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Abstract

Cloud computing has become a major economical factor in the recent develop-
ment of computer systems. Companies tend to draw computational power for
their data processing from the cloud, instead of hosting their own servers, in order
to save costs. The providers of cloud systems run huge and cost efficient data
centers, profiting from economies of scale. In order to further reduce the costs,
these data centers currently move to more power efficient systems.

Many applications that are now used in the cloud were not created with a cloud
environment in mind, but have been "moved" to the cloud. These applications
usually use TCP/IP for their intercommunication mechanisms, which is the de-
facto standard for current applications in the Internet. Unfortunately, these TCP/IP
based implementations rely on the Berkeley socket API, which does not match the
demands of power efficient systems. Sockets introduce much CPU involvement,
taking away precious computational time from the real applications.

Several specialized network architectures, such as InfiniBand, overcome this
issue. They make use of offloading techniques, such as RDMA, in which the
network hardware takes over the responsibility of protocol processing and I/O. As
a drawback, the equipment for these fabrics is usually expensive, due to their high
specialization. Furthermore, the corresponding interfaces for these architectures
are extensive, making it expensive to adapt existing applications.

LibRIPC is a network library introduced to overcome the efforts that are ac-
companied by the usage of these architecture’s interfaces. It provides a neat, mes-
sage based interface, which abstracts from any specifics of the underlying network
architecture. This provides ease of integration and portability to other network
fabrics, and yet does not sacrifice performance. Currently, there exist a prototype
implementation of LibRIPC for InfiniBand.

In this thesis, we present our port of LibRIPC to iWARP, which enables the
library for its use over Ethernet. Ethernet is one of the most cost efficient network
fabrics and provides capabilities for high performance networking since the up-
coming of standards that specify data rates of 10 Gbit/s and above. iWARP is a
protocol stack that is based upon TCP/IP, thus compatible for use in Internet based
WANs. Yet it is completely independent from the socket API and its correspond-
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ing drawbacks.
We evaluated our implementation in terms of latency and data throughput,

and achieved promising results. Despite using software based iWARP instead of
better performing iWARP enabled hardware, LibRIPC over iWARP outperforms
TCP sockets by far. We believe that our approach can achieve even better results
on appropriate hardware.



Deutsche Zusammenfassung

Im Rahmen der aktuellen Entwicklung von Computer Systemen ist "Cloud Com-
puting" ein signifikanter wirtschaftlicher Faktor geworden. Mit der Absicht Kosten
einzusparen, neigen Firmen dazu, ihre IT Ressourcen aus der Cloud zu beziehen,
anstatt eigene Server zu betreiben. Die Anbieter von Clouds betreiben riesige
Rechenzentren die von Skaleneffekten profitierend, sehr kosteneffizient arbeiten.
Um die Ersparnisse weiter zu vergrößern, setzen diese Rechenzentren zunehmend
auch auf Energie-effiziente Systeme.

Viele Anwendungen die mittlerweile in der Cloud betrieben werden sind ur-
sprünglich nicht für diese Systeme konzipiert worden, sondern wurden erst nach-
träglich in die Cloud integriert. In der Regel verwenden diese Anwendungen
TCP/IP für ihre Kommunikation, was dem Quasi-Standard für aktuelle Internet-
Programme entspricht. Diese Implementierungen auf Basis von TCP/IP verwen-
den Berkeley Sockets als Programmierschnittstelle, die für Energie-effiziente Sys-
teme aber ungeeignet sind. Berkeley Sockets benötigen viel Prozessorzeit, die
dadurch nicht mehr für die eigentlichen Programme zur Verfügung steht.

Es gibt viele spezialisierte Netzwerkarchitekturen, zum Beispiel InfiniBand,
die dieses Problem lösen. Diese Technologien nutzen Mechanismen wie RDMA,
in denen die Netzwerkgeräte die Verantwortung für Protokollverarbeitung und
Datenübertragung selbst übernehmen. Ein Nachteil sind die hohen Kosten für
Geräte, die durch die hohe Spezialisierung der eingesetzten Hardware entsteht.
Des weiteren sind die Programmierschnittstellen dieser Architekturen häufig aus-
ufernd, und erschweren eine Integration in bereits existierende Anwendungen.

Die Netzwerkbibliothek LibRIPC, versucht den Nachteil dieser unhandlichen
Programmierschnittstellen auszugleichen. Sie stellt eine übersichtliche, Nachrich-
ten-orientierte Schnittstelle zur Verfügung, die zudem von allen Architektur-spe-
zifischen Eigenschaften abstrahiert. Auf diese Weise ist LibRIPCeinfach zu in-
tegrieren und kann auf mehrere unterschiedliche Architekturen portiert werden,
ohne dabei auf Leistungsfähigkeit verzichten zu müssen. Zum jetzigen Zeitpunkt
existiert eine prototypische Implementierung auf Basis von InfiniBand.

In dieser Arbeit stellen wir unsere Portierung von LibRIPC auf iWARP vor,
die unsere Bibliothek auf Ethernet lauffähig macht. Ethernet ist eine der kosten-
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effizientesten Architekturen, die seit der Spezifizierung von Standards für Daten-
raten von 10 Gbit/s und mehr, auch eine hohe Leistungsfähigkeit erreicht. iWARP ist
ein Protokollstapel der auf TCP/IP aufsetzt, und damit kompatibel zu Internet-
basierten Weitverkehrsnetzen (WANs) ist. Nichts desto trotz ist es komplett un-
abhängig von Sockets und den einhergehenden Nachteilen.

Wir haben unsere Implementierung hinsichtlich der Datenrate und der Verzö-
gerungszeiten untersucht, und dabei viel versprechende Resultate erhalten. Ob-
wohl wir nur auf Software basiertes iWARP, anstatt auf performantere iWARP-
kompatible Netzwerkkarten zurückgegriffen haben, hat unsere Implementierung
die Leistungsfähigkeit von TCP Sockets deutlich überstiegen. Wir glauben dass
unsere Arbeit sogar noch bessere Resultat liefert, wenn die entsprechende Hard-
ware eingesetzt wird.
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Chapter 1

Introduction

In the recent evolution of computer systems the concept of cloud computing [34,
36] has become more and more prevalent. Especially in the economy, the cloud
has been detected as a possibility to run the company’s data processing more cost
efficient [13, 32]. Hosting the needed IT services on its own is a costly, because
the servers and the network equipment must be able to bear the peak demands,
which often exceed the average demand by far [33]. This leads to time spans
of underutilization; the company pays for resources that it does not need at the
time. Cloud computing services, by contrast, often offer "pay-as-you-go" charg-
ing, which allow the costumer to allocate and pay for more computing resources
only when needed. Providers of cloud systems are capable of running their sys-
tems much more cost efficient than individual companies. They benefit greatly
from economies of scale in terms of nearly all resources, for instance network
technology, storage technology and manpower for administration [5].

However, in order to achieve cost efficiency, cloud systems need to be highly
optimized. One aspect that contributes largely to the overall costs is the power
consumption, leading to a higher relevance of energy efficiency in cloud sys-
tems [37, 71]. As a consequence cost- and power-efficient processors, such as
ARM or Intel Atom chips [10], are starting to substitute the commodity com-
puters, which are currently used frequently [37]. These CPU cores provide less
individual computational power and are therefore applied in larger numbers over
which the computational load is distributed.

The communication between these nodes is a crucial resource. Cloud appli-
cations put various demands on the interconnection fabric, as they require a lot
of network communication of different natures. Client-server applications, such
as web or file servers, often need high bandwidth in order to exchange large data
rapidly. On the other hand, applications such as distributed databases, primarily
exchange small messages for synchronization purposes, which tend to demand
low latency. All in all, we observe a demand for high performing network transfer
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which does not put too much pressure on the scarce CPU resources.
Arguably, the most common network protocols are the members of the Internet

protocol family [14], which date from the 1970’s and are still the standard proto-
cols in today’s Internet. These protocols, that is TCP/IP or UDP/IP, mostly over
Ethernet, are usually implemented via Berkeley Sockets [42] using the respective
socket API. Unfortunately, the socket API in general, and TCP in particular, are
not suitable for the herein before mentioned demands that we observed [41]. Net-
work communication with TCP/IP heavily involves the CPU because of its imple-
mentation as system calls [58], copy overhead [15], and protocol processing [26].
Additionally the copy overhead burdens the system’s memory bus [7].

These drawbacks of TCP/IP are long known, and several network architectures
were developed to overcome these issues, such as Myrinet [8] and InfiniBand
[59]. However, the usage of these architectures is not trivial, as the corresponding
interfaces, for example the InfiniBand Verbs [39], are often extensive and hard to
use. Re-writing an application from Berkley sockets to such interfaces is therefore
expensive.

In order to combine the benefits of high performance network architectures
and the simplicity of the socket API, [45] introduced LibRIPC, a library for re-
mote inter process communication. The library provides a neat, message based
interface, which abstracts from all specifics of the network architecture. There-
fore, LibRIPC provides ease of integration without sacrificing performance, and
portability to other network architectures. The interface distinguishes two mes-
sages types, one focusing on high data throughput and one with focus on low
latency. Currently, there exists a prototype implementation of LibRIPC, which
uses InfiniBand and yielded promising results.

Despite the impressive performance results, which are achievable with Infini-
Band [77], using Ethernet may be desirable. Highly specialized architectures,
such as InfiniBand, are relatively expensive for several reasons. On the one hand,
the specialized hardware increases the costs for the equipment, for a rather simple
reason. The demand for such equipment is rather low, the output figures of the
production accordingly small. This makes it hard for vendors to lower the costs of
production. The high acquisition costs especially preponderate because every part
of the hardware is affected: network adapters, switches and cables. On the other
hand, dealing with specialized hardware requires specialized know how, which in
turn leads to higher expenses in terms of manpower. As opposed to that, Ethernet
is an ubiquitous fabric, which does not suffer from all these drawbacks [26,53,55].
In fact, Ethernet is so inexpensive, that most modern desktop computer systems
come with 1 Gigabit Ethernet links by default. Additionally, Ethernet equipment
that allows for relatively high performance is downward compatible to slower and
therefore cheaper variations. It is therefore possible to build a homogeneous net-
work, which varies in its levels of performance, according to the corresponding
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needs [46].
With the upcoming of 10 Gigabit Ethernet and beyond, Ethernet has become

a target architecture to provide high performance networking, with several ap-
proaches token (see Section 2.1). One of these approaches is the Internet Wide
Area RDMA Protocol (iWARP) [2, 55, 63], a protocol stack (discussed in detail
in Section 3.1.1) on top of TCP/IP. iWARP provides high performance network-
ing by implementing Remote Direct Memory Access (RDMA) [65], that is, direct
data transfer from the user memory of one machine into the user memory of the
other machine, bypassing the kernel. Additionally, hardware implementations
are available [19, 43, 57], which offload the complete iWARP protocol stack to
the hardware and achieve remarkable performance [17, 21, 25, 62, 69]. Besides
the promising performance results of network adapters with iWARP capability,
the fact that iWARP bases on TCP/IP is a significant advantage, especially in
the context of cloud computing, where the Internet is right at hand. In order to
use iWARP, intermediate hardware, such as switches and routers, need neither be
modified for nor be aware of iWARP. Endpoints of iWARP based communication
can be deployed in any existing TCP/IP based network, such as the Internet, and
work out of the box [2].

However, from the programmer’s point of view, iWARP brings the same draw-
backs as InfiniBand, that is, an extensive, hard to handle interface [35]. In this
thesis, we present our porting of LibRIPC to iWARP, which provides Ethernet
compatibility for LibRIPC. We believe that this way, we are able to combine the
benefits of the neat and easy to integrate interface of LibRIPC, with the advan-
tages of iWARP, in terms of cost efficiency and flexibility, without loosing the
high performance that InfiniBand provides. With this extension of the pool of net-
work architectures supported by LibRIPC’s, we can make the usage of our library
much more lucrative, and proof its portability, which was a major design goal, as
stated in [45].

In order to evaluate our approach we implemented iWARP support in Lib-
RIPC, and conducted two experiments, which measure the performance of our
implementation. Because we lack iWARP-enabled network adapters, we applied
the experiments on software based iWARP over InfiniBand network adapters. De-
spite this throttling setup, we found that our implementation is able to keep up with
InfiniBand, both in terms of latency and throughput. Additionally, we were able
to demonstrate the portability of LibRIPC, by using the same applications for both
iWARP and InfiniBand, without any modifications needed.

The rest of the thesis is structured as follows: We begin with an overview of
the background and related work in Section 2, before we turn to the design of our
approach in Section 3. The evaluation of our design is discussed in Section 4,
before we conclude the thesis in Section 5.
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Chapter 2

Background and Related Work

Over the last two decades, the Internet became a huge part in every day’s life and
established itself as an important factor for the economy and for people’s private
life. In this time, the Transmission Control Protocol (TCP), the User Datagram
Protocol (UDP), and the Internet Protocol (IP) became the de-facto standards for
communication over the Internet, and are mostly deployed on top of Ethernet. De-
spite huge changes and development in the network architecture, these protocols
have not changed much over the years. However, these protocols are usually used
via the Berkeley socket API [42], which suffers from several drawbacks, in the
context of high network traffic.

Several interconnects exist that do not have these drawbacks, such as Infini-
Band [39] or the Blue Gene interconnection fabric [12, 30], but they are gener-
ally much more expensive than Ethernet, provide only an extensive interface or
are specialized for the context of High Performance Computing (HPC). With the
emergence of 10 Gigabit Ethernet and above, the possibility of implementing high
performance networking over the cost efficient Ethernet fabrics arises [26,53,55].
This is a great opportunity for cloud computing, as most of the applications that
currently run in the cloud are not implemented for those high performing network
architectures, but are implemented on top of TCP/IP, that commonly runs on top
of Ethernet. Unfortunately, TCP/IP is not suitable for high performance, as it
implies too much overhead.

In order to analyze the overhead that is introduced by the use of TCP over
sockets, we take a look at the path that data has to take in order to get transferred.
The socket API is a collection of system calls; protocol processing itself is done
in the kernel. As a first step, the kernel copies the data from its position in user
space into a buffer that resides in kernel space. This copying process burdens the
processor, as it must be done by the CPU [15]. The kernel buffer in which the
data is saved is then extended with protocol information, such as sequence num-
bers and checksums, which the CPU must generate. For the purpose of correct

7



8 CHAPTER 2. BACKGROUND AND RELATED WORK

TCP protocol processing, the kernel must maintain a series of mechanisms, such
as timers and buffer handling. In general, the implementation uses general pur-
pose data structures for these tasks, in order to keep the number of in-kernel data
structures reasonable. However, these data structures are not optimized for TCP’s
needs and thus prevent an efficient implementation [15]. When a TCP packet is
complete, it is copied to the network adapter, usually via a DMA transfer.

On the receiving end, we observe the same overhead in the opposite direction.
However, if data arrives continually at one host, the network adapter continually
issues interrupts, which in turn lead to context switches that introduce direct over-
head, such as dispatching, and indirect overhead, such as cache poisoning. In
total, data transmission via TCP requires at least four copy processes that are in
contention for memory bus usage [29].

Additionally, TCP is a byte-stream oriented protocol, that is, message borders
are not preserved and must be recovered by the receiver. In case of large data, such
as files, the payloads arrives in multiple pieces, whose exact number the receiver
does not generally know. Therefor, the receiver has to constantly issue calls to the
receive function.

As the development of processing power and of the memory bus could not
keep up with the network technologies, this overhead becomes a bottleneck. Alto-
gether we observe four factors which combine to socket or TCP related overhead,
which needs to be avoided:

i) Data copying
ii) Kernel invocations

iii) Protocol processing
iv) Byte-stream orientation

One technique to overcome these issues is iWARP, which uses a protocol stack
above TCP/IP, to bypass the kernel and to avoid multiple copying of data. The
fundamental concept that is implemented by this protocol stack is RDMA, that
allows to transfer data directly from its position in the user-level memory onto the
network adapter, which performs the protocol processing and transfers the data di-
rectly into the user-level memory of the receiver. As this is done by using TCP/IP,
this transfer is not limit to the local network, but can be used over the Internet [2],
and therefore introduces a clear benefit in the context of cloud computing. This
possibility does not sacrifice the performance within a local network; iWARP’s
performance results are impressive and can bear comparison with highly special-
ized network architectures, such as InfiniBand [17, 21, 25, 62, 69].

However, iWARP is not the only approach to bring high performance net-
working to Ethernet. We present some alternatives in the following, and evaluate
in how far they are suitable as a target for a porting of LibRIPC. Afterwards, we
discuss the possibility of software based implementations of iWARP, its benefits,
and its drawbacks.
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2.1 High Performance Solutions for Ethernet
In this thesis, we describe the porting of LibRIPC to iWARP with the objective
to fully use the performance capabilities of modern Gigabit Ethernet. However,
iWARP is not the only approach to bring high performance networking to Ethernet
fabrics. This section provides a selection of these approaches.

2.1.1 NetSlice
NetSlice [47, 48] is a kernel-side abstraction of network transfer via raw layer
2 sockets, implemented for Linux. It is not restricted to a specific underlying
network architecture – NetSlice works out of the box with every network device
driver for Linux. The idea of NetSlice is to provide a tight coupling between hard-
ware resources and user-level application, to minimize in-kernel overhead. Fur-
thermore, applications are able to bind queues of the network cards to designated
CPU cores. This prevents resource contention of multiple kernel threads which
want to access the same resource from different cores. With this mechanism the
application can achieve a linear scalability to the number of cores and thereby
bail out the bandwidth provided by the network adapter. Furthermore, NetSlice
provides the possibility to reduce the number of kernel invocations by providing
a batch mechanism, which allows to add multiple send/receive operations to the
processing queue via one system call.

NetSlice is able to achieve good results in terms of network throughput, and
scales very good for multiple cores and network adapters. However, it operates
an raw layer 2 frames, what makes it very uncomfortable to handle. Additionally,
it is the responsibility of the programmer, to make sure that the application uses
a well performing binding between a network adapter and a CPU core. NetSlice
is more suitable for packet processors, such as user-level network stacks, packet
filters or software-based routers, which can benefit from the provision of layer 2
frames.

2.1.2 RDMA over Converged Enhanced Ethernet
RDMA over Converged Enhanced Ethernet (RoCEE) [16] is essentially Infini-
Band over "lossless Ethernet". CEE describes an Ethernet-based network in which
all used switches support several features, which are marked optional for standard
Ethernet. These features include Enhanced Transmission Selection and the Data
Center Bridging Exchange Protocol as described in the 802.1Qaz specification,
Priority-based Flow Control as of 802.1Qbb and Congestion Notification as stan-
dardized in 802.1Qau [56]. The set of these specifications enables lossless net-
working, support of classes of service and congestion management for Ethernet.
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InfiniBand requires exactly these features for an efficient operation [16].
As RoCEE uses InfiniBand protocols on top of Ethernet, the InfiniBand Verbs

are the native interface to the application. Thus, we expect RoCEE to be easily
integrated in LibRIPC, making it a very interesting option for porting. Addition-
ally, RoCEE is the third target system of OFED (see 3.3) next to InfiniBand and
iWARP. An implementation of LibRIPC in the future may be beneficial, as Ro-
CEE may well experience increasing relevance in the context of HPC.

2.1.3 Ethernet Message Passing
Ethernet Message Passing (EMP) [68] is a messaging protocol introduced in 2001,
which provides zero-copy network transfer with kernel bypassing. Target sys-
tems of EMP are programmable network cards which allow it to replace the com-
plete firmware of the card. All protocol processing is realized in a newly written
firmware and requires no CPU involvement as DMA is used to transfer data be-
tween main memory and the network card. Despite providing low latency, the
very small protocol puts pressure on the programmer, who is responsible for all
packet handling but reliability, which is guaranteed by EMP. We find EMP not to
be very suitable for our purposes, as it requires fully programmable network cards
and provides few packet handling. Additionally, EMP is everything but common
and has played no significant role in networking.

2.1.4 Open-Mx
Open-Mx [31] is an emulator of the Myrinet Express application interface. It is a
kernel module, operating on top of Linux’s Ethernet layer, thus allowing to exe-
cute applications written for Myrinet hardware on Ethernet networks. The major
drawback of this design is that Open-Mx does not allow kernel bypassing. How-
ever, zero-copy transfer is supported by a trade-off mechanism, which triggers the
zero-copy transfer if the passed message is large enough to introduce more over-
head by copying than by pinning of the memory page. With these mechanisms,
Open-MX is able to effectively exhaust 1 Gigabit Ethernet cards, but does not
reach more than 6 Gigabit/s when 10 Gigabit Ethernet is employed. As Open-Mx
primarily addresses interoperability, sophisticated performance for Ethernet is not
a main goal. It is therefore no reasonable option as a porting-target of LibRIPC.

2.2 Software based iWARP
iWARP is solely a protocol stack and puts no demands on the underlying hard-
ware. The only requirement is, that both endpoints of the communication are
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aware of iWARP, and support the corresponding protocols. Basically, that means
that the entire protocol stack can be implemented in software and run on top of
any TCP socket implementation. Such an implementation on top of the regu-
lar socket API does not provide any advantages over a direct use of the sockets.
However, software based iWARP can provide benefits, and implementations do
exist [6, 22, 79].

One benefit of software based iWARP is that machines which run iWARP com-
pliant hardware, can profit from this hardware while communicating with ma-
chines that run on software driven iWARP. For instance, a server may provide a
service that is not very performance critical in terms of network throughput or
latency, but requests of clients require computation, such as dynamic web sites.
The CPU offloading that is provided by iWARP, can make the server scale much
better, as no computational power is wasted on the network transfer. This does not
lead to any advantages on the client’s side, but the server can handle more requests
at a time.

Additionally, benefits can be achieved when the protocol stack is implemented
in the operating system’s kernel. This way, the application can reduce the number
of system calls, what in turn can lead to significant performance improvement
[58].

Such an approach is taken in [79]. Here, the architecture is divided in a kernel
module that implements the protocol stack, and user-level library that provides the
interface for the application [50–52,54]. Because of the in-kernel implementation,
this approach achieves better performance than TCP sockets, even on ordinary
Ethernet adapters, but can not provide the same degree of CPU offloading, as
hardware based iWARP.

In [22], two approaches are provided; one that implements the protocol stack
entirely in user level, and one that implements it entirely in the kernel. While the
user-level protocol stack is accessed via a library [23], the kernel-level implemen-
tation provides interaction via system calls [24]. Both approaches do not provide
significant savings in terms of the number of necessary system calls. Therefore
neither of the two approaches yields significant performance improvements, in
comparison with TCP sockets.

A third approach is introduced in [6] and provides a total of four different vari-
ations with different degrees of user-level offloading. "User-level iWARP" runs
the protocol stack on top of ordinary sockets, whereas the "Kernel-level iWARP"
is implemented in the kernel on top of TCP/IP stack. "Software iWARP" im-
plements the protocol stack on top of offloaded TCP and the fourth variation
uses a network adapter that is capable of iWARP. Applications interact with the
iWARP subsystem via an extended socket interface, which overloads the standard
libc library. With this interface, sockets can be set set to "iWARP mode". If a
socket is set to this mode, the library translates the calls to the respective subsys-
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tem that is currently in use. If a socket is not set to this mode, the call is simply
passed to the traditional socket interface.



Chapter 3

Design

In this chapter we present our approach to integrate iWARP in LibRIPC. For this
purpose we first describe the structure of iWARP, to explain how the protocol stack
operates and how it achieves its good performance. Next, we present the major
design goals of LibRIPC and which mechanisms are used to achieve them. We
than discuss which techniques available through iWARP can serve as appropriate
mechanisms for our purpose. Our decisions are then named and reasoned.

3.1 iWARP

iWARP is a protocol stack invented to bring high performance networking to Eth-
ernet fabrics. The prerequisites that we discussed in Chapter 2 are addressed with
complementary concepts.

Protocol offloading is implemented via a TCP Offload Engine (TOE) [26, 53,
78]. A TOE performs all processing of the TCP/IP stack in hardware, that is,
on the network card. This way, the CPU is not loaded with calculations of se-
quence numbers, (de-)allocation of buffers or establishing of timers; things that
account for a large part of TCP’s overhead [15]. Network cards that are compliant
to iWARP, are called RDMA enabled Network Interface Controller (RNIC). How-
ever, TCP offloading provides noticeable performance increase, but it does shed
only a part of the overhead [29, 55].

In order to deal with the other prerequisites – zero copy and kernel bypass –
iWARP implements the Virtual Interface Architecture (VIA) [18], a concept for
standardised efficient cluster communication. VIA introduces the fundamental
concept of RDMA, which implies zero copy and kernel bypass. These concepts
are implemented by the establishment of virtual interfaces, which abstract from
the Network Interface Controller (NIC), that is the network card [11]. A Virtual
Interface User Agent (VI User Agent) embodies the abstraction and provides an

13
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Figure 3.1: A simplified illustration of the Virtual Interface Architecture (VIA).
The VI Consumer uses the VI User Agent, which accesses the NIC either via a
control path trough the kernel (for management purposes), or via a data path (for
transmission purposes), bypassing the kernel.

interface for virtual-interface aware applications, the so called VI Consumers. In
order to manage the NIC, the VI User Agent uses a control path to the NIC that
passes the kernel. For data transfer, the VI User Agent bypasses the kernel through
a data path. A simplified overview is depicted in Figure 3.1. The VI Consumers
cherishes the illusion of having a dedicated network interface, of which it has full
control. This illusion provides the VI Consumer with the possibility of directly
accessing the NIC, thus "virtualizing" the network interface. Originally designed
to overcome proprietary interfaces for System Area Networks1, VIA’s concepts
were adopted by several fabrics, such as InfiniBand and iWARP, and are now
applied in several use cases, such as network storage and remote inter-process
communication. [11].

iWARP implements VIA based upon the Internet protocol stack. That is, on
layer 3 of the ISO OSI reference model [40], iWARP uses IP. At OSI layer 4, one
of two specified protocols can be used: The Stream Control Transmission Protocol
(SCTP) or TCP [29,35,51]. Although SCTP performs better in a message passing
context [44] and is more suitable to iWARP’s needs as TCP [75], all available
hardware implementations of iWARP, that we are aware of [19, 43, 57], use TCP.
A detailed view on iWARP’s protocol stack and on SCTP is provided in Section
3.1.1.

1System Area Network is a collective term for high performance communication fabrics for
clusters.
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The idea of RDMA is to avoid or at least minimize CPU involvement in the
transmission process. In this concept the hardware is performing the major part
of the work itself, the user application only has to launch the transmission process
(just like "regular" DMA and hence its name). As soon as the RDMA controller
knows the data source and the data sink on the remote end, all data is directly
transferred from the user-space memory of the sender into the user-space memory
of the receiver. This helps increasing the network performance in two ways. On
the one hand, the data must not be copied from user space into kernel space before
the transfer can start. This obviously saves the time needed to perform the copy
process. Furthermore, it reduces system-bus allocation and CPU involvement, as
this transfer is always performed by the processor [15]. On the other hand, RDMA
avoids occupation of applications. When large pieces of data are transferred via
sockets, the receiver has to issue multiple read operations, because TCP fragments
the data and sends it in multiple pieces instead of one message. Not only does
this keep the application active, it additionally invokes the kernel, hence causing
protection-domain crossings.

A basic distinction between a RDMA transfer as opposed to a socket transfer
is how both communication partners are involved in the process. When using the
socket interface, both sides of the communication have an active role, that is, the
sender performs a send system-call whereas the receiver performs a (or multiple)
receive system-call(s). This way the receiver is immediately informed when data
arrives. In case of a RDMA transfer, only one side is active – either the sender
or the receiver. If the sender occupies the active role, it performs a RDMA write,
that is, it directly writes the data in the receiver’s memory. Otherwise, the receiver
performs a RDMA read, that is, it directly reads from the sender’s memory. In
both cases the passive side of the communication has no indication of this trans-
fer. In general, it is neither informed when its communication partner starts, nor
when it completes the transfer. Instead, the applications must communicate the
transmission explicitly.

However, to allow for RDMA to the remote communication partner’s mem-
ory, the passive side is not utterly uninvolved. The data has to reside in a so called
memory region, where it can be directly accessed by the network hardware. This
usually requires a registration of the memory with the hardware. In this regis-
tration process, the hardware learns the address and assigns a key to it. Such an
address/key pair is called Steering Tag (STag). The key serves as a precaution to
prevent untrusted remotes from accessing memory by guessing the address. Fur-
thermore, the memory belonging to the MR has to be pinned, that is, it has to be
prevented from being swapped out by the operating system. This is necessary to
ensure the consistency of the memory on which a remote communication partner
performs read or write operations. Before a RDMA transfer can start, both the
source and the target memory must be registered as a memory region. Addition-
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ally, the active part of the communication must know the STag of the remote’s
memory region. It is the responsibility of the user to provide a way to exchange
the necessary information to the communication partner – a process called buffer
advertisement.

3.1.1 The iWARP Protocol Stack

As already mentioned, iWARP is not one protocol, but a protocol stack, which
distributes different jobs to individual protocols. Above Ethernet and TCP/IP,
three further protocols are used, from which one becomes unnecessary, if SCTP
is used. The protocol stack is depicted in Figure 3.2, in comparison to TCP/IP
(without TOE) with the socket API. One can see the protocol offloading and kernel
bypassing of iWARP.

The Remote Direct Memory Access Protocol (RDMAP) [35] is the topmost
protocol in this stack. RDMAP is specified as a semantic interface in the form of
a verbs specification. Verbs do not specify the syntactical interface (i.e., names
of methods, order of parameters, and return value) but they precisely describe the
actions that a RDMAP implementation must support, including their behaviour,
the set of accepted parameters and error handling. Verbs may be declared optional,
in which case an implementation does not have to support it. However, if an
optional verb is implemented, it must match the specified behaviour accurately.

The verbs specifications of RDMAP and InfiniBand share a very large sub-
set. Almost all fundamental concepts are identical, such as protection domains,
queue pairs, and memory regions. Differences only appear if RDMAP and In-
finiBand differ in their provided functionality. For instance, RDMAP does not
support multicasting, whereas InfiniBand does. Any specifications of InfiniBand
regarding this are obviously not included in the RDMAP verbs.

In RDMAP, a connection to a remote communication partner is managed via
queue pairs, one for every endpoint of the connection. A queue pair consists of a
send queue and a receive queue, and corresponding completion queues. The verbs
consumer interacts with a queue pair by posting work requests on the send/receive
queues and by receiving work completions on the completion queues.

In order to send a message, the consumer creates one or more work requests,
which is filled with all necessary information. These information contain the mes-
sage type, flags, address and size of the source buffer and – in case of a RDMA op-
eration – the STag of the remote memory region. When the transfer is completed,
RDMAP generates a work completion on the send queue, if the user specified this
behaviour. On the remote side, a work completion is generated on the receive
queue, if the sender’s work request was configured accordingly and the receiver
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Figure 3.2: The structure of b) the iWARP protocol stack compared to a) the
socket API. The RDMAP API completely resides in user space and uses the
iWARP stack, which in turn is implemented in hardware (i.e., on the NIC). The
socket API resides on the border between user and kernel space, as the API con-
sists of system calls. All protocol processing of TCP/IP is done in kernel space.

posted a receive work request on its receive queue. All send and receive oper-
ations are inherently performed asynchronous; a call to post a send or a receive
work-request returns immediately. However, it is up to the consumer to decide
whether he wants to wait blocking for a work completion, poll the completion
queue occasionally, or receive no work completion at all.

The Direct Data Placement Protocol (DDP) [66] is the lower layer protocol
(LLP) of RDMAP. That is, it resides directly underneath of RDMAP in the proto-
col stack. DDP enables the zero-copy data transfer, which is essential for RDMA.
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With TCP, it is always necessary to buffer incoming messages before they can be
made available for the user application, because it is not guaranteed for the pack-
ets to arrive in order. Changing routes or lost and then resend packets can lead to
such out-of-order arrival. DDP divides the data into chunks which fit in a single
segment of the respective LLP. These chunks are enriched with information about
the target memory region and the offset of the contained data within the memory
region. With this information, the payload of the network packet can be placed
directly in the correct place, despite possible out-of-order arrival.

Marker PDU Aligned Framing for TCP (MPA) [20] is a framing protocol
of the iWARP stack. That is, MPA aligns DDP chunks to TCP packets. PDU
stands for protocol data unit and denotes the data that a protocol receives from
its upper layer protocol. In the context of iWARP, the PDU of MPA is the DDP
chunk. MPA resides between DDP and TCP and allows the receiver to rediscover
message boundaries inside TCP’s byte stream. Ideally, MPA and TCP coordinate
to make every TCP packet start with one MPA frame [20], as depicted in Figure
3.3(a). With this alignment, every network packet can be processed on the fly,
as the position of the DDP header is known and the target memory region of the
data can be read immediately. If, for some reason [54], this alignment between
MPA and TCP gets lost, the position of the MPA header has to be recovered.
For this purpose, MPA adds markers in a periodic fashion to the byte stream.
Figure 3.3(b) shows an example of an Ethernet frame in which the headers are not
aligned. Every marker stores a pointer to the last MPA header. As the markers
are distributed periodically, their position can always be recalculated using TCP’s
sequence number as an orientation. The example in Figure 3.3(b) shows that in a
case of misalignment, DDP chunks can be spread over multiple TCP packets. This
leads to the necessity of buffering a packet, if a corresponding DDP header resides
in a preceding packet, which has not yet arrived. In order to accomplish zero-copy
data transfer, it is therefore crucial that MPA provides header alignment.

A second responsibility of MPA is to implement a reliable error detection.
This is necessary to guarantee correct data transfer. iWARP can neither rely on
the frame check sequence (FCS) of Ethernet, nor on the TCP checksum. The
Ethernet’s FCS does not cover errors that may occur during TCP/IP processing in
routers or gateways. These errors must then be detected by the TCP checksum,
which in turn has betrayed weaknesses that can lead to corrupted data [74]. MPA
adds a reliable checksum to the end of its frame, as depicted in Figure 3.3, to
compensate this issue.

The Stream Control Transmission Protocol (SCTP) [73] is a layer 4 protocol,
which serves as an alternative to TCP. Transmission over SCTP is message rather
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(a) iWARP over TCP/MPA with aligned headers: The MPA header directly follows the
TCP header. Both markers point to this MPA header.

E
th

er
ne

t
IP T
C

P

RDMAP

m
ar

ke
r

RDMAP

C
R

C
M

PA
D

D
P

RDMAP

m
ar

ke
r

RDMAP

FC
S

︸ ︷︷ ︸
512Bytes

(b) iWARP over TCP/MPA with unaligned headers: The MPA header is placed at an
arbitrary position inside the TCP packet. The first marker points to the MPA header in the
preceding packet, the second to the MPA header in this packet.
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(c) iWARP over SCTP: The network packet gets along with five headers and the RDMAP
is not fragmented.

Figure 3.3: The structure of an iWARP network packet over (a) aligned TCP/MPA,
(b) unaligned TCP/MPA, and (c) SCTP. Colored fields represent protocol data.
FCS stands for frame check sequence (the error detection mechanism of Ethernet).

than byte-stream oriented. That allows the upper layer protocol (ULP) – DDP,
in the case of iWARP – to send its packets atomically. For instance, if DDP
divides a message into two chunks of 512 Bytes each, and passes them to SCTP,
it is guaranteed that SCTP transfers these chunks in two individual packets [70].
TCP on the other hand has no guaranteed behaviour in such a case. The chunks
may be send together in one packet or split up at any position. Additionally,
SCTP provides strong and reliable checksumming. As these properties match the
functionality of MPA, SCTP can substitute TCP and MPA, reducing the size of the
iWARP stack, as depicted in Figure 3.3(c). Theoretically, that makes SCTP the
protocol of choice for iWARP. However, despite being implemented for a variety
of operating systems (e.g., Linux, Microsoft Windows, and FreeBSD), SCTP is
rarely used. Especially, no realizations of iWARP over SCTP currently exist.
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3.2 LibRIPC
LibRIPC, introduced 2012 in [45], is a network library designed for tightly inter-
connected cloud systems. It is message based and provides a neat interface, which
can be adopted by applications without excessive effort. In order to support vari-
ous types of use cases, [45] identifies two traffic classes and provides one message
type for each of these classes.

One of the identified classes represents distributed applications, for instance
distributed databases such as MongoDB [1]. A distributed application performs a
parallel workload and spreads multiple threads over several nodes in a network.
All threads combined fulfill exactly one task and complement each other. Charac-
teristic messages for these applications tend to be small, as they primarily include
information in order to synchronize the threads. These synchronization messages
may occur frequently, may have high demands on their latency, or both. In any
way, the related overhead has to be kept as small as possible, either to reduce the
overall overhead of a large number of messages, or to reduce the latency of each
individual one.

The other identified class can be summarized as client-server systems, such as
http or mail servers. In this case, communication partners are different processes,
one of which provides a service, which the other uses. Typically, a small number
of servers provide their service for a large number of clients. Messages are likely
to be large, for instance files stored on a ftp server. The latency of these messages
does not tend to be critical, but a high bandwidth is necessary to provide a fast
data transfer.

In order to address both of these traffic classes, LibRIPC provides short and
long messages. The first is designed for small but latency critical messages, the
latter for large pieces of data, which depend on a high bandwidth.

Beyond the support of these traffic classes, LibRIPC aims at several other
goals. In the next Section we discuss these additional goals and defer to a deeper
look on the message types. Following this, we present an overview of LibRIPC’s
interface.

3.2.1 Design Goals
LibRIPC was designed to match several goals, namely a small interface for ease
of integration, message-based communication supporting well performing bulk
data transfer and command messages, good portability to other hardware archi-
tectures and good suiting to cloud computing. We consider bulk data transfer
as well performing, if the transfer provides atomicity as well as high throughput
and reasonable low latency. In this context, atomicity means that a message does
either arrive completely and without data corruption, or not at all. We consider
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command messages as well performing, if messages are transferred with low la-
tency. A further requirement for good cloud-computing suitability is resilience to
the migration of processes to other machines/network addresses. In the following
we describe these goals in more depth and introduce concepts that are used in
LibRIPC to achieve them.

Portability to further network fabrics is an important factor, as it is a goal of
LibRIPC to make applications work on various different network architectures.
That means, an application that uses LibRIPC should require no modifications,
if the underlying network fabric changes. The interface therefore hides every
specifics of a network architecture and is designed so that every fabric can be nar-
rowed down to it. Parameters of the interface are kept generic, raw C-pointers are
used to specify memory regions and no network specific addressing schemes are
used. Instead, LibRIPC provides its own address labels, called service IDs. The
translation of these service IDs to the network address of their hosts is transparent
to the application.

Ease of integration means, that existing applications that currently use another
network library, such as the socket API, can be ported to LibRIPC with reasonable
small effort. This factor is important, because there already exist a lot of appli-
cations for cloud computing. In order to profit from LibRIPC, these applications
must be modified to use LibRIPC’s interface. The necessary modifications should
be kept within certain bounds to reduce the deterrence of the effort. This certainly
includes ease of use in the development of new software from scratch.

LibRIPC’s concept to provide ease of integration is a relatively small inter-
face. Applications do not need to perform any kind of configuration before the
communication can start. The allocation of a service ID is essentially the only
action an application must take, before it can begin to send and receive messages.

Cloud-computing adequacy means, that LibRIPC has to fit in the major use
cases which can be find in cloud environments. This includes applications using
both of the communication classes mentioned earlier.

Another property of the cloud environment is that processes may be migrated
to another machine, and therefore to another hardware address. Possible reasons
for such process migration may be load balancing or maintenance purposes. Lib-
RIPC has to be resilient against these address changes. This is a further benefit
of the service IDs, which we already identified as a mechanism to provide the ab-
straction of the network fabrics. Service IDs identify users of the library and are
translated to the corresponding host’s network address. When a service intends to
pass a message to another service, the correct network address is resolved. If this
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address changes throughout the communication, LibRIPC resolves the new host
of the service ID and is then able to continue the communication. This process is
totally transparent to the application.

Message passing with support of both well performing bulk data-transfer and
small messages is the key concern of LibRIPC. Naturally, the satisfaction of this
demand highly depends on the network architecture, as software can only max out
the performance provided by the hardware. Nevertheless, it is the responsibility
of LibRIPC to use concepts which reach the given performance maximum.

In order to achieve low latency, it is necessary to minimize the protocol over-
head. For instance, the current InfiniBand based implementation uses an unreli-
able datagram transfer, which requires no precedent buffer advertisement and yet
provides RDMA. The size of short messages is limited, and it is therefore possible
to provide a target memory-region in advance, which is large enough to contain
any short message that may arrive. LibRIPC does not specify reliability for short
messages, so that this datagram transfer is valid, although a loss of messages may
occur. The approach of unreliable short messages is taken, because the implemen-
tation of reliability would add overhead to the data transfer, because at least one
acknowledgement packet would have to be send, to indicate message arrival. Ad-
ditionally, reliable transfer often requires a foregoing connection establishment. In
order to prevail atomicity of short messages, their size is limited to the network’s
maximum transfer unit (MTU), so that a short message can always be send in one
packet.

For long messages, protocol overhead can be accepted to a certain extent, as
the transfer of large pieces of data is dominated by the network throughput. There-
fore, the priority is to use mechanisms which allow for high throughput, such as
CPU offloading an zero-copy data transfer. Atomicity for long messages requires
the transmission to be reliable, so that lost packets can be detected and resend,
and the data integrity is guaranteed. Often, reliability requires connection oriented
communication, so that a connection establishment is necessary and adds to the
overhead. Furthermore, the varying sizes of long messages require it to provide
individual memory regions, which in turn make a proper buffer advertisement nec-
essary. However, both connection establishment and buffer advertisement have a
constant overhead, that is, the overhead occurs exactly once per message, no mat-
ter how large this message is. The general performance of the transfer is not
affected and with increasing data length, the overhead becomes more and more
negligible.

A further concept to limit the overhead of data transfer is used in the Infini-
Band specific implementation of LibRIPC. As described, a registration of memory
regions must precede any RDMA transfer, either dynamically for each individual
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message (if the length of the message varies), or statically for an arbitrary mes-
sage, which may arrive (if the maximum length of the message is known before-
hand). Usually, this registration implies significant overhead [29]. In order to
reduce this overhead, LibRIPC maintains memory regions, which are already reg-
istered but no longer used by the application. If the application needs to allocate a
memory region, chances are that there already exist one that is large enough and
may be re-used. In this case, the registration overhead is saved. Similar concepts
can, but need not be used by implementations for other network architectures.

3.2.2 Interface

Portability was one of the design goals for LibRIPC. The interface abstracts from
any specifics of the underlying network architecture, and allows it for any applica-
tion using LibRIPC, to run over any network architecture that LibRIPC supports.
In order to achieve this abstraction, our porting needs to implement the interface.

We describe this interface in the following paragraphs. For this purpose, we
divided the interface into three parts: Methods for the allocation of service IDs,
methods for the buffer management, and methods for the passing of messages.

Service ID Allocation

The service ID is the address scheme of LibRIPC. Every application that wants
to communicate with others via LibRIPC needs an own service ID and needs to
know the service ID of its communication partner, in order to send messages to it.
LibRIPC provides to different ways for the applications to allocate a service ID.
The application can either register a specific service ID, or let the library generate
an arbitrary one.

In real-world scenarios, at least one application needs to acquire a specific
service ID, so that its communication partners can initiate the communication.
For instance, in a client-server model, the server would have to allocate a specific
service ID, which all clients know. The clients, in turn, can allocate an arbitrary
service ID and then initiate the communication with the server, who gets to know
the clients service ID upon reception of its message and can answer to it.

If one of the allocation methods is called, LibRIPC also initializes itself, that
is, it binds itself to a network adapter and starts the resolver and potential other
subsystems. However, the initialization can also be called directly from the appli-
cation, in which case it is skipped in following service ID allocations.



24 CHAPTER 3. DESIGN

Buffer Management

In several high performance network architectures, the involved memory must be
registered with the network adapter, in order to perform the transmission. Lib-
RIPC provides a flexible buffer management in order to perform this registration,
so that the application does not need to know the specific mechanisms and possible
constraints of the network architecture. The application has three different possi-
bilities, to allocate a buffer registered with the network card, which can therefore
serve as the source or the sink of a transmission. A buffer can be
. . . newly allocated, that is, LibRIPC allocates a new memory buffer and registers

it with the network card, or
. . . registered with the hardware, that is, LibRIPC is passed an already allocated

buffer and performs the network specific registration process, or
. . . taken from LibRIPC’s pool of memory regions, that is, LibRIPC re-uses a

memory region, or allocates a new one, if no fitting memory region is avail-
able.

Furthermore, LibRIPC provides a method to free a buffer. That is, the buffer is
added to the pool of available memory regions, and will be re-used the next time
when an application requests memory.

Message Passing

The message passing interface of LibRIPC consists of one method to receive mes-
sages and one send method for each of both message types. When an application
performs a receive call, it neither has to specify from which service ID the mes-
sages shall originate, nor the type of the message it expects. Instead, LibRIPC fills
this information in variables that the application passes to it.

In order to send messages, the application must create an array of pointers
to the messages, an array containing their sizes, and the number of messages the
array contains. This information must be passed to the according method, either
the one for short or for long messages. Additionally, both message types accept
a list of return buffers. In this list, the application can store pointers to buffers,
which LibRIPC can use as targets for RDMA transfer. The according information
(i.e., the STags) are passed to the remote service. If the remote service issues long
messages, it performs RDMA write operations into these buffers.

3.3 Approach
In this section we describe our approach for the integration of iWARP into Lib-
RIPC. We aim at the best performance possible under the condition of full con-
formity to LibRIPC’s interface. In order to describe our approach we divide the
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interface into the same three subsystems as in the previous section: Allocation of
service IDs, allocation of memory buffers and sending and receiving of messages.

Service IDs are an abstraction of the addressing scheme of the network ar-
chitecture. iWARP uses the Internet protocol family and therefore IP addresses.
Allocation of service IDs can be adopted from the existing implementation, as the
allocation algorithm is independent from any hardware specifics. However, we
need a resolver to translate service IDs into IP addresses.

Memory buffers have to be registered with the network adapter to allow RDMA
transfers. The network architecture may have certain prerequisites, which must be
fulfilled, or properties, which must be considered. For instance, InfiniBand either
handles memory regions as a list of pages, or as a list of memory blocks, which
need not be aligned to pages but must be of the same size [39].

Many aspects have to be considered for message passing and receiving. For
both of the two message types provided by LibRIPC we have to choose a suit-
able transfer mechanism, which the hardware provides. Additional aspects are
establishment and management of connections between communication partners.

In the following, we discuss these three subsystems. First, we provide a gen-
eral overview of the approach, in which we introduce the libraries we use and de-
scribe a very simple workflow that can arise when LibRIPC is used. Afterwards,
we discuss the identified subsystems individually and in more depth. Thereby,
we begin with the service IDs, including the resolver, proceed with the buffer
management and finish the Section with a discussion of our messaging system.

3.3.1 Design Overview
Figure 3.4 shows an overview of the subsystems within LibRIPC and which ex-
ternal libraries they use. The buffer management uses the ibverbs library, which
provides a syntactical interface of both the InfiniBand [39] (hence its name) and
the RDMAP [35] verbs. The ibverbs library also provides the RDMAP semantics
used by the messaging system. As iWARP uses TCP, communication partners
always need to create a connection before the data transfer can start. The rdmacm
library provides semantics for TCP/IP-based connection management in conjunc-
tion with ibverbs [76]. Dependent on the use case of LibRIPC, the messaging
system uses UDP sockets, too. The socket API is further used for the resolver.

The libraries ibverbs and rdmacm are part of the OpenFabrics Enterprise Dis-
tribution (OFED) [3], a collection of libraries and drivers assembled by the Open-
Fabrics Alliance (OFA). The OFA is a joint venture of several vendors of net-
work hardware, computer systems and software, such as Mellanox, Cisco, Intel,
IBM, and Microsoft. Originally founded as the OpenIB Alliance, the primary
goal was to develop an open-source software package for InfiniBand support. As
of 2006, the OFA added interoperability to its agenda, starting with the integra-
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Figure 3.4: An overview of our design, depicting the used libraries and the tasks of
LibRIPC. These tasks are the service IDs / resolver management, the buffer man-
agement, and the messaging systems, which contains the connection management.
External libraries are the ibverbs which provide memory regions and RDMA se-
mantics, rdmacm, which establishes connections over which the ibverbs perform
its data transfer, and the socket API, which is used by the resolver, short messages,
and control messages.

tion of iWARP as a supported fabric. The resemblance of the InfiniBand and the
RDMAP verbs allows it to handle both architectures with the same library.

Using our approach may result in the following workflow when long mes-
sages are send: After the user application has registered or requested a service
ID, it uses the buffer management of LibRIPC to allocate memory in which it can
store the data that it intends to send. The application then sends a long message,
and thereby passes the buffers and the service ID of the receiver to our library.
LibRIPC resolves this service ID using UDP sockets, to get the IP address of the
receiver’s host. It then uses rdmacm to establish a connection to the resolved ma-
chine. Rdmacm binds this connection to the respective RNIC and provides the
queue pair, which serves as the endpoint of the connection. The ibverbs library
is then used to transfer the data to the remote machine. On the remote machine,
the service with the addressed IDs performs a call to LibRIPC’s receive method,
and receives pointers to the messages, the number of received messages and the
service ID of the sender.

The ibverbs library can be used with several different RNICs, because the
OFED uses a dynamic library stack. For every RNIC the respective driver regis-
ters a set of functions, which the OFED library stack then uses. These functions
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provide all the functionality needed to use the respective RNIC. This way, the ib-
verbs can be used for any RNIC, which supports this concept. Fortunately, many
vendors of RNICs are members of the OFA. Their hardware is supported by the
drivers integrated in the OFED [3] and therefore compatible to our approach.

In case of short messages, the workflow may be different. As already men-
tioned, our messaging system may use either ibverbs or UDP sockets for short
and control messages. If UDP sockets are used, short messages require no con-
nection establishment at all.

3.3.2 Service IDs and Resolver
As already mentioned at the beginning of Section 3.3, we can use the existing
implementation of the allocation algorithm for service IDs. However, as service
IDs only abstract from network addresses, we need a system to resolve the net-
work address, which corresponds to a service ID. In the following, we describe
our approach for this resolver.

Our resolver works very similar to the one in the InfiniBand-specific imple-
mentation of LibRIPC, which in turn is very similar to the Address Resolution
Protocol (ARP) [60]. When an instance resolves a service, it sends a message to
all other instances, containing its own address, its own service ID and the service
ID it wants to resolve. This message is called resolver request. All instances that
receive a resolver request save the according information (i.e., the address of the
sending service) regardless of whether they currently need the information or not.
If the querying service is addressed in the future, this circumvents an additional
resolution process. The instance that hosts the requested service ID additionally
sends an answer to the querying instance, providing its address; this message is
called a resolver reply. To make sure that every running instance of LibRIPC re-
ceives a resolver request, we either need multicasting (all instances join one mul-
ticast group) or broadcasting (every machine in the network receives the resolver
request). Multicasting would be more desirable, as broadcast messages flood the
whole – possibly very large – network, even if only a small subset of the nodes
run LibRIPC.

Although multicasting was identified by the OFA as a potential future feature
for iWARP [49] and is planed to become part of the RDMAP verbs [67], it is cur-
rently not specified. We therefore need an alternative and decided to implement
the resolver using broadcast messages of the User Datagram Protocol (UDP) [61].
UDP is part of the Internet protocol family, therefore compatible to IP and pro-
vides an unreliable and connectionless data transfer. As UDP is implemented via
the standard socket API, it suffers from the socket’s disadvantages, as discussed
in Chapter 2. However, the protocol mechanisms are narrowed down to the es-
sentials, datagrams are just enhanced by the port numbers, the length of the data,
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and an optional checksum. Despite the sending, no protocol mechanisms are nec-
essary, so that no further resources are consumed. Therefore, we expect small
latencies, as only few CPU cycles are spend on protocol processing, and the small
resolver messages do not cause a lot of copying overhead. Thus, we believe that
UDP is a suitable protocol for this purpose.

This approach aims at simplicity and low overhead, but suffers from the weak-
ness, that the broadcast messages are transferred to the whole network. For
the time being, we use this approach, nevertheless. As stated in [45], the re-
solver system is planned to be substituted by a more sophisticated system, such as
Chubby [9], so that these shortcomings can be accepted for the time being.

3.3.3 Messaging System

The messaging system of LibRIPC supports two different types of messages,
which put different requirements on the data transmission. Long messages re-
quire a reliable transfer, which reaches high bandwidths. Short messages need not
be reliably transferred, but are supposed to be send with lowest latency possible.

As mentioned above, we use the ibverbs library to perform RDMA transmis-
sions. This is possible because of the similarity of the InfiniBand and the RDMAP
verbs, which the OFA used to merge the specifications into one library.

In order to perform RDMA transfer via iWARP, it is necessary to establish a
connection to the communication partner, before the transmission can begin. We
discuss our connection management in the following section and then address the
message types, starting with short messages.

Connection Management

For connection management purposes, we use the rdmacm library, which is part
of the OFED. Rdmacm provides all necessary mechanisms to establish a connec-
tion over RDMA-capable fabrics, and the subsequent usage of the ibverbs library
via that connection. A connection identifier is created by rdmacm, which can then
be used to access the context of the network device and to create the necessary
queue pair for the RDMA semantics. For the connection establishment, a dedi-
cated thread constantly listens on a TCP port for incoming connection requests.
The used port is advertised via the resolving process. After the connection is es-
tablished, the connection identifier is used to create a queue pair. This queue pair
is bound to the network device by rdmacm. As already mention in Section 3.3.1,
functions are registered for each device by the respective driver. The registered
functions are then used by the ibverbs library.
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Short Messages

As discussed in 3.2.1, short messages lay the focus on keeping the latency as small
as possible. The latency is primarily influenced by three factors: packet processing
overhead, the bitrate, and the network’s latency. Packet processing is any work
that is necessary before the data can be put on the wire. That includes header
computation for protocols and possible overhead to make the data accessible by
the network adapter. The bitrate specifies the time needed to put a certain amount
of bytes on the wire. Network latency is the time that the message spends in the
network. That is on the wire, in switches, routers or other network equipment.
The bitrate and the network latency can not be influenced by our library. They
depend on the used hardware and the network infrastructure. However, we can
influence the packet processing overhead.

Because of protocol offloading and kernel bypassing, iWARP is capable of
providing low latency [69]. Although it is not fully competitive to InfiniBand [25],
iWARP outperforms Ethernet without RDMA [21, 64].

The interface of LibRIPC puts two requirements on our design of short mes-
sages. Firstly, LibRIPC allows it to pass multiple messages from different buffers
and memory regions with one call to the library. That requires it to realize a data
transfer in scatter-gather fashion in order to avoid multiple network packets. Sec-
ondly, the receiver does not have to specify the sender, when issuing the call to
the receive operation. Consequences of this requirement is that the receiver must
expect a message from any remote service.

RDMAP provides an atomic send operation, which maps well to the first re-
quirement. It allows for scatter-gather transfer into a pre-defined buffer at the
communication partner. The buffer does not need to be advertised beforehand,
but must be large enough to contain the full message. As LibRIPC limits the over-
all message size to the networks MTU [45], the maximum size is known, so that
this property raises no problem.

The second requirement presents us with a bigger problem. While InfiniBand
allows it to configure a queue pair to receive messages from any source [39],
iWARP binds a queue pair to one specific connection. It is therefore not possible
to configure a queue pair to receive messages from arbitrary senders. Instead it
would be necessary to check for arrived messages on every existing connection. In
the context of tightly interconnected applications which are distributed over many
nodes, this can lead to a significant increase of queue pairs, on which messages
may arrive. To detect the queue pair on which a message is received, it requires
to successively poll every receive queue. In cases in which the receive call is
issued before the communication partner sends its message, this has the potential
to waste many CPU cycles.

An alternative for RDMA atomic send operations is to use UDP, as already
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done for the resolver. As pointed out in Section 3.3.2, UDP provides reasonable
small overhead, keeping the packet processing overhead low. UDP also allows
it to receive a message without specifying the sender beforehand, and is con-
nectionless, whereas the atomic send operation of iWARP requires a preceding
connection establishment. Furthermore, a call to UDP’s receive function is block-
ing; while waiting for the message, the CPU can be used for other computations
or can be kept idle to save energy. However, the usage of UDP is likely to intro-
duce a higher latency. The socket API consists of system calls, introducing context
switches, and the message is copied from user space to kernel space. Additionally,
UDP does not provide a scatter-gather functionality. Admittedly, the sendmsg
system-call allows it to specify multiple source buffers, but the receiver must pass
the exact number of buffers and their sizes to the recvmsg system-call, in order
to receive the messages correctly. In general, the receiver does not know these
details. We therefore have to copy all messages into one buffer before the trans-
mission can be initiated, introducing further overhead.

Comparing the benefits and drawbacks of these two approaches, we came to
the conclusion that the better approach varies from use case to use case. Appli-
cations without need of long messages can profit from UDP, as it saves the over-
head for the connection establishment. But if many short messages are passed,
for instance because of a long run time or a need of much synchronization, the
benefits of the lower latencies of RDMA may amortize this overhead, as the con-
nection is established only once per communication partner. The blocking be-
haviour of UDP can be disadvantageous and beneficial, too, depending on the use
case. Applications that time their communication very well, so that the time spend
on polling the receive queue is smaller than the overhead introduced by context
switches of the blocking UDP, would perform better with RDMA atomic sends. If
send operations are rather arbitrary (for instance in a client-server model, where
the server does not know when a client may request a service), a blocking receive
can save significant CPU time.

Because of these points, it is not possible to make a universally valid statement
of what the better option is. We therefore realized both alternatives, and leave the
choice up to the user of our library, who is capable of judging its application.

Long Messages

Long messages are designed to provide fast transfer for large data. In this context,
large means every payload which is not transferable with one network packet, due
to the network’s MTU. Requirements on long messages are good performance,
that is, high throughput and acceptable latency, and integrity of the data. To assure
data integrity, a reliable data transfer is need. Fortunately, TCP provides a reliable
service, so that data integrity is always given when using iWARP, so that we do
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not need to keep special attention on that part.
For the sending of variably sized messages, the RDMAP verbs provide RDMA

write and RDMA read operations, as discussed in Section 3.1. In order to use
these operations, both the sender and the receiver have to register a memory re-
gion large enough to store the data. One of the involved communication partners
plays the active role in the transmission, while the other’s role is passive. When
the RDMA write operation is used, the sender plays the active role and writes its
data directly into the receiver’s memory region. Inversely, the receiver plays the
active role within a RDMA read operation. In this case, the data is read from
the sender’s memory region. Obviously, the active part of the transaction must
know the correct memory region of its communication partner. The action of pro-
viding this information is called "buffer advertisement". LibRIPC allows buffer
advertisement to be transferred piggyback, with both short and long messages.

The sending process of long messages uses both types of RDMA operations,
and is split into three parts. In the first step, only RDMA write operations are
performed. As described in Section 3.2.1, each instance of LibRIPC holds a list
of known memory regions of its communication partners. For every message that
is to be send, the list is searched for a memory region of the receiver, which is
large enough to store the message. If such a memory region is found, the RDMA
send operation is initiated and the data gets transferred. In the second step, an in-
formational message is passed to the receiver. This message contains information
of all the messages. Already transferred messages are marked as such, and for the
messages which still are to be transferred, the buffer advertisement is done. The
third step is then performed at the receiver, who performs a RDMA read operation
for all remaining messages.

Step two is necessary in every case, even if all messages can be transferred
via RDMA send operations. As the sender plays the active role, the receiver does
not notice anything of the transmission. The informational message is therefore
necessary, to inform the receiver of the messages.

To transfer the informational message, the same mechanism as the one for
short messages is used. This reduces the overhead at the receiving end, as both
short and long messages can be handled identically. As the short messages were
designed for a low latency, this also takes care of keeping the protocol overhead
for long messages reasonably low.
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Chapter 4

Evaluation

In this chapter we evaluate our approach of porting LibRIPC to iWARP. We first
state the goals of our evaluation in Section 4.1. In Section 4.2, we describe details
of how we implemented our approach. Next, we discuss conducted experiments
and their results in Section 4.3, and finish the chapter with a summary.

4.1 Evaluation Goals

Our evaluation aims at two main goals. The first is to assure that we succeeded
with the porting itself. That is, that applications which were written to use the
InfiniBand prototype of LibRIPC do not have to be modified in any way, in order
to work with our implementation. This is one of the main goals, because the
interface compliance of our porting was an explicit goal of our approach, as stated
in Section 3.3.

The second main goal is to measure the performance that our implementation
is capable to provide. Besides the interface compliance, high performance was
the second goal of our approach. We therefore conducted performance tests, and
compared the results with alternative solutions for network communication.

As LibRIPC provides two message types that target different patterns of net-
work communication, we conducted tests for two parameters. One of these pa-
rameters is the throughput, which is the key concern for long messages. For short
messages, the key concern was the latency of the communication. In order to
evaluate the latency of our approach, we distinguished between the two different
approaches, which we discussed in Section 3.3.3.

Besides these two goals, our evaluation yields one further important output. In
our experiments we use applications that were already used with the InfiniBand
based prototype implementation of LibRIPC. With their usage, we are capable
of judging the initial design of LibRIPC in terms of its portability. Portability
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was named one of LibRIPC’s design goals in its introduction thesis [45]. As we
performed the first porting of LibRIPC we gained the first insights, whether this
goal was achieved or not.

4.2 Implementation of the iWARP Subsystem

With our porting of LibRIPC to iWARP, we confirmed the high level of portabil-
ity of the design of LibRIPC. During our implementation we neither needed to
compromise with, nor change the interface at all. Effectively, the prototype im-
plementation of LibRIPC needed change in only 26 lines of code shared by all
architecture specific implementations. These lines were exclusively architecture
specific members of structs, which just needed to be adopted to the InfiniBand-
specific code. Nevertheless, the portability can not yet be regarded as proven,
as iWARP and InfiniBand share a significant amount of concepts, such as queue
pairs and memory regions. A porting of LibRIPC to a less similar network archi-
tecture, such as Blue Gene Networking [12, 30], would be needed to further test
the portability, and might be a subject for future work.

In Section 3.3 we described the design of our porting, which subsystems we
use and how they interact with each other. The following sections reveals several
details of how we implemented these concepts.

Service IDs and Resolver

We did not change the allocation algorithms of service IDs by any means, as they
are completely unrelated to any architectural specifics. The resolver is imple-
mented using UDP sockets and resides in an own thread. This thread is almost
always in a blocking state, as it constantly waits for a resolver request to arrive.
When this happens, the thread saves the included information and answers if its
instance of LibRIPC hosts the demanded service ID.

A resolving process is initiated in case of a send call to a service, which the
running instance of LibRIPC does not know, yet. It is therefore handled in the
context of this library call and armored with a timeout mechanism, in case the
requested service ID is currently unassigned.

Besides the requested service ID, and the ID of the requesting service, a re-
solver request contains the IP address of the sending instance, and several port
numbers. These port numbers include the port on which the resolver reply is ex-
pected, the port on which RDMA connection requests are expected, and, in case
of UDP based short messages, the port on which these messages are received.
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Buffer Management

The buffer management is completely adopted from the implementation for Infini-
Band. This is possible, because InfiniBand and RDMAP specify memory regions
very similar. As we furthermore use the same library as for InfiniBand, no modi-
fications were necessary. Details of the buffer management can be found in [45].

Connection Management

Similar to the resolver system, the connection management system maintains a
dedicated thread, which constantly waits for incoming connection requests, and
executes the initiation of a connection in the context of the sender. The rdmacm
library performs a handshake, in which all necessary information is exchanged.
First, the initiator of the message creates a queue pair and then issues a connection
request, which raises an event at the remote thread. A connection request carries a
payload containing the ID of the requesting service and of the service with which
the connection shall be established. When a valid connection requests arrives,
that is, the requested ID is hosted by the receiver of the request, the remote thread
creates its own queue pair. It then sends a connection acceptance, which in turn
raises an "connection established" event at the initiator. As soon as this event
is received by the initiator, the remote thread receives the same event and the
rdmacm connection is established. The created queue pairs are now ready to be
used by the messaging system.

Short Messages with UDP

The sending process of short messages via UDP is divided into two steps. First,
we have to emulate the scatter-gather mechanism, which UDP does not provide.
For this purpose, a new buffer is allocated and every message is copied into this
buffer, aggregating all messages. This buffer is then send via UDP and freed
afterwards.

A slightly more complex part of the sending process takes place at the receiv-
ing end. In real life applications we have no guarantee that a receive call is issued
before the sender sent the message. If a UDP message arrives before the corre-
sponding receive call is issued, this message gets lost. We therefore implemented
a dedicated thread, which constantly listens for incoming UDP messages. Every
service ID has an associated list of message buffers, in which incoming messages
for this service are inserted. When the application issues the receive call, the first
element in the list is taken out and handed back to the application. If no message
has arrived yet, the application is blocked, and is woken by the message receiver
thread when a message arrives.



36 CHAPTER 4. EVALUATION

Short Messages with RDMAP

As opposed to short messages via UDP, a connection establishment is required to
send short messages via RDMAP. For every connection that an instance of Lib-
RIPC holds, a receive work-request is posted to the corresponding receive queue.
When a short message is sent, an atomic read operation is issued, which places
the message directly in the buffer of this work request at the remote end. Un-
fortunately, the receiver has no way of knowing, on which of the connections a
message may arrive. We therefore maintain a list of all receive queues, which is
polled when an application issues a receive call. As soon as a message arrives
on one of the receive queues, a new work request is posted for the corresponding
connection, and the received message is passed to the calling application.

Long Messages

We implemented long messages straight forward based on the description in Sec-
tion 3.3.3. Every message for which a suitable memory region is available is
passed via a RDMA write operation. A message containing all necessary infor-
mation about the transmission is then passed to the receiver using the same mech-
anism that is used for short messages. This message contains the address of the
long messages (either where they were written via RDMA write, or from were
they can be read), the sizes of the messages, the STag (in case the receiver must
fetch the message via RDMA read) and a flag that signals whether the message
was already transferred via RDMA write, or not. All messages that could not be
transferred, yet, are then fetched by the communication partner via RDMA read
operations.

4.3 Experiments
In order to evaluate our porting, we conducted several experiments to measure
how our approach accomplished its objectives. Basically, we applied the same
performance tests that were already used in the introduction of LibRIPC in [45].
This approach has several advantages. On the one hand, this saves time, as the
used applications are already available. On the other hand, we are able to compare
our results with the ones of the InfiniBand based implementation. Furthermore,
we are able to proof the interface compliance, if the used applications require
no modifications. Aside from that, these tests were well-considered, and as our
implementation targets the same goals as the initial implementation, the tests are
well suited to evaluate our porting.

Unfortunately, we lack iWARP-capable RNICs to run our experiments on. We
therefore conduct them by using the Softiwarp implementation of [79] (see Sec-
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tion 2.2) on top of InfiniBand network adapters with IP over InfiniBand (IPoIB).
The result of this setup is, that we are not able to profit of all of iWARP’s mecha-
nisms. For instance, we have no protocol offloading, as IPoIB is a software library
and not a functionality of the InfiniBand adapter itself. As opposed to that, the
zero-copy mechanisms are still applied, as they are supported by both Softiwarp
and IPoIB. Kernel bypass is only partially achieved by our setup. All packets are
processed by the TCP/IP stack of IPoIB, which resides in the kernel. However, the
frequent protection domain crossings that we experience with the socket API are
avoided, as the protocol processing is done in kernel, by the Softiwarp module.

Nevertheless, we believe that the results of our experiments are meaningful.
Using Softiwarp does not affect our first evaluation goal, the interface compliance.
Softiwarp can be used with the OFED [54] and therefore needs no modifications
of our code. We used this implementation of software based iWARP, as it is the
only one that is compliant to the OFED and is capable of achieving performance
improvements. Additionally, it is the only project, which is still worked on.

The second evaluation goal – performance measurement – obviously is af-
fected by using Softiwarp. Because of the mentioned points, we can not expect
our setup to perform as well as the usage of a RNIC capable of iWARP. However,
we can expect significant performance improvements compared with the socket
API, as Softiwarp uses the sockets completely in kernel space [58]. Furthermore,
we are able to estimate, whether our results are heavily affected by the lack of an
RNIC or not. We will include this knowledge in our interpretations and therefore
gain a valid evaluation of our approach.

In order to evaluate the latency of our library, we used a simple ping-pong
application, in which two communication partners repeatedly send its counterpart
a message, wait for it to reply and then send the next message. We used this test
with long messages as well as with both types of short messages and made use of
payloads of different length. Despite long messages not being designed for low
latency, we applied this test on long messages to evaluate, if the deployment of a
designated message type for short messages is beneficial.

We conducted more thoroughly testing of long messages with the Jetty web
server [28]. Jetty is written in Java and is a http server, which can host both static
content and dynamic servlets. Besides serving as a stand-alone server, Jetty can
be (and is [27]) embedded in other applications. We use Jetty as a stand-alone
server, performing several transfers of files with varying sizes, which significantly
exceed the given limit for short messages. Details of how LibRIPC was integrated
in Jetty are discussed in [45].

In the following sections we describe the application of the planned experi-
ments. We first describe the test system on which the experiments were conducted
and then present and interpret the results.
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4.3.1 Test System

To conduct our experiments, we used two nodes of a small four-node cluster. Each
of the nodes is equipped with an Intel Xeon E5520 quadcore CPU clocked at 2.27
GHz and 6 GB of DDR2 RAM. As network interconnection we use the installed
Mellanox ConnectX-2 QDR InfiniBand adapters with Softiwarp on top of IPoIB,
as mentioned in 4.3. The adapters are connected via a HP InfiniBand DDR switch
and provide an effective bandwidth of 16 GB/s. A CentOS 6.2 with a 64-bit Linux
kernel version 2.6.32 is installed on both nodes. The Softiwarp software needed a
slight modification in order to compile for the used kernel, and to create a virtual
device over IPoIB. Overall, this changed four lines of code and did not affect any
concepts or mechanisms of Softiwarp.

4.3.2 Results and Interpretation

In this section we present and discuss the results of our experiments, first the
ping-pong test and then the Jetty test.

Ping-Pong Latency Test

In order to evaluate the latency of our implementation, we used the same ping-
pong test as in [45]. A client repeatedly sends messages containing pseudo-
random data to a server and waits for the server to reply, before the next messages
is sent. The receiving server answers every incoming messages by replying with
the exact same message. In one run, the client always sends the same message,
which is generated before we start measuring the transfer time. We conducted the
experiments with messages of a size between 50 and 1400 bytes, with 50-byte
steps. For every size, the message was sent 10000 times between the two nodes.
We recorded the time needed for all of the transfers and computed the average
round trip time by diving the time by 10000.

The experiments were conducted with six different approaches. One being a
socket based implementation using TCP, and four being LibRIPC with varying
implementations and used message type. For both implementations – one using
UDP, one using RDMAP for short and control messages – we tested both message
types. The fifth approach is LibRIPC over InfiniBand.

Figure 4.1 shows the results for the ping-pong test. Our UDP based implemen-
tation of LibRIPC needed about half as much time as the sockets, regardless of
which message type was used. Short messages needed from 27.28 microseconds
(50 bytes) through to 32.12 microseconds (1400 bytes) and were only slightly
faster then long messages, which range from 32.5 (50 bytes) through to 33,45
microseconds (1400 bytes). The difference between those two message types is
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Figure 4.1: Results of the ping-pong test using TCP sockets and LibRIPC over
both iWARP and InfiniBand. The figure shows the results for both implementa-
tions (i.e., with UDP and RDMAP based short messages) for both message types.

only marginally, despite the long messages effectively performing two transfers
(the sending of the control message and the RDMA operation). We believe that
this indicates a large impact of the system call that is performed for both short
and long messages. Additionally, we suspect the system calls to be the reason for
the outliers that can be seen for both of the UDP implementations. In three cases
(850, 1000, and 1050 bytes), the long messages were even faster than the short
messages.

The average round trip time of messages transferred by TCP sockets range
from 51.28 microseconds for 50 bytes messages through to 64.39 microseconds
for 1400 bytes messages. The degree of this difference to our UDP based approach
is a little surprising, as the short messages of our implementation of LibRIPC also
use the socket API, and add further overhead due to an extra copy process, as
LibRIPC provides scatter-gather functionality. Protocol overhead added by TCP
is the only possible reason that we can make out for this effect.

Of our implementations of LibRIPC over iWARP, the RDMAP based imple-
mentation achieved the best results. Here, the long messages needed 24.16 mi-



40 CHAPTER 4. EVALUATION

croseconds for 50 bytes messages through to 26.58 microseconds for 1400 bytes
messages, and were only slightly slower than short messages that ranged between
19.89 (50 bytes) and 22.61 microseconds (1400 bytes). We promise ourselves
even better results when a RNIC capable of iWARP is used. The TCP protocol
overhead showed to be an important factor compared to UDP messages, therefore
we believe that the protocol offloading would introduce a further performance
improvement.

Despite the unexpectedly high latencies for small messages (20.57 microsec-
onds for 50 byte), the InfiniBand based LibRIPC yielded the best results. Whereas
the latency reached its maximum for the smallest message, the fastest transfer
was achieved for 1150-byte messages (13.73 microseconds). The observed aver-
age round trip time for messages of 1400 bytes was 14.34 microsecond. How-
ever, the fact that the InfiniBand implementation reached the lowest latencies en-
dorses our interpretation, that protocol offloading could improve the results of our
iWARP based approach.

Jetty Web-Server Test

In our second experiment we lay focus on the performance of long messages.
We used the web server Jetty [28], which runs on top of TCP, to evaluate the
performance when sockets are used. Additionally, we used a modification of Jetty,
which runs on top of LibRIPC and is introduced in [45]. For the usage of TCP,
we implemented a simple client application that uses libcurl [72] to create http
requests and to parse the responses. In order to test the performance of Jetty
over LibRIPC, we used a second application, that passes http get-requests via
short sends and receives the http responses and the file data via long sends. We
conducted the experiment only with our UDP based implementation of LibRIPC,
as both variations use the same RDMA operations. Because the transferred data is
comparably large, there are no significant differences to expect in this experiment.

Both client applications request a file via http get and wait for the response and
the data to arrive. As in our ping-pong tests, we performed 10000 repetitions for
each file and computed the average transfer time. The files were created with sizes
varying between 128 KB and 80 MB and are filled with pseudo-random data.

Figure 4.2 shows the results of this experiment. As with the ping-pong tests,
LibRIPC over iWARP outperforms the transfer via TCP sockets by far. Using
LibRIPC, the average transfer time ranged from 0.185 milliseconds for a 128 KB
file through to 39.76 milliseconds for a 80 MB file. With TCP sockets used, the
average transfer time was almost the double than with LibRIPC (0.36 millisec-
onds) for the smallest file (128 KB), and the treble (118.01 milliseconds) for the
80 MB file.

The results for the small files are not surprising, as they reflect the results from
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Figure 4.2: Results of the jetty web-server test using TCP sockets and Lib-
RIPC over iWARP and InfiniBand.

our first test. However, for the larger files, the latency of the messages grows less
important, as it gets dominated by the throughput. We can therefore conclude,
that the data transfer benefits strongly from the use of RDMA.

As opposed to that, the protocol overhead does not seem to be of great signif-
icance in this test. This makes sense, as we run our experiments with no pressure
on the CPU, so that the increasing CPU involvement due to protocol processing
does not become a bottleneck.

LibRIPC over InfiniBand yields no performance improvements. To the con-
trary, with 0.19 milliseconds for 128 KB files and 42.82 milliseconds for 80 MB
files, the InfiniBand implementation is constantly slower. We therefore expect no
strong improvements when RNICs capable of iWARP are used in this scenario.
However, we do believe that in situations of CPU pressure, our good results will
significantly decrease, as the protocol processing will suffer under the resource
contention with other processes.

4.4 Summary
In this evaluation we aimed to proof our approach to be functional and well per-
forming. With the tests we conducted, we were able to show that the approach
yields reasonable results. Despite the usage of software based iWARP, the perfor-
mance of our implementation surpassed the socket API by far. Additionally, our
approach outperformed LibRIPC over InfiniBand for long messages. We expect
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that these results become even more distinct, when appropriate hardware is used.
The good results of several performance tests [17, 21, 25, 62, 69] encourage us in
this expectation.

Besides the good performance results, our implementation is completely com-
pliant to the interface of LibRIPC as introduced in [45]. We could therefore show
the validity of our approach, as well as the portability of LibRIPC.



Chapter 5

Conclusion

In current IT trends, the concept of cloud computing plays a very significant role.
Several providers of clouds have emerged, such as Amazon with EC2 [4] and
Google with its cloud platforms [38], which address business costumer that plan
to outsource their IT departments, in order to save costs. We identified high de-
mands on the networking infrastructure of these cloud systems, which require high
performance in combination with reduced pressure on the CPU cores. However,
current cloud applications often rely on the Berkeley socket API, which does not
correspond to these demands.

The network library LibRIPC overcomes theses issues of sockets in terms of
performance and CPU load. Its neat, message based interface eases the integration
in both new and existing applications and makes no assumptions of the underlying
hardware. However, the current prototype implementation for InfiniBand yielded
good results, but requires relatively expensive InfiniBand compliant hardware.

With our porting of LibRIPC to iWARP, we combine the flexibility and ease
of integration of LibRIPC with the cost efficiency of Ethernet without abandoning
the performance benefits of InfiniBand. With an experimental evaluation we were
able to verify this claim and achieved promising results. Despite running the tests
over software based iWARP, our approach outperformed TCP sockets by far in
terms of both latency and throughput. In comparison with the existing InfiniBand
based prototype, our implementation added little latency, which we believe to be
avoidable with the use of hardware based iWARP.

5.1 Future Work

Despite our successful porting of LibRIPC to iWARP, we could not ascertain the
portability of LibRIPC beyond doubt. For this purpose, iWARP’s resemblance to
InfiniBand is to large. It is therefore an explicit goal to enable LibRIPC for less
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similar network architectures as well. One promising goal is the Blue Gene super-
computer [12, 30] as the interconnection of Blue Gene is completely dissimilar to
InfiniBand and iWARP.

Another field of work is the resolver of LibRIPC, which is currently kept very
simple for both implementations, and which we do not believe to scale well, be-
cause of the usage of multicast and broadcast, respectively. Especially for our
implementation for iWARP, this is of special importance. Not only is the flooding
of the network intensified with the usage of broadcasting, compared to multicas-
ting, the UDP based approach introduces another problem. To date, all instances
of LibRIPC listen on the same UDP port, to which all resolver requests are send.
Unfortunately, for multiple instances on the same host, it is not possible to listen
simultaneously on the same port. As a consequence, our implementation is cur-
rently limited to one instance per host, because all but the instance that starts first
are not able to bind to the port. It is therefore urgent for us to find and implement
are more sophisticated solution.

In order to further verify our approach, it is necessary to evaluate our imple-
mentation on iWARP compliant hardware. Despite our promising results with
software based iWARP, the performance improvements that we promise ourselves
from iWARP RNICs are still to be proofed.

Finally, we want to conduct further experiments in order to discriminate the
performance of UDP and RDMAP based short messages. In our latency tests
discussed in Section 4.3.2, RDMAP was able to outperform UDP. But in the sim-
ulated scenario, the overhead of connection establishment was compensated by
the high number of repetitions, as the connection needed to be established only
once.
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