
© 2010 IBM Corporation

System z Architecture

Joachim von Buttlar

System z Firmware Development
IBM Deutschland Research & Development GmbH

joachim_von_buttlar@de.ibm.com

© 2010 IBM Corporation2

Agenda
�Introduction

�Modes of Operation

�Firmware Layers

�Register Sets

�Storage

�Interrupts

�Timing Facilities

�Instructions

�Storage Protection

�Virtual Storage

�Multiprocessing

�Input/Output

�Partitioning and Virtualization

�Parallel Sysplex

© 2010 IBM Corporation3

Trademarks
The following are trademarks of the International B usiness Machines Corporation in the United States, other countries, or both.

The following are trademarks or registered trademar ks of other companies.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes :
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without
notice. Consult your local IBM business contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance,
compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.
Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.
IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

AIX*
APPN*
BladeCenter*
CICS*
DB2*
DataPower*
DS8000*
e business(logo)*
ESCON*
eServer
FICON*
GDPS*
HiperSockets
IBM*
IBM (logo)*

IMS
InfiniBand*
Multiprise*
OS/2*
Parallel Sysplex*
Power*
POWER*
POWER7
Power Architecture*
PowerVM
PR/SM
Resource Link*
Redbooks*
REXX
RMF

S/390*
Sysplex Timer*
System/390*
System p*
System x*
System z*
System z9*
System z10*
VSE/ESA
WebSphere*
X-Architecture*
z9*
z10
z10 Business Class
z10 BC

z10 EC
z/Architecture*
z/OS*
z/VM*
z/VSE
zEnterpriise
zSeries*

© 2010 IBM Corporation4

Multiple Workloads in the Mainframe – Quality of Service

Linux ®

ERP Java
Appl.

WebSphere ®Core
Native Linux

CIC
S

IMS

Busine
ss

Object
s

JVM

z/OS

DB2

z/OS

DB2

JVM

Business
Objects

z/VM®

Java™

Appl
Java
Appl

C++
Java

DB2

Linux for
System z Linux

for
System z

Linux
for

System z

CICS®

DB2®

IMS™

HiperSockets ™ – virtual networking and switching

Processor Resource/Systems Manager ™ (PR/SM™)

CP 1 CP 2 CP n

Memory

Test
z/OS

Linux

Native Linux

DB2

z/VM

C++
Java

DB2

Linux for
System z Linux

for
System z

Linux
for

System z

IFL 1 IFL n

� Massive, robust consolidation platform; virtualizat ion is built in, not added on
� Up to 60 logical partitions on PR/SM; 100’s to 1000 ’s of virtual servers on z/VM
� Virtual networking for memory-speed communication, as well as virtual layer 2 and layer 3 networks sup ported by z/VM
� Most sophisticated and complete hypervisor function available
� Intelligent and autonomic management of diverse wor kloads and system resources

based on business policies and workload performance objectives

© 2010 IBM Corporation5

Multiple Workloads in the Mainframe – Quality of Service

� Scalability
– System structures optimized for data
– Concurrent capacity optimization

� High Availability
– Parallel Sysplex, ‘Shared everything’
– GDPS: z/OS, Multiplatform
– PU sparing, Instruction retry

� Security
– EAL5 (LPAR), EAL3+ (z/OS,…)
– Crypto hardware

� Automation
– System Automation: z/OS, Multiplatform
– Intelligent Resource Director, Work Load Manager

� Virtualization
– PR/SM (LPAR)
– z/VM & Linux
– HiperSockets

© 2010 IBM Corporation6

Concurrent (“non-disruptive“) Configuration and
Maintenance

� Important for operation 24 hours a day, 7 days a we ek (zero
downtime)

– Concurrent changes to I/O configuration
– Concurrent upgrade of memory

• temporary and permanent
– Concurrent upgrade of processors

• temporary and permanent
– Concurrent Book Add
– Concurrent Book Repair
– Concurrent installation of firmware fixes and drivers

© 2010 IBM Corporation7

� Machine Type
– 2817

� 5 Models
– M15, M32, M49, M66 and M80

� Processor Units (PUs)
– 20 (24 for M80) PU cores per book
– Up to 14 SAPs per system, standard
– 2 spares designated per system
– Dependent on the H/W model - up to 15,32,49,66 or 80 PU

cores available for characterization
• Central Processors (CPs), Integrated Facility for Linux (IFLs),

Internal Coupling Facility (ICFs), System z Application Assist
Processors (zAAPs), System z Integrated Information
Processor (zIIP), optional - additional System Assist
Processors (SAPs)

– Sub-capacity available for up to 15 CPs
• 3 sub-capacity points

� Memory
– System Minimum of 32 GB
– Up to 768 GB per book
– Up to 3 TB for System and up to 1 TB per LPAR

• Fixed HSA, standard
• 32/64/96/112/128/256 GB increments

� I/O
– Up to 48 I/O Interconnects per System @ 6 GBps each
– Up to 4 Logical Channel Subsystems (LCSSs)

� STP - optional (No ETR)

z196 Overview

© 2010 IBM Corporation8

0

1000

2000

3000

4000

5000

1997
G4

1998
G5

1999
G6

2000
z900

2003
z990

2005
z9 EC

2008
z10 EC

2010
z196

300
MHz

420
MHz

550
MHz

770
MHz

1.2
GHz

1.7
GHz

4.4
GHz

5.2
GHz

� G4 – 1st full-custom CMOS S/390®

� G5 – IEEE-standard BFP; branch target prediction
� G6 – Copper Technology (Cu BEOL)

� z900 – Full 64-bit z/Architecture
� z990 – Superscalar CISC pipeline
� z9 EC – System level scaling

� z10 EC – Architectural extensions
� z196 – Additional Architectural

extensions and new cache
structure

M
H

z
z196 Continues the CMOS Mainframe Heritage

© 2010 IBM Corporation9

2458-002

Fibre Channel
Disk Storage

� Machine Type/Model 2458-002
– One Model with 5 configurations for IBM Smart Analytics Optimizer

� Racks – Up to 4 (B, C, D and E)
– 42U Enterprise, (36u height reduction option)
– 4 maximum, 2 chassis/rack
– 2-4 power line cords/rack
– Non-acoustic doors as standard
– Optional Acoustic Doors
– Optional Rear Door Heat Exchanger (conditioned water required)

� Chassis – Up to 2 per rack
– 9U BladeCenter
– Redundant Power, cooling and management modules
– Network Modules
– I/O Modules

� Blades (Maximum 112 in 4 racks)
– IBM Smart Analytic Optimizer Blades (up to 7 to 56)

– Can not mix other Blades in the same Chassis
– Customer supplied POWER7 Blades (up to 112)
– Customer supplied System x Blades* (up to 112)
– WebSphere DataPower Appliances* (up to 28)
– Non-IBM Smart Analytic Optimizer Blades can be mixed in the same

chassis
� Management Firmware

– Unified Resource Manager
� Top of Rack (TOR) Switches - 4

– 1000BASE-T intranode management network (INMN)
– 10 GbE intraensemble data network (IEDN)

� Network and I/O Modules
– 1000BASE-T and 10 GbE modules
– 8 Gb Fibre Channel (FC) connected to customer supplied disks
– IBM Smart Analytic Optimizer uses DS5020 disks

– DS5020s not shared with Customer supplied Blades

zBX Overview

© 2010 IBM Corporation10

z196 – Under the covers (Model M66 or M80)

Internal
Batteries
(optional)

Power
Supplies

I/O cage

Fiber Quick Connect
(FQC) Feature

(optional)

Processor Books,
Memory, MBA and

HCA cards

2 x Cooling
Units

InfiniBand I/O
Interconnects

2 x Support
Elements

FICON &
ESCON
FQC

Ethernet cables for
internal System LAN
connecting Flexible
Service Processor

(FSP) cage controller
cards

I/O drawers

© 2010 IBM Corporation11

z196 Water cooled – Under the covers (Model M66 or M80)
front view

Internal
Batteries
(optional)

Power
Supplies

I/O cage

Processor Books,
Memory, MBA and

HCA cards

2 x Water
Cooling

Units

InfiniBand I/O
Interconnects

Support
Elements

Ethernet cables for
internal System LAN
connecting Flexible
Service Processor

(FSP) cage controller
cards

I/O drawers

© 2010 IBM Corporation12

z196 PU core

� Each core is a superscalar, out of order processor with these
characteristics:
– Six execution units

• 2 fixed point (integer), 2 load/store, 1 binary floating point, 1 decimal floating point

– Up to three instructions decoded per cycle (vs. 2 in z10)
– 211 complex instructions cracked into multiple internal operations

• 246 of the most complex z/Architecture instructions are implemented via millicode

– Up to five instructions/operations executed per cycle (vs. 2 in z10)
– Execution can occur out of (program) order

• Memory address generation and memory accesses can occur out of (program) order
• Special circuitry to make execution and memory accesses appear in order to software

– Each core has 3 private caches
• 64KB 1st level cache for instructions, 128KB 1st level cache of data
• 1.5MB L2 cache containing both instructions and data

© 2010 IBM Corporation13

� OOO yields significant performance benefit for compute intensive apps through
–Re-ordering instruction execution

• Later (younger) instructions can execute ahead of an older stalled instruction

–Re-ordering storage accesses and parallel storage accesses
� OOO maintains good performance growth for traditional apps

z196 Out of Order (OOO) Value

L1 miss

Instrs

1

2

3

4

5

Time

In-order core execution Out-of-order core execution

L1 miss

Time
Execution

Storage access

© 2010 IBM Corporation14

z196 Out of Order Detail

� Out of order yields significant performance benefit through
– Re-ordering instruction execution

• Instructions stall in a pipeline because they are waiting for results from a previous instruction or the
execution resource they require is busy

• In an in-order core, this stalled instruction stalls all later instructions in the code stream
• In an out-of-order core, later instructions are allowed to execute ahead of the stalled instruction

– Re-ordering storage accesses
• Instructions which access storage can stall because they are waiting on results needed to compute

storage address
• In an in-order core, later instructions are stalled
• In an out-of-order core, later storage-accessing instructions which can compute their storage address

are allowed to execute

– Hiding storage access latency
• Many instructions access data from storage
• Storage accesses can miss the L1 and require 10 to 500 additional cycles to retrieve the storage

data
• In an in-order core, later instructions in the code stream are stalled
• In an out-of-order core, later instructions which are not dependent on this storage data are allowed to

execute

© 2010 IBM Corporation15

z196 Compression and Cryptography Accelerator

� Data compression engine
– Static dictionary compression and

expansion
– Dictionary size up to 64KB (8K

entries)
• Local 16KB cache per core for

dictionary data

� CP Assist for Cryptographic
Function (CPACF)
– Enhancements for new NIST standard
– Complemented prior ECB and CBC

symmetric cipher modes with XTS,
OFB, CTR, CFB, CMAC and CCM

– New primitives (128b Galois Field
multiply) for GCM

� Accelerator unit shared by 2
cores
– Independent compression engines
– Shared cryptography engines

Core 0 Core 1

IB IBOB OBTLBTLB

2nd Level
Cache

Cmpr
Exp

Cmpr
Exp16K 16K

Crypto
Cipher

Crypto
Hash

© 2010 IBM Corporation16

z196 Multi-Chip Module (MCM) Packaging

� 96mm x 96mm MCM
– 103 Glass Ceramic layers
– 8 chip sites
– 7356 LGA connections
– 20 and 24 way MCMs
– Maximum power used by MCM is 1800W

�CMOS 12s chip Technology
– PU, SC, S chips, 45 nm
– 6 PU chips/MCM – Each up to 4 cores

• One memory control (MC) per PU chip
• 23.498 mm x 21.797 mm
• 1.4 billion transistors/PU chip
• L1 cache/PU core

� 64 KB I-cache
� 128 KB D-cache

• L2 cache/PU core
� 1.5 MB

• L3 cache shared by 4 PUs per chip
� 24 MB

• 5.2 GHz

– 2 Storage Control (SC) chip
• 24.427 mm x 19.604 mm
• 1.5 billion transistors/SC chip
• L4 Cache 96 MB per SC chip (192 MB/Book)
• L4 access to/from other MCMs

– 4 SEEPROM (S) chips
• 2 x active and 2 x redundant
• Product data for MCM, chips and other engineering

information

– Clock Functions – distributed across PU
and SC chips

• Master Time-of-Day (TOD) function is on the SC

PU 0PU 2

SC 0SC 1

PU 1

S00

S01

S10

S11

PU 5PU 3 PU 4

© 2010 IBM Corporation17

z196 Quad Core PU Chip Detail

� Up to four active cores per chip
– 5.2 GHz
– L1 cache/ core

• 64 KB I-cache
• 128 KB D-cache

– 1.5 MB private L2 cache/ core
� Two Co-processors (COP)

– Crypto & compression accelerators
– Includes 16KB cache
– Shared by two cores

� 24MB eDRAM L3 Cache
– Shared by all four cores

� Interface to SC chip / L4 cache
– 41.6 GB/sec to each of 2 SCs

� I/O Bus Controller (GX)
– Interface to Host Channel Adapter (HCA)

� Memory Controller (MC)
– Interface to controller on memory DIMMs
– Supports RAIM design

� Chip Area – 512.3mm 2

– 23.5mm x 21.8mm
– 8093 Power C4’s
– 1134 signal C4’s

� 12S0 45nm SOI
Technology

– 13 layers of metal
– 3.5 km wire

� 1.4 Billion Transistors

© 2010 IBM Corporation18

L4 Cache
(24MB)

Perv

Clk
Repower

PLL
L4 Controller

Fabric

IOs
Data
Bit-

Stack

ETR/
TOD

L4 Cache
(24MB)

L4 Cache
(24MB)

L4 Cache
(24MB)

Fabric

IOs
Data
Bit-

Stack Perv Perv

z196 SC Chip Detail

� 12S0 45nm SOI
Technology

– 13 layers of metal

� Chip Area – 478.8mm2

– 24.4mm x 19.6mm
– 7100 Power C4’s
– 1819 signal C4’s

� 1.5 Billion Transistors
– 1 Billion cells for eDRAM

� eDRAM Shared L4
Cache

– 96 MB per SC chip
– 192 MB per Book

� 6 CP chip interfaces

� 3 Fabric interfaces

� 2 clock domains

� 5 unique chip voltage
supplies

© 2010 IBM Corporation19

192MB eDRAM
Inclusive L4
2 SC Chips

LRU Cast-Out
CP Stores
Data Fetch Return

24MB eDRAM
Inclusive L3

L1

1.5MB
L2

L1

1.5MB
L2

L1

1.5MB
L2

L1

1.5MB
L2

24MB eDRAM
Inclusive L3

L1

1.5MB
L2

L1

1.5MB
L2

L1

1.5MB
L2

L1

1.5MB
L2

24MB eDRAM
Inclusive L3

L1

1.5MB
L2

L1

1.5MB
L2

L1

1.5MB
L2

L1

1.5MB
L2

24MB eDRAM
Inclusive L3

L1

1.5MB
L2

L1

1.5MB
L2

L1

1.5MB
L2

L1

1.5MB
L2

24MB eDRAM
Inclusive L3

L1

1.5MB
L2

L1

1.5MB
L2

L1

1.5MB
L2

L1

1.5MB
L2

24MB eDRAM
Inclusive L3

L1

1.5MB
L2

L1

1.5MB
L2

L1

1.5MB
L2

L1

1.5MB
L2

CP CP CP CP CP CP

z196 Book Level Cache Hierarchy

© 2010 IBM Corporation20

System z Cache Topology – z10 EC vs. z196 Comparison

L1: 64KI + 128KD
8w Set Associative DL1
4w Set Associative IL1
256B line size

L1.5 3MB Inclusive of L1
12w Set Associative
256B cache line size

L2 48MB Excl Inclusive + XI Dir
24w Set Associative
256B cache line size

z10 EC

4 L2 Caches

48MB
Shared L2

20
L1 / L1.5s

L1
L1.5

L1
L1.5

L1
L1.5

L2
L1

L2
L1

L2
L1

L2
L1

L1: 64KI + 128KD
8w DL1, 4w IL1
256B line size

L2 Private 1.5MB Inclusive of L1s
12w Set Associative
256B cache line size

L3 Shared 24MB Inclusive of L2s
12w Set Associative
256B cache line size

L4 192MB Inclusive
24w Set Associative
256B cache line size

z196

4 L4 Caches

192MB
Shared eDRAM L4

6 L3s,
24 L1 / L2s

L2
L1

24MB Shr
eDRAM L3

24MB Shr
eDRAM L3

L2
L1

L2
L1

L2
L1

© 2010 IBM Corporation21

Off- Book
Interconnect

Memory 1 Memory 0

GX 0 GX 5 GX 4 GX 3

Off- Book
Interconnect

Off- Book
Interconnect

Memory 2

GX 2 & 6 GX 7 & 1 PSIPSI

z196 24 PU MCM Structure

96MB L4
SC

96MB L4
SC

4 PU cores
4x1.5MB L2
1 x 24MB L3

2 COP

MC, GX

4 PU cores
4x1.5MB L2
1 x 24MB L3

2 COP

MC, GX

4 PU cores
4x1.5MB L2
1 x 24MB L3

2 COP

MC, GX

4 PU cores
4x1.5MB L2
1 x 24MB L3

2 COP

MC, GX

4 PU cores
4x1.5MB L2
1 x 24MB L3

2 COP

MC, GX

4 PU cores
4x1.5MB L2
1 x 24MB L3

2 COP

MC, GX

© 2010 IBM Corporation22

z10 EC MCM vs. z196 MCM Comparison

� MCM
– 96mm x 96mm in size

– 5 PU chips per MCM
• Quad core chips with 3 or 4 active cores
• PU Chip size 21.97 mm x 21.17 mm
• 4.4 GHz
• Superscalar, In order execution
• L1: 64K I /128K D private/core
• L1.5: 3M I+D private/core

– 2 SC chips per MCM
• L2: 2 x 24 M = 48 M L2 per book
• SC Chip size 21.11 mm x 21.71 mm

– Power 1800 Watts

� MCM
– 96mm x 96mm in size

– 6 PU chips per MCM
• Quad core chips with 3 or 4 active cores
• PU Chip size 23.5 mm x 21.8 mm
• 5.2 GHz
• Superscalar, OOO execution
• L1: 64K I / 128K D private/core
• L2: 1.5M I+D private/core
• L3: 24MB/chip - shared

– 2 SC chips per MCM
• L4: 2 x 96 MB = 192 MB L4 per book
• SC Chip size 24.4 mm x 219.6 mm

– Power 1800 Watts

z10 EC MCM z196 MCM

© 2010 IBM Corporation23

z196 PU chip, SC chip and MCM

z196
Quad Core
PU CHIP

MCM

BOOK
96 MB

SC CHIP
Front View

Front View
Fanouts

© 2010 IBM Corporation24z196TLLB24

z196 Book Layout
MCM @ 1800W

Refrigeration Cooled or
Water Cooled

Backup Air Plenum

8 I/O FAN OUT
2 FSP

3x DCA 14X DIMMs
100mm High

16X DIMMs
100mm High

11 VTM Card Assemblies
8 Vertical
3 Horizontal

Rear
Front

DCA Power Supplies

Fanout

Cards

Cooling
from/to MRU

MCM

Memory

Memory

© 2010 IBM Corporation25

Operating System Support for z196

� Currency is key to operating system support and exp loitation of
future servers

� The following are the minimum operating systems pla nned to run on
z196:

– z/OS
• CPC: z/OS V1.9 1 for toleration only; exploitation starts with z/OS V1.10 with full exploitation with

z/OS V1.12
• zBX: z/OS V1.10

– Linux on System z distributions:
• Novell SUSE SLES 10 and SLES 11
• Red Hat RHEL 5

– z/VM
• CPC: z/VM V5.4 or higher
• zBX support: z/VM V6.1

– z/VSE V4.1 or higher
– z/TPF V1.1 or higher

� Using the general purpose application server blades we have:
– AIX 5.3, 6.1
– Linux on System x 2 (SOD)

1. z/OS V1.9 support ends on Sept. 30, 2010. Lifecycle Extension for z/OS 1.9 is available Oct. 1, 2010. Note that z/OS 1.8 with the Lifecycle Extension for z/OS
1.8 and z/OS 1.7 with the Lifecycle Extension for z/OS 1.7 are also available with toleration support only.

2. All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represents goals and objectives only.

© 2010 IBM Corporation26

z196 System Upgrades

� z196 to higher hardware z196
model

– Upgrade of z196 Models M15, M32,
M49 and M66 to M80 is disruptive

– When upgrading to z196 all the Books
are replaced

– Upgrade from Air to Water cooled not
available

� Any z9 EC to any z196
� Any z10 EC to any z196

z9 EC

z10 EC

M15

M32

M49

M66

M80

C
on

cu
rr

en
t U

pg
ra

de

© 2010 IBM Corporation27

System z PU Characterization

� The type of Processor Units (PUs) that can be order ed on System z:
– Central Processors (CPs)

• Provides processing capacity for z/Architecture™ and ESA/390 instruction sets
• Runs z/OS, z/VM, VSE/ESA, z/VSE, TPF/ESA, z/TPF, Linux for System z and Linux under z/VM

or Coupling Facility
– System z Application Assist Processors (zAAPs)

• Under z/OS, zAAPs are used for Java processing by the Java™ Virtual Machine (JVM) as well as
XML processing

– System z Integrated Information Processors (zIIPs)
• First exploited by DB2 Version 8 for z/OS (requires z/OS V1.7)

– Integrated Facility for Linux (IFL)
• Provides additional processing capacity for Linux workloads

– Internal Coupling Facility (ICF)
• Provides additional processing capacity for the execution of the Coupling Facility Control Code

(CFCC) in a CF LPAR
– System Assist Processors (SAPs)

• SAPs manage the start and ending of I/O operations for all Logical Partitions and all attached I/O

© 2010 IBM Corporation28

System z Architecture

Modes of Operation

© 2010 IBM Corporation29

Logical Partitioning

�A System z machine is always logically partitioned
–Up to 60 logical partitions (LPARs) can be defined, each of
them hosting an operating system

�The partitioning is transparent to the software run ning in
an LPAR

�An operating system running in an LPAR controls onl y
the resources assigned to it (CPUs, storage, I/O)

© 2010 IBM Corporation30

Architecture Modes: ESA/390 vs. z/Architecture

� System z supports two architecture modes: ESA/390 a nd
z/Architecture

� In ESA/390 architecture, the system can run old (31 -bit)
operating systems and applications

– This is like running on an S/390 system such as 9672 G6

� A system may run any mixture of ESA/390 LPARs and
z/Architecture LPARs

� “Principles of Operation” describe the function and features
of System z at the instruction level

http://publibfi.boulder.ibm.com/epubs/pdf/dz9zr008. pdf

© 2010 IBM Corporation31

z/Architecture Key Characteristics

�64-bit architecture, uses 64-bit storage addresses and
64-bit integer arithmetic and logical instructions

�Superset of former ESA/390 architecture that provid ed
31-bit storage addresses and 32-bit integer arithme tic
instructions

� Incompatibilities between z/Architecture and ESA/39 0
usually affect only operating systems, not applications

–Different formats of the program status word (PSW)
–Address translation process for virtual storage
–Layout of the assigned storage locations

© 2010 IBM Corporation32

System z Architecture

Firmware Layers

© 2010 IBM Corporation33

System z Firmware Components

I/O Channels
C, Assembler, horizontal microcode

Hardware
Management
Console
Controls multiple z
Systems
C, C++

Support Element
Startup, system control,
service
C, C++, Java, Perl

Central
Electronic
Complex (CEC)
i390 (C, C++, PL.8),
millicode (Assembler),
LPAR (PL/X,
Assembler):
Complex instructions,
I/O subsystem,
virtualization,
recovery

PSCN / Flexible
Support
Processor (FSP)
Power control
SE connection
C, C++

© 2010 IBM Corporation34

System z Software/Firmware Layers

System z software (ESA/390 and z/Architecture)

LPAR hypervisor

i390 code

Millicode

Processor hardware

F
irm

w
ar

e

© 2010 IBM Corporation35

What is Millicode?

� Low level firmware running on all processors (PUs)

� Processors implement only a subset of z/Architectur e in hardware
(about 75% of the instruction set of ~ 1,000 instru ctions)

� Functions implemented in millicode:
– Execution of complex instructions
– Interrupt handling (program, external, I/O, machine check)
– Virtualization: interpretive execution
– i390 specific facilities
– Special RAS (reliability, availability, serviceability) and debug functions
– Reset functions

� Implemented in System z Assembler

© 2010 IBM Corporation36

What is i390 Code?

� High-level firmware running in “internal 390” mode

� Performs complex functions such as
– System initialization and reset
– I/O subsystem
– Concurrent maintenance
– Communication with the Support Element (SE)
– A few instructions

� Durable architecture for System z host firmware

� Dates back to 1985, implemented and exploited on al l S/390 CMOS
systems and System z generations

� Consists of System z instructions

� “Control spaces” and control space operations (instr uctions) define
i390-architected access to hardware facilities via millicode

� Provides a platform for host firmware development w ith high-level
language compilers (C, C++, PL.8) and other tools

© 2010 IBM Corporation37

Where does Firmware reside?

�System z196 has up to 3T storage
–Up to 768G per book

�Hardware System Area (HSA) is reserved for
firmware

�Fixed size for System z196: 16G
–„True“ HSA (12.5G)
–LPAR hypervisor (1.5G)
–Storage keys (2G)

© 2010 IBM Corporation38

System z Storage Layout

LPAR Hypervisor

Hardware System Area
(HSA)

LPAR 1

LPAR 3

LPAR 2

1.5G

14G

© 2010 IBM Corporation39

System z Architecture

Register Sets

© 2010 IBM Corporation40

Register Sets

� 16 general registers (0 – 15)

– Used for address generation/calculation as well as for integer arithmetic (signed
and unsigned)

– Each register has 64 bits, numbered from 0 to 63
– In ESA/390 architecture, only the low-order 32 bits are accessible (bits 32-63)

� 16 floating-point registers (0 – 15)

– Used for binary, decimal, and hexadecimal floating-point operations
– Each register has 64 bits
– Extended precision floating-point arithmetic uses register pairs (e. g., 0/2, 1/3, 4/6,

5/7, etc.)

� Floating-point-control register

– Contains IEEE exception masks and flags, defines rounding mode
– This is a 32-bit register

© 2010 IBM Corporation41

Register Sets (continued…)

�16 access registers (0 – 15)
–Used to access address spaces
–Each register has 32 bits

�Prefix register
–Used to define the absolute addresses of the assigned storage

locations for a CPU
–This is a 32-bit register
–This register is directly accessed only by the operating system

© 2010 IBM Corporation42

Register Sets (continued…)

�16 control registers (0 – 15)
–Used by the operating system only to control interrupt handling, virtual

storage, tracing facilities, etc.
–Each register has 64 bits
–In ESA/390 architecture, only the low-order 32 bits are accessible (bits

32-63)

© 2010 IBM Corporation43

Program Status Word (PSW)

�The PSW contains information required for the execu tion
of the current program:

–Instruction address
–Addressing mode
–Condition code
–Interrupt masks
–Indicator problem/supervisor state (user/kernel mode)

© 2010 IBM Corporation44

Program Status Word – ESA/390 Architecture

© 2010 IBM Corporation45

Program Status Word – z/Architecture

© 2010 IBM Corporation46

Program Status Word – Fields

� R – enable program event recording (PER)

� T – enable dynamic address translation (virtual stor age)

� I – enable I/O interrupts

� E – enable external interrupts

� Key – define storage protection key

� M – enable machine checks

� W – wait state

� P – problem state (0 = supervisor state)

� AS – address space
– 00 = primary space mode
– 01 = access register mode
– 10 = secondary space mode
– 11 = home space mode

� CC – condition code

© 2010 IBM Corporation47

Program Status Word – Fields (continued…)

� Program mask
– Bit 20: Enable fixed-point overflow exception
– Bit 21: Enable decimal overflow exception
– Bit 22: Enable hex floating-point exponent underflow exception
– Bit 23: Enable hex floating-point significance exception

� EA – extended addressing (64-bit addressing mode, BA must also be 1)

� BA – basic addressing (31-bit addressing mode, 0 = 2 4-bit addressing
mode)

� Instruction address
– It is stepped by the length of the current instruction

© 2010 IBM Corporation48

Problem State (User Mode)

� In problem state, the program must not execute priv ileged
instructions

– No access to control registers
– No access to timers
– No access to storage keys
– Access only to “uncritical” parts of the PSW
– In general: No access to architecture facilities that are vital to the system as a

whole

� If authorized, a program in problem state may execu te certain
semiprivileged instructions (e.g. PROGRAM CALL)

© 2010 IBM Corporation49

Supervisor State (Kernel Mode)

� In supervisor state, a program may exploit all
architecture facilities

�Transition from problem to supervisor state
–Via an interrupt (by loading a new PSW that indicates supervisor state)

�Transition from supervisor to problem state
–Via the privileged LOAD PSW [EXTENDED] instruction

© 2010 IBM Corporation50

System z Architecture

Storage

© 2010 IBM Corporation51

Storage

� System z is a Big-Endian machine (like System p, un like
Intel)

� Storage addresses are byte addresses

� Types of address:
– Virtual: Translated by dynamic address translation (DAT) to real

addresses
– Real: Translated to absolute addresses using the prefix register
– Absolute: After applying the prefix register
– Logical: The address seen by the program (this can either be a

virtual or a real address)

© 2010 IBM Corporation52

Integral Boundaries

© 2010 IBM Corporation53

Alignment Requirements

� Instructions are always aligned on halfword boundar ies

�Operands of non-privileged instructions normally do not
have to be aligned on an integral boundary

–Exception: Compare and Swap

�Operands of privileged instructions normally must be
aligned on an integral boundary

–Example: Set CPU Timer

© 2010 IBM Corporation54

Storage Addressing Modes

� There are three addressing modes:

� The instructions SAM24, SAM31, and SAM64 can be use d to switch the
addressing mode

64-bit

Invalid

31-bit

24-bit

Addressing
mode

16E (exa-bytes)

n/a

2G

16M

Address range

11

01

10

00

PSW.32 (BA)PSW.31 (EA)

© 2010 IBM Corporation55

System z Architecture

Interrupts

© 2010 IBM Corporation56

Interrupts

�There are six classes of interrupts:
–Supervisor call
–Program
–Machine check
–External
–Input/output
–Restart

�Each class is associated with a pair of old/new PSW s in
the assigned storage locations

© 2010 IBM Corporation57

Interrupt Action

�An interrupt comprises the following steps:
–The current PSW is stored in the assigned location named “old PSW”,

e.g. “program old PSW” for a program interrupt
–Additional information, such as an interrupt code, is stored
–A new PSW is loaded from an assigned location, e.g. the “program

new PSW”

�No registers are saved, this is done by software

© 2010 IBM Corporation58

PSWs in the Assigned Storage Locations

I/O new PSW0x1F0 – 0x01FF

Machine-check new PSW0x1E0 – 0x01EF

Program new PSW0x1D0 – 0x01DF

Supervisor-call new PSW0x1C0 – 0x01CF

External new PSW0x1B0 – 0x01BF

Restart new PSW0x1A0 – 0x01AF

I/O old PSW0x170 – 0x017F

Machine-check old PSW0x160 – 0x016F

Program old PSW0x150 – 0x015F

Supervisor-call old PSW0x140 – 0x014F

External old PSW0x130 – 0x013F

Restart old PSW0x120 – 0x012F

ContentsReal addresses

© 2010 IBM Corporation59

Interrupt Masking

� I/O interrupts are masked by PSW.6
– Additionally, there are subclass mask bits in control register 6:

• I/O interruption subclass (ISC) 0
• …
• I/O interruption subclass (ISC) 7

� External interrupts are masked by PSW.7
– Additionally, there are subclass mask bits in control register 0:

• CPU timer
• Clock comparator
• …

� Repressible machine checks are masked by PSW.13
– Additionally, there are subclass mask bits in control register 14:

• Channel report
• Degradation
• …

© 2010 IBM Corporation60

Interrupt Masking (continued…)

� Some program interrupts are masked by PSW.20 – PSW.2 3:
– Fixed-point overflow
– Decimal overflow
– Hexadecimal-floating-point exponent underflow
– Hexadecimal-floating-point significance

�All other program interrupts cannot be masked

© 2010 IBM Corporation61

Interrupt Masking (continued…)

� There is no masking for

– Supervisor calls (SVCs)
• The whole purpose of the SUPERVISOR CALL instruction is to invoke the supervisor

via the interrupt mechanism

– Restart
• SIGNAL PROCESSOR instruction, typically issued by the operating system

during startup

• Manual operation available from the support element (SE) intended to restart
the operating system

– Exigent machine checks
• If PSW.13 is 0, the CPU check stops. An example of such a situation is instruction

processing damage.

© 2010 IBM Corporation62

System z Architecture

Timing Facilities

© 2010 IBM Corporation63

Timing Facilities

�Time-of-day (TOD) clock
–one for the system

�Clock comparator
–one per CPU

�CPU timer
–one per CPU

© 2010 IBM Corporation64

Time-of-Day Clock

� Format of the TOD clock:

� Value 0 defined as January 1, 1900, 00:00:00 UTC

� Overflows on September 17, 2042, 23:53:47 UTC

� STORE CLOCK (STCK) instruction returns first 64 bit s

© 2010 IBM Corporation65

Time-of-Day Clock (continued…)

� STORE CLOCK EXTENDED (STCKE) returns 128 bits:

� First 8 bits (“zeros”) will be used after September 17, 2042 (good until ~ year
38,400 A.D.)

� Bit 59 equals 1 microsecond

� Bit 111 equals 222 * 10 -24 seconds

� Programmable field used to generate unique value (s et by SET CLOCK
PROGRAMMABLE FIELD instruction, SCKPF)

© 2010 IBM Corporation66

Clock Comparator

�Same format as TOD clock (bit 51 = 1 microsecond)

�Continuously compared to TOD clock

�When TOD clock passes the clock comparator value, a n
external interrupt is generated (code 0x1004)

�Good for real-time measurements

�Set with SET CLOCK COMPARATOR (SCKC), read with
STORE CLOCK COMPARATOR (STCKC)

© 2010 IBM Corporation67

CPU Timer

�Same format as TOD clock (bit 51 = 1 microsecond), but
bit 0 is sign bit

�Stepped backwards

�When the CPU timer is negative, an external interru pt is
generated (code 0x1005)

�Stopped when CPU stops

�Set with SET CPU TIMER (SPT), read with STORE CPU
TIMER (STPT), EXTRACT CPU TIME (ECTG)

© 2010 IBM Corporation68

Timer Stepping

�On a real running system, TOD clock and CPU timer a re
stepped at the same rate.

�On a virtual system, the CPU timer is stepped only when
the virtual system is dispatched, so it may appear to step
slower than the TOD clock.

Assume (on z/VM) clock comparator is set to TOD clo ck
+ 5 seconds, CPU timer is set to 2 seconds.

You don’t know in advance who expires first.

© 2010 IBM Corporation69

TOD-Clock Steering

�Used to correct the TOD clock in a running system
–E.g. after retrieving time from a Coordinated Time Server (CTS), i.e.,

an atomic clock

�Used to keep TOD clock of multiple systems
synchronized

�Maintains a TOD -offset register that is added to the TOD
clock returned by STORE CLOCK

�By adjusting the value in the TOD -offset register, the
pace of the TOD clock is steered

© 2010 IBM Corporation70

System z Architecture

Instructions

© 2010 IBM Corporation71

Instruction Set

� S/360 (November 1970) had 143 instructions

� System z196 (September 2010) has 966 instructions

� Groups:
– General instructions
– Decimal instructions
– Floating-point instructions
– Control instructions (privileged)
– I/O instructions (privileged)

� For comparison: System p also has over 700 instruct ions,
half of them being vector-related operations

© 2010 IBM Corporation72

Instruction Set (continued…)

� Additionally, some instructions are not described i n the Principles of
Operation:

– Coupling instructions (Parallel Sysplex)
– Queued-directed I/O, HiperSockets
– Dynamic I/O configuration (HCD)
– Service Call (SCLP)
– Instructions associated with logical partitioning (LPAR) and virtualization

(z/VM)
– New with z10: CPU Measurement Facility

� Most of these instructions are privileged

© 2010 IBM Corporation73

General Instructions (1)

� Load into/store from general registers
– LOAD, INSERT, STORE
– 8, 16, 32, and 64 bit

� Binary integer arithmetic
– ADD, SUBTRACT, MULTIPLY, DIVIDE
– 16, 32, and 64 bit
– Signed (2-complement)

• From 0 to 2,147,483,647: 0 – 0x7FFFFFFF (32 bit)
• From -1 to -2,147,483,648: 0xFFFFFFFF – 0x80000000

– Unsigned (LOGICAL)
• From 0 to 4,294,967,295: 0 – 0xFFFFFFFF (32 bit)

� Shift/rotate operations
– SHIFT (left and right, signed arithmetic and logical), ROTATE (left)
– 32 and 64 bit

� Bitwise logical operations
– AND, OR, EXCLUSIVE OR
– 8, 16, 32, and 64 bit, 1 – 256 bytes
– Combined ROTATE THEN INSERT / AND / OR / XOR SELECTED BITS

© 2010 IBM Corporation74

General Instructions (2)

� Comparisons
– Signed arithmetic and unsigned (LOGICAL)
– 16, 32, and 64 bit

� Branches (absolute and relative, looping instructio ns)

� Subroutine linkage
– BRANCH AND SAVE [AND SET MODE]

� Bit testing and counting
– TEST UNDER MASK
– FIND LEFTMOST ONE
– New with z196: POPULATION COUNT

� Storage-to-storage copy and compare
– MOVE [LONG [EXTENDED]]
– COMPARE LOGICAL [LONG [EXTENDED]]

� Conversion to/from packed decimal format
– CONVERT TO BINARY / DECIMAL

© 2010 IBM Corporation75

General Instructions (3)

� String processing
– TRANSLATE, TRANSLATE AND TEST
– SEARCH STRING, COMPARE LOGICAL STRING (for null-terminated strings in C)

� Conversion little / big Endian
– LOAD REVERSED, STORE REVERSED

� Checksum generation

� Sorting
– COMPARE AND FORM CODEWORD, UPDATE TREE

� Encryption
– CIPHER MESSAGE

� Atomic updates, locking
– COMPARE AND SWAP, PERFORM LOCKED OPERATION
– New with z196: LOAD AND ADD / AND / OR / XOR

� Note: Some possibly long-running instructions are i nterruptible

© 2010 IBM Corporation76

Decimal Instructions

� Use packed decimal format
–One decimal digit per 4 bits (hex digit) encoded 0 – 9
–1 – 31 decimal digits (always odd number)
–Rightmost hex digit is sign (A, C, E, F mean plus, B, D mean minus)
–e. g., 0x123C is decimal +123, 0x456D is decimal -456
–Used a lot in commercial applications (COBOL, PL/I)

� Integer arithmetic (+, -, *, /)

� Comparison

� Data validation

� Conversion to printable format (EBCDIC)
–EDIT, EDIT AND MARK

© 2010 IBM Corporation77

Floating-Point Instructions

� Three precisions
– Short (32-bit), ca. 6 – 7 decimal digits
– Long (64-bit), ca. 16 – 17 decimal digits
– Extended (128-bit), ca. 33 – 34 decimal digits

� Binary floating-point format (BFP) characteristics
– IEEE 754 standard
– Number range (long precision): ~ 4.9 x 10-324 ≤ M ≤ ~ 1.8 x 10308

– Supports infinity and NaN (not-a-number)

� Decimal floating-point format (DFP) characteristics
– Introduced with System z9 GA3 (millicode), hardware implementation on System z10

and later
– IEEE P754 standard
– Number range (long precision): 1 x 10-398 ≤ M ≤ (1016 – 1) x 10369

– Supports infinity and NaN
– Exact representation of decimal fractions (e.g. 0.1)

� Hexadecimal floating-point (HFP) characteristics
– System z unique, introduced in S/360
– Number range (any precision): ~ 5.4 x 10-79 ≤ M ≤ ~ 7.2 x 1075

– Does not support infinity and NaN

© 2010 IBM Corporation78

Floating-Point Instructions (continued…)

�One set of floating-point registers used for all fo rmats

�Load into/store from floating-point registers

�Floating-point arithmetic (+, -, *, /, square root)

�Comparison

�Conversion to/from binary integer

�Conversion between BFP/DFP/HFP formats

© 2010 IBM Corporation79

Control and I/O Instructions

� All instructions are privileged, i. e., available t o the operating system only

� Operate on vital system resources
– Control registers
– Program status word
– Storage keys
– DAT tables
– Timers
– Real storage
– etc.

� Even read access to resources such as CPU timer is privileged

© 2010 IBM Corporation80

Instruction Execution

� After the instruction has been fetched, the instruc tion
address in the PSW is incremented by the instructio n length
(2, 4, or 6 bytes)

� An instruction ends in one of the following ways:
–Completion and partial completion

• This is the normal end
–Suppression

• Instruction is not executed, but PSW instruction address has been updated
• Occurs with most of the program interrupt conditions (program old PSW points

after the failing instruction)
–Nullification

• Instruction is not executed and PSW instruction address has not been updated
• Occurs with program interrupt conditions that pertain to DAT handling (i.e. the

instruction will be executed after the page has been loaded)
• Occurs also for some interruptible instructions (MVCL, CLCL) that resume at

the point of interrupt
–Termination

• Instruction may have been partially executed and PSW instruction address has
been updated (very rare situation)

© 2010 IBM Corporation81

Instruction Formats

� An instruction is 2, 4, or 6 bytes in length

� It is always halfword-aligned

� The first two bits of an instruction determine its length:
–00: 2 bytes
–01 and 10: 4 bytes
–11: 6 bytes

� The operation code consists of 8, 12, or 16 bits
–An 8-bit operation code always occupies the first byte
–A 12-bit operation code occupies the first byte and the second half of the

second byte
–A 16-bit operation code occupies the first byte and either the second byte

or the last byte of a 6-byte instruction

© 2010 IBM Corporation82

Examples for 8-, 12-, and 16-bit operation codes

© 2010 IBM Corporation83

Instruction Execution

� After the instruction has been fetched, the instruc tion
address in the PSW is incremented by the instructio n length
(2, 4, or 6 bytes)

� An instruction ends in one of the following ways:
–Completion and partial completion

• This is the normal end
–Suppression

• Instruction is not executed, but PSW instruction address has been updated
• Occurs with most of the program interrupt conditions (program old PSW points

after the failing instruction)
–Nullification

• Instruction is not executed and PSW instruction address has not been updated
• Occurs with program interrupt conditions that pertain to DAT handling (i.e. the

instruction will be executed after the page has been loaded)
• Occurs also for some interruptible instructions (MVCL, CLCL) that resume at

the point of interrupt
–Termination

• Instruction may have been partially executed and PSW instruction address has
been updated (very rare situation)

© 2010 IBM Corporation84

Instruction Format RR

� AR R1,R2

adds the contents of general register 2 to the cont ents of
general register 1. Both operands are 32-bit and si gned. In
storage, the instruction appears as 0x 1A 12 (operation code ,
operands):

© 2010 IBM Corporation85

Instruction Format RRE

� AGR R1,R2

adds the contents of general register 2 to the cont ents of
general register 1. Both operands are 64-bit and si gned. In
storage, the instruction appears as 0x B908 0012:

The third byte of the instruction is ignored.

© 2010 IBM Corporation86

Instruction Format RX

� A R1,4(R2,R3)

adds the contents of general register 2 to the cont ents of
general register 3, then adds the value 4. The sum is the
address of a fullword in storage whose contents is added to
the contents of general register 1. In storage, the instruction
appears as 0x 5A 1 2 3 004:

© 2010 IBM Corporation87

Instruction Format RX (continued…)

� B2 is called base register. If it is 0, the value 0 is used, not the
contents of general register 0.

� D2 is called displacement. It has 12 bits and thus ran ges from
0 to 4095.

� X2 is called index register. If it is 0, the value 0 is used, not
the contents of general register 0.

� The actual length of the resulting address (24, 31, or 64 bits)
is controlled by the addressing mode in the PSW.

© 2010 IBM Corporation88

Instruction Format RX (continued…)

� Nearly all instructions that access storage use the D2(B2)
operand.

� Many of them allow for the specification of an inde x register
in the form D 2(X2,B2). It is typically used to access array
elements in a loop.

� If neither base nor index register is used, the dis placement
alone forms the address. This is used to access the assigned
storage locations.

© 2010 IBM Corporation89

Instruction Format RXY (long displacement)

� The 12-bit displacement was considered insufficient , so many
newer instructions use a 20-bit signed displacement:

DH2 is the high-order part of the displacement, so

AG R1,-4(R2,R3)

is assembled as 0x E3 1 2 3 FFC FF 08

(-4 = 0xFF FFC)

© 2010 IBM Corporation90

Instruction Format RI

� AGHI R1,-3

adds -3 to general register 1 (64-bit):

The instruction is assembled as 0x A7 1 B FFFD

© 2010 IBM Corporation91

All 64 variations of ADD (z196)

© 2010 IBM Corporation92

The Condition Code in the PSW

� The condition code (cc) in the PSW is set by many, but not all
instructions

� If an instruction does not set the cc, it remains u nchanged

� Examples of instructions that set the cc:
– Add
– Subtract
– Compare

� Examples of instructions that do not set the cc:
– Load
– Store
– Multiply
– Divide

� There are conditional branching instructions that a ct depending on
the condition code

© 2010 IBM Corporation93

The Condition Code in the PSW (continued...)

� The meaning of the cc is individual for an instruct ion but
there are common rules

– cc = 0 means “equal operands” for comparisons, “zero result” for add
and subtract operations

– cc = 1 means “first operand is low” for comparisons, “negative result”
for add and subtract operations

– cc = 2 means “first operand is high” for comparisons, “positive result”
for add and subtract operations

– cc = 3 is used for various purposes, e.g. to indicate overflow

� A subsequent branch instruction is used to act on t hat
condition code

� New with z196: Conditional LOAD / STORE instruction s
perform the requested operation or not, depending o n the
condition code, thus avoiding branches

© 2010 IBM Corporation94

Long-Running Instructions

� Some instructions may process large amounts of data
– Excessive time required to complete execution
– Instruction accesses many pages of storage

• Not all pages are necessarily available at the same time in a virtual storage
environment

� Some of these instructions are interruptible

� Other instructions indicate partial completion with cc 3

© 2010 IBM Corporation95

Long-Running Instruction: MOVE LONG EXTENDED

� On completion
– The addresses are incremented
– The lengths are decremented
– If completion was partial, cc 3 is set

© 2010 IBM Corporation96

Partial Completion

� MOVE LONG EXTENDED (and a few others) may perform partial
completion:

– The registers that describe their operands are updated
– cc 3 is set to indicate partial completion
– Software has to branch back to the instruction on cc 3:

LOOP MVCLE R2,R4,0
BRC B’0001’,LOOP

– Interrupts may occur after each execution
– Software has the option to do something else before resuming the

instruction
– This approach is used for all new long-running instructions

© 2010 IBM Corporation97

System z Architecture

Storage Protection

© 2010 IBM Corporation98

Storage Protection Mechanisms

�Key-controlled protection

�DAT protection (formerly called page protection)

© 2010 IBM Corporation99

Storage Keys

� A storage key is associated with each 4K-byte block of real
storage. The storage key has the following format:

� ACC = access-control bits

� F = fetch-protection bit

� R = reference bit

� C = change bit

© 2010 IBM Corporation100

Storage Key
Protection Rules

© 2010 IBM Corporation101

DAT Protection

� Prevents a page (4K) from being altered, does not p rovide fetch
protection

� Used, for instance, to implement the POSIX fork() f unction

� Enabled by setting the P bit in a page-table entry (PTE):

© 2010 IBM Corporation102

DAT Protection (continued…)

� May be applied to an entire segment (1M) by setting the P bit
in the segment-table entry:

� New with z10:

May be applied to an entire region (2G, 4T, 8P) by setting the
P bit in the region-table entry

© 2010 IBM Corporation103

System z Architecture

Virtual Storage

© 2010 IBM Corporation104

Virtual Storage

�Virtual storage is created by multi-level lookup ta bles in
storage that describe the virtual-to-real address
translation. This process is called dynamic address
translation (DAT).

�The base pointers to the top-level tables are kept in
control registers (CR1, CR7, and CR13) or are descr ibed
by access registers.

�Multiple address spaces may be accessed at the same
time.

© 2010 IBM Corporation105

Virtual Storage – Address Space Control

Several PSW bits control which address space is use d:

© 2010 IBM Corporation106

Virtual Storage (z/Architecture)

� In z/Architecture, an address has up to 64 bits:

� An address space in virtual storage is up to 16E in size,
consisting of
– 2G regions
– 1M segments
– 4K pages

© 2010 IBM Corporation107

Virtual Storage (z/Architecture) continued…

� The region index consists of 33 bits:

� It is subdivided in 3 groups of 11 bits each: Regio n-first,
region-second, and region-third index.

© 2010 IBM Corporation108

Virtual Storage (z/Architecture) continued…

� Since a virtual address consists of six parts (regi on-first,
region-second, region-third, segment, page, base), a five-
level table lookup would be required:

– Costly in terms of performance
– Currently unnecessary, because even a huge 4T address space can

be handled with a region-third index (region-first and region-second will
always be zero)

� Therefore, z/Architecture DAT allows to specify at which level
translation is to start (region-first, region-secon d, region-
third, or segment)

© 2010 IBM Corporation109

Maximum Address Space Sizes

16 Exabytes (2 64)Region-first table

8 Petabytes (2 53)Region-second table

4 Terabytes (2 42)Region-third table

2 Gigabytes (2 31)Segment table

Maximum address space sizeDAT table used

© 2010 IBM Corporation110

z/Architecture Dynamic Address Translation

SX

11
bits

RTX

11
bits

BX

12
bits

PX

8
bits

RSX

11
bits

RFX

11
bits

Address Space Control Element

PT origin

PT origin

PT origin

PT origin

Page address

Page address

Page address

Page address

RST origin

RST origin

RST origin

RST origin

RTT origin

RTT origin

RTT origin

RTT origin

ST origin

ST origin

ST origin

ST origin

64-bit real address

64-bit virtual address

Legend:

RF = region-first
RS = region-second
RT = region-third
S = segment
P = page

RF table

RS table

RT table

Segment
table

Page table

© 2010 IBM Corporation111

z/Architecture Address Space Control Element

�An address space control element (ASCE) describes a n
address space, e.g.:

� It is contained in CR1, CR7, CR13, or described by an
access register

© 2010 IBM Corporation112

z/Architecture DAT Table Entries

� The region-table entries all
have the same format:

© 2010 IBM Corporation113

z/Architecture DAT Table Entries (continued…)

� The segment-table entries look as follows:

� And finally here are the page-table entries:

© 2010 IBM Corporation114

Translation-Lookaside Buffer

�To speed up the translation process, translations a re
cached in a TLB

�Each CPU has its own TLB

�The TLB is filled in automatically by hardware as t he
program executes

�When DAT tables are changed, TLB entries must be
purged

© 2010 IBM Corporation115

Translation-Lookaside Buffer (continued…)

� The TLB may be purged completely by the instruction PURGE TLB
(PTLB)

– This clears the TLB of the CPU issuing PTLB

� Selected entries may be purged by
– INVALIDATE PAGE TABLE ENTY (IPTE)
– INVALIDATE DAT TABLE ENTRY (IDTE)
– COMPARE AND SWAP AND PURGE (CSP, CSPG)
– The entry is updated in the DAT tables as well as in the TLBs of all CPUs in

the configuration

© 2010 IBM Corporation116

System z10 DAT Enhancements

� With the growing size of address spaces, page table s become huge
– Remember: One page table entry covering 4K bytes requires 8 bytes. E. g., to

map 4G, you need page tables occupying 8M of storage

� With z10, a segment table entry may either point to
– a page table (as before) or
– directly to a 1M area in absolute storage, thus eliminating the need for 256

pages table entries (256 * 8 = 2K)

� This feature is sometimes referred to as “large pag e.”

© 2010 IBM Corporation117

Segment address

Segment address

Segment address

Segment address

Enhanced DAT: No Page Table Required

SX

11
bits

RTX

11
bits

BX

20 bits

RSX

11
bits

RFX

11
bits

Address Space Control Element

RST origin

RST origin

RST origin

RST origin

RTT origin

RTT origin

RTT origin

RTT origin

ST origin

ST origin

ST origin

ST origin

64-bit absolute address

64-bit virtual address

Legend:

RF = region-first
RS = region-second
RT = region-third
S = segment

RF table

RS table

RT table

Segment
table

© 2010 IBM Corporation118

The “Invalid” Bit

�Address translation is prevented when the I (invali d) bit
is set in a region-, segment- or page table entry

�Access to such an address results in a page-, segme nt-,
or region-translation exception (program interrupt)

�The instruction or, in case of an interruptible ins truction,
the unit of operation is nullified, i.e., the progr am old
PSW points to the instruction, not after it

© 2010 IBM Corporation119

System z Architecture

Multiprocessing

© 2010 IBM Corporation120

Multiprocessing

� Largest z196 has 80 CPUs (model M80)

� Largest z10 EC has 64 CPUs (model E64)

� Shared main storage across all books

� Prefix area unique for each CPU

� Shared data must be updated interlocked by special instructions:

– TEST AND SET (antique)
– COMPARE AND SWAP [AND STORE]
– PERFORM LOCKED OPERATION
– New with z196: LOAD AND ADD [LOGICAL] / AND / OR / EXCLUSIVE OR

� CPUs communicate via SIGNAL PROCESSOR instruction (SIGP) and
external interrupts

© 2010 IBM Corporation121

Assigned Storage Locations and Prefixing

� Other names: fixed storage locations, low core, pre fix area

� Assigned storage locations are used to exchange inf ormation
between system and software, e. g. to handle interr upts

� They are located in the address range 0 – 0x1FFF (re al)

� Each CPU has to manage its own information, so for each CPU this
address range must be mapped to a different place i n absolute
storage

� The prefix register of each CPU specifies this abso lute address

� The operating system has to ensure that each CPU ha s a different
prefix register

© 2010 IBM Corporation122

Mapping of Real to Absolute Storage (Prefixing)

CPU 0
Prefix = 0

CPU 1
Prefix = 0x2000

CPU 2
Prefix = 0x4000

Absolute storage

0

0x2000

0x4000

0x6000

Real storage Real storage Real storage

© 2010 IBM Corporation123

Example: Prefix Register = 0x4000

� If the prefix register contains 0x4000, then

– Real addresses 0 – 0x1FFF translate to 0x4000 – 0x5FFF absolute
– Real addresses 0x4000 – 0x5FFF translate to 0 – 0x1FFF absolute
– In all other cases, real and absolute addresses are identical

� Essentially, the ranges 0 – 0x1FFF and the range of the prefix register
are swapped

� Each CPU has a separate area addressable as 0 – 0x1F FF

� If the prefix register is 0, prefixing has no effec t

� The prefix register must specify an address < 2G

� In ESA/390 architecture, the prefix register contai ns an address on a 4K
boundary and applies only to 4K (0 – 0xFFF)

� For a detailed mapping, check the Principles of Ope ration, “Assigned
Storage Locations” in chapter 3

© 2010 IBM Corporation124

Compare and Swap

� Purpose
– Safe update of data in storage shared between several routines running on

different processors
– May also be needed on uniprocessor when routines run in different threads/tasks

� Concept
– Fetch the original value from storage
– Create a new value, based on the original value
– Compare the private copy of the original value to the current value in storage – if it

has not changed since the original fetch, replace it with the new value
– However, if the value in storage has changed in between, retry the process

– So, in most cases, Compare and Swap is done in a loop

© 2010 IBM Corporation125

Compare and Swap (continued…)

Example 1: Increment a counter

L R0,COUNT fetch original value

LOOP LR R1,R0 create copy

AHI R1,1 increment copy

CS R0,R1,COUNT if R0 = COUNT then

* save R1 in COUNT

BRNZ LOOP else

* load COUNT into R0

...

COUNT DS F full word

© 2010 IBM Corporation126

Compare and Swap (continued…)

Example 2: Obtain a lock (non-preferred solution)

LHI R1,-1 create lock (0xFFFFFFFF)

LOOP LHI R0,0 create expected lock (0)

CS R0,R1,LOCK if LOCK = 0, store R1 into LOCK

BRNZ LOOP didn’t get the lock, try again

*

DONE ... proceed

...

LOCK DS F full word

� Disadvantage: CS locks the cache line exclusively u pfront

� When the lock is held by another CPU, the cache lin e will bounce back and
forth between the CPU owning the lock and the CPU r equesting the lock

� Solution: If it is likely that CS will not succeed (cc 1), do a trial fetch first

© 2010 IBM Corporation127

Compare and Swap (continued…)

Example 2: Obtain a lock (preferred solution)

LHI R1,-1 create lock (0xFFFFFFFF)

LHI R0,0 create expected lock (0)

LOOP CS R0,R1,LOCK if LOCK = 0, store R1 into LOCK

BRZ DONE we got the lock

* else, LOCK is loaded into R0

TEST LT R0,LOCK try again (simple fetch)

BRNZ TEST still locked

BRU LOOP no longer locked, try CS again

*

DONE ... proceed

...

LOCK DS F full word

� Note: it may be desirable to place lock and data in different cache lines

© 2010 IBM Corporation128

Variations of Compare and Swap

NotesOperand lengthMnemonic

Even/odd register pairQuad word (128 bits)CDSG

Long displacementDouble wordCDSY

Lower halves of even/odd register pairDouble wordCDS

Single registerDouble word (64 bits)CSG

Long displacementWordCSY

Word (32 bits)CS

Note: Operand must be aligned according to its leng th (word, double word, quad word
boundary)

© 2010 IBM Corporation129

More Atomic Instructions

� COMPARE AND SWAP AND STORE (CSST)
– Does a separate store after COMPARE AND SWAP function within one

instruction
– For details, read the Principles of Operation, chapter 7

� PERFORM LOCKED OPERATION (PLO)
– For complex locking protocols (up to 8 operands)
– Locks only against other PLO locks
– For details, read the Principles of Operation, chapter 7

� New with z196:
LOAD AND ADD [LOGICAL], LOAD AND AND / OR / EXCLUSI VE OR

– Performs atomic update on a word or doubleword in a single instruction,
without the use of a Compare and Swap loop

– Similar to GCC __sync_fetch_and_xxx() built-in functions
– For details, read the Principles of Operation, chapter 7

© 2010 IBM Corporation130

System z Architecture

Input/Output

© 2010 IBM Corporation131

The I/O Subsystem (“Channel Subsystem”)

�Directs the flow of information between I/O devices and
main storage

�Relieves the CPU of the task of communicating direc tly
with I/O devices

�Allows CPU processing to proceed concurrently with I/O
operations

� In general, runs on the SAPs

�System z does not use memory-mapped I/O

© 2010 IBM Corporation132

z196 I/O Infrastructure
Book 3Book 1Book 0 Book 2

IFB-MP RII

333 MBps mSTI

ESCON

Channels

500 MBps mSTI

ISC-3

ISC

2 GBps mSTI

OSA-Express3
10 GbE

Ports

2GBps
mSTI

HCA

FBC/L4 Cache

HCA

FBC/L4 Cache

HCA

PU

FBC/L4 Cache

HCA

FBC/L4 Cache

. .

F
P

G
A

F
P

G
A

F
P

G
A

F
P

G
A

1st level
Copper Cables

6 GBps

2nd level
Embedded

HCA2-C
fanout

RII RII RIIIFB-MP IFB-MP IFB-MP IFB-MP IFB-MP

Coupling Links

PU PU PU PU PU PU PU PU

PU PU PU PU PU PU PU PU PU PU PU

IFB-MP

FICON Express8
2/4/8 Gbps

2 GBps mSTI

Channels

.

1 GBps
mSTI

ESCON ESCON ESCON ESCON

IFB-MP

ISC ISC ISC

PUPUPUPU

Memory Memory Memory Memory

© 2010 IBM Corporation133

Input/Output

Channel path

Channel path

Channel path

Channel path

Control unit

Control unit

Device

Device

Device

Device

© 2010 IBM Corporation134

Input/Output

�One control unit may serve multiple devices

�Up to 8 channel paths may be attached to one contro l unit
–Better performance
–Improved reliability, availability, serviceability

© 2010 IBM Corporation135

Channel Paths, Control Units, and Devices

� A channel path is a separate processor that control s data transfer
between main storage and devices

– Data to be read from/written to an external medium
– Control information

� A control unit understands commands in detail (e.g. disk head
positioning)

� A device is driven by a control unit

� A device is assigned a device number (0 – 0xFFFF) by the system
administrator

– used by the operating system when displaying information or processing
commands

� A device is assigned a “subchannel” number (0 – 0xFFF F) by the
system when it is configured

– used in I/O instructions

© 2010 IBM Corporation136

I/O Configuration

� The initial I/O configuration is defined in an I/O configuration data set
(IOCDS)

� The I/O configuration may be changed under software control by adding or
deleting any components

– Channel paths
– Control units
– Devices

� The software front-end to change the IOCDS dynamica lly is known as HCD
(Hardware Configuration Definition)

� There is also a graphical front-end HCM (Hardware C onfiguration
Management)

© 2010 IBM Corporation137

Maximum I/O Configuration (z10)

� Addressability:
– Up to 1,024 channel paths
– Up to 261,120 devices

� Pluggable:
– Up to 84 I/O cards in up to 3 I/O cages
– Each card has 1, 2, 4, or 15 (+ 1 spare) channel paths
– This leads to a total of up to 1,260 channel paths

© 2010 IBM Corporation138

Flow of an I/O Operation

Executes channel program

Signals completion to SAP

Selects channel path (1 out
of up to 8)

Passes subchannel to
channel

Processes channel’s
response

Offers I/O interrupt to all
CPUs

Software issues SSCH

Passes subchannel to SAP

Returns cc 0 to software
(operating system)

One CPU in the
configuration takes the I/O
interrupt

ChannelSAPCPU

© 2010 IBM Corporation139

The Channel Program

� The START SUBCHANNEL instruction specifies
– The device where the I/O operation is to be performed
– The command sequence to be performed (the channel program)

� The channel program consists of one or more channel command
words (CCWs)

� The channel program resides in absolute storage
– The channel does not use dynamic address translation
– The channel does not use a prefix register

© 2010 IBM Corporation140

The Channel Program

�Each CCW specifies
–A command code

• Read
• Write
• Control
• Sense

–A data address in absolute storage
–A count field
–Several flag bits

• E.g. command chaining

© 2010 IBM Corporation141

How are virtual addresses managed?

�The operating system pins all pages that contain da ta
buffers for the duration of the I/O operation

�The operating system translates all virtual buffer
addresses to absolute ones

–Indirect data address lists are used in a channel program to describe
virtual buffers scattered in absolute storage

© 2010 IBM Corporation142

Multiple channel subsystems (MCSS)

�1 to 4 logical channel subsystems (LCSS)
–Up to 256 channel paths per logical partition (LPAR)
–Up to 63-64K devices (subchannels) per LPAR
–An LCSS may be shared by multiple LPARs

�MCSS allows much larger configurations (e.g. to
consolidate multiple older systems on a new one)

© 2010 IBM Corporation143

Channels

Subchannels

Partitions

Logical Channel Subsystem

Channels

Partitions

Logical Channel Subsystem

z990 - 2084 Processor

Subchannels

63K 63K

MCSS – I/O Configuration Support

© 2010 IBM Corporation144

zSeries 2084
Logical Channel Subsystem

63K Subchannels

zSeries 2084
DASD Configurations

63K Device

Base

Base

Base

Base

Base

Base

Alias

Alias

Alias

Alias

Alias

Alias

Alias

Bases

Aliases

63K

MCSS – I/O Configuration Support

© 2010 IBM Corporation145

Multiple subchannel sets (MSS)

� The problem: Originally, System z had only 64,512 (=63K) subchannels
(1,024 out of 65,536 were reserved for internal use)

� This became a problem for large installations becau se of PAV (parallel
access volumes):

– With PAV, a single disk drive often consumes four subchannels (base address plus
three aliases)

� The solution: multiple subchannel sets
– 65,280 subchannels in set 0 (256 reserved for internal use)
– 65,535 subchannels in set 1

� z/OS 1.7 exploits second subchannel set to access alias addresses of
parallel access volumes (PAV)

© 2010 IBM Corporation146

System z9 2094
Logical Channel Subsystem

128K Subchannels

System z9 2094
DASD Configurations

Increased to 128K Device

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

Alias

Alias

Alias

Alias

Alias

Alias

Alias

Alias

Alias

Alias

Alias

Bases Aliases

63.75K 64K

I/O Configuration Growth - Multiple Subchannel Sets (MSS)

© 2010 IBM Corporation147

Channels

Subchannels

Partitions

Logical Channel Subsystem

Channels

Partitions

Logical Channel Subsystem

z9 – 2094 Processor

Subchannels

SS-0 SS-1 SS-0 SS-1

64K64K

Base Alias
Base Alias

Multiple Subchannel Sets per LCSS

Bases Aliases

63.75K 63.75K

© 2010 IBM Corporation148

System z Architecture

Partitioning and
Virtualization

© 2010 IBM Corporation149

Partitioning and Virtualization

� Purpose
– Run more than one operating system on a system

� Method
– Make each operating system think it owns a whole machine

� Comes in two flavors
– LPAR (logical partitioning)
– z/VM (virtual machine)

� Both flavors can be combined
– z/VM runs under LPAR (two-level virtualization)

© 2010 IBM Corporation150

LPAR

� A control program (LPAR hypervisor) manages logical partitions:
– Each partition owns a defined amount of physical storage
– Strictly no storage shared across partitions
– No virtual storage / paging done by LPAR hypervisor
– Zone relocation lets each partition start at address 0
– CPUs may be dedicated to a partition or may be shared by multiple

partitions
– I/O channels may be dedicated to a partition or may be shared by multiple

partitions (Multiple image facility, MIF)
– Each LPAR has its own architecture mode (ESA/390 or z/Architecture)

� LPAR hypervisor is shipped with System z (considere d part of
firmware)

� Since z990 (2003), the LPAR hypervisor is always lo aded (no Basic
Mode anymore)

� Separation of logical partitions is considered as g ood as having
each partition on a separate system (Evaluation Ass urance Level 5)

� LPAR is also referred to as PR/SM (Processor Resour ce/System
Manager)

© 2010 IBM Corporation151

z/VM

�A control program (CP) creates a virtual machine fo r
each user

–Each virtual machine has an own address space starting at 0
–This is virtual storage managed by CP (subject to paging)
–Each virtual machine has its own architecture mode (ESA/390 or

z/Architecture)
–CP simulates one or multiple (virtual) CPUs per virtual machine
–CP simulates an I/O configuration for each virtual machine

• Dedicated devices, e. g., console
• Shared devices, e. g. minidisks (disks that are partitioned for many virtual

machines), printers (spooling devices)
–CP simulates communication paths between virtual machines

• channel-to-channel adapter
• Inter-user communication vehicle (IUCV)
• Virtual LANs

© 2010 IBM Corporation152

System z – The Ultimate Virtualization Resource

Linux ®

ERP Java
Appl.

WebSphere ®Core
Native Linux

CIC
S

IMS

Busine
ss

Object
s

JVM

z/OS

DB2

z/OS

DB2

JVM

Business
Objects

z/VM®

Java™

Appl
Java
Appl

C++
Java

DB2

Linux for
System z Linux

for
System z

Linux
for

System z

CICS®

DB2®

IMS™

HiperSockets ™ – virtual networking and switching

Processor Resource/Systems Manager ™ (PR/SM™)

CP 1 CP 2 CP n

Memory

Test
z/OS

Linux

Native Linux

DB2

z/VM

C++
Java

DB2

Linux for
System z Linux

for
System z

Linux
for

System z

IFL 1 IFL n

�Massive, robust consolidation platform; virtualizat ion is built in, not added on
�Up to 60 logical partitions on PR/SM; 100’s to 1000 ’s of virtual servers on z/VM
�Virtual networking for memory-speed communication, as well as virtual layer 2 and layer 3

networks supported by z/VM
�Most sophisticated and complete hypervisor function available
� Intelligent and autonomic management of diverse wor kloads and system resources

based on business policies and workload performance objectives

© 2010 IBM Corporation153

Interpretive Execution (SIE)

�Both LPAR and z/VM use the instruction START
INTERPRETIVE EXECUTION (SIE) to run a logical
partition or virtual machine, respectively

�The program issuing SIE is called host

�The program running under SIE is called guest

�The operand of the SIE instruction is a state descr iption,
it describes the guest

�One level of nesting (SIE under SIE) is supported, used
when z/VM runs in a logical partition

© 2010 IBM Corporation154

History of SIE

�The SIE instruction was introduced with the 370/XA
architecture (early 1980s)

� Invented based on the experiences with VM/370 on S/ 370
systems

�Not documented in the Principles of Operation

�Partially documented in SA22-7095 (public, 1985)

�Updated for z/Architecture

© 2010 IBM Corporation155

SIE State Description

�Guest PSW

�Guest CPU timer, clock comparator

�Guest epoch difference (for guest TOD clock)

�Guest control registers

�Guest general registers 14 and 15

�Guest prefix register

� ... and various other fields

© 2010 IBM Corporation156

Host Program Responsibilities

�On SIE entry
–Load guest general registers 0 – 13
–Load guest floating-point registers, floating-point-control register
–Load guest access registers

�On SIE exit
–Handle interception

© 2010 IBM Corporation157

Programmable SIE Exit Conditions

� Interception controls
–Certain instructions
–SVCs by SVC number
–LCTL for any set of control registers

�PSW enabled for I/O interrupts (PSW.6 = 1)

�PSW enabled for external interrupts (PSW.7 = 1)

�Stop request (triggered from another CPU)

© 2010 IBM Corporation158

SIE Exit Conditions

� An interception
– The state descriptor is updated, an interception code is stored and the host

program resumes after the SIE instruction.

Example: SSCH instruction

� A host interrupt
– e.g. an external or I/O interrupt, or a translation exception. In this case, the unit

of operation is nullified, the old PSW points to the SIE instruction. No
interception code is stored.

© 2010 IBM Corporation159

Storage of a Logical Partition

�The storage assigned to a logical partition is call ed a
zone

– The zone origin is the host absolute address where the zone starts (zone
address 0)

– The zone limit is the host absolute address where the zone ends
– Origin / limit pairs are associated with a zone number (LPAR number)

© 2010 IBM Corporation160

Storage Layout in LPAR Mode

� Absolute storage of an
LPAR must be contiguous

LPAR Hypervisor

Hardware System Area
(HSA)

LPAR 1

LPAR 3

LPAR 2

� How can we assign all
unused storage to a single
LPAR?

� Activating and deactivating
LPARs may lead to
fragmentation of storage

© 2010 IBM Corporation161

Storage Layout in LPAR Mode (continued…)

�Another mapping of storage is introduced:

Absolute storage is mapped to physical storage
–Absolute storage size is higher than the maximum physical storage

size (e.g. 2x)
–Mapping allows LPAR portions scattered in physical storage to appear

contiguous in absolute storage

�With pre-planning, it is possible to extend the sto rage
size of an LPAR on the fly

© 2010 IBM Corporation162

LPAR Hypervisor

Hardware System
Area

(HSA)

LPAR 1

LPAR 3

Absolute vs. Physical Storage

LPAR Hypervisor

Hardware System Area
(HSA)

LPAR 1

Absolute storage Physical storage

LPAR 4

LPAR 3

© 2010 IBM Corporation163

Storage of a Virtual Machine under z/VM

�The primary address space created by z/VM describes
the virtual machine’s absolute storage (host CR 1).

– This storage is subject to paging by z/VM

�Note: Since the virtual machine may use its own vir tual
storage, two DAT translations are required:

– Guest-2 virtual to guest-2 absolute
– Guest-1 virtual (= guest-2 absolute) to guest-1 absolute

�This is all done in hardware (no shadow tables requ ired)

© 2010 IBM Corporation164

The Complete Address Translation Process (1)

�Scenario
–Application running in an operating system
–Operating system (guest-2) running under z/VM
–z/VM (guest-1) running in an LPAR
–LPAR managed by the LPAR hypervisor (host)

© 2010 IBM Corporation165

The Complete Address Translation Process (2)

�Application uses virtual addresses (guest-2 virtual)

�Application address is translated
–To guest-2 real using the operating system’s DAT tables, then
–To guest-2 absolute using the operating system’s prefix register

© 2010 IBM Corporation166

The Complete Address Translation Process (3)

�The guest-2 absolute address is taken to be guest-1
virtual address by z/VM. It is translated

–To guest-1 real using z/VM’s DAT tables, then
–To guest-1 absolute using z/VM’s prefix register

�The guest-1 absolute address (absolute address with in
the LPAR) is now translated

–To host absolute by adding the LPAR’s zone origin
(It is also checked against LPAR’s zone limit)

© 2010 IBM Corporation167

The Complete Address Translation Process (4)

�Finally, the host absolute address is translated
–To a physical address using the configuration array

© 2010 IBM Corporation168

z/VM under z/VM under z/VM …

�z/VM supports interpretation of SIE to allow z/VM u nder
z/VM

�Theoretically, an arbitrary nesting level is possib le

�Typical scenario is testing of a new z/VM version o n an
old z/VM version

© 2010 IBM Corporation169

LPAR

z/VM

z/VM

Linux

Nested Virtualization

Guest-1� Guest-2

Host � Guest-1

Guest-2� Guest-3

Guest-1� Guest-3

© 2010 IBM Corporation170

System z Architecture

Parallel Sysplex

© 2010 IBM Corporation171

Parallel Sysplex

� Several separate systems are
connected to a coupling facility
(CF) via high-speed fiber links
(coupling channels)

� This configuration forms a “Parallel
Sysplex” with a star topology

� The coupling facility is the hub of
this star

� In a Parallel Sysplex, each system
has access to the complete disk
pool (shared-data model)

� Parallel Sysplex is supported by
z/OS

� Timing is synchronized with a
Sysplex Timer or (new) with a
Server Time Protocol (STP)

2 – 32 systems

© 2010 IBM Corporation172

Rationale for Parallel Sysplex

� Processing capacity beyond single SMP

� Non-disruptive addition of processing capacity with out changes to
customer applications

� Improved application availability, reduction of pla nned outages

� Incremental growth – up to 32 systems (5 – 6 typical)

� Operability / Manageability (single system image)

� Work load management provides load balancing across systems

© 2010 IBM Corporation173

Coupling Facility Characteristics

� Runs in an LPAR
–In a separate system or side-by-side with z/OS LPARs

� Uses InterSystem Channels (ISCs) and integrated clu ster buses
(ICBs) to communicate with systems

� Does not use ESCON / FICON I/O

� Uses console integration of support element (SE) to communicate
with system operator

� Runs Coupling Facility Control Code (CFCC), a contr ol program that
talks to the systems via ISCs and ICBs

� CFCC is firmware that is shipped as part of the sys tem

� CFCC can be run in a virtual machine on z/VM

© 2010 IBM Corporation174

Coupling Facility Characteristics (continued…)

� The CF architecture provides three behavioral model s to enable efficient
clustering models

– Lock model: enables a specialized lock manager (e.g. database lock manager) to
be extended into a multi-system environment

– Cache model: provides the functions needed for multi-system shared-data cache
coherency management

– Queue/List model: provides a rich set of queuing constructs in support of
workload distribution, message pathing, and sharing of state information

� Multiple CFs can be connected for availability, per formance, and capacity
reasons

© 2010 IBM Corporation175

Coupling Channels

� InterSystem Channels (ISCs)
– With repeaters, can span distances of up to 100 km
– Good for distributed environments (e.g. Geographically Dispersed Parallel

Sysplex, GDPS)
– Without repeaters, 10 km distance and 2 Gigabits/sec

� Integrated Cluster Buses (ICBs)
– Short distance: about 10 m
– High performance

• ICB-3: 1 Gigabyte/sec
• ICB-4: 2 Gigabytes/sec

� Parallel Sysplex over InfiniBand (PSIFB)
– Distances of about 150 m
– High performance

• HCA1-O (z9): 3 Gigabytes/sec
• HCA2-O (z10 and z196): 6 Gigabytes/sec

� Internal Channels (ICs)
– LPAR-to-LPAR communication within a system
– No external hardware used

© 2010 IBM Corporation176

z196 Parallel Sysplex coexistence of Servers/CFs and
coupling connectivity

z196TLLB176

ISC-3
Up to 100 KM

z800, z900
z890 and z990

Not supported!

z10 EC and z10 BC
InfiniBand, ISC-3,

12x InfiniBand-SDR
Up to 150 meters

12x InfiniBand DDR
150 meters

InfiniBand

z9 to z9 NOT supported

z9 EC and z9 BC S07
InfiniBand, ISC-3

1x InfiniBand DDR
10/100 KM

ISC-3
Up to 100 KM

ISC-3
Up to 100 KM

1x InfiniBand DDR
10/100 KM

12x
InfiniBand

-DDR
150

meters

Note: ICB-4s and ETR
NOT supported on z196

z196

z196

© 2010 IBM Corporation177

CF Duplexing

�Running the CF and the z/OS on the same system
(LPAR), a system failure affecting both images is n ot
recoverable.

�To solve this problem, CF Duplexing is introduced
–It allows pairs of CFs to automatically synchronize two copies of CF

data structures, one in each CF.

�Each CF is placed in a different physical server.

© 2010 IBM Corporation178

© 2010 IBM Corporation179

System z Architecture

Appendix

© 2010 IBM Corporation180

References (1)

� z/Architecture Principles of Operation, SA22-7832

� z/Architecture Reference Summary, SA22-7871

� ESA/390 Principles of Operation, SA22-7201

� System/370 Extended Architecture Interpretive Execu tion,
SA22-7095

� Online (PDF) available here:

http://www.elink.ibmlink.ibm.com/publications/servl et/pbi.wss

Select country. Then click “Search for publications ” and enter
the publication number.

© 2010 IBM Corporation181

References (2)

� IBM zEnterprise System Technical Introduction

http://www.redbooks.ibm.com/redpieces/abstracts/sg2 47832.ht
ml?Open

� IBM zEnterprise System Technical Guide

http://www.redbooks.ibm.com/redpieces/abstracts/sg2 47833.ht
ml?Open

� Technical Leader Library (TLLB) for IBM zEnterprise 196 (z196)

� Getting Started with InfiniBand on System z10 and S ystem z9,
SG24-7539

http://www.redbooks.ibm.com/abstracts/sg247539.html

© 2010 IBM Corporation182

References (3)

� IBM z/Journal February/March 2008: Basics of z/VM V irtualization, by Bill
Bitner, Brian Wade

http://www.zjournal.com/index.cfm?section=article&a id=946

� IBM Systems Journal, Vol. 30, No. 1, 1991: ESA/390 interpretive-execution
architecture, foundation for VM/ESA, by D. L. Osise k, K. M. Jackson, P. H. Gum

http://domino.research.ibm.com/tchjr/journalindex.n sf/a3807c5b4823c53f85256
561006324be/cae3cf60a5eee39585256bfa00685c52?OpenDo cument

� IBM Journal of Research and Development, Vol. 46, N os. 4/5, 2002:
Development and attributes of z/Architecture, K. E. Plambeck, W. Eckert, R. R.
Rogers, and C. F. Webb

http://www.research.ibm.com/journal/rd46-45.html

� IBM Journal of Research and Development, Vol. 53, N o. 1, 2009: IBM System z10

http://www.research.ibm.com/journal/rd53-1.html

© 2010 IBM Corporation183

References (4)

� IBM Journal of Research and Development, Vol. 51, N os. 1/2, 2007:
IBM System z9

http://www.research.ibm.com/journal/rd51-12.html

� IBM Journal of Research and Development, Vol. 48, N os. 3/4, 2004:
IBM eServer z990

http://www.research.ibm.com/journal/rd48-34.html

� S/390 cluster technology: Parallel Sysplex, J. M. N ick, B. B. Moore, J.-
Y. Chung, N. S. Bowen, IBM Systems Journal, Vol. 36 , No. 2, 1997

http://domino.research.ibm.com/tchjr/journalindex.n sf/495f80c9d0f539
778525681e00724804/05ffabe33879ed1485256bfa00685ddf ?OpenDocu
ment

