
Improving IPC by Kernel Design

Jochen Liedtke

German National Research Center for Computer Science (GMD) �

jochen.liedtke@gmd.de

14th ACM Symposium on Operating System Principles (SOSP)

5th-8th December, 1993, Asheville, North Carolina

Abstract

Inter-process communication (ipc) has to be fast and
e�ective, otherwise programmers will not use remote
procedure calls (RPC), multithreading and multitasking
adequately. Thus ipc performance is vital for modern
operating systems, especially �-kernel based ones. Sur-
prisingly, most �-kernels exhibit poor ipc performance,
typically requiring 100 �s for a short message transfer
on a modern processor, running with 50 MHz clock rate.

In contrast, we achieve 5 �s; a twentyfold improve-
ment.

This paper describes the methods and principles
used, starting from the architectural design and going
down to the coding level. There is no single trick to
obtaining this high performance; rather, a synergetic
approach in design and implementation on all levels is
needed. The methods and their synergy are illustrated
by applying them to a concrete example, the L3 �-kernel
(an industrial-quality operating system in daily use at
several hundred sites). The main ideas are to guide the

complete kernel design by the ipc requirements, and to
make heavy use of the concept of virtual address space
inside the �-kernel itself.

As the L3 experiment shows, signi�cant performance
gains are possible: compared with Mach, they range
from a factor of 22 (8-byte messages) to 3 (4-Kbyte

messages). Although hardware speci�c details in
uence
both the design and implementation, these techniques
are applicable to the whole class of conventional general

�GMD I5.RS, Schlo Birlinghoven, 53757 Sankt Augustin,
Germany

0

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct com-

mercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is

by permission of the Association for Computing Machinery. To copy

otherwise, or to republish, requires a fee and/or speci�c permission.

SIGOPS '93/12/93/N.C., USA
c
 1993 ACM 0-89791-632-8/93/0012.. . $1.50

purpose von Neumann processors supporting virtual ad-
dresses. Furthermore, the e�ort required is reasonably
small, for example the dedicated parts of the �-kernel
can be concentrated in a single medium sized module.

1 The IPC Dilemma

Inter-process communication (ipc) by message passing is
one of the central paradigms of most �-kernel based and
other client/server architectures. It helps to increase
modularity,
exibility, security and scalability, and it is
the key for distributed systems and applications.

To gain acceptance by programmers and users, ipc
has to become a very e�cient basic mechanism. Surpris-
ingly, most ipc implementations perform poorly. Depen-
dent on the processor speed, transferring a short mes-
sage by ipc typically takes between 50 and 500 �s. A lot
of e�ort has been invested in improving ipc performance
[Che 84, Sch 89, Ber 89, Dra 91], but this has not led to
a real breakthrough. So ipc (and the �-kernel approach)
is widely regarded as a nice concept, but its use is hotly
debated because of the perceived lack of e�ciency. One
consequence is that programmers try to circumvent ipc

[Ber 92].
We have overcome the ipc dilemma by carefully con-

structing a �-kernel that more than achieves our aim of
a tenfold improvement in ipc performance over compa-
rable systems.

2 Related Work

Comparable message based kernels are Amoeba
[Mul 84], BirliX [Hr 92], Chorus [Gui 82], and Mach
[Acc 86]. Ipc improvement was addressed earlier by
Cheriton [Che 84a] using registers for short messages.

A strictly RPC [Bir 84] oriented ipc system was im-
plemented in DEC's Fire
y workstation [Sch 89], the
SRC RPC. It paid special attention to the performance
of same-machine RPC, e.g. by using a special path
through the scheduler for RPC context switching and

message bu�ers shared across all domains (thus trading
safety for performance).

Bershad constructed an even faster method, called
LRPC [Ber 89], also implemented on the Fire
y. It
achieves its good performance (3 times faster than SRC
RPC) mainly by using simple stubs, direct context
switching and shared message bu�ers.

But while LRPC is restricted to synchronous RPC-
like communication (blocking, without timeouts) and
has some constraints concerning security, message struc-
ture, message size and number of clients (see 5.2.3), our
technique supports Mach-like long and structured mes-
sages, has true ipc semantics and performs signi�cantly
faster than LRPC (see table 2).

3 L3 { The Workbench

L3 is a �-kernel based operating system built by GMD
[Lie 91, Bey 88, Lie 92a] which has been used for 4 years
as a production system in business and education. To

date, about 500 systems have been shipped to end users.
L3 is now in daily use in a variety of industrial and
commercial contexts.

The L3-kernel is an abstract machine implementing
the data type task. A task consists of threads, mem-
ory objects called dataspaces and an address space into
which dataspaces can be mapped. As in Mach, paging
is done by default or external pager tasks. All inter-
actions between tasks, and with the outside world, are
based on inter-process communication (ipc).

The L3 ipc model is quite straightforward. Active
components, i.e. threads, communicate via messages
which consist of strings and/or memory objects. Each
message is sent directly from the sending to the receiv-
ing thread. There are neither communication channels
nor links, only global thread and task identi�ers (uids)
which are unique in time. A server usually concludes
from the uid of the message sender whether the re-
quested action is permitted for this client or not. The
integrity of messages, in conjunction with the autonomy
of tasks, is the basis for higher level protection.

The ipc mechanism is heavily used inside L3, since
all logical and physical device drivers are implemented
as user level tasks communicating exclusively via ipc.
Hardware interrupts are integrated into this concept by
transforming them into interrupt messages which are
delivered by the �-kernel to the appropriate thread.

Further important aspects of L3 are the persistence
of data and threads [Lie 93] and its Clans & Chiefs

model [Lie 92] permitting message redirection. Due to
limited space the additional implications of these con-
cepts for e�cient ipc implementation are not discussed
here.

4 Principles And Methods

Since all e�orts to improve ipc by later optimizations
seemed to give only poor results, we decided to approach
the problem from the opposite direction. We seized the
opportunity of the L3 �-kernel's redesign to aim for re-
ally high performance by reconstructing the process con-
trol and communication related sections from scratch.

Paradigms and the basic architecture (tasks,
threads, ipc, address spaces, pager) were prede�ned by
older L3 versions, but we were free to change implemen-
tation methods and binary interfaces. The principles we
adopted for this internal redesign were:

� Ipc performance is the Master.

Anything which may lead to higher ipc perfor-
mance has to be discussed. In case of doubt, de-
cisions in favour of ipc have to be taken. But the
performance and security qualities of other com-
ponents must not be seriously impacted.

� All design decisions require a performance discus-

sion.

This will initially be based on more or less realistic
models, but must be validated later.

� If something performs poorly, look for new tech-

niques.

� Synergetic e�ects have to be taken into considera-

tion.

Combining methods may lead to reinforcement as
well as to diminution. Especially, a new method
may require further new methods for proper e�-
ciency.

� The design has to cover all levels from architecture

down to coding.

� The design has to be made on a concrete basis.

It is important to discuss the di�erent levels of de-
pendency during the design process. Some results
will totally depend on speci�c hardware, others

will be of more general nature, adaptable for the
next concrete design.

� The design has to aim at a concrete performance

goal.

This is essential for determining weaknesses and
poor techniques.

5 A Concrete Design

This section describes the concrete construction and dis-
cusses the internal design decisions taken when imple-

menting version 3 of L3's �-kernel on 386/486 based
hardware. It demonstrates the practical application of
the principles given above.

2

For illustration, an Intel 486-DX50 processor is used.
Running with a 50 MHz clock rate it contains an on-
chip cache of 8 Kbyte, and typical instructions take 1
or 2 cycles, assuming cache hits [i486]. The memory
management unit (MMU) translates 32-bit virtual ad-
dresses using 4 Kbyte pages. Page access rights are read
or read/write and kernel or user/kernel. Address transla-
tion is supported by a 4-way set-associative translation
lookaside bu�er (TLB) holding 32 entries. This TLB is

ushed on switching address space.

5.1 Performance Objective

When considering di�erent models and algorithms it is
essential to have an idea about the achievable perfor-
mance. Assume a simple scenario: thread A sends a
null message to thread B which is ready to receive it.
Both threads run at user level and reside in di�erent
address spaces. Since primary interest is in the lower
bound for the time needed, we begin by looking at the
minimal sequence of essential basic actions:

thread A (user mode): load id of B

set msg length to 0

call kernel

kernel: access thread B

switch stack pointer

switch address space

load id of A

return to user

thread B (user mode): inspect received msg

All operations concerning parameter passing and
testing, all scheduling actions and everything necessary
to transfer non null messages is omitted. The scenario
is, therefore, not very realistic, but allows a rough best
case estimation. We assembled the minimal necessary
20 (!) instructions for the basic actions mentioned above
(see table 3). Assuming the complete absence of write
or code prefetch delays and cache misses, the execution
cycles sum up to 127. (107 of these cycles are consumed
by the two instructions for entering and leaving kernel
mode which are extremely expensive.) Since the 486
MMU is
ushed when changing the address space, at
least 5 TLB misses will also occur consuming 9 cycles
each. Together this results in a minimum of 172 cycles
(3.5 �s) as a lower bound for ipc.

Thus, when starting the experiment, we decided to
aim at a performance of about 350 cycles (7 �s) per
short message transfer. In fact, we achieved 250 cycles
(5 �s). Later, this value of 5 �s, denoted as T, will be
used as a scale when discussing optimizations.

5.2 Architectural Level

5.2.1 System Calls

System calls are expensive: simply entering and leav-
ing kernel mode costs 2 �s (40% T). Therefore ipc has
to require as few system calls as possible. Since most
client/server systems operate synchronously, introduc-
ing the system calls call and reply & receive next (besides
to the non-blocking send and receive call) permits an im-
plementation using only 2 system calls instead of 4 per
RPC, i.e. one per ipc. Other systems contain similar
optimizations, e.g. SRC RPC [Sch 89].

Since both call and reply & receive combine send-
ing the outgoing message with waiting for an incoming
message into a single primitive, client/server protocols
become simpler (the server can be sure that the client
is ready to receive the reply) and there is no need for
scheduling to handle replies di�erently from requests.

5.2.2 Messages

The costs of system calls and address space switches
(together about 3 �s, 60% T) suggest the need to sup-
port complex messages in such a way that a sequence of
send operations can be combined into a single one, if no
intermediate reply is required. Besides higher e�ciency,
this also results in simpler communication protocols.

In L3, one message may contain a direct string
(mandatory), indirect strings (optional), and memory
objects (optional) (see �gure 1).

�
�
�
�
��

�
�
�
��

�
���

�

Figure 1: A Complex Message

Direct and indirect strings are copied strictly, mem-
ory objects lazily (similar to a Mach outline message).
Since the transfer of memory objects includes mapping,
unmapping and usually also pager activity, its e�ciency
is not discussed in this paper; but it is comparable with
the equivalent actions in Mach.

Indirect strings help to avoid copy operations at user
level. When, for example, text has to be sent to a screen
driver, the message obviously has to contain the oper-
ation code, perhaps coordinates, and the text string it-
self, which may be placed anywhere else by the compiler.
Then the message will contain operation code and coor-
dinates in the direct string and the text as an indirect
value speci�ed by address and length.

To simplify user level programming receive bu�ers
are structured in the same way: one part receives the di-
rect string, further ones (speci�ed by address and length

3

parameters in the receive operation) the indirect strings,
and the last ones the memory object identi�ers. In this
way complex messages may be used to transfer values
directly from the sender's program variables to the re-
ceiver's program variables (�gure 2).

A B

-

��
Pq@@R

JĴ
Pq��

Figure 2: Sending a Complex Message

This is similar to the multi-part messages of QNX
[Hil 92] but di�ers from Mach's outline message trans-
fer: in Mach, a receiver cannot specify the bu�ers for
outline messages. Furthermore, Mach's outline trans-
fer is primarily designed for larger messages and is very
expensive when used for smal or unaligned data.

5.2.3 Direct Transfer by Temporary Mapping

One basic problem of inter-process communication is
the transfer of messages between address spaces. Most
�-kernels solve this problem by a twofold copy: user
A space ! kernel space ! user B space. The mes-
sage is copied twice, because the address space model
consists of a user accessible part and a �xed kernel ac-
cessible part which is shared by all address spaces (see
�gure 3). Since the user parts are distinct, messages
must be transferred via the kernel part.

pp
pp
pp
pp
pp

pp
pp
pp
pp
pp

user A

user B

kernel

Q

Q

Q

Qs

� �

?

� �6

Figure 3: Twofold Message Copy

This is of no extra cost if the message has to
be bu�ered by the kernel. But in a modern multi-
threaded client/server system most RPC's operate syn-

chronously: the client blocks until it gets the reply or a
timeout; so message bu�ering is super
uous.

Copying an n-byte message costs about 20 + 0:75n
cycles plus additional TLB and cache misses. Even
transferring an 8-byte message by the above algorithm
would be about 0.5 �s (10% T) more expensive than a
single copy method. With larger messages, increasing
cache misses and
ooding will lead to even higher costs.

Therefore, at least non-short messages should be
transferred directly from source to destination address
space. LRPC and SRC RPC share user level memory

of client and server to transfer messages. Then only
one copy (sender ! shared bu�er) is required. But this
seriously a�ects security and has other disadvantages:

- Multi-level security [DoD 83] can be penetrated
by using shared communication bu�ers as hidden
channels without ipc system control.

- The receiver cannot check a message's legality,
since it may be changed by the sender during or
after checking. (A second copy into the receiver's
private memory area would solve the problem but
eat up the one-copy bene�t.)

- When servers communicate with many clients and
messages are sometimes very long, shared regions
of the virtual address space may become a critical
resource.

- Shared regions require explicit opening of com-
munication channels. (L3 permits communication
without prior opening.)

- Shared bu�ers are not application friendly, since
they do not allow direct transfer from variable to
variable as described in 5.2.2.

L3 therefore uses a new method based on temporary
mapping: the kernel determines the target region of the
destination address space, maps it temporarily into a
communication window in the source address space, and
then copies the message directly from the sender's user
space into its communication window. Due to aliasing
the message appears at the right place in the receiver's
address space.

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp

pp
pp
pp
pp
pp

pp
pp
pp
p p p
p p p
p p p
p p p
p p p
p p p
p

pp
pp
pp
p p p
p p p
p p p
p p p
p p p
p p p
p

user A

user B

kernel

Q

Q

Q

Qs

� �

?

Figure 4: Direct Message Copy

The communication window is only kernel accessi-

ble, but unlike other kernel areas it exists per address
space, i.e. is not shared between all spaces.

Direct transfer avoids the disadvantages of user level
shared communication bu�ers, since temporary map-
ping is done on demand and bu�ers are shared only at
kernel level. (When A sends a message to B, kernel A
and user B can access the receiver bu�er, but user A
cannot.)

Problems implementing communication windows
are:

� Temporary mapping must be fast.

4

� Di�erent threads must coexist in the same address
space.

The 486 MMU uses a two level page table for trans-
lating virtual addresses. The �rst level table, also called
the page directory, holds 1024 entries, each of them
pointing to a 1024-entry second level table. Thus each
directory entry corresponds to 4 MB of the virtual ad-
dress space. As shown in �gure 5, temporary mapping
of such a region requires only one word to be copied
from page directory B to page directory A.

pdir A pdir B

�
��

page table�� Hj�
��

data page

PPPPq

� �

?

copy pdir entry

Figure 5: Fast Temporary Mapping

To avoid region crossing problems we restrict mes-
sage string size to 4 MB (there may be up to 255 strings
in a message) and always map an 8 MB region with the
receive bu�er beginning in its lower half.

For proper operation the TLB must not hold any
page table entries relating to use of the communication
window by earlier or concurrent operations. If this is
true, we call the TLB window clean; a
ushed TLB is
obviously window clean.

A window clean TLB could be ensured by
ush-
ing the complete TLB before each temporary mapping,
what is quite an expensive operation. (The 486 proces-
sor allows the complete TLB to be
ushed or just sin-
gle pages, but there is no e�cient mechanism to
ush
intermediate-sized regions of the address space.) To �nd
a more e�cient method we �rst look at a one thread per
address space scenario:

1. At the very beginning the TLB is window clean.

2. Immediately after switching back to this thread,
the TLB is window clean. (It is the only thread
in the address space, and address space switch

ushes the TLB.)

3. Therefore, the �rst send operation starts with a
window clean TLB. It remains window clean dur-
ing transfer.

4. When an address space switch is part of the ipc
operation and takes place after copying the mes-
sage, the TLB is window clean after ipc. Thus the
TLB is always window clean.

Handling multiple threads per address space is more
complicated, since concurrent ipc would violate the win-
dow clean constraint. Allocating as many communica-
tion windows as threads in an address space would solve
the problem, but would result in an intolerable restric-
tion on the number of threads per address space.

Instead, only one window is used and the problem of
multiple threads accessing it concurrently is solved by:

1. Enforcing an additional TLB
ush when thread
switching does not change the address space and

page directory entries related to the communica-
tion window are actually in use. (This happens
only when an inter-address space transfer is inter-
rupted by timeslice exhaustion, a page fault or a
hardware interrupt. Ipcs that happen to be intra-
address space are handled without using the com-
munication window.)

2. Invalidating the communication window entries in
the page directory upon thread switch. (When
control is returned to this thread, accessing the
communication window leads to a page fault so
that the page fault handler can reestablish the
temporary mapping.)

Multiprocessor: One window per processor in each
address space should be used. Additional
lock/unlock operations on page directories are not
needed.

Di�erent Processor: The method shown is nice, be-
cause in most cases it does not require additional
actions and the necessary TLB
ush is free of
charge. If, however, we assume the TLB to be ca-
pable of holding page table entries of di�erent ad-
dress spaces in parallel, TLB
ush is not normally
required upon changing address space and the
method would become expensive. To avoid this
any TLB which supports multiple spaces should
o�er e�cient
ush operations on larger address
space regions.

5.2.4 Strict Process Orientation

For simplicity and e�ciency, threads that are temporar-
ily running in kernel mode should be handled in the
same way as when running in user mode. Thus it is
natural to allocate one kernel stack per thread. This
appears to be the most e�cient way, since interrupts
(including clock interrupts), page faults, ipc and other
system calls already save state information (instruction
counter,
ags, user stack pointer) on the actual kernel
stack.

Continuations [Dra 91] or similar techniques could
reduce the number of kernel stacks, but require either
additional copy operations between kernel stack and

5

continuation, or stack switching. Both methods induce
additional TLB misses and therefore are more expen-
sive (stack switching: 0.5 �s, 10% T; copying: 1.7 �s,
33% T). Furthermore, continuations cannot be used in
all cases and require special programming support. In
practice, continuations interfere with other optimiza-
tions at lower levels, e.g. thread control block address-
ing. Thus the real costs will be even higher.

One kernel stack per thread leads to a large num-
ber of stacks; but this is only a minor problem if these
stacks are objects in virtual memory (see �gure 6) and
combined with their corresponding control blocks.

5.2.5 Control Blocks as Virtual Objects

Thread control blocks (tcb's) are used to hold kernel-
and hardware-relevant thread-speci�c data. This in-
cludes registers, state information and a kernel stack.
An e�cient way to manage tcbs is to hold them all in
a large virtual array (see �gure 6) located in the shared
part of all address spaces. Of course, this structure must
only be accessed by the kernel. Bene�ts of this method
are:

� It permits fast tcb access. Only the address ar-

ray base + tcb no � tcb size has to be calculated.
Furthermore, explicitly checking whether the ad-
dressed tcb is allocated and swapped in becomes
super
uous. This job can be shifted to the page
fault handler which deals with it only when an
unmapped tcb is accessed.

� It saves 3 TLB misses per ipc (0.5 �s, 10%T): one
by directly accessing the destination tcb (without
using a table) and a further two, since the kernel
stacks of the sender and receiver are located in the
corresponding tcb pages.

� Locking a thread can be done simply by unmap-
ping its tcb.

� It helps to make threads persistent.

� Ipc can be implemented orthogonally to / inde-
pendently frommemorymanagement. Page faults
or tcb swap outs during message transfers are in-
visible to the ipc system.

user area kernel area

window
pp
pp
p

���
HHH

tcb kernel stack

Figure 6: Address Space With Thread Control Blocks

Allocating a thread's kernel stack within its tcb per-
mits an even faster access method to the matching tcb,

when tcbs are 2n-aligned: simply and the stack pointer
with a bit mask.

Similar mechanisms can be used for task control
blocks and page directories. Recall that these �rst level
page tables have to be accessed for temporary mapping
(see �gure 5). It is useful to have a virtual array of
all page directories inside each address space as well as
a �xed location for this address space's own directory.
Temporary mapping then reduces to

my pdir [window] := pdir [dest] [bu�er � 22];

my pdir [window+1] := pdir [dest] [(bu�er � 22)+1].

Multiprocessor: The destination tcb must be locked
for ipc in a multiprocessor system, but this is not
required for the sending tcb, unless the sender has
to insert itself into a queue. Due to lazy schedul-
ing (see 5.3.4) this generally only happens when
the destination is not ready to receive. In a multi-

processor system writing the tcb's state �eld will
be more expensive, since it requires a locked write
(through cache into external memory).

5.3 Algorithmic Level

5.3.1 Thread Identi�er

As mentioned in the previous section, a tcb address
can easily be calculated from the thread number. In
user mode, however, a thread is always addressed by its
unique identi�er (uid). L3 uses 64-bit wide thread uids
containing thread number, generation (for time unique-
ness), station number and chief id. (Clans & Chiefs is
a concept unique to L3 described elsewhere [Lie 92].)

To support the calculation of the tcb address from
a given uid, the uid contains the thread number in its
lower 32 bits in such a way that only anding it with
a bit mask and adding the tcb array's base address is
necessary. Index checking can be omitted, if the valid
tcb numbers range from 0 to 2m, and only 3 cycles (0.06
�s, 1.2% T) are required.

If the given uid speci�es a thread on a di�erent sta-
tion, or has become invalid in the meantime, the above
algorithm accesses the wrong tcb. Each tcb therefore
contains its thread uid which is checked against the
requested uid.1 In the usual case (no page fault, uid
matching) this costs another 4 cycles, i.e. 0.08 �s, 1.6%
T.

1Inter-node ipc requires a further discussion. In L3 this is au-
tomatically covered by the Clan concept. Since a thread residing
in a di�erent node must belong to a di�erent clan, ipc is auto-
matically redirected to the sender's chief which resides on its own
node. This is done before tcb access; so inter node communica-

tion will not lead to `wrong' tcb accesses. In other systems the
�-kernel could either check for inter-node communication before
tcb access or manage it after discovering the uid di�erence. The
latter case may be faster, but leads to super
uous tcb swap ins.

6

If the �-kernel supports thread migration (L3 does
not), duplicate numbers for threads residing in the same
node can be circumvented by means of proxies remain-
ing on the threads original node.

5.3.2 Handling Virtual Queues

The kernel handles a variety of thread queues, e.g. busy
queue, present queue and a polling-me queue per thread,
which contains all threads actually trying to send me a
message.

The most e�cient implementation uses doubly
linked lists, where the links are held in the tcbs. How-
ever, parsing the ready queue, or getting the next sender
out of the actual thread's polling-me queue, must not
lead to page faults. Unmapping a tcb therefore includes
removal from all these queues. So tcbs are chained in
virtual address space, but parsing the chains and insert-
ing or deleting tcbs will never lead to page faults.

5.3.3 Timeouts And Wakeups

Timeouts can be speci�ed in each ipc operation. A time-
out value t means the operation fails (and the thread is
awakened) if message transfer has not started t ms af-
ter invoking the operation. The frequently used values
t = 1 and t = 0 can be implemented very easily, but
real timeouts require something like a wakeup queue.

Since far more ipc operations succeed than fail due
to timeout, insertion into and deletion from the wakeup
queue must be very fast. The fastest method is a large
array, indexed by thread number, holding the wakeup
time for each thread; but sequentially parsing the array
on each clock interrupt is far too expensive: For 16K
entries, 2 ms would be needed; the on-chip cache would
also be
ooded. We �nally decided to use a set of n
unordered wakeup lists implemented by doubly linked
lists. If a thread is entered with wakeup time � , its tcb
is linked into the list � mod n. If a total of k threads are
contained in the wakeup lists, the scheduler will have to
inspect k=n entries per clock interrupt, on average. Fur-

thermore, the scheduler removes a thread if its wakeup
point is far in the future and it has already been waiting
for some seconds. Such threads are held in a long time
wakeup list until their wakeup time approaches; they
are then reinserted into the normal wakeup lists.

Using a set of unordered wakeup lists combines fast
insert/delete with low bookkeeping costs for a moderate
number of active threads. Since we use n = 8 lists and a
wakeup granularity of 4 ms, 400 active threads will lead
to at most 400=8�250 = 12500 inspected wakeup entries
per second, the processor then spends less than 1% of
its cycles on scheduling. Note that this scenario requires
at least 12,500 ipc's per second, i.e. at least 6% of the
cpu time is used for pure ipc. Since in practice three
quarters or more of the ipc operations use timeouts 0 or

1 not requiring queue operations, the scenario would
probably require even 50,000 ipc operations per second,
25% of the processor time. So wakeup handling usually
costs less than 4% of the total ipc time.

Another problem related to wakeups is the represen-
tation of time. Using 1 ms as the time unit, a 32 bit
value can denote intervals up to 48 days. Since a sys-
tem may run for far longer, this is su�cient for timeout
intervals but not for wakeup times. (Simply powering
down a system does not clear the wakeup queue. Since
in L3 everything is persistent, wakeups survive power
o� intervals.) 64 bit values are, however, too expensive
on a 32 bit processor, particularly because they occupy
more registers.

We use (base+o�set) to represent a point in time,
e.g. a wakeup. The base is controlled by the kernel in
such a way that the actual time is always represented
by an o�set less than 224. Furthermore, timeouts are
restricted to a maximum of 231 ms (� 24 days). Then
wakeups can always be calculated and managed by 32
bit arithmetic using only one register or memory word.
Whenever the actual time o�set reaches 224ms (� 4:5
hours), the kernel increases the base and updates all
o�sets in the wakeup lists.

5.3.4 Lazy Scheduling

Conventionally, an ipc operation call or reply & receive

next requires some scheduling actions:

1. deleting the sending thread from the ready queue,

2. inserting it into the waiting queue,

3. deleting the receiving thread from the waiting
queue,

4. inserting it into the ready queue.

Insertion needs at least 7, and deletion 4, load/store
operations. Together with 4 expected TLB misses this
will take at least 58 cycles (1.2 �s, 23% T).

Multiprocessor: Due to the need for locking, these
operations would be even more expensive in a mul-
tiprocessor system.

Instead, a method we call lazy scheduling is used. Ipc
tries to avoid queue manipulation and changes only the
thread state variable in the tcb from ready to waiting or
vice versa. The invariants for ready and wakeup queues
are:

The ready queue contains at least all ready
threads, except possibly the current one.

Each wakeup queue contains at least all
threads waiting in this class.

7

There may be threads in the ready queue which are now
waiting or polling, and the thread actually controlling
a processor may not be in the queue even though it is
ready. Furthermore, threads may be in many queues.
Whether a thread really belongs in a queue must be de-
duced from the tcb's state �eld. Whenever a queue is
parsed the scheduler removes all threads that no longer
belong in it. Hence the delete operations mentioned
above can always be omitted, and insert operations be-
come unnecessary when the thread was enqueued earlier
and has not yet been removed. In theory, this interferes
with the idea of using n wakeup lists. Since a thread
may now be contained in all lists, in the worst case k en-
tries, rather than k=n, have to be inspected. In practice
this seldom happens.

Furthermore, insertion into the ready queue can al-
ways be omitted at call and reply & receive next opera-
tions. All ipc operations except send block the invoker.
So there are only three situations in which a thread
looses processor control and still remains ready: end
of timeslice, hardware interrupt and send. To guaran-
tee the ready queue invariant in these cases the current
thread is inserted into the ready queue if necessary.

In the worst case (few ipcs per interval) lazy schedul-
ing is comparable with strict scheduling; happily it per-
forms better and better with increasing ipc rate. In an
L3 system with one active user, between 500 and 2,000
ipcs typically occur per second, with peak values (e.g.
when browsing through a �le with the editor) exceeding
10,000. The ratio `ipcs : lazy queue update operations'
typically ranges between 2:1 and 5:1, though very high
ipc rates can lead to a 50:1 ratio.

5.3.5 Direct Process Switch

For a remote procedure call it is natural to switch the

ow of control directly to the called thread, donating
the current timeslice to it (as also LRPC does).This is
also the most e�cient method, since it only involves
changing stack pointer and address space. The same
method is used for replies and non-blocking send op-
erations. However, in L3, when B sends a reply to A
and another thread C is waiting to send a message to B
(polling B), C's ipc to B is immediately initiated before
continuing A.

Fairness will not be discussed in detail here, but
some basic properties are stated:

� Very loosely, ipc overhead is the only di�erence
in timing between a normal procedure call and a
remote procedure call. Two threads playing ping-
pong will not be punished by the scheduler. This
results mainly from timeslice donation and the
ready queue's stability due to lazy scheduling.

� When multiple threads try to send messages to
one receiver, it will get the messages in the se-

quence in which the ipc operations were invoked,
i.e. no sender may dominate a receiver. Recall
that messages are not bu�ered by the kernel, only
the polling threads are queued.

5.3.6 Short Messages Via Registers

Usually, a high proportion of messages are very short,
since frequently used RPCs have few input or output pa-
rameters. For example ack/error replies from drivers are
very short, as are hardware initiated interrupt messages.
In an L3 system, on average, between 50% and 80% of
messages contain 8 bytes (plus 8 bytes sender id) or less.
The direct transfer of short messages via cpu registers
(similar to Cheriton's experiment [Che 84a] or as pro-
posed by Karger [Kar 89]) may therefore be worthwhile.
The 486 processor has 7 general registers, but three are
needed for the sender id and result code. So only four
are available. Whether two of them can e�ciently be
used for transferring 8-byte-messages required a coding
experiment.

To decide whether this uncertain gain is worth addi-
tional coding e�orts { recall that direct message transfer
has to be implemented anyway { we made an optimistic
best case estimation of the costs of temporary mapping
(see table 4) which suggested an overhead of at least 62
cycles (1.2 �s, 25% T).

We succeeded in coding the transfer of 8-byte mes-
sages via registers, but this seems to be the upper limit
on this processor. In fact, we achieved a performance
gain of 2.4 �s or 48% T, since special treatment of such
short messages permitted additional coding optimiza-
tions.

Di�erent Processor: Register transfer pays for the
486 processor, but perhaps not for other proces-
sors with fewer registers or an MMU which gives
fewer TLB faults. Even in such a case, special
treatment of short messages may pay, since it per-
mits some optimizations on the coding level.

5.4 Interface Level

Ipc performance is not only determined by the kernel
algorithms, but also by the user/kernel interface. It is
important to support typical usage and permit compil-
ers to optimize code. RPC stubs should especially be as
simple as possible. Ideally, they should only load some
registers, issue a system call, and check its success. This
is short enough to permit the compiler to generate stub-
code in-line.

8

5.4.1 Avoiding Unnecessary Copies

As described in section 5.2.2, messages may be com-
pound values composed of direct strings, indirect strings
and memory objects to reduce the number of ipc calls
and avoid unnecessary copying.

However, objects cannot be arbitrarily mixed in a
message, but must be grouped by their types. This
permits more e�cient kernel algorithms, and simpli�es
message parsing at both kernel and user level.

Message manipulation, tracing and forwarding be-
come easier and faster when data in send and receive
bu�ers are structured in the same way. In this case
unnecessary copies can be avoided by using the same
variable for receiving and sending. But, of course, us-
ing di�erent variables in call or reply & receive next is
also possible. This avoids copying when using \message
constants" for orders or replies. Messages are described
by dope vectors containing the actual length as well as
the maximum size of the message objects.

5.4.2 Parameter Passing

The kernel's ipc interface should use registers for pa-
rameter passing whenever possible, since

1. registers can be accessed far more e�ciently than
user stack,

2. input/output parameters in registers give compil-
ers better opportunities for code optimization.

Furthermore, registers which are not used for parameter
passing should always be de�ned as scratch. The kernel
would, otherwise, always have to save and restore them,
whereas a code generator knows whether and how to
reconstruct their old values most e�ciently. The 486
register usage in L3 is shown in table 6.

5.5 Coding Level

5.5.1 Reducing Cache Misses

The most frequently used kernel code should be as short
as possible. So it should use short jumps, registers in-
stead of memory and short address displacements. (486
instructions address memory by means of base/index
register and one or four byte displacements.) Conse-
quently, frequently accessed tcb data should be reached
by one byte displacements.

To reduce data cache misses, the tcb and other tables
have to be organized so that frequently used data are
concentrated in few cache lines, and so that data which
are often used together are placed in the same cache
line. To reduce delays on cache misses, the cache line �ll
sequence should match the usual data access sequence.

5.5.2 Minimizing TLB Misses

Since TLB misses are expensive and the TLB is
ushed
on address space switch, the ipc related kernel code
should be placed in one page. Equally, all processor in-
ternal tables2 that are accessed when switching thread
and address space should be placed in one page, if pos-
sible together with the frequently used kernel data, e.g.
the system clock. Larger tables should be placed so that
they end or start in this page and the most heavily used
entries are located in this page. We saved 4 TLB misses
by this technique, i.e. 0.7 �s or 14% T.

Note that together with handling control blocks and
kernel stacks as virtual objects (see 5.2.5) and lazy
scheduling (see 5.3.4) at least 11 TLB misses are saved,
2.0 �s or 40% T.

5.5.3 Segment Registers

Segment register loading is expensive: 9 cycles. So the
preferred memorymodel uses only one
at segment cov-
ering the complete address space. Once the segment
registers are initialized with the descriptor of this
at
segment, new loads should be super
uous. Unfortu-
nately, there is user level software which relies on dif-
ferent models. If the kernel guaranteed to maintain the
user segment registers and load the necessary
at de-
scriptor, this would cost 66 cycles, 1.3 �s or 26% T per
ipc.

Instead, the kernel checks on entry whether the seg-
ment registers contain the
at descriptor, and guaran-
tees that they contain it when returning to user level.
So segment register loads are avoided at both kernel and
user level when the
at memory model is used. In this
case only 10 cycles are required for checking the segment
registers (0.2 �s, 4 % T).

5.5.4 General Registers

Besides applying standard register usage optimization,
one has to pay attention to the user/kernel interface.
Its register conventions in
uence coding possibilities in
the kernel.

A special 486 feature is the aliasing of four 32-bit
registers with pairs of 8-bit registers. We used this by
restricting direct strings to 255� 4 bytes, and allowing
only 255 indirect strings (of up to 4 MB each) and 255
memory objects. As a consequence a complete message
dope �ts into one 32-bit register and needs only one
memory access, whereas each counter can be directly
accessed through the corresponding 8-bit register.

2Due to the 486's segment support (inherited from 432, 286
and 386) there are three descriptor tables (GDT, IDT and TSS)
which are of no use in this context but are accessed by hardware.

9

5.5.5 Avoiding Jumps and Checks

Conditional jumps taken are more expensive than those
which are not taken (3:1 cycles), induce pipeline delays,
and potentially lead to worse cache utilization. There-
fore basic code blocks should be arranged so that the
\main stream" executes as few jump instructions as pos-
sible.

Since illegal ipcs can be executed more slowly, es-
sential parameter checks should be shifted to seldom
executed alternatives. For example sending a message
to the sender itself is illegal, but it is su�cient to check
this only if the destination is not ready to receive.

5.5.6 Process Switch

In most cases a process switch only requires the stack
pointer, and perhaps the address space, to change.
Additional actions become necessary when the source
thread has used the processor's debug registers3 or the
numeric coprocessor. Since use of both resources can be
monitored by the kernel, the corresponding save/restore
actions are only invoked when really necessary. In the
case of the numeric coprocessor, save/restore is handled
lazily, i.e. is delayed until a di�erent thread tries to
access the coprocessor registers.

Sparc-like Processor: On Sparc4 processors with
large number of registers, we propose to experi-
ment with lazy schemes for saving and restoring
register windows [Lie 93a], similar to the copro-
cessor handling mentioned above.

5.6 Summary of Techniques

add new system calls (5.2.1)
rich message structure,
symmetry of send & receive bu�ers (5.2.2)
single copy through temporary mapping (5.2.3)
kernel stack per thread (5.2.4)
control blocks held in virtual memory (5.2.5)
thread uid structure (5.3.1)
unlink tcbs from queues when unmapping (5.3.2)
optimized timeout bookkeeping (5.3.3)
lazy scheduling (5.3.4)
direct process switch (5.3.5)
pass short messages in register (5.3.6)
reduce cache misses (5.5.1)
reduce TLB misses (careful placement) (5.5.2)
optimize use of segment registers (5.5.3)
make best use of general registers (5.5.4)
avoid jumps and checks (5.5.5)
minimize process switch activities (5.5.6)

3486 debug registers allow the use of data and code
breakpoints.

4SPARC is a trademark of Sun Microsystems.

The e�ects of some optimizations can be easily quan-
ti�ed. Table 1 shows these techniques and the additional
time which would be needed without them. For better
comparison the time is given relative to the ipc times
obtained. 100% means that removing this (and only
this) optimization would double the ipc time. For short
messages, the most valuable technique is register trans-
fer, whereas direct message transfer dominates all other
optimizations when messages become longer.

removed time increase (n-byte ipc)

optimization 8 12 128 512 4096

short msg via reg 49% { { { {

direct transfer { 9% 23% 58% 157%

lazy scheduling 23% 16% 12% 7% 1%

no segm reg 21% 14% 11% 6% 1%

reply & wait
a

18% 13% 10% 5% 1%

condensed tables
b

13% 9% 7% 4% 1%

virtual tcb
c

10% 7% 5% 3% 1%

awhen used to implement RPC
bdue to less TLB misses
conly reduced TLB miss e�ect

Table 1: Easily quanti�able E�ects

Note that this table completely ignores synergetic
e�ects. Removal of all optimizations shown in the table
will increase the 8-byte ipc time by far more than 134%
(= 49+ 23 + 21 + 18 + 13+ 10).

Unfortunately, the e�ects of the other techniques de-

scribed here cannot be quanti�ed as easily. Some tech-
niques have no unique alternative; in other cases the
e�ects cannot be isolated. For example an alternative
address space structure, where control blocks are no
longer virtual objects, could lead to strong dependen-
cies between the ipc system and memory management.
If an ipc system had to avoid paging and to lock each
memory page before accessing it, it would di�er radi-
cally from ours.

The relevance of such decisions in
uencing internal
system structure and interface can be demonstrated by

a simple example. For various hardware platforms and
operating systems, Ousterhout [Ous 90] measured the
costs of entering and leaving the OS kernel by execut-
ing the trivial getpid call. All the times were at least
10 times (sometimes even 20 or 30 times) larger than
the bare machine time for calling the kernel from user
level and returning. For Mach on a 486 (50 MHz) we
measured 18 �s for the mach thread self call, whereas
the bare machine time for user!kernel!user is 2 �s.
Using the Mach system call implementation would in-
crease our 8-byte ipc time by 300%.

10

6 Results

For measurement a `noname' PC was used, contain-
ing an Intel 486 DX-50 (running at 50 MHz), 256 KB
external cache and 16 MB memory. Two user level
threads running in di�erent address spaces repeatedly
played pingpong with a message of n bytes net size (+
sender/receiver id). The ping client uses call, whereas
the pong server operates by reply & receive next. Ping-
pong (which in fact is a true synchronous RPC) is ex-
ecuted 10,000 times, and the average ipc time is calcu-
lated by dividing the totally elapsed time by 20,000:

A short cross address space ipc (user !
user) takes 5.2 �s.

To measure the cache usage the cache was �rst
ushed,
then one pingpong was executed and afterwards the
valid cache lines were counted.

All code and data together use 592 bytes
(7%) of the on-chip-cache.

So the cache penalty should be bearable in real use,
and user programs which communicate through short
messages will not be punished by the kernel
ooding
the cache. The worst case cache penalty for short ipc
is 6.4 �s. It was measured by
ushing the cache before
each ipc.

Longer ipcs, transferring n bytes, take about
7 + 0:02n �s (see table 7).

To illustrate the relation to conventional ipc tim-
ing we made the same measurements on top of Mach
(NORMA MK13 kernel), using the same hardware. The
minimum of a series of measurements was always taken
to ensure that the performance of Mach was not mis-
represented. We chose Mach because it is a typical �-
kernel based on the ipc paradigm, is highly optimized,
and both L3 and Mach are in use as commercial sys-
tems. Furthermore, L3's ipc functionality is roughly
comparable to that of Mach.

Figure 8 compares ipc times for larger messages in
Mach, L3, L3 with enforced cache
ush per ipc, and the
bare processor data move time, 15 ns/byte (optimal,
without cache miss and write delay).

For 8 < n < 2K, and given su�cient cache
hits, L3 ipc takes

7 + 0:02 n �s:

For larger n and increasing cache misses it
takes

10 + 0:04 n �s

The 40 ns/byte rate is given by the exter-

nal cache and memory system. In contrast,
Mach takes about

120 + 0:08 n �s:

message size [bytes]

20

40

60

80

100

120

140

160

180

ipc

time

[�s]

Mach

8

115

12

115

128

124

512

172

5.2
7.6

9.8

18.1

L3

Figure 7: 486-DX50, L3 versus Mach Ipc Times

512 1024 2048 4096

message size [bytes]

50

100

150

200

250

300

350

400

450

ipc

time

[�s]

...........
..............
..............
..............
...........
............
.............
..............
...............
..............
...............
..............
..............
...........
..........
...........
...........
..........
...........
..........
...........
...........
..........
...........
...........
..........
...........
..........
.........

.........
.......
.........
.........
..........
...........
........
........
........
........
.......
..........
.........
.........
.........
.........
.........
.........
..........
.........
.........
..........
.........
..........
.........
.........
.........
.........
..........
.........
.........
.........
..........
.........
.........
.........
..........
.........
.........
.........
..........
.

..
..
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

L3

L3+cache flush

.......
......

......
......
.

.....
......
..

......
......
.
......
......
.
......
......
.
......
......
.
......
......
.
......
......
.
......
......
.
......
......
.
......
......
.
......
......
.
......
......
.
......
......
.
......
......
.
......
......
.
.......
......
.......
......
.......
......
......
......
.
......
. Mach

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. . move data

Figure 8: 486-DX50, L3 versus Mach Ipc Times

11

The 80 ns/byte rate shows the e�ect of copying a
message twice. Apparently Mach's large basic overhead

oods the on-chip cache so that both kernel and user
lose its bene�ts when using ipc.

Table 2 summarizes L3's and other systems' ipc per-
formance. Since some of them are strictly RPC oriented,
we chosed the synchronous Null-RPC for comparison.
In message based systems it is implemented by two mes-
sage transfers.

System CPU, MHz �MIPs �s �MIPs � �s

L3 486, 50 10 10 100

L3 486, 33 6.6 15 99

L3 386, 20 2 60 120

LRPC FF-CVAX 2 157 314

QNX 486, 33 6.6 76 502

SRC RPC FF-CVAX 2 464 928

SRC RPC FF-�VAX II 1 937 937

Amoeba 68020, 15 1.5 800 1200

Mach 386, 20 2 535 1070

Mach 486, 33 6.6 346 2284

Mach 486, 50 10 230 2300

Dash 68020, 15 1.5 1920 2880

Table 2: Null-RPC performance

The L3 and the Mach-486 data are measured by our-
selves, whereas the remaining performance data is taken
from [Ber 89, Hil 92, Sch 89, Ren 88, Dra 91, Tzo 91].

7 Remarks

7.1 Introducing Ports

Since L3 ipc operates directly from thread to thread,
a question arises as to how expensive the introduction
of ports would be. Here the bu�ering feature of Mach
ports will not be taken into consideration, but we extend
L3 ipc to support indirection and port rights.

We use one port link table per address space, holding
links to the system-global port table. Both tables are
only accessible by the kernel. At user level, ports are
represented by indices identifying the accessed port by:
port table [port link table [port index].access].

A �?
p p p p

� �?
p

��B

Figure 9: Port Link and Port Table

access is either `read' or `write' and determines which
port link is chosen. Illegal accesses are marked in the
port link table by a special value pointing to a non-
mapped page. This shifts the port right checking code

to the page fault handler, and legal port access requires
no checking overhead at all.

The global port table points to the related thread,
if any. Therefore the uid and state inspection necessary
for L3 ipc can be replaced by investigating the port
entry. From the performance point of view the relevant
additional ipc overhead is accessing the port table.

The best case estimation (see table 5) gives 29 cy-
cles, i.e. 0.6 �s or 12% T. A test implementation in the
L3 �-kernel led to the same result. We conclude that,
in principle, port-based ipc can also be implemented ef-
�ciently.

7.2 Dash-like Message Passing

The Dash kernel uses `restricted virtual memory remap-
ping' [Tzo 91] for passing longer messages (several
pages) to achieve low latency and high bandwidth. A
Dash message consists of one or more pages which must
all be located within a special part of the address space,
called the ipc region. On sending, these pages are re-
moved from the sender's address space and mapped at

the same virtual address in the receiver's address space.
In the implementation described by Tzou and Ander-
son the ipc region is 1 MB long and resident in physical
memory.

To evaluate how our techniques work when applied
to this speci�c type of message passing, we implemented
(for experimental purpose only) Dash-like messages in
the L3 kernel.

L3 (Dash-like) ipc takes 8+n �s transferring
n pages (including access to each page in the
receiver's address space).

Running on a 16 MHz 386, the corresponding time is
61+6:3n �s. Dash (running on a Sun 3/50) takes 986+
208n �s [Tzo 91].

7.3 Cache

One problem with direct mapped caches is thrashing
arising from multiple working set parts being mapped
to the same cache line. Such collisions can be minimized
by adequate mapping of virtual pages to real memory
frames [Bra 90] and by �nding link orders with low col-
lision rates [Gs 93].

On processors with direct mapped caches, similar
techniques should be applied to reduce cache collisions
between the ipc system and user programs. On the 486,
collision avoidance by software is of minor relevance,
since its on-chip cache is 4-way associative. Neverthe-
less, the small cache working sets achieved are very im-
portant. If the ipc system
oods the cache, not only
would the ipc itself be slowed down but also ipc users.

12

7.4 Processor Dependencies

Most of the techniques described in section 5 can be ap-
plied to any general purpose von Neumann processor,
provided it supports virtual address spaces of su�cient
size, permits hierarchical mapping and aliasing, and dis-
tinguishes kernel and user modes. Things become di�-
cult if the MMU does not support hierarchical mapping
or the cache does not permit synonyms (di�erent vir-
tual addresses mapped to the same physical address).
Such hardware should only be used for one thread per
processor applications.

In most cases all the methods at the architectural
and algorithmic levels should be usable, except perhaps
for transfering short messages via registers. Di�erent
methods may be required for parameter passing (inter-
face level) and at the coding level, although the tech-
niques for reducing TLB and cache misses are widely
applicable.

Note that entering and leaving kernel mode is far
more expensive on 486 and compatible processors than
on most others. This results from the built-in segment
system which automatically loads and checks segment

descriptors when switching between user and kernel
mode. Other processors may pro�t from not being bur-
dened with segments. A hypothetical 486-compatible
processor without the segment system (saving 80 cycles)
and with a multi-address-space TLB (saving 45 cycles)
could reduce the time needed for short ipc from 5 �s to
2.5 �s.

Although the methods are fairly general, a proces-
sor speci�c implementation is required to get really high
performance. Since there are no compilers (as far as we
know) which permit interfaces to be speci�ed at regis-
ter level and basic block sequences to be optimized by
programmer supplied usage information, we had to use
hand coding for the critical ipc related parts. These are
combined into one module of 5 Kbytes (2082 lines of
commented code).

8 Conclusions

It has been shown that fast, cross address space ipc
can be achieved by applying principles like performance

based reasoning, hunting for new techniques if neces-
sary, consideration of synergetic e�ects and concrete-

ness. This needs a variety of methods on all levels, from
architecture down to coding, which must be combined
in a design aimed at a speci�c performance goal right
from the beginning.

The methods presented are applicable to other �-
kernels and di�erent hardware.

The achievable quantitative gain is so high (\22
times faster") that it may perhaps count as a qualitative
improvement.

Acknowledgements

I would like to thank Hermann Hrtig for various help-
ful discussions and Martin Gergeleit who measured the
Mach ipc by means of his Jewel [Ger 92] performance
measurement software. I would also like to thank Peter
Dickman for proofreading this paper and helpful com-
ments. This paper was written using LATEX on top of
L3.

References

[Acc 86] M. J. Accetta, R. V. Baron,W. Bolosky, D. B. Golub,
R. F. Rashid, A. Tevanian, M. W. Young. Mach:

A New Kernel Foundation for UNIX Development.

ProceedingsUsenix Summer'86Conference. Atlanta,
Georgia, June 1986, pp. 93-113.

[Ber 89] B. N. Bershad, T. E. Anderson, E. D. Lazowska, H.
M. Levy. Lightweight Remote Procedure Call. Pro-

ceedings 12th ACM Symposium on Operating Prin-
ciples, Litch�eld Park, Arizona, December 1989, pp.

102-113.

[Ber 92] B. N. Bershad. The Increasing Irrelevance of IPC

Performance for Microkernel-Based Operating Sys-

tems. Proceeedings Micro-kernel and Other Kernel
Architectures Usenix Workshop, Seattle, April 1992,

pp. 205-211.

[Bir 84] A. D. Birrel, B. Nelson. Implementing Remote Pro-

cedure Calls. ACM Transactions on Computer Sys-
tems. February 1984, pp. 39-59.

[Bey 88] U. Beyer, D. Heinrichs, J. Liedtke. Dataspaces in

L3. Proceedings ISMM International Symposium on
Mini and Microcomputers and Their Applications
(MIMI '88), Barcelona, June 1988, pp. 408-414.

[Bra 90] B. K. Bray, W. L. Lynch, M. J. Flynn. Page Allo-

cation To Reduce Access Time of Physical Caches.

Stanford University, Technical Report CSL-TR-90-
454. November 1990.

[Che 84] D. R. Cheriton. The V Kernel: A Software Base for

Distributed Systems. IEEE Software, April 1984, pp.
19-42.

[Che 84a] D. R. Cheriton. An Experiment Using Registers For

Message Based Interprocess Communication. Oper-
ating Systems Review, October, 1984, pp. 12-20.

[DoD 83] DoD. Trusted Computer Evaluation Criteria. DoD
Computer Security Center, CSC-STD-001-83. Au-
gust 1983.

[Dra 91] R. P. Draves, B. N. Bershad, R. F. Rashid, R. W.
Dean. Using Continuations to Implement Thread

Management and Communication in Operating Sys-

tems. Proceedings 13th ACM Symposium on Oper-
ating Principles, Paci�c Grove, California, October

1991, pp. 122-136.

[Gs 93] K. Gsmann, C. Hafer, H. Lindmeier, J. Plankl,

K. Westerholz. Code Reorganization for Instruction

Caches. Proceedings 26th Annual Hawaii Interna-

tional Conference on System Sciences. Hawaii 1990,
Vol. I pp. 214-223.

13

[Gui 82] M. Guillemont. The Chorus Distributed Operating

System: Design and Implementation. Proceedings
ACM International Symposium on Local Computer
Networks, Firenze, April 1982, pp. 207-223.

[Hr 92] H. Hrtig, W.E. Khnhauser, W. Reck. Operating Sys-
tems on Top of Persistent Object Systems {The Bir-

liX Approach {. Proceedings 25th Hawaii Interna-
tional Conference on Systems Sciences, IEEE Press
1992, Vol 1, pp. 790{799.

[Hil 92] D. Hildebrand. An Architectural Overview of QNX.

Proceeedings Micro-kernel and Other Kernel Archi-
tectures Usenix Workshop, Seattle, April 1992, pp.

113-126.

[i486] Intel Corporation. i486 Processor Programmer's Ref-

erence Manual. Santa Clara, 1986

[Kar 89] P. A. Karger. Using Registers to Optimize Cross-

Domain Call Performance. Proceedings 3rd Confer-
ence on ArchitecturalSupport for ProgrammingLan-
guages and Operating Systems. April 1989, pp. 194-
204.

[Ger 92] F. Lange, R. Krger, M. Gergeleit. JEWEL: De-

sign and Implementation of a Distributed Measure-

ment System. IEEE Transactions on Parallel and
Distributed Systems, November 1992.

[Lie 91] J. Liedtke, U. Bartling, U. Beyer, D. Heinrichs, R.
Ruland, G. Szalay. Two Years of Experience with

a �-Kernel Based OS. Operating Systems Review,
April 1991, pp. 51-62.

[Lie 92] J. Liedtke.Clans & Chiefs. Proceedings 12. GI/ITG-
Fachtagung Architektur von Rechensystemen, Kiel
1992, A. Jammel (Ed.), Springer-Verlag, pp. 294-305.

[Lie 92a] J.Liedtke. Fast Thread Management and Communi-

cation Without Continuations. Proceeedings Micro-
kernel and Other Kernel Architectures Usenix Work-

shop, Seattle, April 1992, 213-221.

[Lie 93] J.Liedtke. A Persistent System in Real Use { Expe-

riences of the First 13 Years {. submitted to Interna-
tional Workshop on Object-Orientation in Operating

Systems. Asheville, North Carolina, December 1993.

[Lie 93a] J.Liedtke. Lazy Context Switching Algorithms for

Sparc-like Processors. Arbeitspapiere der GMD No.
776. St. Augustin, 1993.

[Mul 84] S.J. Mullender et al. The Amoeba Distributed Op-

erating System: Selected Papers 1984{1987. CWI

Tract. No. 41, Amsterdam 1987.

[Ous 90] J. K. Ousterhout. Why Aren't Operating Systems

Getting Faster As Fast as Hardware? Proceedings
Usenix Summer Conference 1990. Anaheim, Califor-
nia, 1990, pp. 247-256.

[Ren 88] R. van Renesse, H. van Staveren, A. S. Tanenbaum.
Performance of the World's Fastest Distributed Op-

erating System. Operating Systems Review, October
1988, pp. 25-34.

[Sch 89] M. D. Schroeder, M. Burroughs. Performance of

Fire
y RPC. Proceedings 12th ACM Symposium on
Operating Principles, Litch�eld Park, Arizona, De-
cember 1989, pp. 83-90.

[Tzo 91] S.-Y. Tzou, D. P. Anderson. The Performance of

Message-passing using Restricted Virtual Memory

Remapping. Software{Practice and Experience, Vol.
21(3), pp 251-267. March 1991.

14

Appendix

action instruction cycles

execution TLB miss

load id of B 2�ld 2

set msg len to 0 ld 1

call kernel int 71

access B 2�cmp+jmp 4 1� 9
a

load id of A 2�ld 2

switch stack st sp 1

ld sp 1

add+st
b

2

switch address ld 1

space
ush tlb 4 1� 9
c

return to user iret 36 2� 9
d

inspect msg cmp+jmp 2 1� 9
e

127 45

aTLB miss: thread control block of B.
bSets the new kernel stack bottom address.
cTLB miss: kernel code.
dTLB miss: new kernel stack + GDT (486 built in table).
eTLB miss: user code.

Table 3: Minimal Instructions for Null IPC

action instruction cycles

execution TLB miss

load rcv addr ld 1

calc 8 MB region ld+shr 3

load pdir B addr ld 1

copy pdir entries ld+st 4 2� 9
a

ld+st 4

calc dest addr and+add 2

move data startup 20 1� 9
b

35 27

aTLB miss: page directory of A + page directory of B.
bTLB miss: receive bu�er of B.

Table 4: Minimal Instructions for Temporary Mapping

action instruction cycles

execution TLB miss

restrict port index and 1

load port link ld 2

load port entry ld 2 1� 9
a

check empty cmp+jmp 2

enter A for reply st 1

get B reply index ld 1

set B reply link st 2 1� 9
b

11 18

aTLB miss: port table.
bTLB miss: port link table.

Table 5: Minimal Instructions for Port Access

input register output

receive bu�er addr EAX result code

send timeout EBX bytes 0. . . 3 rcved msg

send message addr ECX bytes 4. . . 7 rcved msg

destination thread id EDX+ESI source thread id

receive timeout EDI | scratch |

EBP | scratch |

stack pointer ESP stack pointer

Table 6: Register Usage for IPC Parameters (486)

message size L3 ipc worst case Mach ipc

cache penalty (NORMA MK13)

[bytes] [�s] [�s] [�s]

8 5.2 +6:4 115

12 7.6 +9:7 124

128 9.8 +11:6 180

512 18.1 +16:3 214

1024 31.7 +25:5 305

2048 53.2 +41:6 386

4096 115.6 +54:3 460

Table 7: Ipc timing, 486 50 Mhz

15

