
Resource-conscious Scheduling for Energy
Efficiency on Multicore Processors

Andreas Merkel Jan Stoess Frank Bellosa

Karlsruhe Institute of Technology, System Architecture Group

{merkel,stoess,bellosa}@kit.edu

Abstract
In multicore systems, shared resources such as caches or the
memory subsystem can lead to contention between applica-
tions running on different cores, entailing reduced perfor-
mance and poor energy efficiency. The characteristics of in-
dividual applications, the assignment of applications to ma-
chines and execution contexts, and the selection of processor
frequencies have a dramatic impact on resource contention,
performance, and energy efficiency.

We employ the concept of task activity vectors for char-
acterizing applications by resource utilization. Based on
this characterization, we apply migration and co-scheduling
policies that improve performance and energy efficiency by
combining applications that use complementary resources,
and use frequency scaling when scheduling cannot avoid
contention owing to inauspicious workloads.

We integrate the policies into an operating system sched-
uler and into a virtualization system, allowing placement de-
cisions to be made both within and across physical nodes,
and reducing contention both for individual tasks and com-
plete applications. Our evaluation based on the Linux op-
erating system kernel and the KVM virtualization environ-
ment shows that resource-conscious scheduling reduces the
energy delay product considerably.

Categories and Subject Descriptors D.4.1 [Operating Sys-
tems]: Process Management—Scheduling

General Terms Design, Management

Keywords activity vectors, CMP, energy-aware schedul-
ing, frequency scaling, migration, resources, task character-
istics, virtualization

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’10, April 13–16, 2010, Paris, France.
Copyright c© 2010 ACM 978-1-60558-577-2/10/04. . . $10.00

1. Introduction
Today’s operating system schedulers treat cores of a chip
multicore processor (CMP) largely like distinct physical
processors. Yet, there are some interdependencies between
cores that need be taken into account for optimal perfor-
mance and energy efficiency.

The cores of a chip share resources such as caches and
memory interfaces. This is likely to cause contention be-
tween the cores if activities with similar characteristics, for
example several memory-bound programs, are running to-
gether [20]. Contention slows down the execution of the
programs, and besides the performance penalty, also in-
duces inefficient use of energy, since cores waiting for a
resource to become available dissipate power without mak-
ing progress. Aggressive clock gating or deep sleep states
do not necessarily alleviate the energy inefficiency: a recent
study shows, that, even with zero-power idle modes, race-
to-halt like scheduling schemes are sub-optimal for all but
the most CPU-bound applications [27].

A second cross-effect, also related to energy efficiency,
stems from the fact that many chips only allow setting a sin-
gle frequency and voltage for the entire chip, since allow-
ing multiple frequencies and voltages introduces additional
hardware complexity. The optimal frequency at which the
processor can execute a program most efficiently in terms
of runtime and energy depends on the program’s character-
istics, in particular on the frequency of memory accesses
[12, 30]. Hence, if applications with different characteris-
tics are running in parallel on a chip, not each one can be
executed at its optimal frequency.

Since the scheduler is the component of an operating sys-
tem responsible for deciding which applications run on the
cores simultaneously, scheduling is crucial for performance
and energy efficiency. In a cluster system consisting of mul-
tiple nodes, the same holds true for the assignment of ap-
plications or entire virtual machines (VMs) to the individual
nodes, since this assignment determines the programs that
are eligible to be co-scheduled on the processors of the node.

For a multicore chip that offers only chip-wide frequency
scaling, the question arises whether it is advantageous to
combine tasks with different characteristics in order to re-

duce resource contention, or rather to run tasks with similar
characteristics together in order to be able to run all applica-
tions at their optimal frequency.

This paper extends our previous work [17], in which we
have shown that addressing the problem of memory con-
tention by co-scheduling can lead to a significant improve-
ment of the energy delay product (EDP), which is defined
as the product of runtime and expended energy [9]. In or-
der to characterize tasks, we make use of the concept oftask
activity vectors[18], which represent the utilization of chip
resources caused by tasks. Based on the information pro-
vided by activity vectors, we propose scheduling policies
that avoid resource contention by co-scheduling tasks with
different characteristics.

We make the following contributions:

• We show that combining tasks in order to reduce resource
contention is more important than combining tasks that
share a common optimal frequency.

• We propose a co-scheduling policy that avoids contention
for bottleneck resources.

• We propose a migration policy that balances resource
utilization across execution contexts.

• We propose a frequency heuristic that, if scheduling can-
not avoid contention, reduces the impact of resource con-
tention on energy efficiency.

• We show that using the concepts of virtualization and
VM migration, our policies can be extended beyond the
border of a single node, and can leverage the workload
diversity of an entire group of nodes.

We integrate the policies into an operating system sched-
uler and into a virtualization system, allowing resource-
conscious placement within and across nodes, and reducing
contention both for individual tasks and complete applica-
tions. For the rest of the paper, we refer to ataskto encom-
pass both applications and VMs.

The focus of our co-scheduling policies lies on long-
running, compute-intensive, and independent tasks: that is,
we assume that tasks do little I/O and do not communicate
with each other very often. Finally, our approach is currently
limited to single-processor VMs.

We have extended the Linux 2.6.22 kernel scheduler to
support our new strategies. We use the KVM virtualization
system to extend scheduling support from individual tasks to
complete software environments running in VM instances,
and leverage VM migration to make placement decisions
across different nodes. An evaluation of our policies using
SPEC CPU 2006 benchmarks reveals that our policies man-
age to reduce EDP considerably.

The rest of this paper is structured as follows: Section 2
reviews related work. Section 3 presents our analysis of opti-
mal multicore scheduling. Section 4 describes how we apply
the concept of activity vectors to represent resources relevant

for multicore scheduling. Sections 5 and 6, introduces our
scheduling and migration policies as well as the frequency
heuristic. Section 7 describes the implementation of our poli-
cies for Linux and KVM. Section 8 evaluates our proposed
policies and Section 9 concludes.

2. Background and Related Work
Previous research has investigated the problem of select-
ing a frequency at which to run a task with given char-
acteristics most efficiently in terms of energy consumption
and performance [7, 12, 27, 30]. Memory-bound tasks can
be executed at lower CPU frequencies without significant
slowdown, since memory throughput and not CPU speed
is the determining factor for their performance. In contrast,
compute-bound tasks run more efficiently at higher frequen-
cies, since lower frequencies prolong their runtime and cause
them to consume power for a longer time, often negating
the power savings gained by frequency scaling. However, all
previous research was based on the assumption that a sepa-
rate frequency can be chosen for each CPU.

Co-scheduling tasks based on memory bandwidth or
other shared resources has been proposed for SMP [1, 31],
SMT [16, 21, 26], and CMP systems [2, 6, 11, 25]. To our
knowledge, no previous research has addressed resource-
conscious co-scheduling and frequency selection in combi-
nation. Also, the constraint that multiple cores need to runat
the same frequency has not been addressed in this context.
Moreover, most research concentrates on finding optimal
combinations of tasks, but does not discuss how a multipro-
cessor scheduler in a real system can succeed in combining
tasks accordingly. In addition, research on co-schedulingfor
CMP systems has concentrated on the last-level cache as
limiting resource. However, our experiments with the SPEC
CPU 2006 benchmarks suggest that memory contention is
becoming more important than cache contention.

A number of approaches have leveraged the dependency
between optimal processor speed and memory intensity in
the context of heterogeneous multicore processors, that is,
chips whose cores support the same instruction set architec-
ture, but operate with different speeds [8, 13, 24]. By assign-
ing tasks to cores based on their memory intensity, runtime,
energy, or EDP can be optimized. A related approach assigns
a virtual machine monitor to a slower core, since its compu-
tations often overlap with I/O [14]. These approaches are
orthogonal to ours, since they assume cores running at dif-
ferent speeds, while our approach is suitable for cores that
have to share the same frequency/voltage domain.

Finally, there has been some research interest in us-
ing virtualization technology to improve energy efficiency,
mostly, however, without specifically addressing resource
contention a key factor in power consumption [22, 28, 29].
An exception forms the vGreen approach, which also pro-
poses to link VM workload characteristics and scheduling
to achieve better energy efficiency [5]. However, vGreen

focuses on cross-node placement only, while our approach
also investigates VM scheduling within nodes; also, vGreen
requires a central node to coordinate placement, while our
approach uses a distributed balancing scheme between pair-
wise nodes.

3. Analysis
For investigating the effects of resource contention and fre-
quency selection, we chose a 2.4 GHz Intel Core2 Quad
Q6600. The Core2 Quad Q6600 is a multi-chip module that
consists of two silicon dies in one package. Each die com-
prises two cores sharing 4 MiB of L2 cache. This allows ob-
serving the effects of cache as a shared resource, since it
is possible to conduct experiments on cores sharing or not
sharing L2 cache.

In our test system, the chip is connected to 8 GiB of
DDR2 PC-6400 memory via a 266 MHz front side bus. The
processor supports scaling the frequency down to 1.6 GHz.
In this case, the core voltage is scaled from 1.24 V to 1.13 V.
(For the rest of the paper, when we speak of frequency
scaling, we imply that voltage scaling is also applied.)

We also performed experiments with an AMD Opteron
2354 quad-core chip. In contrast to the Core2, the Opteron
does not access memory via a front-side bus, but possesses
an integrated memory-controller on the chip. The cores of
the Opteron possess private L1 and L2 caches and all share
a common L3 cache, which makes it harder to analyze the
importance of cache contention than for the Core2, where
two cores share a common cache, respectively.

Our basic finding is the same for the Core2 and the
Opteron: it does not pay off to co-schedule memory-bound
tasks in order to be able to profit from lower chip frequen-
cies. Therefore, and since the cache architecture of the Core2
allows a better analysis of cache contention, we will discuss
our analysis of the Core2 in detail and only summarize the
results with the Opteron at the end of this section.

As metric for our analysis, we choose the energy delay
product (product of the energy expended by the processor
for running a task multiplied by task runtime). The EDP em-
phasizes both performance and power consumption and re-
flects the goal of achieving energy efficiency without sacri-
ficing too much performance. We deliberately consider only
the energy consumption of the processor and not of other
system components. This is a simplification, since we imply
that the energy consumption of the other components is not
influenced by scheduling, which means that the power con-
sumption of all other components stays the same regardless
which schedule is applied. For determining processor power
consumption, we use a National Instruments SC-2345 board.

3.1 Resource contention

We evaluated resource contention between the cores using
several microbenchmarks. The resources the cores are con-

Figure 1. Normalized runtime of microbenchmarks running
on the Core2 Quad

tending for are L2 cache (shared by two cores, respectively)
and memory bandwidth (shared by all four cores).

We selected microbenchmarks that differ in their use of
the named resources:aluadd performs integer additions ex-
clusively on the CPU registers.stream is a memory bench-
mark [15]. While originally,stream works on a data array
considerably larger than the cache, we also created modi-
fied versions of the benchmarks that work on data arrays
that fit into the L2 cache once (stream-fit1) or twice
(stream-fit2).

Figure 1 shows the runtimes of the microbenchmarks
when run alone, together with another instance of the same
benchmark running on a core using a different L2 cache,
together with an instance on a core using the same cache, and
together with three instances on the other cores. All runtimes
are normalized to the runtime of one instance running alone.

As expected,aluadd’s runtime is not influenced by other
cores. The runtime ofstream-fit2 increases slightly when
another instance uses the same cache because of conflict
misses. The runtime ofstream-fit1 increases consider-
ably when two instances share a cache because of conflict
and, mainly, capacity misses. When four instances are run-
ning, memory contention causes a further increase in run-
time. Finally, the original memory-boundstream suffers
from memory contention already when two instances are
running on different caches.

We did the same evaluation using the SPEC CPU 2006
benchmarks (Figure 2). Many SPEC benchmarks (those
shown on the left half of the figure) behave likealuadd
andstream-fit2, showing no or only little slowdown even
when combined on the same cache. Of the benchmarks af-
fected by resource contention (those on the right side of the
figure), with the exception ofsphinx3 andbzip2, all show
a notable increase in runtime already when running on cores
with separate caches.

The results of the experiment with the SPEC benchmarks
indicate that memory bandwidth is the critical resource for
these benchmarks, and that the case where one task’s work-
ing set fits into the cache but two tasks’ working sets do not
is rare. (Few benchmarks behave likestream-fit1, show-

Figure 2. Normalized runtime of SPEC benchmarks on the Core2 Quad

stream aluadd avg.
instances time ener. EDP time ener. EDP EDP

4 aluadd — — — 1.49 1.16 1.68 1.68
1 str. + 3 alu. 1.13 0.83 0.93 1.49 1.08 1.63 1.45
2 str. + 2 alu. 1.07 0.77 0.82 1.49 1.10 1.60 1.23
3 str. + 1 alu. 1.09 0.85 0.93 1.49 1.13 1.73 1.13

4 stream 1.04 0.80 0.83 — — — 0.83

Table 1. Relative runtime, energy, and EDP of microbench-
marks at 1.6 GHz compared to 2.4 GHz

ing little interference when running on different caches and
heavy interference when running on the same cache.) There-
fore, we will concentrate on memory bandwidth as con-
straining resource.

3.2 Frequency selection

As mentioned in Section 2, past research has indicated that
memory-bound tasks are best executed at low frequencies,
while compute-bound tasks are best executed at high fre-
quencies. Based on this foundation, we want to explore (a)
what frequency setting is optimal if multiple cores running
applications with different characteristics have to sharethe
same setting, and (b) whether it is beneficial to co-schedule
similar applications in order to be able to run each one at its
optimal setting.

For investigating the effects of frequency scaling, we
ran different combinations of thealuadd and thestream
benchmark on the cores. Table 1 shows the factor by which
the EDP changes for each benchmark when dropping the
frequency from 2.4 GHz to 1.6 GHz.

Sincealuadd is compute-bound, its runtime increases
when the frequency is reduced. This increase outweighs the
decrease in power consumption, so the consumed energy and
the EDP increase. Forstream, the runtime hardly increases
when the frequency is lowered, so here the EDP is domi-
nated by the power consumption and thus decreases. How-
ever, when looking at the averaged EDP of all tasks, only a

combination of four memory-bound tasks justifies frequency
scaling.

The same holds true for the SPEC benchmarks, for which
we obtained similar results. Figure 3 shows the runtime, ex-
pended energy, and EDP for four instances of each SPEC
benchmark at the reduced frequency of 1.6 GHz, normalized
to the respective values at 2.4 GHz. The order of the bench-
marks is the same as in Figure 2. For the compute-bound
benchmarks on the left, the same effect as foraluadd can
be observed: runtime increases, negating the power savings
and leading to an increased EDP. The memory-bound bench-
marks on the right behave similarly tostream; their runtime
only increases moderately, so frequency scaling yields en-
ergy savings and a reduced EDP.

As for the microbenchmarks, the reduction of EDP for
memory-bound benchmarks is not nearly as big as the in-
crease for the compute-bound benchmarks, so in order to
profit from frequency scaling, only memory-bound tasks
would have to be co-scheduled.

Hence, if we have more tasks available for execution than
there are execution contexts, the question arises whether it is
better to run memory-bound tasks together in order to be
able to profit from frequency scaling, or to run compute-
bound with memory-bound tasks in order to avoid resource
contention. When we compare Figures 2 and 3, we see that
the benchmarks that profit from DVFS are exactly the ones
that suffer a tremendous slowdown when run in multiple
instances because of contention. Contention causes a huge
slowdown when all cores execute memory-bound tasks (see
Figures 1 and 3), and thus the tasks consume power for a
longer time, which outweighs the reduction in power con-
sumption achievable by frequency scaling by far. This is not
apparent in Figure 3, since the baseline already includes the
penalty of co-scheduling four instances of a benchmark.

When looking at the results from both experiments,
only the increase in runtime stemming from co-scheduling

Figure 3. Relative runtime, energy and EDP of SPEC benchmarks at 1.6 GHz compared to 2.4 GHz

memory-bound tasks outweighs the reduction of EDP achiev-
able by DVFS, even when the increase in expended energy
caused by the longer runtime is not considered. So over-
all, more energy has to be spent when combining memory-
bound tasks and using frequency scaling than when combin-
ing compute and memory bound tasks and running them at
the highest frequency.

We illustrate this again with the results of an experi-
ment with two SPEC benchmarks. We run four instances of
soplex, a memory-bound benchmark and four instances of
hmmer, a compute-bound benchmark. We compare the fol-
lowing three scheduling scenarios:

1. Run the four instances ofsoplex at their optimal fre-
quency of 1.6 GHz, then run the four instances ofhmmer

at their optimal frequency of 2.4 GHz.

2. Run two instances ofsoplex with two instances of
hmmer at 2.4 GHz and repeat.

3. Run two instances ofsoplex with two instances of
hmmer at 1.6 GHz and repeat.

Table 2 shows runtime, CPU energy, and EDP for the scenar-
ios. In scenario 1, resource contention slows down the four
instances of the memory-boundsoplex running in parallel,
causing them to consume power for a longer time and result-
ing in the highest energy consumption of all three scenarios.
Scenario 3 shows the lowest energy consumption. However,
running the compute-boundhmmer at 1.6 GHz increases the
total runtime substantially. As expected, scenario 2 shows
the best EDP; here the benchmarks can be executed requir-
ing only 80% the EDP of the other two scenarios.

3.3 Results for the AMD Opteron

We also conducted experiments with the microbenchmarks
described above as well as with the SPEC benchmarks on
a 2.2 GHz AMD Opteron 2354 quad-core. As on the Intel
Core2, memory-bound benchmarks scheduled together suf-
fer from substantial slowdown because of contention, al-

though the slowdown is less severe than with the Core2.
We attribute this to the integrated memory controller in the
Opteron, as opposed to the front-side bus used in the Core2.
Four instances ofstream running together on the four cores
of the Opteron are slowed down by a factor of 2.7 compared
to a single instance (Core2: factor 3.9); the most memory in-
tensive SPEC benchmark,lbm, suffers a slowdown of factor
2.5 (Core2: factor 3.2).

Our test chip supports frequency scaling to 2.0, 1.7, 1.4,
and 1.1 GHz, with individual frequencies per core. Voltage
is scaled accordingly, but all four cores are required to run
at the same voltage. As with the Core2, the benchmarks that
profit from frequency scaling are exactly the ones that are
affected most by memory contention. Since the Opteron al-
lows lower frequencies that the Core2, it offers more poten-
tial to conserve energy for memory-bound tasks.lbm profits
most from frequency scaling; at the lowest processor fre-
quency of 1.1 GHz, the benchmark can be executed with
only 0.64 times the EDP compared to 2.2 GHz. (Core2: fac-
tor 0.87 at 1.6 GHz).

Although memory contention is not as severe on the
Opteron as on the Core2 and although the Opteron can
improve energy efficiency for memory-bound tasks more
than the Core2, the loss of energy efficiency caused by co-
scheduling memory-bound tasks still outweighs the benefits
achievable with DVFS. Like with the Core2, only the in-
crease in runtime that results from co-scheduling memory-
bound tasks offsets the reduction of EDP that is achievable
by frequency scaling, as can be seen at the example oflbm.
The same is the case for the other memory-bound bench-
marks, which suffer from less slowdown when co-scheduled,
but for which frequency scaling also yields smaller savings.

4. Representing Resource Utilization
According to the results of our analysis, the scheduling poli-
cies we present in the following strive to combine tasks with

time [s] energy [kJ] EDP [MJs]
Scenario hmmer soplex hmmer soplex hmmer soplex average
1: hmmer @ 2.4 GHz, soplex @ 1.6 GHz 923 1310 17.0 13.7 15.6 18.0 16.8
2: hmmer + soplex @ 2.4 GHz 952 837 15.7 13.8 15.0 11.6 13.3
3: hmmer + soplex @ 1.6 GHz 1420 911 17.0 10.9 24.1 9.9 17.1

Table 2. Runtime, energy, and EDP of the benchmark instances for different scheduling scenarios

different characteristics, and only engage frequency scaling
if nothing but memory-bound tasks are available.

For representing resource utilization of a task, we use the
concept oftask activity vectors. In previous work, we have
introduced task activity vectors as a means for task char-
acterization in the context of temperature-aware schedul-
ing [18]. An activity vectoris part of a task’s runtime con-
text; it describes to what degree a running tasks utilizes var-
ious processor-related resources. The dimension of this vec-
tor is equal to the number of resources we want to consider.
Each component of the vector denotes the degree of utiliza-
tion of a corresponding resource. The components are nor-
malized to the maximum utilization the respective resource
can exhibit. Thus, the values of the vector’s components
range between 0 (no utilization) and 1 (maximum utiliza-
tion).

Task activity vectors make the CPU resources a task uses
part of the task’s runtime context, so the operating system
has detailed information about the characteristics of each
task. Determining a task’s activity vector requires determin-
ing the utilization of each resource. Information about the
utilization could be provided directly by the hardware, for
example via special registers. Unfortunately, this is not the
case in today’s processors. Therefore, we use performance
monitoring counters to determine utilization, which were
originally introduced for profiling and performance analy-
sis. The counters count performance critical events such as
bus transactions or cache requests and are therefore suitable
to infer resource utilization.

For the Core2 processor, we decided to include three
resources in the activity vector: memory bus, L2 cache, and
“the rest of the core”. While memory bus and L2 cache are
the resources for which there is contention, the resource “rest
of the core” stands for all resources which are not shared
between cores, such as, for instance, L1 cache or integer and
floating point units.

The activity vector of a task is not constant, but can
change over time, as the task passes through different phases,
for instance, runs different algorithms successively. There-
fore, the operating system has to recalculate the activity vec-
tor of a task continuously. On every timer tick and on ev-
ery task switch, we determine the utilization of the named
resources by reading performance monitoring counters and
update the activity vector of the currently running task. Note
that, as a result, we assign events caused by asynchronous

activity such as interrupt handling to the currently running
task, although the activity may have been triggered by I/O
requests of other tasks. Since we focus on tasks that do little
I/O, we can neglect the potential error this introduces; the
question of how asynchronous activity can be accounted for
is a topic for future work.

Changing the processor frequency has an impact on task
activity vectors. However, frequency changes affect different
components in different ways: For example, memory bus
utilization decreases with lower chip frequencies, since at
a lower frequency, a core can issue fewer memory requests
per time. On the other hand, the utilization of other chip
resources increases, since at a lower frequency, the resources
are able to process less instructions per time and thus the
chip exhibits fewer stall cycles while waiting for memory.
Especially when the frequency changes often, it is likely
that there are tasks whose activity vectors were sampled at
different frequencies. In order to be able to compare those
vectors, it is necessary to predict what a task’s activity vector
would look like at another frequency.

For being able to compare activity vectors that were sam-
pled at different frequencies, we supply atranslation vector
for each chip frequency. The components of the translation
vector denote by which factor the components of an activity
vector are expected to change when the task is running at the
respective frequency, compared to the maximum frequency.
We calibrate the translation vectors by running a set of rep-
resentative benchmarks at each processor frequency while
simultaneously monitoring resource utilization.

We can estimate the impact of a frequency change on an
activity vector by doing a component-wise multiplication of
the activity vector with the corresponding translation vec-
tor. We apply this translation when determining the activity
vectors of tasks executed at a frequency lower than the max-
imum frequency. Hence, the activity vector of a task always
denotes the (estimated) utilization the task would cause if
run at the maximum frequency.

5. Resource-conscious Scheduling
Our analysis found that avoiding resource contention is
of paramount importance for achieving an optimal EDP;
we therefore strive to add resource contention awareness
and avoidance to timeslice-based multiprocessor scheduling
policies as they are found in today’s general purpose operat-
ing systems. Since the degree of contention depends on the

combination of tasks running simultaneously on the execu-
tion contexts, we need to control the combination of tasks
that run at a time.

This leads to the concept of gang scheduling, first pro-
posed by Ousterhout [23]. While gang scheduling was pro-
posed to co-schedule threads of the same multithreaded ap-
plication in order to facilitate communication, our goal is
to combine tasks using mutually exclusive resources if pos-
sible. As mentioned in the introduction, in order to limit
the complexity of our research, we only consider indepen-
dent single-threaded tasks, that is, we assume that there is
no communication between tasks. If there is communica-
tion, co-scheduling based on communication patterns and
co-scheduling based on resource utilization can have con-
flictive goals. This is a topic for future work.

A suitable distribution of tasks to processors and of ap-
plications to machines is a prerequisite for being able to co-
schedule tasks, since co-scheduling depends on tasks with
different characteristics being available. In the following, we
will introduce a migration policy that makes sure that tasks
with various resource utilization characteristics are avail-
able on each processor for co-scheduling. Based thereon,
we present a co-scheduling policy that combines tasks with
complementary characteristics. Our policies are applicable
for systems that organize their tasks in CPU-local runqueues
and perform round-robin-like scheduling on each CPU.

Since our policies are based on activity vectors, which
represent resource utilization in an architecture-independent
way, our policies are highly portable. In order to apply them
to a new CPU architecture, only the underlying activity vec-
tors (that is, the choice of vector components and the mech-
anism for determining them) need be adapted.

We apply our policies both to single-threaded applica-
tions and to entire VMs running on a single node; by means
of VM migration, we further extend the migration policy to
VMs running on multiple different nodes. Note again that
we refer to ataskto encompass both applications and VMs.

5.1 Vector balancing

We propose vector balancing as a policy that reduces re-
source contention by means of task migrations guided by ac-
tivity vector information. A simple solution for distributing
tasks to cores would be to collect tasks with similar charac-
teristics on one core, for example, to run all memory-bound
tasks on core 0 and all compute-bound tasks on core 1 of a
dual-core processor. This way, even without a co-scheduling
policy, there would never be two memory-bound task run-
ning simultaneously on the chip. However, it is not always
optimal to collect similar tasks on one core. For example,
several cache-intensive tasks on one core can overwrite each
other’s working sets.

Also, it is not always possible to divide tasks into sets
that use mutually different resources; for instance, assume
a situation with two tasks of medium memory intensity, a
memory-bound task and a compute-bound task.

The goal of our balancing policy is to have tasks with
different characteristics available on each core, so that aco-
scheduling policies has a higher chance of finding a suit-
able task on each core. In other words, we want to have a
high variance among unit utilization on each CPU. There-
fore, we define variance to be our measure for balancing,
or more specifically, the sum over the variance of all vector
components, which we define formally in the following way:

Definition. Let xi be a random variable describing the i–th
component of the activity vector of a task picked at random
from a particular core’s runqueue, and V(xi) the statistical
variance of the random variable xi . Then our measure for
balancing is the sum of all components’ variances,varsum:

varsum :=
n

∑
i=1

V (xi) (1)

We express the Variance by using the expected values of
xi andx2

i :

varsum =
n

∑
i=1

E
(

x2
i

)

− (E (xi))
2 (2)

Sincexi is discrete (there is only a limited number of
tasks in each runqueue), we can expressE(xi) as E(xi) =
1
m ∑m

j=1a ji , where m is the number of tasks in the queue, and
a ji is the i–th component of thej–th task’s activity vector.
The same applies to the squared values.

Thus, we can calculatevarsumif we keep track of the
sum of the activity vectors of tasks in a runqueue and of the
sum of the vectors, squared per component:

varsum =
n

∑
i=1

1
m

m

∑
j=1

a2
ji −

(

1
m

m

∑
j=1

a ji

)2

 (3)

Since our goal is to have a high variance in each run-
queue, we strive to increase thevarsummetric by task mi-
grations. We migrate a task from one CPU to another, if after
the migration the minimum of thevarsums of the two CPUs
is bigger than before.

We integrate our balancing policy into the load balanc-
ing policy of the operating system. Since vector balancing
is based on a scalar measure, we can easily adapt existing
policies that are based on runqueue length to take thevar-
summetric into account. Thus, we can take advantage of
existing strategies that honor hierarchical structures, for in-
stance in non-uniform memory access systems, and provide
scalability for systems with large numbers of processors. For
instance, Linux uses a hierarchical load balancing algorithm
that resolves load imbalances at the lowest level of the sys-
tem’s topology possible.

Whenever the scheduler checks for load imbalances, we
make an additional check for opportunities to improve the
varsummetric by migrations. In addition, we modify the
algorithm for resolving load imbalances in a way that the
induced task migrations do not decrease thevarsummetric.

5.2 Cross-node migration

Taking tasks on multiple (physical) nodes into account for
resource-conscious scheduling potentially increases work-
load diversity, and thus improves energy efficiency. Al-
though migration of individual applications across nodes is a
viable approach, it is also known to be cumbersome, mostly
because of the problem of residual dependencies [19]. Virtu-
alization technology leads a way out of this problem, since
it encapsulates most of the dependencies in VM containers
relatively easy to migrate [3].

We therefore leverage VM migration to allow resource-
conscious scheduling across different computing nodes. Our
cross-node migration algorithm is derived from the node-
local version and implements a VM migration policy based
on the varsummetric introduced in the previous section.
In the cross-node case, however, we consider the resource
utilization of all CPUs of a node when computingvarsum
rather than of individual CPUs only. Also, weexchange
VMs right away rather than waiting for a complete balancing
period for a migration decision to even out again. That is,
the algorithm swaps two VMs on different hosts if, after the
migration, the minimum of thevarsumof the two nodes is
bigger than before.

Cross-node migration is a heavy-weight operation, which
leaves a potentially large cache and memory working set be-
hind on the source node, induces additional power costs dur-
ing the migration operation itself, and leads to substantially
higher resource demands on the target node. Therefore is in-
dicated to use larger time intervals between potential migra-
tion decisions (in the order of minutes). Note that, although
our present algorithm is effectively capable to save energy
(Section 8.4), it does not trade-off the mentioned costs at
present; rather it uses fixed timing intervals and only op-
timizes for thevarsummetric. A more elaborate algorithm
remains subject of future work.

5.3 Sorted co-scheduling

Our co-scheduling policy concentrates on one resource that
is assumed to be mainly responsible for contention. This re-
quires knowledge about which resource is most important
for avoiding contention, for example, that memory band-
width is more important than cache for the SPEC bench-
marks on the Intel Core2 processor.

Our policy is similar to previous approaches that have co-
scheduled tasks with complementary resource demands [11,
31]. In contrast to related approaches, we make use of sort-
ing and arrange the runqueues of the individual cores in a de-
fined fashion in order to minimize the need for synchroniza-
tion between scheduler instances running on the individual
cores. In addition, our policy is not fixed to a certain resource
by design. In the following, we will use memory bandwidth
as an example for the most critical resource. However, our
policy can consider any component of the activity vector and
avoid contention for the respective resource. Since not only

Figure 4. Sorted scheduling. Bars correspond to memory
intensity.

the architecture, but also the workload determines which re-
source is the most critical one, even a dynamic policy which
changes the vector component considered according to the
workload would be beneficial.

The idea behind sorted co-scheduling is to group the
cores into pairs of two and to execute tasks with complemen-
tary resource demands on each of them. For this purpose, we
keep all runqueues sorted. In previous work [18], we have
shown that it is possible to sort a runqueue lazily with low
overhead, and have made use of sorting to arrange the tasks
in a runqueue in a way that reduces hotspots on the chip. In
this work, in order to avoid resource contention, we use the
utilization of a single resource, in our case memory band-
width, to sort the tasks in each processor’s runqueue. For
combining tasks with complementary memory bandwidth
demands, we sort the tasks descendingly in runqueues of
cores with even processor numbers and ascendingly for odd
processor numbers.

To synchronize the scheduling decisions on a chip, we di-
vide time into epochs. We choose an epoch to correspond to
the timeslice length multiplied bym, wherem is the maxi-
mum number of tasks in any of the chip’s cores’ runqueues.
Thus, during an epoch, each core with exactlym tasks in its
runqueue can process the runqueue exactly once. To achieve
the same property for queues with fewer tasks, we execute
each task in a runqueue withn tasks not for one timeslice,
but for m

n timeslices. The tasks in the runqueues are sorted in
different directions, resulting in combinations of memory-
bound and compute-bound tasks running at a time. Since
only the starts of the epochs need be synchronized, the over-
head for synchronizing scheduling decisions is small.

If there are more than two cores on a chip, to avoid
running tasks with high memory intensity at the same time,
we shift the beginning of the epochs for each additional
pair of cores. For instance, on a quad core, we start a new
epoch on cores 2 and 3 whenever cores 0 and 1 are in the
middle of their epoch. This way, situations when cores 0 and
1 possibly both execute tasks with relatively low memory
demands in the middle of their epoch can be used to run the
most memory-bound task of cores 2 and 3 (see Figure 4).

Sorting the runqueues of the cores can be in conflict with
scheduling schemes used for I/O-bound tasks. For instance,
I/O-bound tasks typically receive a higher priority than
compute-bound tasks and are scheduled preferably. How-
ever, our policy is focused at tasks that do no or only little
I/O. I/O-bound tasks frequently block upon an I/O request
before their timeslice expires and unblock again when the
I/O request completes. Therefore, with I/O-dominated work-
loads, the contents of the runqueues constantly change and a
sorting approach does not make sense. A scheduling policy
for I/O-dominated workloads is a topic for future work.

6. Frequency Heuristic
In Section 3, we have pointed out that the primary lever to
achieve energy efficiency is combining tasks in a way that
avoids resource contention. Hence, we use frequency scal-
ing only as a fallback engaged in situations when there are
too many memory-bound tasks and our scheduling policies
cannot avoid contention. In this section, we present a simple
heuristic that detects such situations and reduces the com-
mon frequency and voltage of the cores of a chip in order
to improve energy efficiency despite the workload being un-
suitable for co-scheduling.

Sorted co-scheduling, being designed to avoid contention,
also facilitates frequency selection, since the scheduling pol-
icy controls the combination of tasks running at a time.
Hence, scheduling decisions do not occur randomly and in-
dependently across cores, and we can choose a frequency fit-
ting the characteristics of the currently running tasks. Also,
with sorted scheduling, we can expect the characteristics of
tasks executed to change monotonically for each runqueue,
which reduces the number of frequency changes.

Heuristics found in the literature are mostly based on
the metrics of memory access frequency and on-chip or
cache activity [4, 12, 30]. Snowdon et al. [27] has shown
that the runtime of and the power consumed by a particu-
lar task at a certain frequency can be predicted using several
architecture-specific performance counter metrics, whichin
turn can be used to infer the optimal frequency for running a
task. Since our focus is not on finding a sophisticated heuris-
tic, but rather on the interactions of resource contention and
frequency scaling, we use a rather simple heuristic based
solely on memory intensity.

The experiments with the microbenchmarks presented
in Section 3 indicate that, on average, the EDP of tasks
with memory utilization of 0% scales by a factor of 1.67
when lowering the frequency, whereas the EDP of tasks
with memory utilization of 100% scales by factor of 0.88
(Table 1). Based on these corner cases, we would estimate
the scaling of EDP of a task with memory utilizationx using
linear interpolation:

EDP factor= x∗0.88+(1−x)∗1.67= 1.67−0.79x (4)

Note that using linear interpolation assumes a very simple
processor. It does not account for features that modern pro-
cessors possess for hiding memory latencies, such as out-of-
order execution with outstanding loads or write buffers. As
a result, the degree of slowdown that results from limited
memory bandwidth depends on the instruction-level paral-
lelism the task exhibits. Our benchmark used for calibration,
thestream benchmark, performs loops over arrays, and the
individual iterations are independent from each other, result-
ing in high instruction-level parallelism. Real-world appli-
cations can show less instruction-level parallelism, resulting
in a lower EDP factor. (They benefit from lower frequencies
already at lower memory utilizations than interpolated from
the microbenchmark.)

Considering this effect despite our very simple model
requires fine-tuning the model parameters. Engaging fre-
quency scaling already for tasks with lower memory utiliza-
tion can be accomplished either by reducing the constant
or the proportional part of Equation 4. We performed ex-
periments with several memory-intensive SPEC benchmarks
and found modifying the constant part while only slightly
changing the proportional part to be a viable solution. For
our experiments presented in the next sections, we use the
following estimation of the EDP factor:

EDP factor= 1.6−0.8x (5)

Whenever a task switch has occurred on a core, we check
whether a task switch is likely to occur on one of the sibling
cores in the near future. We can infer this information from
the current point in time within the epoch and the number of
tasks in each other core’s runqueue. If no switch is likely to
occur on any other core of the chip, we check how the EDP
of each task currently running on the chip would scale ac-
cording to the EDP factor, and select a frequency of 1.6 GHz
if the average of all EDP factors is smaller than one, and a
frequency of 2.4 GHz otherwise.

Although our model is very simplistic and needs to be
fine-tuned to the actual workload, it allows us to demon-
strate how co-scheduling and frequency selection interact.
However, since any selection policy that chooses an opti-
mal frequency for a given workload can be applied on top
of our co-scheduling policy, for deployment in a production
system, a more sophisticated policy like those found in the
literature could be used.

7. Implementation
We implemented support for task activity vectors, our pro-
posed scheduling policies, and our frequency heuristic fora
Linux 2.6.22 kernel. We based the implementation of VM
scheduling on the KVM virtualization environment.

7.1 Activity vectors

For implementing activity vectors in Linux, we extend the
task struct data structure, which holds a task’s runtime
context, by an array for storing the vector’s components.

We also export the activity vector of each task via the
/proc–file-system to serve as input for the user-level pro-
grams that control virtual machine migration between nodes
(see Section 7.3).

While our scheduling policies and the concept of activ-
ity vectors are platform independent, determining unit uti-
lization and hence calculating the vector components de-
pends on the chosen platform. In the following, we describe
briefly how we determine the utilization of the resources rep-
resented by activity vectors for our evaluation platform, the
Intel Core2 architecture. We believe, however, that activity
vectors can be implemented on any platform that offers event
monitoring counters capable of capturing the utilization of
shared resources, which is the case with the performance
monitoring counters available on many modern processors.
For instance, in previous work, we have implemented activ-
ity vectors for the Intel NetBurst architecture [18].

Memory bus For determining bus utilization, we count
the number of bus transactions initiated by a core during a
timer tick and divide it by the theoretical maximum number
of transactions the hardware supports during this period of
time. The theoretical maximum is determined by the band-
width of the memory bus and by the speed of the mem-
ory itself. Our test system has a front-side bus supporting
1066MT/s (MT/s: millions of transactions per second) and
DDR2 PC-6400 RAM supporting 800MT/s, so the transfer
rate is limited by the ram and is 800MT/s at most.

L2 Cache For the Core2 architecture, there is a large num-
ber of events available for counting requests to the L2 cache,
including loads, stores, invalidations, and prefetch requests.
Since there are not enough counters to count each event sep-
arately, we had to use the eventL2 RQSTS, which accumu-
lates all types of requests. However, it is hard to give a the-
oretical maximum rate for this event, since different kinds
of requests have different maximum rates (for example, a
prefetch from memory to L2 takes longer than a transfer
from L2 to L1). To estimate an upper limit, we ran the
stream memory benchmark, but with a reduced working
set fitting completely into the L2 cache. We measured the
number of L2 references during the run, which amounted to
one reference every four cycles, and chose this value as the
maximum.

Rest of the Core Rather than counting events for the var-
ious core units (which is impossible in practice because of
a limited number of performance counters in the Core2 ar-
chitecture), we use the number of retired instructions as a
proxy for core activity. Doing so neglects various aspects,
for instance, that different instructions keep the core busy
for different amounts of time, and that some instructions do
not retire because of misprediction. To obtain utilization, we
divide the number of retired instructions by the total number
of processor cycles.

Since a core can execute micro-operations in parallel, the
number of retired instructions per cycle can be greater than
one, meaning that the count of retired instructions is greater
than the cycle count. We define core activity to be at 100%
if the count of retired instructions is equal to or greater than
the cycle count.

Our method is only a very rough estimation for the uti-
lization of the resources of a core that are not shared with
other cores, but proved sufficient for our purposes. Typically,
memory or cache-bound tasks, which do not utilize other re-
sources heavily, show a low number of retired instructions
per cycle, while tasks with low memory and cache utiliza-
tion that are bound to other resources show a high number
of retired instructions per cycle.

7.2 Vector balancing and co-scheduling

For implementing vector balancing within single nodes, we
modify Linux’s load balancing algorithm to consider our
measure of variance as defined in Section 5.1 next to load.
Linux pursuits a hierarchical approach that strives to re-
solve load balances at the lowest level of the system’s topol-
ogy possible. Therefore, at each level of the topology start-
ing with the lowest, the load balancer determines the CPU
with the shortest and the longest runqueue, and, if needed,
chooses a suitable task to migrate according to various crite-
ria, for instance, that the task is not currently running, and is
expected to have little data in the processor’s cache.

We extend this algorithm in two ways: Firstly, we add to
the mentioned criteria the requirement that thevarsummet-
ric of the runqueues the task is migrated between does not
increase. Secondly, we initiate balancing operations between
the runqueue with the highest ant the lowestvarsumon each
level of the topology, provided that the difference between
thesevarsumvalues is greater than a pre-defined threshold.

Introducing coordinated co-scheduling into the Linux
scheduler requires only few modifications. We replace the
logic that checks whether a task’s timeslice has expired. For
implementing sorted scheduling, we switch tasks whenever
onenth of an epoch has passed, wheren is the number of
tasks in the runqueue.

7.3 Virtual machine scheduling

To evaluate the benefits of virtualization in combination with
resource-conscious scheduling, we have implemented node-
local and cross-node VM scheduling based on the KVM
82 virtualization system [10]. In the node-local case, KVM
spawns normal Linux tasks to host guest VMs, and therefore
allows us to directly use our Linux scheduler for both tasks
and VMs.

KVM also supports several types of cross-node migration
(e.g., offline and live, and based on TCP sockets or files to
transfer VM state). Our cross-node scheduler implementa-
tion consists of a script that runs at user-level on each par-
ticipating node and leverages the existing KVM migration
functionality. The script periodically (in our experiments ev-

ery 15 seconds) monitors the activity vectors of its own VMs
and exports them to all other nodes by means of a shared
NFS folder. At larger periods (in our experiments 10 min-
utes), the script balances VMs across nodes according to the
policy described in Section 5.2.

Since the live migration proved to be unstable when be-
ing used with our extended kernel, we had to resort to an
offline version; that is, to relocate a VM, the source host first
stops the VM and then saves its memory and CPU state into
a file in a shared folder. The target host afterwards loads the
state files and then resumes the VM. Offline migration obvi-
ously slows down the VM transfer and breaks seamless user
experience. Since our evaluation was based on benchmarks
requiring no user interaction, those problems do not affect
the validity of our results.

7.4 Frequency selection

Under Linux, the processor frequency is controlled by a
governor framework, which allows selecting a policy for
frequency scaling from user space. The framework is not
suitable for initiating frequency switches from the scheduler;
in particular, the functions provided by the device drivers
controlling the chip frequency are not intended to be called
from the scheduler, but only from the governors running in
task context.

We therefore deactivated the framework and the driver
and implemented our own prototype method for selecting
a suitable frequency. To set the chip frequency according to
the decisions of our frequency heuristic, we directly program
the model specific registers of the Core 2. Ultimately, it
would be beneficial to adapt the device drivers to support
frequency changes initiated by the scheduler.

8. Evaluation
We evaluated our implementation on the Intel Core2 Quad
described in Section 3, using the SPEC CPU 2006 bench-
marks. For evaluating cross-node scheduling, we used a sec-
ond machine with the same configuration; both machines
were connected via Gigabit Ethernet.

In a preliminary experiment, we evaluated the overhead
of maintaining activity vectors (without using them for
scheduling). Determining activity vectors requires reading
a small number of performance monitoring counters and
few arithmetic operations. We measured the cost for read-
ing a performance monitoring counter to be 54 cycles on
our processor. Since activity vectors are only updated every
timer interrupt and every task switch, we could not notice
any increase in runtime for the SPEC benchmarks caused
by enabling activity vectors compared to a setup without
activity vectors enabled.

8.1 Sorted co-scheduling

To evaluate sorted co-scheduling, we ran four compute-
bound benchmarks (gamess, gromacs, hmmer, namd) to-

Figure 5. Runtime and EDP of SPEC benchmarks with
sorted co-scheduling relative to standard Linux scheduling.
Note that for readability, in this figure an in the following
ones, the scale does not start at zero.

gether with four memory-bound benchmarks (lbm, lib-
quantum, mcf, soplex). Figure 5 shows runtime and EDP
of the benchmarks when sorting is applied, relative to the
respective values achieved using standard Linux scheduling.

While the compute-bound benchmarks’ runtimes hardly
change (they are affected a little, since the compute-bound
benchmarks show some memory references, too), the run-
times of all compute-bound benchmarks decrease. The rea-
son whylibquantum’s runtime is not reduced as much as
the other memory-bound benchmarks’ runtime is that even
with runqueue sorting, two memory-bound tasks have to
share the memory bus at a time, and depending on the ap-
plications’ memory access patterns, bandwidth distribution
can be unfair [20].

Since the power consumption is almost the same for
sorted scheduling and standard Linux scheduling (frequency
scaling is not beneficial, because at any time, two compute-
bound tasks are running), EDP is determined solely by the
runtime, and varies with runtime, but quadratically.

8.2 Frequency heuristic

Our proposed frequency heuristic engages frequency scal-
ing as a fallback to conserve energy in situations when co-
scheduling cannot avoid resource contention. For the ex-
periments with the SPEC scenario presented in the preced-
ing section, our frequency heuristic never invoked frequency
scaling, because we selected scenarios containing enough
compute-bound tasks for co-scheduling to be effective.

For evaluating the frequency heuristic, we choose four
different SPEC scenarios. Scenario 1 contains only compute-
bound benchmarks. Scenario 2 contains four compute-bound
and four memory-bound benchmarks. For these two scenar-
ios, frequency scaling should not be invoked; they are in-
tended for revealing the overhead of our heuristic. Scenario
3 contains one compute-bound and seven memory-bound
benchmarks, and scenario 4 contains only memory-bound
benchmarks. Scenarios 3 and 4 represent the two configura-
tions in which frequency scaling is beneficial. Table 3 shows
the individual SPEC benchmarks used for the scenarios.

Scenario Benchmarks(c = compute-bound, m = memory-bound)
1 gamess (c), gobmk (c), gromacs (c), hmmer (c),

namd (c), povray (c), sjeng (c), tonto (c)
2 gamess (c), gromacs (c), hmmer (c), namd (c),

lbm (m), libquantum (m), mcf (m), soplex (m)
3 hmmer (c), GemsFDTD (m), lbm (m),

libquantum (m), mcf (m), milc (m),
omnetpp (m), soplex (m)

4 GemsFDTD (m), lbm (m), libquantum (m),
mcf (m), milc (m), omnetpp (m), soplex (m),
sphinx3 (m)

Table 3. SPEC scenarios used for evaluating the frequency
heuristic

Figure 6. Effect of frequency heuristic for different SPEC
scenarios

We compare three configurations: Standard Linux schedul-
ing, sorted co-scheduling without the frequency heuristic,
and sorted scheduling plus the frequency heuristic. Figure6
depicts the average EDP for the SPEC benchmarks of our
four scenarios, normalized to the EDP achieved by standard
Linux scheduling.

For scenarios 1 and 2, the runtime is almost the same for
sorted scheduling and sorted scheduling combined with the
frequency heuristic, the only difference being that for sce-
nario 2, sorted scheduling yields a better EDP than standard
Linux scheduling by reducing contention. The frequency
heuristic yields no benefits for these scenarios, since fre-
quency scaling would lead to increased energy consump-
tion by prolonging the runtime of the compute-bound bench-
marks. On the other hand, the heuristic causes no measurable
overhead for checking whether frequency scaling should be
engaged.

For scenario 3, the heuristic engages frequency scaling
whenever the one compute-bound benchmark is not run-
ning, which is every other timeslice, yielding an improve-
ment of EDP over standard Linux scheduling and sorted co-
scheduling (which is not beneficial, since contention cannot
be avoided for the given workload). For scenario 4, runqueue
sorting is not beneficial for the same reason. The benefit of
the frequency heuristic is even bigger for this scenario, since
without any compute-bound tasks, the heuristic can lower
the frequency all the time.

Figure 7. Runqueue sorting applied to benchmarks exe-
cuted natively (top) and within VM instances (bottom)

8.3 Node-local virtual machine scheduling

We evaluated the effects of our scheduling strategies when
applied to VM instances running on a single node. Owing
to the limited amount of memory in our test machine, we
ran the experiments with only two out of four cores enabled,
effectively simulating a dual core.

In a first experiment, we started four VMs, two ex-
ecuting one memory-bound benchmarks each (lbm and
libquantum), and the other two executing one compute-
bound benchmark each (hmmer andnamd). We measured the
runtime of the SPEC benchmarks within the VMs, once us-
ing the standard Linux scheduler in the host, and once using
sorted scheduling. For comparison, we did the same experi-
ments without using virtualization, running the benchmarks
natively on the host.

Figure 7 on the next page depicts the normalized exe-
cution times of the benchmarks for both scenarios. Both
for natively executed memory-bound benchmarks and for
memory-bound benchmarks executed within a VM, sorted
co-scheduling manages to reduce the runtime. The actual re-
duction of runtime differs between native and virtualized ex-
ecution. Forlbm, the reduction is nearly the same both for
the virtualized and the native scenario.libquantum, on the
other hand, profits more from runqueue sorting in the na-
tive scenario. We attribute this difference to a slightly differ-
ent behavior of the benchmarks when running within a VM,
caused, for instance, by the need to maintain shadow page
tables.

Overall, the results demonstrate that our resource-con-
scious scheduling strategies are as viable for VMs as they
are for normal applications. Virtualization thereby provides
the additional benefit of transparency and compatibility, and

Figure 8. Runtime and EDP of benchmarks with cross-node
migration relative to worst case static setup

enables resource-conscious scheduling to be applied in the
host-layer and to improve energy-efficiency of virtualized
workloads independent of the actual applications or oper-
ating system running within the VM.

8.4 Cross-node virtual machine migration

For evaluating cross-node migration, we ran a workload
consisting of eight VMs on two physical nodes. On one
node, we started four VMs running compute-bound bench-
marks (gamess, sjeng, hmmer, and namd), on the other
one four VMs executing memory-bound benchmarks (lbm,
libquantum, mcf, andsoplex).

For one test run, we disabled cross-node migration; then
we repeated the test with our migration policy enabled.
Without migration, the machine running the memory-bound
benchmarks suffers from severe memory contention, while
there is spare memory bandwidth on the other machine.
Our policy mitigates the contention by migrating two of
the memory-bound benchmarks and two of the compute-
bound benchmarks, creating heterogeneous mixes on each
machine.

Figure 8 depicts the relative runtimes and EDPs of the
benchmarks when cross-node migration is enabled, relative
to the scenario without migration. For all compute-bound
benchmarks, the runtime and the EDP are reduced dramat-
ically. The respective values of the compute-bound bench-
marks are only moderately increased. Onlysjeng suffers a
bigger slowdown, which also leads to increased EDP. When
cross-node migration is enabled,sjeng has to run on a ma-
chine with memory-bound benchmarks, which seems to af-
fectsjeng more than the other compute-bound benchmarks.
Still, on average, there is a reduction of runtime by 15% and
of EDP by 21%.

Since the initial distribution above constitutes a worst-
case scenario—memory-bound VMs on one node and compute-
bound VMs on the other—we reran the test with a different
starting point of three memory-bound and one compute-
bound benchmark on one node (lbm, libqantum, mcf, and

gamess), versus three compute-bound and one memory-
bound benchmark on the other one (sjeng, hmmer, namd,
andsoplex). The results are accordingly in that migration
still allows to save energy, this time, however, on a smaller
scale of 4% reduction in both runtime and EDP on average.

9. Conclusion
In this paper, we have analyzed scheduling for avoiding re-
source contention and for optimal frequency selection. We
have found that the two are oppositional goals, and that
scheduling to avoid resource contention is crucial both in
terms of performance and energy efficiency. Frequency scal-
ing can lead to further savings, but combining tasks that run
best at a certain frequency does not pay off if it leads to re-
source contention.

Based on the concept of activity vectors for representing
resource utilization, we have designed scheduling policies
that reduce contention significantly by co-scheduling tasks
with complementary demands. By scheduling and migrating
entire virtual machines, we have extended our policies to
take advantage of workload diversity not only within a single
node, but across several nodes. Our evaluations show that
our policies are able to reduce EDP for scenarios where
there is contention that can be reduced by migration and co-
scheduling, or, if that is not possible, mitigated by frequency
scaling.

At present, the focus of our strategies are long-running,
independent, and compute-intensive tasks, whether they run
as normal applications or are contained in a VM; also, the
evaluation was based on applications with fairly homoge-
neous resource consumption patterns. The main area of fu-
ture work is to tackle and to evaluate more complex appli-
cation scenarios, for instance, to investigate algorithmsfor
short-lived or heavily I/O bound tasks, or to evaluate highly
dynamic resource patterns as they may be found in end-user
or server workloads such as an office application or a virtu-
alized web server.

References
[1] C. Antonopoulos, D. Nikolopoulos, and T. Papatheodorou.

Scheduling algorithms with bus bandwidth considerations for
SMPs. InInternational Conference on Parallel Processing,
Oct. 2003.

[2] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting
inter-thread cache contention on a chip multi-processor ar-
chitecture. InHPCA ’05: Proceedings of the 11th Interna-
tional Symposium on High-Performance Computer Architec-
ture, 2005.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines.
In Proceedings of the 2nd ACM/USENIX Symposium on Net-
worked Systems Design and Implementation, 2005.

[4] G. Dhiman and T. S. Rosing. Dynamic voltage frequency
scaling for multi-tasking systems using online learning. In

Proceedings of the 2007 International Symposium on Low-
Power Electronics and Design (ISLPED’07), 2007.

[5] G. Dhiman, G. Marchetti, and T. S. Rosing. vGreen: A system
for energy efficient computing in virtualized environments. In
Proceedings of the 2009 International Symposium on Low-
Power Electronics and Design (ISLPED’09), 2009.

[6] A. Fedorova, M. Seltzer, and M. D. Smith. Improving per-
formance isolation on chip multiprocessors via an operating
system scheduler. InPACT ’07: Proceedings of the 16th In-
ternational Conference on Parallel Architecture and Compi-
lation Techniques, 2007.

[7] V. W. Freeh, F. Pan, D. K. Lowenthal, N. Kappiah,
R. Springer, B. L. Rountree, and M. E. Femal. Analyzing the
energy-time tradeoff in high-performance computing applica-
tions.IEEE Transactions on Parallel and Distributed Systems,
18(6), 2007.

[8] S. Ghiasi, T. Keller, and F. Rawson. Scheduling for hetero-
geneous processors in server systems. InProceedings of the
Second Conference on Computing frontiers (CF’05), 2005.

[9] R. Gonzalez and M. Horowitz. Energy dissipation in general
purpose microprocessors.IEEE Journal of Solid-State Cir-
cuits, 31(9), 1996.

[10] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.
KVM: the Linux Virtual Machine Monitor. InProceedings
of the Ottawa Linux Symposium 2007, 2007.

[11] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using
os observations to improve performance in multicore systems.
IEEE Micro, 28, 2008.

[12] R. Kotla, A. Devgan, S. Ghiasi, T. Keller, and F. Rawson.
Characterizing the impact of different memory-intensity lev-
els. InProceedings of the Seventh IEEE International Work-
shop on Workload Characterization (WWC-7), 2004.

[13] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and
D. M. Tullsen. Single-ISA heterogeneous multi-core archi-
tectures: The potential for processor power reduction. InPro-
ceedings of the36th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MIRCO’03), 2003.

[14] V. Kumar and A. Fedorova. Towards better performance per
watt in virtual environments on asymmetric single-isa multi-
core systems. SIGOPS Operating Systems Review, 43(3),
2009.

[15] J. D. McCalpin. Sustainable memory bandwidth in current
high performance computers, Oct. 1995.

[16] R. L. McGregor, C. D. Antonopoulos, and D. S. Nikolopoulos.
Scheduling algorithms for effective thread pairing on hybrid
multiprocessors. InIPDPS ’05: Proceedings of the 19th IEEE
International Parallel and Distributed Processing Symposium
(IPDPS’05) - Papers, 2005.

[17] A. Merkel and F. Bellosa. Memory-aware scheduling for
energy efficiency on multicore processors. InProceedings
of the Workshop on Power Aware Computing and Systems
(HotPower’08), 2008.

[18] A. Merkel and F. Bellosa. Task activity vectors: A new metric
for temperature-aware scheduling. InThird ACM SIGOPS
EuroSys Conference, Mar. 2008.

[19] D. S. Milóji čić, F. Douglis, Y. Paindaveine, R. Wheeler, and
Z. Zhou. Process migration.ACM Computing Surveys, 32(3),
2000.

[20] T. Moscibroda and O. Mutlu. Memory performance attacks:
denial of memory service in multi-core systems. InSS’07:
Proceedings of 16th USENIX Security Symposium on USENIX
Security Symposium, 2007.

[21] J. Nakajima and V. Pallipadi. Enhancements for hyper-
threading technology in the operating system: seeking the
optimal scheduling. InWIESS’02: Proceedings of the 2nd
conference on Industrial Experiences with Systems Software,
2002.

[22] R. Nathuji and K. Schwan. VirtualPower: coordinated power
management in virtualized enterprise systems. InProceedings
of the Twenty-First ACM SIGOPS symposium on Operating
System principles, Oct. 2007.

[23] J. K. Ousterhout. Scheduling techniques for concurrent sys-
tems. InProceedings of the 3rd International Conference on
Distributed Computing Systems, 1982.

[24] D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova,
N. Perez, Z. F. Huang, S. Blagodurov, and V. Kumar. Hass:
a scheduler for heterogeneous multicore systems.SIGOPS
Operating Systems Review, 43(2), 2009.

[25] S. Siddha, V. Pallipadi, and A. Mallick. Process scheduling
challenges in the era of multi-core processors.Intel Technol-
ogy Journal, 11(4), 2007.

[26] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for
a simultaneous mutlithreading processor.SIGPLAN Not., 35
(11), 2000.

[27] D. C. Snowdon, E. Le Sueur, S. M. Petters, and G. Heiser.
Koala: A platform for OS-level power management. InFourth
ACM SIGOPS EuroSys Conference, Nuremberg, Germany,
Apr. 2009.

[28] J. Stoess, C. Lang, and F. Bellosa. Energy management for
hypervisor-based virtual machines. InProceedings of the
USENIX 2007 Annual Technical Conference, 2007.

[29] A. Verma, P. Ahuja, and A. Neogi. pMapper: Power and mi-
gration cost aware application placement in virtualized sys-
tems. InProceedings of the ACM/IFIP/USENIX 9th Interna-
tional Middleware Conference, 2008.

[30] A. Weissel and F. Bellosa. Process cruise control: Event-
driven clock scaling for dynamic power management. InPro-
ceedings of the International Conference on Compilers, Ar-
chitecture, and Synthesis for Embedded Systems (CASES’02),
Oct. 2002.

[31] X. Zhang, S. Dwarkadas, G. Folkmanis, and K. Shen. Proces-
sor hardware counter statistics as a first-class system resource.
In HOTOS’07: Proceedings of the 11th USENIX workshop on
Hot topics in operating systems, 2007.

