
A Short Note on Cheap Fine-grained Time Measurement

Jochen Liedtke

GMD | German National Research Center for Information Technology �

jochen.liedtke@gmd.de

Abstract

ACM Operating Systems Review, Vol. 29, No. 3, July 1995, pp 31-34.

High resolution processor time bookkeeping for
user and kernel threads can be done without de-
grading kernel performance. On a PC, threads with
active intervals of 2 �s are measured su�ciently pre-
cisely. The overhead can be reduced down to 0.1%
of overall processor time.

1 Motivation

This paper was triggered by a discussion with Jon
Inouye at 15th SOSP [Inouye 1995]. His thesis was
that for some operating systems, system-call cost
is high because a user/kernel cpu-clock update is
required per kernel entry/exit.

1.1 Strict Clock Updates

Strict clock updates require

kernel entry:
stop := clock ;

tcurrent thread INCR (stop { start) .

kernel exit:
start := clock ;
tkernel INCR (start { stop) .

The overhead can be ignored as long as system calls
are implemented ine�ciently, 900 cycles or more.
On the other hand, we know that a properly de-
signed kernel can reduce the system call cost basi-
cally to the bare processor overhead for switching

�GMD SET-RS, Schlo Birlinghoven, 53757 Sankt Au-

gustin, Germany

between user and kernel mode. Depending on the
processor, this is 100 cycles or even less. In this con-
text, the clock update overhead may be relevant.

On most processors, the update cost is domi-
nated by reading the cpu clock. On a 486 PC, the
cpu clock is an external device. Reading its registers
costs about 140 cycles, i.e. we need approximately
additional 300 cycles per system call (which itself
costs only 107 cycles). On a Pentium, we could in-
stead use an internal 64-bit register which counts
processor cycles. But even this costs at least 24 cy-
cles per system call which itself costs 75 cycles on
this processor. The additional costs are not negli-
gible.

1.2 Periodic Clock Updates

A standard technique to avoid the mentioned
system-call and interrupt overhead is updating the
clocks per incoming clock interrupt:

periodic clock interrupt:
if in user mode

then tcurrent thread INCR �
else tkernel INCR �

� .

Here, � is the constant time between two adjacent

clock interrupt pulses. It is determined by the hard-
ware facilities and by the required scheduling gran-
ularity. Usual tick intervals range from 1 ms to 10
ms. The clock-update cost per per interrupt is less
than 20 cycles and can thus be ignored.



We de�ne the active interval as the period that
a process would use the processor continuously, pro-
vided that the timeslice is su�ciently long and no
interrupt occurs. Obviously, the measurements are
precise as long as the active intervals of the run-
ning processes are substantially larger than the tick
interval.

However, even for arbitrary small active inter-
vals, the method remains probabilistically precise as

long as the intervals are randomly distributed over

time. Therefore, asynchronuous device interrupts
and high RPC frequencies can be tolerated without
reducing the long-term precision.

Unfortunately, measurements become arbitrar-
ily imprecise when su�ciently short active intervals
are no longer randomly distributed. This happens
for example when short active intervals are timer-
scheduled, i.e. start always directly after a clock in-
terrupt and terminate before the next one. Similar
situations may occur in a systematically priority-
scheduled environment. Therefore, periodic clock
updating is certainly no adequate technique for real-
time systems.

2 Randomized Clock Updates

All disadvantages of the perodic-clock-update tech-
nique are due to the insu�cient randomness of the
distribution of active intervals. This can be com-
pletely overcome by randomizing the clock update

process. Incrementing the clocks is no longer done
at the periodic tick point but at a randomly chosen
point within each �-interval:

x x+ � x+ 2�

time

?

random (0;�)z }| {
?

random (0;�)z }| {

Scheduling remains the job of the periodic clock
handler. Clock updates happen with the same fre-
quency but are decoupled from the periodic in-
terrupt. For implementation, we use two hard-
ware timers, one periodic clock and a programmable
timer:

periodic clock interrupt:
set next random intr (random (0, �)) .

random clock interrupt:
if in user mode

then tcurrent thread INCR �
else tkernel INCR �

� .

2.1 Precision

Assume a process which consumes processor time
t in real time T . t is the sum of all of its active
intervals ti. If k� � ti < (k+1)�, k clock pulses are
measured precisely for this active interval. Only the
remaining time ti � k� is measured stochastically.
For a worst case estimation of the inaccuracy, we
therefore assume that all activation intervals are less
than one periodic interval, ti � �.

Then the probability that the measured process
is active at a random tick is p = t=T . n = T=�
random ticks occur so that the expectation value
for our measured time is np� = t. That is �ne.

However, the critical point is the error to be
expected. For large n, the standard deviation is
� = �

p
np =

p
t�. The corresponding error rela-

tive to the time t is

e =

�

t
=

r
�

t
:

In other words, for a time measurement with an ex-
pected error of e or less, our process must consume
processor time

t �
�

e2
:

For periodic clock intervals of 1 ms and an expected
error of 1%, we get t� 10 s. If our process is sched-
uled once per 1 ms interval, we have to measure
over at least real time T :

active interval 2 �s 10 �s 50 �s 250 �s

T 1 h 23 m 17 m 200 s 40 s

2



2.2 Usability

Time measurement is typically used for three pur-
poses:

1. Benchmarks.
To get su�ciently precise results, let the
benchmark run long enough (see above). The
periodic clock granularity does not limitate
measurements.

2. �-measurements.
This technique is inadequate for non-repeated
�-measurements. Instead, code instrumenta-
tion, sometimes even kernel instrumentation,
is required.

3. Accounting.
The more cpu time your customers consume,
the more precise your measurements will be.
If you have a customer who consumes only 1
second per month, do not bill him per month
but per year. Then even his bill will be 1%-
accurate.
A further nice feature: although the precision
per bill remains constant, the precision of the
totally billed cost per customer increases with
time.
Some people will not tolerate bills that are
only precise with probability, even if the prob-
ability of an error is only 10�14. The counter-
argument: even when using strict clock up-
dating, the probabilty for obtaining incorrect
results due to hardware or software bugs is
much larger.

2.3 Limitations

To get precise measurements, the active intervals
are not limited by � and not by the random tick fre-
quency. However, the random granularity imposes

a lower bound on the active-interval size. On a PC,
a 1.193-MHz-driven timer can be used for random
ticks. As a consequence, active intervals below 1 �s
cannot be measured properly. A timer-scheduled
active interval below 1 �s per � will be measured
as 1 �s per �. In contrast to the periodic update
method, random updating delivers in this case a cpu
time larger than the really consumed time.

2.4 Cost

The required cost for the random clock interrupt is
basically determined by the basic interrupt service
time, calculating the new random time and reload-
ing the timer circuit. On a 50 MHz PC, this costs
about 6 �s, i.e. approximately 0.6 % of the proces-
sor time. (Half of the cost is due to the slow timer
ports.)

This overhead can be arbitrarily reduced by de-
creasing the random-tick frequency. Do not execute
one random tick per � but one per k�. The cost
decreases to 0:6=k %. However, processes have to
consume at least 10k s instead of 10 s before the
1%-precision is achieved. This is probably not a
problem for accounting but perhaps makes bench-
marking inconvenient. So make the random rate
changeable at runtime (note that it does not in
u-
ence scheduling) and gain another 0.5% of processor
time when not running benchmarks.

3 Conclusion

Time measurement is no reason for ine�cient
system-call implementations. (Benchmark support
is no reason for ine�cient kernels.) E�cient system-
call implementation is no reason for coarse-grained
time measurements.

References

Inouye, J. 1995. private communication.

3


