3 GiB
frame history file. If the time-interval does not provide the required information
or a different question should be evaluated, the trace data can be sampled again,
without requiring a new simulation.

Frame History Element

Write Count Non-ModifyWrite Count Mapping Count

V—I

Mapping Flags

\ 4

Inter-domain Sharing

\ 4

Intra-domain Sharing

DMA Write

Zero Frame

Page Cache Frame

Kernel / User Access

Figure 5.14: A frame history element. It contains access information,
mapping count, page usage, and sharing information for a page frame.

We implemented the history of each page frame with bit fields and counters
(both 32bit) to have a compact representation, counting the occurred write ac-

5.4. CONCLUSION 63

cesses, non-modifying writes, and mappings of each page frame. All counter
overflows are reported during creation and probably indicate a too large sampling
interval. A frame history element is depicted in Figure 5.14. The bit field contains
the allocation, e.g., if a frame is used as named or anonymous memory, sharing
information, e.g., inter- or intra-domain, whether it was subject to DMA opera-
tions, and how the page was written recently, e.g., by kernel or user space. For
each snapshot of the reconstructed system and for every page frame such entry is
saved to disk for further analysis.

To reduce the consumed memory on disk and during processing, only accessed
frames occur in a frame history file. A frame history file containing typical access
sequences with semantic information can be seen in abstract form in Figure 5.15.
The unused, but probably allocated guest physical pages can be ignored, since
the guest system considers these pages as unused or zero. That is different from
page frames marked as zero, since these frames have already been used and were
actively zeroed or released.

PFN ‘ Frame History ‘

0x125 2l ‘ ‘ |

o | I8 s |
0x123 : BUDDY

0x122 K BUDDY { ‘
0x120| n ANONYMOUS ‘

K = Kernel Access U = User Access
00:05 00:12

Figure 5.15: A typical frame history file layout. Showing the temporal
development of each touched page frame. Different events are correlated
into a single compact view.

5.4 Conclusion

For our implementation, we modified the analysis tool set of previous work, im-
plemented a revised storage component, and extended QEMU.

We extended QEMU to comply to our data acquisition needs, to collect mem-
ory accesses, added a reliable time source to allow data correlation within a simu-

64 CHAPTER 5. IMPLEMENTATION

lation and augmented it with a hypercall interface to collect OS introspection data.
To acquire semantic information from our chosen guest OS, we instrumented a
recent Linux kernel to transport the internal system events to the simulator. All
memory modifications and semantic data is stored in buffers supplied and man-
aged by the storage server and its client library. Our revised storage server acts
as a transparent data bridge between simulator and analysis framework, hiding
storage and compression details, while providing fast and random data access un-
der Linux and Windows. To increase scalability and avoid cumbersome analyses
we extended the trace file format with directories, which allow faster and direct
access to stored trace data.

Our sharing analysis has moved to the framework and works on reconstructed
memory images, allowing false positive free sharing opportunity analyses. As
we record memory modifications instead of hashes, it further allows spatial and
temporal sampling on a single recorded simulation trace. In conjunction with the
slightly modified OS state reconstruction, we can analyze sharing opportunities,
memory access frequencies, and access patterns enriched with semantic informa-
tion. To achieve better performance and keep a write access history of every page
frame, we developed a secondary step that compactifies and optionally samples
the resulting analysis information into a frame history representation. That al-
lows more complex analyses without the need to repeatedly reconstruct memory
images for each analysis pass.

Chapter 6

Evaluation

In the previous chapter, we proposed a data acquisition system composed of a
full-system simulator, data storage component, and a memory reconstruction and
analysis framework. QEMU serves as full-system simulator and creates trace data
which is analyzed with our proposed tool set.

This chapter presents our analysis methodology, evaluation setup and results
of a sub-set of evaluated benchmarks.

6.1 Methodology

With this evaluation, we try to find correlations between stability and memory
access frequencies as well as memory access patterns. We further want to investi-
gate correlations between memory semantics, sharing opportunities and stability,
as there is sharing potential not or slowly harvest through scanning. We aim to find
hints to focus a scanner on suitable pages or exclude unstable pages temporarily
or permanently from memory scanning.

To achieve that we evaluate a wide-range of different benchmarks that range
from I/O intensive to CPU- and memory bound real-world workloads. With these
different workloads it should be possible to cover common cases and identify
stability and sharability criteria, if they exist.

We start with the evaluation of sharing opportunities to identify the overall
sharing potential and to correlate our results with other work. Afterwards, we
investigate memory access frequencies and access patterns to infer stability from
outside an application or VM. Further, we focus on page stability in conjunction
with semantic information from our guest OS introspection to analyze the remain-
ing sharing potential, and if harvesting such potentials is worth the afford. We end
with an examination of write working sets as they might help to reduce scan over-
head by including stable and excluding unstable content.

65

66 CHAPTER 6. EVALUATION

Our core analysis utility is a Hidden Markov Model (HMM) to determine sta-
bility associated with semantic information. A HMM allows modeling a state with
hidden properties. Each state in a HMM depends only on the previous state, the
past of each state — its history — is ignored. Our HMM state graph contains typical
page frame states, such as allocation and stability.

Previous research on the field of file content deduplication suggested a sophis-
ticated state model, which evaluates the probabilities of state transitions between
different file states [49]. We adapted a similar model, but for memory content.
Such model allows analyzing the stability of page frames during benchmark ex-
ecution with memory allocation information. We therefore created a HMM and
modeled memory transitions. A memory transition is a change from one page
frame state to another caused by: (1) a memory store operation, (2) a DMA ac-
cess, (3) an unmapping or remapping event, or (4) with progression of time. Our
state model consists of five different memory usage scenarios. A page frame can
either be allocated through the buddy allocator of Linux [7] to the page cache,
directly used by the OS, a so-called buddy page, or it can further be mapped as
anonymous memory to a user land process, e.g., for a process heap or uninitialized
data of an executable file. The other two categories consists of memory assigned
to kernel stacks, device memory, and slab allocators, referred to as other or a
currently freed frame, originally allocated for one of the four other categories.

Categories Short Description

Page Cache File related page frames

Anonymous Pages Process heaps, uninitialized data

Buddy Pages Virtual kernel allocations

Other Pages Kernel stacks, device I/O memory, slab allocation
Free and File Freed and not reused page cache pages

Free and Anonymous Released anonymous memory

Transitions

DMA Write DMA operation directed to page frame

Memory Write Memory modification to page frame

Idle Time Time in which no modification of the state occurs
Mapping Allocations, re-mapping, release of page frames

Table 6.1: Summary of all categories and transitions modeled for our
HMM.

The resulting transition probabilities can be used to predict the future develop-
ment of every page frame that reached the same state, and is therefore well-suited
to understand page stability.

6.1. METHODOLOGY 67

We distinguish between several page states. The most important states, con-
sidering page deduplication, are stable states. These states are reached, when no
write access or mapping event occurs for a certain predefined amount of time,
e.g., for more than 2 seconds. An optimal stable criterion depends on the aim of
the deduplication system. Should either more page frames become available and
thus allow more workloads to run in parallel, or should only long lasting content
be deduplicated with less computational overhead. We chose for our experiments
different stability criteria, ranging from 1 second up to 4 minutes.

All other states are considered unstable. When a write operation occurs in
a stable state, the state transits back to an unstable state. In the examined OS,
this transition would affect an already merged page and trigger the copy-on-write
mechanism, which ensures address space isolation by creating a private copy.
Such transitions will increase the memory footprint of a VM. A simplified il-
lustration of our HMM can be seen in Figure 6.1. We distinct between content
that has originated from backing store and becomes stable — stable page cache —
and pages that have been modified or created — stable written page.

Write

! -~ / erte /,',,, _Time
o L) <A
% /
/Page\ / \ / DMA Page /Stable\ﬁ
([Written [(
Cache x Cac e | Page

\\\ Pag/ \\ Page/ @
Tlmt/ \\DM ,A WIL/
Time —
Write =)

/Stable

Written
Page

Figure 6.1: A simplified HMM for the Linux page cache. It shows a
sub-set of possible transitions. All unmap transitions are omitted.

With all modeled page categories and transitions found in Table 6.1, our com-
plete HMM state graph consists of 71 nodes and 276 edges. It allows a thorough
analysis of page frame stability and can be correlated to sharing opportunities.

68 CHAPTER 6. EVALUATION

6.2 Evaluation Setup

For our evaluation we use the proposed implementation from Chapter 5 to acquire
trace data for different workloads. We use different benchmarks to cover a wide
range of different memory usage patterns, including excessive use of file caches
and anonymous memory.

6.2.1 System Configuration

As we utilize QEMU, a full-system simulator for data acquisition, our evaluation
setup consists of two different systems: a physical host executing the simulator
and handling the data transfer to our network attached backing store and the sim-
ulated system running in our adapted QEMU environment.

Host System Configuration The host system contains 2 multi-core Intel Xeon
processors with 12 physical, and 24 logical cores. Its computational power al-
lows to run all benchmarks without interrupting or stalling the simulation. During
testing we discovered that an old Intel QuadCore Q9450 was not able to achieve
maximal performance, as the single-thread performance was too low. On aver-
age 4 cores were solely dedicated to compress incoming trace data streams and
store the compressed data segments to our network storage. As QEMU only sup-
ports single-threaded simulation, even when simulating a multi-core architecture,
the maximal achievable amount of traceable data is limited. Our storage server
had to compress about 128 MiB of raw trace data per second. The complete host
configuration can be found in Table 6.2.

Component Model / Specification

CPUs 2x Intel Xeon CPU E5-2420
Available Cores 12 (24 logical cores)
Frequency 1.9GHz to 2.4 GHz
Memory 12 GiB (ECC DDR3-1333)

Attached Storage 8 TiB Network-attached RAID Storage
Operating System Ubuntu Server 12.04

Kernel Version Ubuntu 3.2.0-51-generic

Architecture 64 Bit (amd64)

Simulator QEMU Version 1.3.1

Simulator Extension Memory Hooks, Hypercall Interface, Instruction
Counter

Table 6.2: The configuration of our host running QEMU.

6.2. EVALUATION SETUP 69

Simulation Configuration All benchmarks were executed inside our modified
QEMU version with activated icounter (for full details see Chapter 5). The icount
mode allows an undisturbed workload execution, hiding timing distortions due to
introspection and tracing overhead from the guest operating system. Although
this is not true for our configuration of the instruction counter, some, only slightly
different configurations, lead to an unresponsive binary translator and to stalled
virtual CPUs. Unfortunately, this happens on all recent versions of QEMU run-
ning binary translated code on x86 processors, with enabled icount. Some Linux
version seem to further affect this behavior, whereas a 32 bit version runs without
problems, a 64 bit version experiences different timings and either stops working —
is unresponsive — or initiates a kernel panic in the guest OS. We chose to simulate
a 1 GHz CPU, since that is the only configuration which runs correctly. Further
QEMU problems and possible improvements can be found in Future Work 7.1.

Our simulated system is typically equipped with 1 GiB of RAM. That allows
an execution of all benchmarks without memory pressure. If memory pressure is
desired, we will state the configuration changes. All evaluated workloads run on
the same guest OS. It is a minimal Ubuntu Server 13.04 installation with a cus-
tomized 64 bit kernel. The vanilla Linux kernel version 3.9.2 is augmented with
hypercall extensions for OS introspection as described in Chapter 5. No addi-
tional background daemons have been added, but we deactivated some daemons,
e.g., the firewall and KSM, to focus on the execution of the examined workloads.
A complete list of all configuration details can be found in Table 6.3.

Component Model / Specification

CpPU simulated 1 GHz

Memory 1 GiB guest memory

VGA Cirrus Logic GD 5446 VGA emulation
Network Not connected

Storage 32 GiB (QEMU Enhanced Disk Image)
Guest OS Ubuntu Server 13.04

Kernel Version Linux Vanilla Kernel 3.9.2 with OS Introspection
Architecture 64 bit (amd64)

Simulated Architecture x86-64

Simulated CPUs 1

Simulation Mode softMMU, TCG, icounter, optimized build

Table 6.3: Simulator and guest OS configuration used to execute our
workloads.

70 CHAPTER 6. EVALUATION

6.2.2 Benchmark Setup

We performed different benchmarks to collect trace data to identify new hinting
sources, analyze access patterns and sharing opportunities. In the following, we
describe the characteristics of each benchmark. If not noted otherwise all bench-
marks are unmodified 64 bit versions, as found in the Ubuntu repository.

Linux Kernel Build The compilation of the Linux kernel is a common bench-
mark and often used to show the effectiveness of memory deduplication mecha-
nisms [11, 35, 36]. Therefore it is obligatory to examine this benchmark as well.
We compile the vanilla Linux kernel version 3.10.0 with two instances of a C
compiler (gcc) executing in parallel and afterwards emit a compressed Linux ker-
nel image. This benchmark completes in about 15 minutes on real hardware. In
a QEMU simulation with introspection it takes about 4 hours and 15 minutes,
which is still faster than other full-system simulators. The benchmark fills the
page cache, with source and output files, and tends to retain all required data
in the page cache, when enough RAM — about 320 MiB — is available. We ex-
ecuted this benchmark in two different configurations, with 256 MiB and 1024
MiB simulated system RAM. Memory deduplication utilizing hints based on I/O
operations can deduplicate large parts of this workload. There are two reasons for
this behavior. Firstly, this benchmark does only change few files on disk, thus a
file can remain in the page cache for long periods of time. Secondly, most created
files remain unchanged once they are written to disk.

SPEC Benchmark Suite The SPEC benchmarks of the CPU2006 suite provide
different real world scenarios to measure and compare different computer sys-
tems [47]. These benchmarks range from simple compression tasks to complex
quantum mechanical simulations.

In contrast to the kernel build, they run completely in memory. Even bench-
marks such as 403.gcc, which compiles and optimizes program code, do not write
any resulting data to disk. In the case of the gcc benchmark, the required source-
code files are loaded during the start-up phase and no further I/O operations to
disk occur during a run. We have executed different benchmarks to simulate their
behavior of a CPU- and memory-bound workload. All evaluated benchmarks re-
mained unmodified, as found on the installation medium supplied by SPEC. We
chose three distinct benchmarks, 403.gcc and 464.h264ref from the CINT2006
suite and 433.milc from CFP2006. These are typical workloads, where I/O hint-
ing cannot achieve high sharing rates, since only the initially loaded benchmark
data and OS files can be deduplicated. As the generated output resides in main
memory, they can only be deduplicated by scanning.

6.2. EVALUATION SETUP 71

Benchmark Application Area Brief Description

CINT2006

403.gcc C Compiler Based on gcc Version 3.2, generates
code for Opteron.

464.h264ref Video Compression A reference implementation of
H.264/AVC, encodes a videostream
using 2 parameter sets. The
H.264/AVC standard is expected to
replace MPEG2

CFP2006

433.milc Physics / Quantum A gauge field generating program
Chromodynamics for lattice gauge theory programs
with dynamical quarks.

Table 6.4: The chosen benchmarks from SPEC CPU2006. The bench-
mark descriptions are taken from SPEC.org [47].

Phoronix Benchmark Suite Phoronix Benchmark Suite provides different, ev-
ery day workloads [34], typically to measure the performance of Linux and UNIX
based systems. It provides five benchmark categories to measure different perfor-
mance aspects: System, Disk, CPU, Graphics, and Memory. We chose different
benchmarks focusing on the overall system performance and disk utilization, since
those two categories are not covered by SPEC CPU2006.

Benchmark Brief Description

Phoronix Database Suite

pts/sqlite Measures the time to perform a pre-defined
number of insertions on an indexed database.
pts/pgbench TPC-B like benchmark of PostgreSQL.

Table 6.5: Chosen tests from Phoronix Database Suite. The benchmark
description is taken from openbenchmarking.org [33].

Some benchmarks caused problems and could not be used for our evaluation.
It is not completely clear why they behave different in a virtualized (e.g., Vir-
tualBox) or simulated system (e.g., QEMU), but in both cases they were unable
to complete their tests successfully. The benchmark based on the openJDK Java
implementation crashes during tests and seams not to work in recent versions of

72 CHAPTER 6. EVALUATION

QEMU, at all. Therefore, we limited our investigation to the database benchmark
suite, which consists of two benchmarks that perform real-world database trans-
actions in with SQL [33]. A more detailed description of the benchmarks can be
found in Table 6.5.

Bonnie++ This benchmark measures hard disk performance [13], it stresses the
page cache as well as the file system implementation. In our case the latter is
unimportant, we are only interested in its behavior towards file caches and the
typically resulting sharing opportunities and their lifetime. As its workload is
completely different from other evaluated benchmarks, it produces a unique page
cache sharing pattern. As pages allocated to the page cache remain stable for
long periods of time and show large amounts of sharing opportunities [36, 41],
this benchmark, on the contrary, rapidly changes file content and forces the page
cache to drop page frames on a regular basis.

In the following, we refer to these five chosen benchmarks with abbreviations
found in Table 6.6. They cover nearly all found behaviors of our examined work-
loads.

Abbreviation Benchmark RAM Size
KB1024 Linux Kernel Build 1024 MiB
KB256 Linux Kernel Build 256 MiB

B++ Bonnie++ Benchmark 1024 MiB
PDB Phoronix Database Benchmark 1024 MiB
GCC SPEC 403.gcc Benchmark 1024 MiB

Table 6.6: Abbreviations for selected benchmarks.

6.3 Benchmark Evaluation

Since our benchmarks run inside a simulated system and are temporally sampled,
time information cannot be taken with a wall-clock. As our internal time is mea-
sured with an instruction counter, a time approximation is necessary to make our
results comparable with real systems. In the following sections we describe how
we solved this issue. We further give details about the handling of zero page
frames in our statistics, because previous studies disagree in this point.

6.3. BENCHMARK EVALUATION 73

6.3.1 Simulation Time Estimation

The measurement of time inside a simulated system is difficult. As described
earlier, there is no reliable way to measure the simulation time with the required
accuracy from within a simulated guest in QEMU. Our instruction counter enables
us to count all executed guest instructions. Although such time measurement
ensures a correlation of data and allows to compare progress, speed, and further
judge the amount of work done, it does not allow a simple correlation with real
time. There are at least two correlation problems.

Firstly, on a real system every instruction takes a different amount of cycles to
complete, e.g., a simple add instruction might consume a single cycle, whereas a
division (idiv) can consume up to 87 cycles [15]. The actual cycle count heavily
depends on the processor architecture as well as on the used processor.

Secondly, every workload has a different instruction mix and different I/O
characteristics. As QEMU delays interrupts and does not count the idle time, ev-
ery workload progresses with slight different speed. To find a representative cor-
relation between cycles and elapsed time, we measured the runtime of our simula-
tion on the hosting system, set it in relation with the real runtime of the workload,
and calculated the average instruction execution time, which ranges for compu-
tational intensive workloads between 1.9 to 4.3 nanoseconds. For the remainder
of this work, we assume an execution time of 3 nanoseconds per instruction. The
pace of our simulation is therefore about 24.3 MIPS.

6.3.2 Temporal Sampling

To overcome the vast amount of memory required to hold the history of every
page frame, we sample our traced data with a granularity of 40,000,000 simu-
lation cycles, which equals about 120ms. We determined this value empirically,
as it showed best trade-off between accuracy and relevance. For this purpose the
memory reconstruction and system state recovery, as described in Chapter 5, re-
constructs both states till it reaches the end of a sample interval. After a sharing
opportunity analysis, all states are combined to form our frame history represen-
tation. The frame history of each workload is the basis for our further evaluations.
If a different sampling rate is used, it is explicitly noted.

6.3.3 Zero Page Frames

Previous research often excludes zeroed pages from their analysis [36, 41]. How-
ever, excluding them reduces the overall sharing potential of many workloads.
There are two reason to exclude them. Firstly, if the operating system or an appli-
cation actively zeros pages to prepare them for future use, e.g., Windows [43], and

74 CHAPTER 6. EVALUATION

merging them would introduce undesirable overhead on the first write. Secondly,
if an analysis works on pages, rather than on page frames, and cannot distinguish
between a zeroed page frame and a dedicated zero page. A zero page is a special
page frame found in Linux [7], which is mapped as a COW page into processes to
provide zeroed memory. The actual memory is allocated only if a write access to
such a page occurs.

In general, a memory scanner should not ignore zero page frames, as many
applications allocate memory, modify it, and reset the content back to zero. These
intentionally zeroed pages do not point to the zero page frame anymore, instead
redundant zero page frames have been created. To reduce the memory footprint
of VMs it is most advisable to merge these pages back to the zero page.

To get an idea of the quantity of zero pages in various workloads, we per-
formed several benchmarks. Our results suggest that most zero (guest) page
frames are intentionally zeroed and many remain in this state for long periods
of time. Table 6.7 shows the average amount of zero page frames and the aver-
age intra-domain sharing potential in five workloads. The zero page frames are
even more important, if no matching candidates for other pages can be found or
inter-domain sharing is prohibited due to security restrictions. The temporal de-
velopment of zero page frames during a kernel build can be seen in Figure 6.2. It
also shows that zero pages occur in all allocation groups. Zero buddy and page
cache pages are stable, and remain unchanged over time.

8000 l
Total Zero
Anonymous - - - -
7000 |- PageCache - |
Buddy - —
6000 f- Other ——-- .
"
(]
2 5000 |- -
i Wbt AT WMW
g 4000 MM gL W \N |
g W !
o 3000 # , : , g
Y} . !
N J\ i / A M
2000) ‘/‘\ S '/r\.\ AN) P RS B AR i
NI TN A L s L T i\
[VNS Loy 7 2N './'¢”\(‘/‘ N - /\/\’\/\ N
1000 [f L LA NSl SRS Bl 7
0 R R At R e P
0 200 400 600 800 1000 1200

Time [s]

Figure 6.2: The temporal development of zero page frames during a ker-
nel build enriched with semantic information. Page cache and buddy
pages are stable for long periods of time.

6.4. SHARING OPPORTUNITIES 75

Workload Zero Pages Intra-domain Sharings Percentage

KB1024 4063 7410 54.83%
KB256 3231 6994 46.20%
B++ 3067 98350 3.12%
PDB 3010 7277 41.36%
GCC 6880 22214 30.97%

Table 6.7: The average amount of zero page frames and the average intra-
domain sharing potential of five exemplary workloads.

6.4 Sharing Opportunities

To classify the sharing potential of different workloads, we start with a sharing
opportunity analysis, considering two different runs of each workload. That al-
lows to correlate our findings with other studies and shows the sharing potential
of our workloads.

6.4.1 Sharing Potential

As different workloads show different page duplication characteristics, we chose
three workloads, which greatly differ in their amounts of mergeable pages and
their progression over time. The temporal development of mergeable pages of
Bonnie++, a Linux kernel build (KB1024), and SPEC 403.gcc are depicted in
Figure 6.3. We chose these three benchmarks, to cover different aspects of sharing
characteristics. The kernel build is an I/O intensive workload, which only alters
few page cache pages through content modifications, it primary adds new content.
In contrast, bonnie++ excessively creates, stores and reads data from disk. The
403.gcc benchmark in turn is memory-bound and does not change disk content.
Our freshly booted 64 bit Ubuntu server installation offers a sharing potential
of about 15,000 pages (58 MiB) excluding the page cache. If the page cache is in-
cluded the sharing potential increases up to approximately 50,000 pages (195 MiB).
This nearly doubles the amount of sharing potential found in previous research [4,
41]. The difference can be explained by two facts: Firstly, previous research ex-
plicitly excluded zero page frames, which we do not, and during system start-up
about 4,000 zeroed page frames (16 MiB) exist. Secondly, the greatest amount
of additionally mergeable pages stem from our 64 bit system and its applications,
which not only occupy more main memory than the 32 bit systems used in previ-
ous work, they also have bigger image files occupying more page cache frames.
The residual sharing potential stems from the executed workload’s operations.
Each workload has its own characteristics, e.g., the kernel build adds almost con-

CHAPTER 6. EVALUATION

76
250000 ‘ ‘
N A B++
AN
e 0 V1L KB1024
EAA Gee
__ 200000 |- g 4
0 | B
E ‘
% 150000 - | -
(0] |
2 |
o
(V]
S 100000 | | 4
©
Q) |
9)
= 50000 | Ty 8
| |
AT U
i
O j | | | | |
0 50 100 150 200 250 300

Time [s]

Figure 6.3: Overall sharing potential of B++, KB1024 and GCC over
time. The line indicates the base sharing potential of our Ubuntu
environment—about 15,000 pages (excluding the page cache).

stantly 25,000 pages (97 MiB) to the sharing potential. Whereas, only a retiring
bonnie++ (around 150 seconds) allows nearly all page frames previously used by
bonnie++, i.e., about 200,000 (781 MiB), to be shared across different VMs. In
the second execution phase (between 80 and 150 seconds) the theoretical sharing
potential is as high (approximately 180,000 pages), but so are the fluctuations in
stable content. The 403.gcc workload is analyzed in more detail in Section 6.6. It
shows typical sharing potential of memory bound workloads, as about 63% of it

originates from other sources than page cache content.

6.4.2 Semantic Information

The initial declension of sharing potential (around 80 seconds) in the bonnie++
workload indicates the beginning of the second execution phase, as all available
main memory is allocated to bonnie++’s hosting task. Therefore, Linux has to re-
lease the buffered page cache content. Figure 6.4 shows the semantically enriched
sharing potential of bonnie++. Enhanced with semantic information bonnie++’s
stabilization and increase in sharing potential can be explained. The actual internal
changes of the page cache (around 150 seconds) are not visible in the overall shar-
ing potential and from outside a hardware-accelerated VM without introspection

6.4. SHARING OPPORTUNITIES 77

support. However, the associated semantic information from the OS introspec-
tion allows to observe this behavior. The source of nearly all mergeable pages
stem from already released page cache frames, rather than from actually used
pages. For instance, on Windows this sharing potential will decrease fast after
de-allocation, since Windows actively zeros freed memory [43].

Memory deduplication, which tracks memory allocations, might either fail to
merge the sharing potential as the memory is freed, or detect this change and
replace every released page frame with the zero page of the host. In the latter
case, the memory footprint would be directly minimized, beyond the size which
would be achieved with regular merging, since memory content is typically less
redundant.

250000 | | | | |
Page Cache
Freed
u"_‘w“gj |
—_ 200000 — .\‘v“uv“\“\w‘)“/' \\M" i
9]
0]
(=)
©
&‘ |
w 150000 | |
g |
° |
o
[
o 100000 |- ‘ |
o |
g |
8 |
s |
50000 |
o LIV I | Ao T
0 50 100 150 200 250 200

Time [s]

Figure 6.4: The semantic enriched sharing potential of bonnie++. After
it has finished the second part of the benchmark, it deletes the created file
content (around 150 seconds).

Stability A prerequisite to harvest duplicate memory pages is stability. Fur-
thermore, stability is the only statistical property of page frames that we found to
tell sharing opportunities apart from regular unsharable pages. A page is consid-
ered stable if its content has not changed within a chosen time interval. Merging
unstable pages, even if they have a sharing partner, computation resources are
dissipated.

78 CHAPTER 6. EVALUATION

Our benchmarks show, that finding a sharing candidate depends on two dif-
ferent criteria. Firstly, a workload must produce identical content. For example,
during a Linux kernel build, the probability of finding identical content is high,
because two workloads (in different VMSs) load identical file content from back-
ground storage and produce identical output files.

Secondly, the produced or loaded content has to remain stable for long periods
of time, otherwise, even if a memory deduplication system could instantly merge
identical pages, their content might change immediately and the sharing is broken.

Thus, to share pages across domain boundaries or between instances of appli-
cations, the temporal divergence must be small for short living or unstable pages.
For example, if a page is stable for about 10 seconds, but the other workload runs
with a temporal differential of about 9 seconds, the sharing period is reduced to 1
second, and typically does not justify merging.

6.5 Memory Access Analysis

Our recorded benchmark traces allow to observe the spatial and temporal devel-
opment of page frames. Memory access frequencies and access patterns can be
inferred during memory reconstruction and stored in sampled history files.

6.5.1 Memory Write Frequency

To focus a memory scanner on rarely changing or stable page frames, a frequency
of memory accesses can identify potential candidates. As a page frame’s content is
not changed by load operations, the frequency can be limited to write operations.
We calculate the memory write access frequency on sampled time intervals of
about 120 ms (40,000,000 cycles). To calculate the frequency for a point in time,
we use a window of 13 intervals (it covers about 1.5 seconds of simulation time).
Figure 6.5 depicts the frequencies before a page frame becomes stable for at least
1.5 seconds for B++, KB256, and PDB. All evaluated workloads show similar
write frequencies, even though they perform completely different tasks.

The database workload (PDB) indicates stability slightly better than others.
About 89.86% of all stable frames in this benchmark are preceded by a low write
access frequency (one to four accesses within our sliding window). On average
about 77.95% of page frames in all evaluated benchmarks show this behavior.

Memory write frequencies allow a memory scanner to include pages with low
frequencies into its scan process and temporarily exclude pages with high frequen-
cies. However, a memory scanner should not exclude pages permanently solely
on the access frequency observed at some point in time. Instead, it should still

6.5. MEMORY ACCESS ANALYSIS 79

50 T T T T T T T T T T T T T
A5 e -
40 o[B Bonnie++ [Tt N
o [] Phoronix Database | B
=z B Kernel Build 256
[}
D B0 | -
&
T 25 | -
B 20 gl -
O
o
S M BB -
10
5 —.
0

Write Frequency

Figure 6.5: Memory write frequencies for three different workloads with
the probability to be observed before a page frame becomes stable. All
evaluated workloads show similar distribution.

monitor the access frequency of excluded pages and adapt scan areas appropri-
ately. Especially, as soon as the semantic background of a page changes and it is
used for another purpose, there is a high chance that its access frequency changes
also. The page could then become a viable sharing candidate again.

In disk power management one strategy to determine a good point to bring the
device into a low power state can be determined by a correlation between busy
and idle times. It has been found that short busy phases are typically followed by
long idle phases. The same correlation between busy and idle times can be done
with the write access frequency on memory pages to provide a memory scanner
with a policy of when to include or exclude pages. We consider a page frame
busy, if it is written within every time interval (120 ms) with a grace period of
2 intervals. Otherwise, if it remains unchanged, it is considered idle. Figure 6.6
shows the relation between busy periods and the following idle periods of a Linux
kernel build equipped with 256 MiB of memory. The diagram shows that long
busy phases are never followed by long idle phases and thus page frames cannot
become stable. Such page frames showing this access characteristic are most
likely used for frequent device DMA or contain stacks and dispatcher structures
of the kernel, which are constantly modified. However, it is worth to include pages

80 CHAPTER 6. EVALUATION

1200 ‘ ‘ ‘ ‘
Correlation between Busy and Idle Time -+
1000 - : : |
n ‘ ‘ ‘
800 |
“ T
E 600 , :]
o =+
= +
400 .
T + ‘ ‘ ‘ ‘
+ ‘ ; ; ‘ ‘ |
200 I8 4 +
T+
+.~+
0 - - ——+
0 20 40 60 80 100 120

Busy Time [s]

Figure 6.6: Page frame busy times and their following idle periods. Page
frames with high busy times (more than 10 seconds) never become idle
for long periods of time.

with a short busy phase. Nearly all page frames (about 45,000 pages, 175 MiB),
which idle longer than 10 seconds are associated with the page cache of Linux.
About 39,000 page cache pages (152.34 MiB) can be shared with another VM
executing the same benchmark.

All evaluated benchmarks show similar relations between busy and idle time,
they only differ in the length of busy and idle periods. We observed that idle pages
associated with the page cache experience only short busy phases at the beginning
of their lifetime. Therefore, a memory scanner should focus on these pages and
check pages with high access frequencies and long busy times less frequent or
exclude them with a simple threshold. In our benchmarks a page that was busy
for more than 15 seconds never became idle before it is reallocated or freed.

6.5.2 Memory Access Patterns

Our analysis of more complex temporal access patterns, e.g., the temporal se-
quence of writes, did not find correlations between stability and sharability, not
already covered by the memory write frequency. For instance, a typical pattern of
stable (page cache) pages, is one (DMA) write access—i.e., an access frequency
of 1—followed by a long stable phase. All other patterns showed no new infor-

6.6. SEMANTICS AND STABILITY 81

mation to predict the future development of page frames, neither helped to iden-
tify stable pages better than with the memory write frequency. On the contrary,
probabilities and patterns degenerate to noise and make predictions like equally
distributed random numbers. We conclude that it takes either a more complex
analysis scheme or that temporal access patterns are unsuitable at all. However,
a more complex analysis scheme, such as neuronal networks, might be too time
consuming to be used for memory scans.

6.5.3 Conclusion

We discovered that more complex patterns such as the exact write sequence dif-
fer with every workload and even within it. They further showed no clearly ob-
servable correlation with stability or sharability in our benchmarks. Patterns not
already covered by access frequencies, degenerate to noise.

Thus, we conclude that the memory write frequency with a reasonable thresh-
old, i.e., about 4 accesses within a window of 1.5 seconds, can help classifying
page stability and indicate a stable page frame. Pages with high memory access
frequencies can be excluded permanently from a scan, if their overall busy time
exceeds a certain threshold. For our evaluated benchmarks it is about 15 sec-
onds. To further improve such scheme, internal semantic information can help
to re-include an unstable page if its allocation has changed. Memory access fre-
quencies and busy times can be observed in real systems, through an inspection of
dirty bits set by the memory management unit (MMU) to indicate a write access
to a page.

6.6 Semantics and Stability

We discovered that the stability of pages can be inferred by monitoring memory
access frequencies. However, the lifetime and development of stable pages re-
quires more sophisticated methods. In this section, we want to evaluate if there
also exists correlations between a page’s stability and its semantic background.
Finding such correlations could help focusing memory scanners by permanently
excluding whole ranges of pages with certain semantics and limiting monitoring
of write access frequencies to more promising page types. Our evaluation is based
on our proposed HMM. We chose five exemplary workloads which cover a wide-
range of execution characteristics.

Figure 6.7 shows probability of a page to be allocated for a certain purpose
found in each workload. Freed or reallocated page frames are omitted, since those

82 CHAPTER 6. EVALUATION

pages are either rarely found (less than 1%) during workload execution or are
instantly reused.

Every workload has a unique memory allocation profile, which varies within
identical workloads only equipped with different main memory size (KB1024 and
KB256). It shows on the one hand, that our workloads cover a wide-range of dif-
ferent memory allocation characteristics, but on the other a single heuristic based
on the data of multiple workloads most probably will not provide good predic-
tions. A heuristic can only be estimated for each workload and for a specific
configuration. On average these workloads allocate about 25% page frames for
the page cache (already covered by I/O-based hinting) and 35% frames for anony-
mous memory, which must be harvested by linear memory scanning. A specific
memory allocation heuristic can be used to identify workloads and adjust the scan
behavior of a memory scanner.

70 T T T T T
___________________________________ B Page Cache Pages | R
60
[] Buddy Pages
B Anonymous Pages
SO - L B Other Pages |- |88 -

40 o A

30 oo B SEEEEEEE CEEEEEEEECEEEEE EEREE

20 - S R N T TR

Allocation Probability [Percent]

10| .

2,
%

Figure 6.7: The memory allocation probabilities for five exemplary work-
loads. It shows that a general heuristic to predict allocation behavior is
unrealistic, if a mixture of different workloads are executed.

Stability Our HMM predicts the future development of page frames. Figure 6.8
shows the (transition) probabilities for page frames to remain in stable states for
each memory category and examined workload. In all workloads the probability
for a page to remain stable once it has been loaded into the page cache is about

6.6. SEMANTICS AND STABILITY 83

85% to 98%. That explains why I/O hinting achieves good sharing results. In
contrast, the stability of modified or created page cache content is less significant.
In a kernel build about 50%, without memory pressure (KB1024), and 30%, with
memory pressure (KB256), of pages remain stable for more than 3 seconds. Our
database workload (PDB) reduces the probability even to 5%. The results there-
fore suggest that for certain workloads, page cache pages holding modified or
new file content should not be targeted by memory scanners, because these pages
change frequently. The average stability probability of anonymous memory, one

100 T T
90 [~
80
Z/UN i (N I S I A | [205) : T A N
(VN i (N I S I e it f il N
50
40
30
20
10

0

KB1024f """ """]
KB256 |

Stability Probability [Percent]

Figure 6.8: Stable page frames states and their probabilities to remain in
this state. A page frame considered stable has remained unchanged for
about 3 seconds.

possible source of additional sharing opportunities, is on average about 35%. For
kernel builds only about 20% of anonymous pages remain stable. The low stability
probabilities are explained by the compilation process itself. Every gcc instance
compiles a source code file and terminates after it has emitted the corresponding
object file. Thus, all anonymous pages are released and instantly re-allocated to
other instances. OS introspection data shows that most of the stable anonymous
memory pages (about 90%) do not take part in building the Linux kernel, instead
they are allocated by idle system applications.

As the variance of nearly all categories depends on the workload, predicting
a general suitability of semantic page groups is only possible for every workload

84 CHAPTER 6. EVALUATION

individually. Predicting different workloads with the same HMM lead to equally
distributed transition probabilities and reduces the predictability of future page
frame usage to pure guessing.

The most stable page content stems from loaded files, which seconds the find-
ings of many research projects [4, 36, 41]. It further suggests that concentrating
on load operations, might improve hinting based on I/O operations, at least, for
some workloads, e.g., databases, even further. Thus, an initial workload type es-
timation, adaptions to the scanners behavior, or manual configuration might help,
to harvest more sharing opportunities faster.

Stability and Sharability Stability probabilities predict the future development
of a stable page without considering its history. To further investigate the amount
of stable pages and correlate them with sharing potentials, we recorded state
changes of our HMM over time. This recorded history forms a similar repre-
sentation as our frame history (see Section 5.3), but includes state information,
rather than write counts.

In the following we will concentrate our investigations on the SPEC 403.gcc
benchmark. It is a memory bound benchmark with an anonymous memory stabil-
ity probability of 51%, and thus represents typical sharing and stability potentials.

140000 |
> 1s
> 15s

120000 |- > 30s]
‘w >1.5min - - - -
g >4min -
S 100000 - |
= &
S 80000 |- |
(o]
@]
o> 60000 - J
©
[a
v i
S 40000 | gy MR ‘ |
S ” PR T ‘

20000 - oL e n Dy

I X :
0 U ! I i ‘ ‘ |
0 200 400 600 800 1000 1200

Time [s]

Figure 6.9: The temporal development of stable anonymous memory
pages in the SPEC.403.gcc benchmark. Depicted with different stabil-
ity criteria.

6.6. SEMANTICS AND STABILITY 85

140000

' Stable Pagles
Shareable Pages — — -
120000 |-

100000 |- : : 5 5' :]
80000 |- 5 5 5 L Lol 1.

60000] | -

Page Count [Pages]

40000 1 i lr Il i ikl i e L
| “N r'lﬁrll” v'l \w‘ ﬂ [{ r V‘Lﬂ : |

20000 |- [oo R | =

0 /, T T T P O T) 17~ Tt

0 200 400 600 800 1000 1200
Time [s]

Figure 6.10: Although a large amount of pages are stable, they still cannot
find a sharing partner, not even within another VM, executing the same
workload with virtually no temporal displacement.

Furthermore, only 21% of the theoretical sharing potential of 403.gcc originates
from loaded file content, the remaining sharing opportunities stem from kernel and
anonymous memory and must be detected through scanning. Figure 6.9 shows its
temporal development and the amount of stable pages based on different stability
criteria (from 1 second to 4 minutes). The diagram shows the different execution
and memory allocations phases of the simulated compilation process.

In the execution phase between 280 and 720 seconds the amount of stable
pages slowly increases from 20,000 to 40,000; on average 30,000 pages (117 MiB)
excluding the fluctuations. Unfortunately, during this slow changing period only
about 2,400 pages (9.37 MiB) can actually be shared, even with an identical work-
load running in parallel with nearly no temporal difference. The temporal develop-
ment of sharing opportunities and stability can be found in Figure 6.10. Only after
a radical change in the workload (805 seconds) about 42,000 pages (164 MiB)
can be used for intra-domain sharing as in this phase previously created data is
replaced with identical patterns.

Considering the whole workload, such states only last for short periods (less
than 20 seconds) and merging should be avoided to conserve computational power.
That further suggests, if anonymous memory becomes stable at last, it shows less
sharing potential than pages originating from disk. Therefore, a scanner aware of

86 CHAPTER 6. EVALUATION

OS internal allocations, should be configured to exclude guest anonymous pages,
for CPU- or memory bound workloads, as the produced data is fast changing and
small temporal differentials make (inter-domain) sharing unfeasible. However, if
the CPU utilization for memory bound workloads decreases, the probability to
identify stable pages and share memory content rises.

To further investigate stability, we applied various stability criteria to 403.gcc.
The resulting temporal development and amount of stable pages can be found in
Figure 6.9. As memory deduplication is always a trade-off between invested re-
sources and resulting gain, we chose different time periods, which consider a page
frame as stable. They range from 1 second, a unrealistic fast and expensive scan,
to 4 minutes which is a realistic scan period of KSM [35]. The different stability
criteria show the limitations of slow linear memory scanning, and further how im-
portant it is to choose a scan ratio carefully. The decline in the amount of stable
pages discovered is proportional to the chosen time interval, the longer it takes to
consider a page stable, the less pages are discovered: The decline can be approx-
imated by a linear function for all examined workloads — except for the chaotic
phases of SPEC.433.milc (see Figure 1 in the appendix). A doubled time interval
nearly misses half stable pages, in the best case a scanner would also miss half of

40000 l l
Entering Stable State
30000 - ‘ ‘ Leaving Stable State |
20000 + ‘ ‘ ‘ ; .
m
(]
= JLMM LJMJL._ m |
e
E 0 |- \ LMMMMMMMMMMMMM.U ‘[-JU LmL__m ,\L
3
o
o -10000 + : .
(o)}
©
S ‘ ‘ ‘ ‘ ‘
-20000 + : .
-30000 + : .
_40000 | | | | |
0 200 400 600 800 1000 1200

Time [s]

Figure 6.11: The amount of pages entering or leaving a stable anonymous
memory state in the HMM, depicted over time. The peaks indicate a
common, but unstable behavior of anonymous memory.

6.6. SEMANTICS AND STABILITY 87

the sharing opportunities. Furthermore, the amount of changing pages in SPEC
403.gcc is not constant and contains bursts, which makes scanning even more
ineffective. Figure 6.11 illustrates the amount of pages becoming stable and en-
tering and leaving this state over time. Even though the absolute amount of pages
is increasing (in the interval between 280 and 720 seconds), many pages (about
10,000, 39 MiB) leave and enter this state every second. These large fluctuations
show that memory deduplication is nearly impossible for this workload. The same
is true for all evaluated workloads actively working on anonymous memory. Only
idle applications, e.g., desktop workloads, or applications with small working sets
(e.g., SPEC 464.h264ref) might benefit from merging anonymous memory.

A sensible stability criterion seems around 15 seconds for anonymous memory
pages in this benchmark as it shows the best trade-off between amount of scanned
pages and sharing opportunities. Unfortunately, giving an ideal scan ratio for all
workloads is hardly possible, as already deducted by previous research [11]. The
optimal scanner configuration depends to a great extent on the characteristics of
the executed workloads.

Stability and Semantics We want to investigate the correlations of semantic
information and stability, as semantics, e.g., page cache hints, has already been
proven to be valuable information.

We can confirm that page cache pages remain untouched and outperform every
other page category in stability as well as sharability, if not used for memory
mapped file management (as in our database benchmark). Their content has a
high probability (about 80% in a kernel build and 98% for 403.gcc) to be identical,
since they are loaded from similar virtual disk images and remain unmodified.

That is true for all workloads considering only loaded content. However, that
is not true for other page categories, such as buddy and anonymous pages. Fig-
ure 6.12 shows the smoothed temporal development of stability and sharability.
Although the amount of stable buddy pages is nearly constant and high, about
8,000 pages (31.25MiB) during a kernel build, only about 20% (6.25 MiB) of
these pages can be merged. These page frames are occupied by the Linux kernel
image, as loaded during system boot. Buddy pages show this low sharing rate
in all evaluated workloads, although they are stable. The remaining buddy pages
cannot find a matching candidate, not even in other VMs, running the same Linux
kernel. We believe that this is caused by the more realistic and non-deterministic
execution of QEMU’s simulation.

The shareable amount of anonymous memory is higher with about 50% in the
peak phases, but it rapidly drops to 11%. The change in stability and sharabil-
ity over time makes merging anonymous pages difficult and explains why many
deduplication mechanisms fail to harvest all measured sharing opportunities, since

88 CHAPTER 6. EVALUATION

they only exist for short periods of time, but contribute to the overall amount of
shareable content. Although, a memory scanner can focus on these stable pages, it
still has to scan them all before a sharing can be established. Therefore, a success-
ful merge also depends on the speed of the discovering mechanism, e.g., hashing
and identifying a sharing partner, and might miss these relatively short peaks. Fur-
thermore, it is not clear if such short living pages should be merged at all, as the
overhead might easily exceed the benefits.

25000 | |
Stable Anonymous Pages
Shareable Anonymous Pages
Stable Buddy Pages ---------
20000 - Shareable Buddy Pages —— - 4

I
g 15000 | .
£ I
0 | \H\ \‘\ I |
(0] M N l | I
g 10000 HIV T |
e \H‘ HH\ il
Ry N A
5000 | / i‘ ‘/ |/ \J A N \\‘ J 4\
0 | | | | |
0 200 400 600 800 1000

Time [s]

Figure 6.12: The smoothed temporal development of stability and shara-
bility for buddy and anonymous page frames during a kernel build. Al-
though the stability of buddy pages is high, only about 20% can be actu-
ally shared.

6.7 Write Working Set

The working set of a process consists of recently accessed and written pages [14].
However, memory content changes only if a write operation occurs, thus we pro-
pose the write working set. This working set contains all recently changed pages
and should be excluded from scans. If a memory scanner keeps track of the write
working set, it can focus its scan on all pages leaving it. That drastically reduces
the amount of hashed or compared memory content.

6.7. WRITE WORKING SET 89

14

Workiﬁg Set Sizle —I

Probability [Percent]

0 500 1000 1500 2000 2500 3000 3500 4000
Working Set Size [Pages]

Figure 6.13: The write working set of VM running a Linux kernel build
equipped with 1024 MiB of RAM.

KB256 shows small write working set sizes, it consists on average of 1,520
pages (5.93 MiB) in our considered time interval (120 ms). A typical distribution
of write working set sizes can be seen in Figure 6.13. In KB256 on average 723
pages (2.82 MiB) leave the write working set, and only these pages must be fur-
ther examined to find possible sharing opportunities. These pages have recently
changed, but as the have left the working set they have stabilized. Estimating
the write working set every 160,000,000 cycles (about 480 ms) yields on aver-
age 1,850 page frames (7.25 MiB) leaving it. Estimating the write working set
every 160,000,000 cycles (about 480 ms) yields on average 1,850 page frames
(7.25 MiB) leaving it.

Other benchmarks show similar behavior, except the SPEC.464.h264 bench-
mark, which has a tiny working set of about 758 page frames (2.96 MiB), where on
average only 87 pages (0.33 MiB) leave. And SPEC.433.milc, executing a quan-
tum chromodynamic simulation, tend to produce large working sets with typical
peaks containing 85,000 pages (332 MiB) (caused by the gauge field calculation)
and average fluctuation of 3,743 pages (14.61 MiB)'.

As the stability of a page might still be affected by their internal usage, further
information sources can be added to reduce the actually scanned pages, e.g., the

'Figure 2, presenting the working set distribution of SPEC.433.milc, can be found in the ap-
pendix.

90 CHAPTER 6. EVALUATION

6000

Enfering L
Leaving
4000 + .
iy VAN AYASNS //\\ /\ R
o 2000 N \5 VVEN/N T
© [\ v .
e |
)
5 0r i
o
O
o
2 -2000 | .
o
-4000 - .
_6000 | | | | | | | | |

0 100 200 300 400 500 600 700 800 900 1000
Time [s]

Figure 6.14: The write working set changes of a VM running a Linux
kernel build equipped with 256 MiB of RAM.

recent write frequency or a stability predictor based on busy times. The working
set changes depicted in Figure 6.14 are typical for all simulated workloads, the
only exception is the working set changes of SPEC.433.milc (see Figure 1 in the
appendix). Although on average about 1,850 page frames must be scanned to dis-
cover changed content, the amount of pages leaving a working set is not constant
and can hardly be modeled statically. However, considering only pages leaving
the write working set allows a memory scanner to focus on stable content and to
reduce the actually hashed or indexed pages drastically.

6.8 Conclusion

We evaluated a wide range of different benchmarks, covering I/0O- and memory
bound workloads. Although each workload has unique characteristics, all have
two properties in common. Firstly, loaded content from backing store remains
stable with a probability of at least 85% and can in more than 80% be shared with
other VMs loading identical content. Secondly, about 78% of all pages show a low
memory write frequency (4 write accesses within a window covering 1.5 seconds)
before they become and stay stable for at least the same time.

We conclude that using memory write frequencies on pages not associated
with file caches could reduce the scan overhead and focus a memory scanner on

6.8. CONCLUSION 91

stable content. High write frequencies indicate unstable content and such pages
should be temporarily excluded, till the frequency decreases. If a page is busy
(constantly written) for more than 15 seconds, it can be permanently excluded
from scanning.

Our evaluation of memory access patterns showed no meaningful correlation
between a distinct pattern and stability or sharability. Furthermore, our HMM can
only predict the stability of pages, if a specific workload type is known in advance.
Thus, predicting the future usage of a page frame can only be done with memory
access frequencies or busy time considerations.

We concentrated our research on sharing opportunities not yet merged by
memory scanners. We considered their semantics and the temporal development
of stable pages. Our evaluation revealed that the sharing potential of stable anony-
mous memory varies between 11% and 50%. However, as long as the workload is
performing operations, shareable pages changing far too fast to justify merging.

Additionally, we evaluated write working set changes to focus a scanner only
on recently changed content, rather than examining all pages belonging to a VM or
application. A write working set can show fluctuations, but on average the amount
of pages leaving a working set stayed within reasonable limits (723 pages in 120
ms, 2.82 MiB). Only these pages must be scanned to keep track of stable memory
content, which are 50% of all recently changed pages (1,520 pages, 5.93 MiB).

However, it is not clear how much overhead the working set or the write fre-
quency estimation generate on a real system. To estimate these characteristics,
a page table walk, collecting the page flags to indicate changed page content, is
necessary. However, as memory scanners otherwise consider all pages allocated
to a VM or application, it might justify the effort.

Chapter 7

Conclusion

In this work, we analyzed sharing potential, which is not yet sufficiently harvested
by memory scanners, with the goal to rank pages based on the likeliness to yield
sharing opportunities and include or exclude them from scans. We investigated the
correlation of memory access frequencies and patterns, page stability and further
semantic information with memory duplication.

To acquire all write operations and OS introspection data for offline analyses,
we improved Rittinghaus’ [41] original framework for trace acquisition and pro-
cessing by strictly separating data recording from analyses. Our design supports
flexible offline analyses of sharing opportunities, memory access frequencies and
access patterns. Our changes also increase scalability. We have extended the
original framework further, to acquire semantic data by introspecting recent 64 bit
Linux guests. We deduce memory content, from the recorded memory modifica-
tions. Recording long-running workloads such as SPEC benchmarks is feasible
in our system. In a secondary step, we sample the memory image, infer sharing
opportunities, and fuse this information to a compact history of each page frame
enriched with semantic information. With the fast functional simulation and ex-
tended toolset, we were able to retrieve different trace files and analyze various
workloads.

We simulated workloads that cover different program characteristics from I/O
dominated real-world benchmarks to synthetic filesystem stress tests and database
test suites. Our analyses show that sharing potential heavily depends on the ex-
ecuted workload. Predicting the future of pages or directly inferring shareable
content seems impossible, as different workload configurations, e.g., kernel builds
with variable memory sizes, show varying stability and sharability characteristics.

We discovered two general optimizations for linear memory scanners to avoid
futile scans. Firstly, a memory scanner should only regard pages that show a low
write access frequency, since that indicates stable page content in the near future
with a probability of 80%. In addition, busy times or memory semantics can

93

94 CHAPTER 7. CONCLUSION

be used to exclude page frames permanently from scans, e.g., device associated
memory or kernel stacks. Secondly, a scanner should focus on pages leaving a
write working set instead of linear scanning all pages. These two optimizations
can be used together, since both can be implemented with a page table walk and
minimal extensions to the scan infrastructure.

7.1 Future Work

Although our data acquisition framework and QEMU performed well, and al-
lowed to collect all required information, future versions might still be improved
with more efficient compression mechanisms, faster memory hooks, and dynamic
OS introspection.

Trace Infrastructure Improvements A limitation of the current storage server
is the compression ratio, which varies from 1:4 up to 1:400, depending heavily on
the consecutive write accesses, their addresses and data. A future version might
contain an improved compression scheme, solely designed for patterns found in
memory accesses. The main problem of zLib and other common compression
techniques is their general usability, ignoring specific data patterns. A compres-
sion scheme, as suggested by [10], utilizes such patterns and provides dedicated
predictors for addresses and for the accessed data.

Another limitation of our storage server is that it currently runs on a single
computer node only and cannot utilize the computation power of server clusters,
which is necessary if parallel simulations were used.

Simulation Our implementation of memory hooks performs a guest page table
walk to retrieve physical addresses of a memory operation. This reduces the max-
imum achievable simulation speed. A future implementation could directly use
the address translation layer of QEMU, which would make an additional address
translation unnecessary, as the virtual TLB maintained by the softMMU already
contains the virtual to physical address mapping.

QEMU is missing different features, e.g., a parallel simulation and code gener-
ation. That might further speed-up tracing, if more cores can translate and execute
code in parallel. Furthermore, if simulations should only execute few architec-
tures, for example, x86 and ARM, it might be beneficial to implement new fea-
tures into the QEMU’s intermediate representation and allow a direct utilization
of hardware features such as MMX, SSE, or Neon.

Recent versions of QEMU in conjunction with the tiny code generator (TCG),
which is used for full-system simulation, suffer from multiple problems. Firstly,

7.1. FUTURE WORK 95

QEMU is not able to start an Xserver from an Ubuntu distribution, even with dif-
ferent configuration the Xserver task always crashes during start up. Secondly,
when QEMU uses the i counter, several Linux distributions livelock, progress
is only possible after an interrupt created by an external device, such as a key-
board. That makes unsupervised booting and tracing impossible. In consequence,
future versions of QEMU can only be used for simulation if these problems are
fixed.

A different simulator could be integrated into our tracing infrastructure. That
is possible since only a small intermediate layer must be implemented to comply
with our storage library interface.

OS Introspection To become independent of a single modified OS kernel, a
more general solution would be helpful. Different OS introspection mechanisms
have been proposed for VM migration, which dynamically analyze the running
OS and extract the required information with symbol files [12]. Another approach
might use breakpoints during simulation to trace operating system events. Such
mechanisms might augment a Linux and a Windows kernel on-the-fly. This would
allow to use unmodified kernels even without inserted drivers to collect the OS
system state, with its process creation events, allocations, and page table modifi-
cations.

Memory Scanner Improvements Our evaluation shows that harvesting dupli-
cate memory pages is feasible for memory content loaded from disk.

However, anonymous memory is hardly shareable, as most applications pro-
duce data patterns, which if shareable at all—lasts only for less than 3 seconds.
However, if a memory scanner initially inspects the address space of a freshly
booted VM, it can permanently exclude page table memory, kernel stacks, and
device associated pages from scans. Afterwards, it should only consider pages
leaving the write working set. That focuses the scanner on actually changed page
content and excludes all other pages from a thorough examination, e.g., hashing
a page’s content. Ideally this mechanism is combined with a memory write fre-
quency. If a page’s frequency is low the chances are high (about 80%) that the
page will become idle for a period worth of merging. Combining working set and
frequencies seems an ideal combination, since both attributes can be inferred by
inspecting dirty bits. These can be obtained either by directly walking the hy-
pervisor’s page table or by inspecting the corresponding guest page tables. An
implementation of such mechanisms should be evaluated to classify the usability
of our proposed improvements.

Appendix

100000

80000

60000
40000

20000 ~

0 b sl HBIAOALRY

-20000
-40000 |-

-60000 |-

Working Set Changes [Pages]

-80000

Enteringlj _—
Leaving - -

-100000 i
0 100

Time [s]

Figure 1: The write working set changes of a VM running SPEC.433.milc

(1024 MiB memory).

97

98

Probability [Percent]

APPENDIX

100

Wori<ing Set éize —‘

10

0.1

0.01

0 10000 20000 30000 40000 50000 60000 70000 80000
Working Set Size [Pages]

Figure 2: The distribution of write working set sizes of SPEC.433.milc.

Bibliography

[1]

[8]

Keith Adams and Ole Agesen. A comparison of software and hardware
techniques for x86 virtualization. In Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Op-
erating Systems, ACM ASPLOS, pages 2—13, New York, NY, USA, October
2006. ACM.

David Anderson. Red hat crash utility. http://people.redhat.com/
anderson/crash_whitepaper/. Accessed: 2011-08-05.

Andrea Arcangeli, Izik Eidus, and Chris Wright. Increasing memory density
by using KSM. In Proceedings of the Linux Symposium, Linux Symposium,
pages 19-28, Ottawa, Canada, July 2009. Linux Symposium Incorporation.

Sean Barker, Timothy Wood, Prashant Shenoy, and Ramesh Sitaraman. An
empirical study of memory sharing in virtual machines. In Proceedings of
the 2012 USENIX Annual Technical Conference, USENIX ATC, pages 273—
284, Berkeley, CA, USA, June 2012. USENIX Association.

Fabrice Bellard. QEMU, a fast and portable dynamic translator. In Pro-
ceedings of the 2005 USENIX Annual Technical Conference, USENIX ATC,
pages 41-46, Berkeley, CA, USA, April 2005. USENIX Association.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt,
Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna,
Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Ni-
lay Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator. ACM
SIGARCH Computer Architecture News, 39(2):1-7, May 2011.

Marco Bovet, Daniel P. ; Cesati. Understanding the Linux Kernel — from 1/0

ports to process management; covers version 2.6. OReilly, Sebastopol, CA,
USA, 3rd edition, 2005.

Patrick Brady. Anatomy & physiology of an android. In Google I/0 Devel-
oper Conference 2008, Google 1/0 Developer Conference, May 2008.

99

http://people.redhat.com/anderson/crash_whitepaper/
http://people.redhat.com/anderson/crash_whitepaper/

100 BIBLIOGRAPHY

[9] Edouard Bugnion, Scott Devine, and Mendel Rosenblum. Disco: Running
commodity operating systems on scalable multiprocessors. ACM SIGOPS
Operating Systems Review, 31(5):143—-156, December 1997.

[10] Martin Burtscher, Ilya Ganusov, Sandra J. Jackson, Jian Ke, Paruj Ratana-
worabhan, and Nana B. Sam. The VPC trace-compression algorithms. IEEE
Transactions on Computers, 54(11):1329-1344, November 2005.

[11] Chao-Rui Chang, Jan-Jan Wu, and Pangfeng Liu. An empirical study on
memory sharing of virtual machines for server consolidation. In Proceed-
ings of the Ninth IEEE International Symposium on Parallel and Distributed
Processing with Applications Workshops, IEEE ISPA, pages 244-249, Los
Alamitos, CA, USA, May 2011. IEEE Computer Society Press.

[12] Jui-Hao Chiang, Han-Lin Li, and Tzi-cker Chiueh. Introspection-based
memory de-duplication and migration. In Proceedings of the 9th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, ACM VEE, pages 51-61, New York, NY, USA, March 2013. ACM.

[13] Russell Coker. Bonnie++. http://www.coker.com.au/bonnie+
+/. Accessed: 2013-10-05.

[14] Peter J. Denning. The working set model for program behavior. Communi-
cations of the ACM, 11(5):323-333, May 1968.

[15] Agner Fog. Instruction tables lists of instruction latencies, throughputs and
micro-operation break-downs for Intel, AMD and VIA CPUs, April 2013.

[16] Rich Geldreich. miniz - single c source file deflate/inflate compres-
sion library. http://code.google.com/p/miniz/wiki/miniz_
performance_comparison_v110. Accessed: 2013-10-05.

[17] Emilien Girault. Volatilitux: Physical memory analysis of linux systems,
December 2010.

[18] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C. Sno-
eren, George Varghese, Geoffrey M. Voelker, and Amin Vahdat. Difference
engine: Harnessing memory redundancy in virtual machines. Communica-
tions of the ACM, 53(10):85-93, October 2010.

[19] Clint Huffman. Memory combining in windows 8 and windows server 2012,
November 2012.

[20] Tzu-Han Hung and Alex Wauck. Towards a fully multithreading support for
gemu, January 2010.

http://www.coker.com.au/bonnie++/
http://www.coker.com.au/bonnie++/
http://code.google.com/p/miniz/wiki/miniz_performance_comparison_v110
http://code.google.com/p/miniz/wiki/miniz_performance_comparison_v110

BIBLIOGRAPHY 101

[21]

[22]

[23]

[24]

[25]

IBM Corporation. How to Improve the Performance of Linux on z/VM with
Execute-In-Place Technology, 2004.

IBM Corporation. z/VM: Performance, 2008.

Intel Corporation. [Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 2: Instruction Set Reference, A-Z, 2013.

Intel Corporation. [Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 3: System Programming Guide, 2013.

Philipp Kern. Generalizing memory deduplication for native applications,
sandboxes and virtual machines. Diploma thesis, System Architecture
Group, Karlsruhe Institute of Technology (KIT), Germany, April 2013.

Jacob Faber Kloster, Jesper Kristensen, and Arne Mejlholm. Determining
the use of interdomain shareable pages using kernel introspection. Technical
report, Department of Computer Science, Aalborg University, January 2007.

Horacio A. Lagar-Cavilla, Joseph A. Whitney, Adin Scannell, Philip Patchin,
Stephen M. Rumble, Eyal De Lara, Michael Brudno, and Mahadev Satya-
narayanan. Snowflock: Rapid virtual machine cloning for cloud computing.
In Proceedings of the 4th ACM European Conference on Computer Systems,
ACM EUROSYS, pages 1-12, New York, NY, USA, April 2009. ACM.

Kevin P. Lawton. Bochs: A portable PC emulator for Unix/X. Linux Journal,
1996(29es), September 1996.

Henry M. Levy and Peter H. Lipman. Virtual memory management in the
VAX/VMS operating system. Computer, 15(3):35-41, March 1982.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay J. Reddi, and Kim Hazelwood. Pin:
Building customized program analysis tools with dynamic instrumentation.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, ACM PLDI, pages 190-200, New
York, NY, USA, June 2005. ACM.

Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Fors-
gren, Gustav Hallberg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt,
and Bengt Werner. Simics: A full system simulation platform. Computer,
35(2):50-58, February 2002.

102

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

BIBLIOGRAPHY

Nagapramod Mandagere, Pin Zhou, Mark A Smith, and Sandeep Uttam-
chandani. Demystifying data deduplication. In Proceedings of the ACM/I-
FIP/USENIX Middleware 08 Conference Companion, ACM/IFIP/USENIX
Middleware Conference, pages 12-17, New York, NY, USA, December
2008. ACM.

Phoronix Media. Openbenchmarking.org - database test suite. http:

//openbenchmarking.org/suite/pts/database. Accessed:
2013-10-05.

Phoronix Media. Phoronix test suite - an automated, open-source test-

ing framework. http://www.phoronix—-test-suite.com/. Ac-
cessed: 2013-10-05.

Konrad Miller, Fabian Franz, Marc Rittinghaus, Marius Hillenbrand, and
Frank Bellosa. XLH: More effective memory deduplication scanners
through cross-layer hints. In Proceedings of the 2013 USENIX Annual Tech-
nical Conference, USENIX ATC, pages 279-290, Berkeley, CA, USA, June
2013. USENIX Association.

Grzegorz Mil6s, Derek G. Murray, Steven Hand, and Michael A. Fetterman.
Satori: Enlightened page sharing. In Proceedings of the 2009 USENIX An-
nual Technical Conference, USENIX ATC, pages 1-14, Berkeley, CA, USA,
June 2009. USENIX Association.

Marius Monton, Antoni Portero, Marc Moreno, Borja Martinez, and Jordi
Carrabina. Mixed sw/systemc soc emulation framework. In Proceedings
of the 2007 IEEE International Symposium on Industrial Electronics, IEEE
ISIE, pages 2338-2341, Los Alamitos, CA, USA, June 2007. IEEE Com-
puter Society Press.

Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavy-
weight dynamic binary instrumentation. ACM SIGPLAN Notices, 42(6):89—
100, June 2007.

Avadh Patel, Furat Afram, and Kanad Ghose. MARSS-x86: A QEMU-
based micro-architectural and systems simulator for x86 multicore proces-
sors. In Proceedings of the st International QEMU Users’ Forum, Interna-
tional QEMU Users’ Forum, pages 29-30, March 2011.

Mark Probst. Dynamic binary translation. In UKUUG Linux Developers’
Conference 2002, UKUUG Linux Developers’ Conference, July 2002.

http://openbenchmarking.org/suite/pts/database
http://openbenchmarking.org/suite/pts/database
http://www.phoronix-test-suite.com/

BIBLIOGRAPHY 103

[41]

[48]

[50]

[51]

Marc Rittinghaus. Runtime benefits of memory deduplication. Diploma
thesis, System Architecture Group, Karlsruhe Institute of Technology (KIT),
Germany, July 2012.

Marc Rittinghaus, Konrad Miller, Marius Hillenbrand, and Frank Bellosa.
Simuboost: Scalable parallelization of functional system simulation. In Pro-
ceedings of the 11th International Workshop on Dynamic Analysis (WODA
2013), WODA, March 2013.

Mark E. Russinovich and David A. Solomon. Windows Internals: Including
Windows Server 2008 and Windows Vista. Microsoft Press, Redmond, WA,
USA, 5th edition, 2009.

Prateek Sharma and Purushottam Kulkarni. Singleton: System-wide page
deduplication in virtual environments. In Proceedings of the 21st Interna-
tional Symposium on High-Performance Parallel and Distributed Comput-
ing, ACM HPDC, pages 15-26, New York, NY, USA, June 2012. ACM.

Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating System
Concepts. Wiley, Hoboken, NJ, USA, 7th edition, 2005.

Steven Sinofsky. Reducing runtime memory in windows 8, October 2011.

Standard Performance Evaluation Corporation (SPEC). Spec cpu2006
benchmark description. http://www.spec.org/cpu2006/. Ac-
cessed: 2013-10-05.

Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi, and Cyrille Artho. Memory
deduplication as a threat to the guest OS. In Proceedings of the Fourth Euro-
pean Workshop on System Security, ACM EUROSEC, pages 1:1-1:6, New
York, NY, USA, April 2011. ACM.

Vasily Tarasov, Amar Mudrankit, Will Buik, Philip Shilane, Geoff Kuen-
ning, and Erez Zadok. Generating realistic datasets for deduplication anal-
ysis. In Proceedings of the 2012 USENIX Annual Technical Conference,
USENIX ATC, pages 261-272, Berkeley, CA, USA, June 2012. USENIX
Association.

David Ung and Cristina Cifuentes. Machine-adaptable dynamic binary trans-
lation. ACM SIGPLAN Notices, 35(7):41-51, July 2000.

Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft,
Alex C. Snoeren, Geoffrey M. Voelker, and Stefan Savage. Scalability, fi-
delity, and containment in the potemkin virtual honeyfarm. In Proceedings

http://www.spec.org/cpu2006/

104 BIBLIOGRAPHY

of the twentieth ACM Symposium on Operating Systems Principles, ACM
SOSP, pages 148-162, New York, NY, USA, October 2005. ACM.

[52] Carl A. Waldspurger. Memory resource management in VMware ESX
server. ACM SIGOPS Operating Systems Review, 36(SI):181-194, Decem-
ber 2002.

	Abstract
	Deutsche Zusammenfassung
	Introduction
	Background and Related Work
	Memory Deduplication Techniques
	Duplicate Memory Content
	Full-System Simulation

	Analysis
	Analyzing Sharing Opportunities
	Required Analysis Data
	Data Acquisition
	Simulation
	Conclusion

	Design
	General Design
	Trace Organization and Storage
	Conclusion

	Implementation
	QEMU Modifications
	Storage Server
	Trace Data Processing
	Conclusion

	Evaluation
	Methodology
	Evaluation Setup
	Benchmark Evaluation
	Sharing Opportunities
	Memory Access Analysis
	Semantics and Stability
	Write Working Set
	Conclusion

	Conclusion
	Future Work

	Appendix
	Bibliography

