A Role-based Access Control Model for Protection Domain Derivation
and Management

Trent Jaeger

Frederique Giraud

Nayeem Islam

Jochen Liedtke
IBM Thomas J. Watson Research Center
30 Saw Mill River Road,
Hawthorne, NY 10532

Abstract

We present a role-based access control (RBAC)
model for deriving and managing protection domains
of dynamically-obtained, remote programs, such as
downloaded executable content. These are programs
that are obtained from remote sources (e.g., via the
web) and executed upon receipt. The protection do-
mains of these programs must be limited to prevent
content providers from gaining unauthorized access to
the downloading principal’s resources. However, it can
be difficult to determine the proper, limited protection
domain for a program in which downloading principals
need to share some of their resources. Current sys-
tems usually rely on one of a number of possible prin-
cipals to specify the content protection domains, but
the exclusion of input from other principals limits the
flexibility in which protection domains can be derived
and managed. In this paper, we describe a RBAC
model for deriving protection domains and managing
their evolution throughout the execution of the con-
tent. This model accounts for the variety of principals
that may be involved in domain derivation and how
their input is managed. We demonstrate the use of
this model to specify a variety of protection domain
derivation and management policies.

1 Introduction

We present a role-based access control (RBAC)
model for deriving and managing the protection do-

Permission to make digital/hard copies of all or part of this material for

personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is

given lha_l copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee

RBAC 97 Fairfax Va USA

Copyright 1997 ACM 0-89791-985-8/97/11..$3.50

95

mains dynamically-obtained, remote programs, such
as downloaded executable content. Downloaded exe-
cutable content are messages that contain programs
that are executed upon receipt. It is well-known
that downloaded executable content must be exe-
cuted in a limited protection domain to prevent con-
tent providers from gaining unauthorized access to
the downloading principal’s resources [6] (e.g., private
files). However, deriving a proper, limited protection
domain and managing this domain over the execution
of content can be difficult. For example, the semantics
of most user files are not of interest to system admin-
istrators, so it is not feasible for them to determine
whether accesses to these files should be permitted.
Other principals, such as users and application de-
velopers, may know these answers, but they are not
completely trusted to make access control decisions.
Therefore, we develop an RBAC model that defines
the access control decisions that principals can make,
so that “least privilege” protection domains can be
derived and managed.

Current systems demonstrate that multiple princi-
pals can provide information to derive content protec-
tion domains, but these systems lack a model of how
these principals interact to make such decisions. Most
systems rely primarily on one principal to make access
control decisions, such as the content execution system
developer [7, 16, 21] or user [13, 17, 26]. Other sys-
tems make no commitment to how protection domains
are derived [9, 12, 19, 23]. A few systems use multiple
means for deriving a protection domain. FlexxGuard
enables users and/or system administrators to define
protection domain limits for content, but users have
the ultimate decision-making power [2]. In Netscape’s
Java Capabilities API [1], application developers re-
quest access rights within a limited protection domain
specified by users or system administrators. In a Tcl
flexible content interpreter [18], system administrators



define how application developers can limit other con-
tent’s access rights. These systems demonstrate the
need for different principals to make different access
control decisions, but the lack of a formal model de-
scribing what each can do hinders understanding of
access control management.

RBAC models have been used extensively for ac-
cess control policy management, but presently lack
the flexibility to express how multiple principals can
affect common access control decisions. RBAC models
permit principals to assume a role, which is another
principal with its own protection domain (e.g., [10,
22, 24, 27, 28]). RBAC models are often used by sys-
tem administrators to specify mandatory access con-
trol (MAC) policies [20]. A MAC system partitions
the world into two groups: (1) system administrators
who specify access control policy and (2) users that are
controlled by the policy. Thus, RBAC models enable
system administrators to describe the rights available
to principals, but do not describe how these principals
may further delegate these rights. Therefore, users,
content execution systems, and application develop-
ers must develop ad hoc mechanisms for limiting the
rights that are to be delegated to the content that they
execute.

In this paper, we define an RBAC model that:
(1) associates protection domains with principals and
their roles; (2) represents the subset of those do-
mains that can be delegated to other principals and
their roles; and (3) stores specifications that determine
when delegations are permitted. First, in a manner
typical of traditional RBAC models, protection do-
mains can be specified for principals and their roles,
such as users, users executing content execution sys-
tems, and users executing specific downloaded con-
tent. Next, the protection domain in which these prin-
cipals can grant rights to other principals can be de-
fined. These protection domains limit the rights that
principals can grant to downloaded content. Finally,
the conditions in which delegations are needed can
be specified and also associated with content. There-
fore, trusted principals (e.g., system administrators)
can specify limits in which users, application develop-
ers, and content execution systems can make access
control decisions. Also, all principals have a common
model for expressing delegations, so application devel-
opers do not need to create ad hoc security models to
enforce least privilege.

The structure of the paper is as follows. In Sec-
tion 2, the access control problem is defined. Next, in
Section 3, we define the RBAC model. In Section 4,

we demonstrate how this model is used to derive pro-

96

Internet Boundary

@ ."“

Get

DP

Create

DP: Downloading Principal Op
CP: Content Provider
C: Content from Provider

S: Server

Figure 1: Simple downloaded content execution archi-
tecture

tection domains using current policies and innovative
policies. In Section 5, we conclude and discuss future
work.

2 Problem

Remote programs can be used in applications that
range from: (1) those implemented by a single, in-
dependent downloaded content to (2) complex appli-
cations in which content is used to convey individual
operations on behalf of its providers. The security re-
quirements of each of these application models vary in
significant ways. For example, the protection domain
for a single, independent executable can be the same
for each execution and does not affect the protection
domains of other content. However, in the case of a
complex application, each content’s protection domain
depends on the way the application is being used. For
example, collaborators should only have access to a
downloading principal’s object if that principal has
made it available to the collaboration. Also, the ac-
tions in one content may affect the protection domains
in other content. For example, the downloading prin-
cipal may load an object into the collaborative appli-
cation content which indicates that it is accessible to
content from collaborators.

We first consider the security requirements of a sin-
gle interaction using downloaded content as shown in
Figure 1. A downloading principal is the principal who
receives and executes the content. A system adminis-
trator (not shown) can specify access control policy for
the downloading principal. A content provider is the
principal that is responsible for the content. A server
is a principal that stores and administers access to a



Internet Boundary

@ ..-‘-

Get

Create

CO: Coliaborator
A: Application Content
CC: Collaborator Content

Figure 2: A more complex application implemented
using downloaded content

set of objects (e.g., files, communication channels, ap-
plication objects). A downloaded content execution
system works basically as follows. First, the down-
loading principal gets (e.g., HTTP get) content from
the content provider’s server (often using an untrusted
network, such as the Internet, as indicated by the dot-
ted line). Next, the downloading principal creates a
content process. The content process is then executed.
It may request operations from various servers. In gen-
eral, these servers may be local or remote (only a local
server is shown).

More complex applications can also be imple-
mented using downloaded content. Consider a collab-
orative application in Figure 2. Downloading princi-
pals reirieve the content for implementing their role in
the collaboration (application content) as in the first
example. They use this content to access their sys-
tem objects as necessary to implement the collabora-
tion. For example, a collaborative editor would need
access to the files that the downloading principal may
permit collaborators to edit. However, in this applica-
tion, actions are implemented by downloading them to
each collaborator. Therefore, collaborator content can
interact asynchronously with the downloading princi-
pal’s collaborative editor to modify documents. The
collaborators must be limited to perform only the op-
erations that the downloading principal has permitted
them to perform. However, the rights the download-
ing principals permit may often depend on application
semantics. For example, in a collaborative editor, only
the files that the downloading principal has loaded to
be collaboratively edited should be writable by other
collaborators. Also, different content may use a differ-
ent protection domain depending on its provider. For

97

example, some collaborators may be permitted only
to read the files, but not write them.

Servers store protection domains for each down-
loading principal to control the operations that they
can perform on server objects. However, download-
ing principals typically do not trust content providers
with all their rights. For example, downloading prin-
cipals would like to prevent content from: (1) read-
ing their private files; (2) writing executable files; (3)
monopolizing their system’s CPU; and (4) communi-
cating with unauthorized principals. Unfortunately,
traditional operating systems do not provide a mech-
anism for principals to dynamically restrict the ac-
cess rights of one of their own processes. In addition,
current RBAC models [4, 10, 24| or controlled execu-
tion systems [11] require that these limited domains
be pre-specified, which can result in larger domains
than desired for a single content execution. For exam-
ple, a RBAC domain for an application would have
to encompass all rights that any individual use of the
application would ever need. Other systems explore
the alternative where users specify protection domains
themselves [5, 17], but most users cannot be trusted
to make such decisions correctly.

The problems in deriving and managing protection
domains are to:

e Enable multiple principals to make access con-
trol decisions within limits based on trust in their
abilities

o Permit conditional access control decisions

e Map access control requirements to each down-
loading principal’s system

The content protection domain may depend on in-
put from a number of principals, including the down-
loading principal, content provider, system adminis-
tration, and application developer, so they should be
able to specify access control requirements. However,
these principals are either not aware of the semantics
of the applications or not completely trusted to make
access control decisions, so the rights that they can
delegate to content must be limited. Once an initial
protection domain is established it may need to be
modified based on the conditions that arise in execut-
ing the application. For example, new objects may
be made available to an application that also need to
be made available to content. Also, system adminis-
trators and application developers cannot be expected
to know how a user organizes his personal files, so it
must be possible to map access control requirements
to actual system objects and operations.



Transform Delegation Domains

Downloading
Principal’s
Maximai
Protection
Domain

Current
Protection
Domain
Default
Maximai
Protection
Domain

Figure 3: Protection domain derivation: Content
executes with the current protection domain, but may
be delegated rights within transform delegation do-
mains as long as those rights are within the mazi-
mal protection domain which may be a combination
of maximal protection domains delegated by multiple
principals.

3 RBAC Model

We define an access control model based on RBAC
principles for deriving content protection domains and
managing their evolution throughout the content’s ex-
ecution. Our RBAC model is based on the following
concepts:

e Definition 1: A mazimal protection domain of a
principal is a superset of all protection domains
that the principal’s processes can assume.

e Definition 2: A protection domain combination
function that takes multiple maximal protection
domains as input and combines them using set
operations (e.g., union) to create a single maximal
protection domain.

e Definition 3: A delegation protection domain of
a principal defines the protection domain that the
principal can delegate to other principals.

e Definition 4: A current protection domain of a
principal’s process is the protection domain upon
which authorization of that process’s operations
is based.

e Definition 5: A transform changes the current
protection domain of a process, but is limited
by the maximal protection domain. Additionally,

transforms may be limited by delegation protec-
tion domains.

The goal of this section is formalize these concepts
using the RBAC model defined below. First, we intu-
itively describe the model’s philosophy (as shown in
Figure 3). Principals may specify mazimal protection
domains for content (i.e., the process that executes
the content). In addition, a protection domain com-
bination function can be defined to specify how a set
of maximal protection domains can be combined to
form a single maximal protection domain. For exam-
ple, maximal protection domains for content may be
defined for the default case (e.g., by the system admin-
istrator), by the downloading principals for access to
their personal files, and for the application developer
to control access based on the application’s state. In
one example policy, the union of the three maximal
protection domains is the maximal protection domain
for the content. However, the maximal protection do-
main that each principal delegates is limited by each’s
delegation protection domain. The current protection
domain of the content is always a subset of a combina-
tion of the maximal protection domains. The current
protection domain can be extended within the limits of
the maximal protection domain using transforms, ob-
jects that associate operations with protection domain
modifications. Further, transform delegation protec-
tion domains limit the rights that a transform can
delegate.

The RBAC model associates the delegation protec-
tion domains, maximal protection domains, and trans-
forms with roles. Roles are defined in terms of content
attributes and the principals involved in the interac-
tion. For example, the default maximal protections
can be retrieved based on the content provider, con-
tent rating service, content rating, content type, and
content application. Other protection domains are as-
sociated with roles in a similar manner.

Protection domains are associated with roles using
a general representation called a policy graph defined
below:

e Definition 6: A policy graph is a tuple,
{p, G,tm,cm}, where: (1) p is a principal; (2)
G is a directed graph, G = {N,V}, where N is
a set of nodes and V is a set of vertices; (3) tm,
the traversal method, describes how the graph is
traversed; and (4) cm, the combination method,
determines how a node’s value is combined with
the current result.

A policy graph associates downloading principals
with a directed graph that represents policy for



Root
(PO )

3 Netscape 18M Microsoft

Provider D D D

N v

A E-Ci ‘ Games Workflow
PD PO PD

Type ! »:) ! (‘J n‘

Figure 4: Policy graph

handling content. An example policy graph for
specifying content protection domains for the pro-
tection domain derivation server is shown in Fig-
ure 4. In this policy graph, each graph level corre-
sponds to a content attribute (e.g., content provider
and application type). Nodes store a mapping be-
tween content attribute values and the associated
protection domain. Given content attribute values
of provider=IBM and application type=games, the
protection domain PD¢ is found. The methods de-
scribe how the graph is traversed and how the policy
values of the traversed nodes are combined. An exam-
ple traversal method specifies that traversal starts at
the root of the graph and repeatedly follows the child
link whose node’s attribute value includes the con-
tent’s value for that attribute. The example combina-
tion method is the union set operator. A traversal that
goes from the root to the IBM node to the games node
results in the protection domain PD4 UPDgU PDe.

Note that Netscape content shares the same pro-
tection domains at the application type level as the
IBM content in our example. Therefore, the resulting
domain for a content identity of provider=Netscape
and application type=gamesis PD4UPDNyUPD¢.

Below, we formalize the definition of protection do-
mains and transforms that we will use in our access
control model [15].

e Definition 7: An object group is a set of objects
of the same type (may be a supertype of all ob-
jects).

e Definition 8: Protection domains of a principal
are defined by a set of domain rights and excep-
tions defined below:

— Domain rights: A tuple,
{type, allowed.ops, obj_grp, limit},  which
describes a set of operations, allowed_ops,

99

that the principal can perform on an obj_grp
of a specific type. The limit specifies restric-
tion on number of times such an operation
can be performed.

— Exceptions: A
tuple, {type, precluded_ops, obj grp}, which
describes a set of operations, precluded_ops,
that the principal is precluded from perform-
ing on an obj grp of a specific type.

e Definition 9: A transformis one of three types of
tuples, object group transforms, operation trans-
forms, or domain transforms:

— Object group transforms: A tu-
ple, {op_grp,t_op,t type, obj, obj grp}, that,
when this principal executes an operation in
op_grp, describes a change in the relation-
ship between an object obj and an object
group obj _grp (t_op is add or remove) for all
principals. ¢ type indicates whether the type
of transform: (1) applied before operation;
(2) applied before and rescinded after oper-
ation; and (3) applied after the operation.

— Operation transforms: A tuple,
{op_grp, revr, t_type, type, ops, obj grp, limit},
that, when this principal executes an op-
eration in op_grp, describes a new domain
right (if ops are allowed) or exception (if ops
are precluded) to be added to the principal
rcovr’s current protection domain. t_type is
as described above.

— Domain trans-
forms: A tuple, {op_grp,t_op, principal},
that, when this principal executes an oper-
ation in op_grp, describes a change in the
principal’s protection domain specified by
t-op (one of intersect, union, or replace) rel-
ative to another principal’s protection do-
main. These transforms are always applied

before the operation.

In this model, objects can be aggregated into
groups called object groups for expression of a common
access control requirement. Object groups may refer
to a logical group, where mapping functions may be
used to identify the system objects that belong to the
group. The protection domain of a principal to these
object groups are described by its domain rights and
exceptions. A domain right describes the permission
to perform a set of operations on an object group, and
an ezception precludes a set of operations from being
performed on an object group. This model permits



access rights to be defined concisely for a large set
of objects while permitting some objects in the group
to override those rights. Principals are authorized to
perform an operation on an object if their protection
domain contains: (1) at least one domain right that
permits the operation and whose limit has not been
exceeded and (2) no exceptions that preclude the op-
eration.

Also, developers can specify transforms that as-
sociate protection domain modifications with opera-
tions. These enable a principal’s action to delegate
rights to another principal, revoke rights from another
principal, or revoke rights from itself. Transforms are
motivated by Foley and Jacob’s association of rights
with collaborative activities [8]. A transform can be
executed only if the receiving principal is allowed to
obtain the rights granted. In addition, transforms may
be restricted, so only principals with the rights origi-
nally can delegate them. This prevents self-delegation.
Object group transforms add or remove an object from
an object group. This results in the other princi-
pals rights being modified based on their access to
the object group. Operation transforms can add do-
main rights and exceptions to the receiving principal’s
protection domain. Domain transforms combine the
domains of two principals when they interact. For ex-
ample, the protection domain of untrusted principals
can be intersected before they interact.

4 RBAC Model Usage

In this section, we demonstrate the flexibility and
power of our RBAC model by using it to define several
policies for controlling downloaded executable con-
tent. We start by specifying the simple policies from
Java-enabled Netscape and the Java Appletviewer.
We then demonstrate how the policies enforced by
some recent downloaded content execution systems
can be expressed using our model.

The flexibility of our model comes from its ability
to express: (1) how rights distribution is controlled
and (2) limited modifications to protection domains
associated with operations. First, the model enables
system administrators, content execution systems, ap-
plication developers, and users to specify the rights
that other principals may grant to content. Second,
as we will demonstrate in the last two examples, trans-
forms enable the principals to delegate rights to con-
tent within their limited domain of control. This en-
ables application developers and users to enforce least
privilege based on their expected use of the content.

100

4.1

Java-enabled Netscape 3.0 (21] has a very simple se-
curity policy that demonstrates some basic protection
domain specification features of our model. Roles are
not needed in this example (or the following one).
Content may only communicate with processes at
their source IP addresses. The content execution sys-
tem enforces this policy and there is no flexibility for
other principals to modify it.

Using our model, the maximal protection domain
for any content is the maximal protection domain
specified by the content execution system (i.e., Java-
enabled Netscape). For all content, the maximal pro-
tection domain is:

Java-enabled Netscape 3.0

e {channel, [send|receive], source_ip}

where channel refers to a communication channel,
send and receive are the permitted operations, and
source_ip is a logical object that refers to the content’s
source IP address (ports greater than 1024). A map-
ping function converts the source_ip object group to
the specific group of objects (e.g., 129.9.2.14:>1024)
used for authorization.

The maximal protection domain specified by the
content execution system becomes the current protec-
tion domain for all content. No transforms are speci-
fied, so this protection domain is immutable.

4.2 JDK 1.1 Appletviewer

The JDK 1.1. Appletviewer system [13] has only a
slightly more complicated policy than Java-enabled
Netscape. The appletviewer provides a limited pro-
tection domain in which users can grant file access
rights to content (in addition to the right to commu-
nicate with the source IP machine). The rights the
user delegates to content are delegated to all content
downloaded.

In this case, the maximal protection domain of
content is the union of the maximal protection do-
mains specified by the appletviewer and the download-
ing principal. The appletviewer specifies its maximal
protection domain for content (communicate with the
source IP address as described in the previous section)
and the delegation protection domain for the down-
loading principals. This appletviewer policy permits
users to delegate read and write privileges to any of
their files and read access to a limited set of environ-
ment variables. However, execute privileges are not
made available for downloading principals to grant.
Using our model, the delegation protection domain
for downloading principals is (specified for files only):



Provider

Protection
Domain
Request

— .

Default Maximal
Protection Domains

Protection
Domain Request

Policy
Database
SO i
™~ Default
DP’s Maximal Maximal
Protection " Protection
Domain Domain

Current Protection)
o De aln

Downloading
Principal

Figure 5: Domain derivation protocol for FlexxGuard: (1) derive the default mazimal protection domain for
the content based on its authenticated description; (2) intersect the content provider’s protection domain request
with the default mazimal protection domain; and (3) if necessary, the downloading principal can grant additional

rights (the DP’s mazimal protection domain).

e {files, [read|write], user_files}

e {files, [read], all_accessible_files}

This specifies that a downloading principal may
grant read and write privileges for their files (e.g., in
their home directory subtree), but only read access to
all other files that they can access.

Within these limits, downloading principals spec-
ify a maximal protection domain for all content. For
the appletviewer, downloading principals specify the
maximal protection domain in the .properties file.
The union of the two maximal protection domains be-
comes the current protection domain for any content
that is downloaded and run by the appletviewer. Like
Java-enabled Netscape, this protection domain is un-
changed throughout the content’s execution.

4.3 JDK 1.1 FlexxGuard

JDK 1.1 FlexxGuard is an extension of the JDK 1.1
Appletviewer that enables users to assign more lib-
eral protection domains to authenticated content from
trusted sources while still tightly restricting untrusted
content (3, 2]. In FlexxGuard, downloading princi-
pals or system administrators specify maximal protec-

101

tion domains for content based on their descriptions
(i.e., toles). Downloaded content can include a re-
quest for a protection domain from the downloading
principal (also authenticated). If this request is a sub-
set of the default maximal protection domain, then
the requested protection domain is used to authorized
content operations (i.e., becomes the current protec-
tion domain). If not, then the downloading principal
can selectively override and/or modify their default
maximal protection domain for content.

Using our model, the content execution system de-
fines the delegation protection domain of users to their
normal protection domain. Downloading principals or
system administrators express default maximal pro-
tection domains for content based on the content’s
authenticated description. This maximal protection
domain unioned with the maximal protection domain
granted by the downloading principal at runtime. The
current protection domain is the intersection of the re-
quested protection domain provided with the content
and the maximal protection domain. The current pro-
tection domain is unchanged throughout the content’s
execution. Therefore, unlike the first two systems,
a content’s current protection domain in FlexxGuard
can be a subset of the content’s maximal protection



Provider

System Administrator

Detauit Maximal
Protection Domains

Downloading Principal

©

Transform-Requested
Protection Domain

Content Policy
and
Transforms Database
1
Default
~ Maximal
Protection
Domain

Current Protection)
Domain
-

Downloading
Principal

Figure 6: Domain derivation protocol for Netscape with the Java Capabilities APIL (1) identify prin-
cipal or role from content certificate’s signee; (2) retrieve and union the system administrators and downloading
principal’s enabling policy to create the mazimal protection domain; (3) set the initial current protection domain
of the content to null; and (4) content uses transforms to enable rights within the mazimal protection domain.

domain.

The key feature of FlexxGuard is its ability to man-
age default maximal protection domains for download-
ing principals. A policy graph (see Definition 6) stores
associations between content attributes and protec-
tion domains that are used to derive the default max-
imal protection domains. For example, the attrib-
utes, manufacturer name, content type, and content
name, are used in the policy graph shown in Figure 4.
The policy graph is traversed from the root to the
descendant nodes whose attributes values match or
contain the value of that attribute for the content.
For example, content with attributes manufacturer
name=IBM and content type=games would traverse
the path shown in Figure 4. FlexxGuard uses the
union set operation as its combination function, so the
resulting protection is PDg U PD¢. An alternative is
to use the most recent protection domain which would
yield PD¢ in this example.

Each policy graph is associated with a principal
(e.g., user, role, or group). Therefore, the maximal
protection domain is derived based on the identity of
the principal. The resulting maximal protection do-
main is analogous to the role principal as downloading
principal ezecuting an IBM game.

4.4 Netscape’s Java Capabilities API

Netscape’s Java Capabilities API also enables down-
loading principals and systems administrators to
specify maximal protection domains for content [1].
Netscape permits downloading principals and system
administrators to grant or revoke permissions for con-
tent. Like FlexxGuard, principals are not limited in
the permissions that they may grant. However, un-
like FlexxGuard, a principal may permit or forbid a
permission. Forbidding a permission means that con-
tent may never have this permission in its maximal
protection domain. This model requires that a princi-
pal must explicitly revoke any rights that content must
not have, so the model is not fail-safe. Content’s max-
imal protection domain is the union of these granted
protection domains less any revoked rights.
Permissions within the maximal protection domain
are activated by the enablePrivilege command. Con-
tent can rescind any enabled permissions and can pre-
vent content it calls from enabling a permission (using
the commands revertPrivilege) and disablePrivilege,
respectively). The authorization mechanism scans the
call stack to determine if any method on the stack has
enabled the permission. Therefore, developers must
explicitly rescind any permissions that they have en-

102



abled to prevent called methods with less trust from
using those rights. We show how this can be imple-
mented using transforms, but demonstrate a prefer-
able method in the next section in which a single
specification rescinds all rights not authorized to the
called content (i.e., not within its current protection
domain). Note that Wallach et al. describe an autho-
rization mechanism for stack introspection that ad-
ditionally requires that each principal on the stack
must have the right within its maximal protection do-
main before it is authorized [25]. We prefer using the
current protection domain, although they may be the
same in some instances.

Using our model, protection domains are derived in
the following manner using the policy of the Netscape
Java Capabilities API (see Figure 6). System admin-
istrators and downloading principals associate maxi-
mal protection domains with roles. Their delegation
protection domains are the entire system. Domain
rights indicate the rights granted, and exceptions in-
dicate the rights that are forbidden. The identity of
the content certificate’s signee is used to determine the
content’s role. The maximal protection domains are
unioned: domain rights domains for which no excep-
tion is specified are added into the maximal protection
domain. This is precisely the semantics of union in our
access control model.

Once the maximal protection domain has been
defined, the current protection domain is managed
within it. First, the content execution system sets
the current protection domain to null. The content it-
self specifies transforms (see Definitions 5 and 9) when
rights are needed for an operation. In the Java Ca-
pability API, rights are lexically scoped, so once the
“enabling” method exits, the rights are removed from
the current protection domain. The granting of the
right to read a game score file by a transform can be
specified in the following manner using our model:

o {initialize, self,bl, files, [read), score_files}

The initialize method delegates the right to the con-
tent that called it (self) prior to the method executing.
In our model, revocation of the right must be speci-
fied as well. The transform type argument bl indicates
that the right is to be activated before the operation
and removed after the operation. Otherwise, a trans-
form such as the one below would need to be specified
for the operation.

o {initialize, self,a, files,[—read], score_files}

Netscape’s Java Capabilities API only has a com-
mand for making lexically scoped protection domain

103

changes (enablePrivilege). However, we believe that
both lexically-scoped delegations and global delega-
tions are necessary. We also demonstrate this in the
next section.

4.5 Protection Domain Derivation

Server

In the last example, we demonstrate a Protection Do-
main Derivation Server for a content execution sys-
tem that manages complex applications implemented
by multiple instances of downloaded executable con-
tent [15]. Content is divided into two types: (1) appli-
cation content and (2) collaborator content. Applica-
tion content is used directly by downloading principals
(e.g., through an interface) to implement their actions.
Collaborator content implements other users’ actions
in the application. For example, a collaborative edi-
tor is an application, and collaborators use content to
implement their editing operations on documents.

This example’s policy is for system administrators
to define default maximal protection domains for con-
tent and downloading principals. In addition, they
define delegation protection domains for other prin-
cipals, such as downloading principals and applica-
tion developers. The maximal protection domain for
content is the union of the default maximal protec-
tion domain and the protection domains delegated
by the downloading principal and application devel-
oper. This policy enables system administrators to
limit content’s access to system objects while giv-
ing downloading principals and application developers
some control over their objects. However, systemn ad-
ministrators will need to provide safeguards to prevent
spoofing attacks against users. For example, delega-
tion of an execute privilege for an object that can be
written by content should be prevented in most cases.

In this example, the initial current protection do-
mains are derived using the protocol displayed in Fig-
ure 7. The protocol consists of three stages: (1) map-
ping the content provider’s protection domain request
to the downloading principal’s system; (2) verifying
that the request is within the default maximal protec-
tion domain for the content and downloading princi-
pal; and (3) resolving any conflicts using the down-
loading principal’s delegation domain.

First, content providers specify a protection domain
request for their content. The content provider should
not be expected to know the structure of the down-
loading principal’s system, so mapping functions are
defined to convert logical objects in the request to
physical objects on the downloading principal’s sys-



Mapping Policies

. . . Default Maxima
Delegation Protection Domains  protaction D;lmailns

©

Provider
_\\ .
JaaN—
Protection S N — Polic
Domain | y
Request \ Database
e
~__
™ \1 \ 3 2
Defauit
DP’s Maximal Maximatl
Protection <" Protection
Domain Domain

Mapped Protection
Domain Request
(including transforms)

ent Protection)
Demain

Downloading
Principal

Figure 7: Domain derivation protocol: (1) map the content provider’s protection domain request to a mapped
protection domain request; (2) retrieve default mazimal protection domain from the policy graph and intersect
with the request; and (3) users can grant additional rights from within their delegation protection domain.

tem. For example, application files can be located
anywhere in the downloading principal’s file system. A
mapping function derives their location when the ap-
plication’s content is downloaded. Mapping functions
are stored in a policy graph that associates the down-
loading principal and content description (i.e., role)
with the mapping functions by object type and/or log-
ical object name. The resulting domain is called the
mapped protection domain request.

Next, the mapped protection domain request is
compared to the default maximal protection domain
to verify that the domain request is acceptable. The
protection domain derivation server derives the de-
fault maximal protection domain by comparing the
content’s role (downloading principal, description, and
provider) to the downloading principal’s policy graph
(as in the FlexxGuard example). If the mapped pro-
tection domain request is a subset of the content’s
maximal protection domain then it is verified as ac-
ceptable. An acceptable, mapped protection domain
request is the initial current protection domain. Since
the current content domain is a subset of the maxi-
mal content domailn, access control model transforms
can be used to add new rights as the actions of the
downloading principal make them available.

If the mapped protection domain request is not ac-

104

ceptable, then the downloading principal and/or the
application developers may be permitted to grant the
additional rights requested (i.e., expand the maximal
protection domain). The delegation protection do-
mains for the downloading principal are retrieved us-
ing the content’s role once again. Downloading prin-
cipals may grant any rights to content that are within
their delegation protection domain.

Transforms are used to modify the current protec-
tion domain. Transforms are provided with the con-
tent’s protection domain request, but they are au-
thorized when they are used. We examine a trans-
form that enables the downloading principal to use
the application to delegate rights to collaborator con-
tent. An example transform is shown in Figure 81.
This example specifies that collaborators can access a
recording file and its associated annotation file when
the start replay operation is executed. Four trans-
forms are specified: (1) an operation transform that
delegates read and write access to the recording ob-
ject to principals assigned to the chief _scientists
role; (2) an operation transform that delegates read
access to the recording object to principals assigned to
the scientists’s role; and (3) a pair of object group
transforms that place the recording and annotation

12 indicates a return value of an operation.



Op: Pecordings z = Recordings.start replay()

chief scientists, a, z, [read|write]}
scientists, a, =, [read], 1}
add, a, z.file(), replaying files}

add, a, z.annotation file(), annotations}

{Op,
{Op,
{Op,
{Op,

Figure 8: Transform specification: Upon
start _replay operation, delegate access to a record-
ing being replayed (), its file (z. file()), and its asso-
ciated annotation file (z.annotation_file()).

files into the application object groups. Each opera-
tion transform grants rights for the principals to access
the recording = returned by start_replay. The trans-
forms for x.file() and x.annotations file() place
these objects in the replaying.files and annotaetions
object groups, respectively. These transforms enable
content providers to perform operations on these ob-
ject groups as specified by their protection domains.
For example, a principal in the chief scientist role can
both read and write the annotations and the record-
ing.

In addition, we address the problem of automat-
ically revoking transformed rights upon calling less
trusted content. A domain transform can be associ-
ated with content that intersects protection domains
whenever content with a different protection domain
is called.

e {downloaded ontent, intersect, called, rincipal}

This intersects the current protection domain of
the executing content process with the current pro-
tection domain of the called principal for any down-
loaded content method. Calls to system method can
be handled as appropriate to those methods. Also,
other transforms may be applied to grant some of the
restricted rights back (if the called principal is suffi-
ciently trusted). This type of transform does not im-
pose a significant cost if protection domain crossings
are well-identified (as would be the case using Tcl 7.5’s
alias operation).

The use of this transform is too costly for current
Java virtual machines. Recent proposals for controlled
Java interpreters {1, 12] examine the stack to derive
the protection domain when a controlled operation is
called. However, any interactions that are not on the
stack when the controlled operation is called will be
not be accounted for in the derivation.

105

5 Conclusions and Future Work

In this paper, we present a RBAC model for deriv-
ing and managing protection domains for remote pro-
grams, such as downloaded executable content. In this
model, protection domains consist of three parts: (1)
a maximal protection domain; (2) a current protec-
tion domain; and (3) a set of transforms that modify
the current protection domain within the limits of the
maximal protection domain. The RBAC model en-
ables derivation of the maximal and current protection
domains by associating roles with: (1) delegation pro-
tection domains that define the rights that a principal
can delegate; (2) maximal protection domains that de-
fine the rights that are being delegated to a role; and
(3) mapping functions that convert logical object spec-
ifications to system objects. The RBAC model enables
maximal protection domains to be defined from a set
of individual maximal protection domains, so multiple
principals can provide input to rights derivation and
management. Current protection domains are the in-
tersection of the initial protection domain requested
by content providers and the maximal protection do-
main. Transforms enables protection domains to be
modified as content operations are executed.

We demonstrate this model by using it to define
the security policies of five different content execu-
tion systems. Java-enabled Netscape uses the mod-
el’s ability to specify a current protection domain.
Java appletviewer uses the model’s ability to spec-
ify a limited delegation protection domain for down-
loading principals. Java FlexxGuard uses the mod-
el’s role-based representation to derive maximal and
current protection domains. Netscape’s Java Capabil-
ities API uses the model’s transforms to manage the
content’s current protection domain. Qur Protection
Domain Derivation Server uses the model’s ability to
define limited delegation domains, derive maximal del-
egation domains, map logical objects, derive current
protection domains, and manage current protection
domains.

In the future, system constraints need to be inte-
grated into the protection domain management in a
more explicit way. For example, constraints such as,
users may not grant both execute and write privilege
to a file need to be enforced. We have defined a policy
for limiting the what rights can be delegated to down-
loaded executable content [14], but these have not yet
been integrated into our RBAC model.



References

(1]

(2]

[6]

(9]

(10}

1]

[12]

(13]

(14]

(18]

Introduction to the capabilities classes, June 1997.
Available at http://developer.netscape.com/library/
documentation/ signedobj/capabilities/ 0lcap.htm.

R. Anand, N. Islam, T. Jaeger, and J. R. Rao. A flex-
ible security model for using Internet content. JEEE
Software, 1997. To appear.

R. Anand, N. Islam, and J. R. Rao. A capability-
based security model for using Internet content. Tech-
nical Report 20664, IBM Research, 1996.

L. Badger, D. F. Sterne, D. L. Sherman, K. M.
Walker, and S. A. Haghighat. Practical domain and
type enforcement for UNIX. In IEEE Symposium on
Security and Privacy, pages 66-77, 1995.

A. Berman, V. Bourassa, and E. Selberg. TRON:
Process-specific file protection for the UNIX operating
system. In Proceedings of the 1995 USENIX Winter
Technical Conference, pages 165-175, 1995.

N. S. Borenstein. Computational mail as a net-
work infrastructure for computer-supported cooper-
ative work. In Proceedings of the Fourth ACM Con-
ference on Computer-Supported Collaborativr Work,
pages 67-74, 1992.

N. S. Borenstein. Email with a mind of its own: The
Safe-Tcl language for enabled mail. In ULPAA '94,
pages 389-402, 1994.

S. Foley and J. Jacob. Specifying security for CSCW
systems. In Proceedings of the 8th IEEE Computer
Security Foundations Workshop, pages 136-145, 1995.

F. S. Gallo. Penguin: Java done right. The Perl
Journal, 1(2):10-12, 1996.

M. Gasser and E. McDermott. An architecture for
practical delegation in a distributed system. In IEEFE
Symposium on Security and Privacy, pages 20-30,
1990.

1. Goldberg, D. Wagner, R. Thomas, and E. Brewer.
A secure environment for untrusted helper applica-
tions. In Proceedings of the 6th USENIX Security
Symposium, pages 1-14, July 1996.

L. Gong. New security architectural directions for
Java. In IEEE COMPCON ’97, February 1997.

J. Gosling and H. McGilton. The Java language en-
vironment: A white paper, May 1996. Available at
URL http://www.javasoft.com/docs/language_ envi-
ronment/.

T. Jaeger. Flezible Control of Downloaded Ezecutable
Content. PhD thesis, University of Michigan, Febru-
ary 1997.

T. Jaeger, N. Islam, R. Anand, A. Prakash, and

J. Liedtke. Flexible control of downloaded executable
content. Technical report, IBM Research, 1997. Sub-

mitted for journal publication.

106

(16]

(17)

(18]

(21]

(22]

(24]

[25]

(26]

[27]

(28]

T. Jaeger and A. Prakash. Support for the file system
security requirements of computational e-mail sys-
tems. In Proceedings of the 2nd ACM Conference on
Computer and Communications Security, pages 1-9,

1994.

T. Jaeger and A. Prakash. Implementation of a dis-
cretionary access control model for script-based sys-
tems. In Proceedings of the 8th IEEE Computer Se-
curity Foundations Workshop, pages T0-84, 1995.

T. Jaeger, A. Rubin, and A. Prakash. Building sys-
tems that flexibly control downloaded executable con-
tent. In Proceedings of the 6th USENIX Security Sym-
posium, pages 131-148, July 1996.

J. Levy and J. Qusterhout. Safe Tcl: A toolbox for
constructing electronic meeting places. In The First
USENIX Workshop on Electronic Commerce, pages
133-135, 1995.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and
C. E. Youman. Role-based access control: a multi-
dimensional view. In Proceedings of the Tenth Com-
puter Security Applications Conference, pages 54-62,
1994.

S. Thomas. The Navigator Java environment: cur-
rent security issues, January 1996. Available at
http://developer.netscape.com/library/ documenta-
tion/ javasecurity.html.

T. C. Ting, S. A. Demurjian, and M.-Y. Hu. Require-
ments, capabilities and functionalities of user-role
based security for an object-oriented design model. In
IFIP Transactions, Database Security V, pages 275—
296, 1992.

G. van Rossum. Grail -
the of us (draft), 1996.
http://monty.cnri.reston.va.us/grail/.

The

for
at

browser
Available

rest

S. T. Vinter. Extended discretionary access controls.
In IEEE Symposium on Security and Privacy, pages
39-49, 1988.

D. Wallach, D. Balfanz, D. Dean, and E. W. Felten.
Extensible security architectures for java. Technical
Report 546-97, Princeton University, 1997.

J. E. White. Telescript Language Reference Manual.
October 1995. Available at http://www.genmagic.
com/Telescript/TDE/TDEDOCS_HTML /telescript.
html.

E. Wobber, M. Abadi, M. Burrows, and B. Lampson.
Authentication in the Taos operating system. ACM
Transactions on Computer Systems, 12(1):3-32, Feb-
ruary 1994.

M. E. Zurko and R. Simon. User-centered security.
In Proceedings of the 1996 New Security Paradigms
Workshop, 1996.



