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Recommended Reading1

Introduction

 Bacon, J.: Operating Systems (24)

 Silberschatz, A.: Operating System Concepts (22)

 Tanenbaum, A.: Modern Operating Systems (10)

 Linux Textbooks
f h h b d ll b ll i
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1 For details see slides of previous Proseminars: “Linux Internals”

Some slides of this lecture are taken from Silberschatz,
others are taken from Athanasios E. Papathanasiou
Computer Science Department, University of Rochester

 none of these has been rated excellent by all reviewers

 My personal recommendation:
Bovet, D.P., Cesati, M.: "Understanding the LINUX Kernel, 
O'Reilly, 2. Edition, November 2005



Linux Textbooks & Online Info (2)

 C. Benvenuti: Understanding Linux Network Internals, 
December 2005

 J. Corbet: Linux Device Drivers, 3. Edition

 C. Hallinan: Embedded Linux Primer

 G. Kroah-Hartman: Linux Kernel in a Nutshell, dec. 2006
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 R. Love: Linux System Programming

 C. Newham et al.: Bash Cookbook: Solution and Examples for 
Bash Users

 http://jungla.dit.upm.es/~jmseyas/linux/kernel/hackers-docs.html
 http://bravo.ce.uniroma2.it/kernelhacking2006/schedule.html
 http://www.spinics.net/linux/



Roadmap for Today

 Introduction
 Evaluation of Lecture
 Linux History 
 Design Principles
 Kernel Modules
 Process Management
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 Process Management
 Scheduling 
 Memory Management 
 File Systems
 Input and Output 
 IPC
 Network Structure
 Security



Objectives of this Lecture

 Overview on history of UNIX and Linux 

 Some principles Linux is designed upon

 Focus on Unix/Solaris/Linux process model, e.g.
 How does Unix/Solaris/Linux schedule processes/threads
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 What inter-process communication (IPC) is offered

 Basics of memory management 

 Design and implementation of
 (Virtual) File systems and

 I/O device management



What is Linux?

 Open source Unix alike OS kernel

 What is Unix?

“Unix is simple and coherent, but it takes

Introduction
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Unix is simple and coherent, but it takes
a genius (or at any rate a programmer) to
understand and appreciate its simplicity.”

---Dennis Ritchie



What is Linux?

 Free does not mean bad ! 
  exceptions to the line: "Quality has a price“

 It is a free OS, started by Linus Torvalds, together with some 
"volunteers" spread all over the "Internet". Most of the programmers 
that have contributed to Linux are working for free. 

Th i ll fi d t ki f ll ti it d illi f

Introduction
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 There is a small fixed team working full time on it, and millions of 
users contribute to its development, even simply by sending 
 suggestions 
 detected errors
 … 

 Because Linux is used (and then tested!) all over the world, on 
different machines with different configurations, some claim: 

“Linux had an harder beta-test than any other commercial OS” 



Linux HistoryLinux History

8© 2008 Universität Karlsruhe (TH), System Architecture Group



History of ...nix Systems

 UNIX: 1969 Ken Thomson and Dennis Ritchie at AT&T Bell Labs

 BSD: 1978 Berkeley Software Distribution

 Commercial Vendors: Sun, HP, IBM, SGI, DEC

 GNU: 1984 Richard Stallmann, FSF = Free Software Foundation

Introduction
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 POSIX: 1986 IEEE Portable Operating System unIX

 Minix: 1987 Andy Tanenbaum 

 SVR4: 1989 AT&T and Sun

 Linux: 1991 Linus Thorvalds on Intel 386

 OpenSource: GPL



?

What do People think of Linux?

 “Well”-organized code*

 Linux = aesthetic system architecture*

 Others blame … 

Introduction
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 its cryptic commands and system calls
 its huge macro kernel (old fashioned SA style) 

 Well defined generic interfaces
 (e.g. VFS for all supported FSs)
 …

*Mauerer’s opinion



User
Interface

Unix Architecture

Introduction

il
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Linux

il



Modern Unix Kernel
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Linux History

 A “modernized”, free* OS based on UNIX standards

 Small kernel in 1991 by Linus Torvalds, with the 
major design goal: UNIX compatibility

 Designed to run efficiently and reliably on common 
PC HW but also on some other platforms e g high

History & Current State
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PC-HW, but also on some other platforms, e.g. high-
end computers 

 Core of Linux kernel entirely original, but it can run 
much existing free UNIX software,  

entire UNIX-compatible OS free from proprietary code

*In contrast to Tanenbaum’s Minix



Linux Kernel

 Version 0.01 (May 1991)
 no networking 
 only on 80386-compatible Intel processors 

and on PC hardware

History & Current State
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and on PC hardware
 extremely limited device-driver support
 only Tanenbaum’s Minix file system



Linux Kernel

 Linux 1.0 (March 1994) included:
 UNIX’s standard TCP/IP networking protocols
 BSD-compatible socket interface for networking 
 Device-driver support for running IP over an 

Ethernet

History & Current State
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 Enhanced file system
 Support for a range of SCSI controllers for 

high-performance disk access
 Extra hardware support

 Version 1.2 (March 1995) the final PC-
only Linux kernel.



Linux 2.0

 Released (June 1996) 2 major new functionalities:
 Support for multiple architectures (64-bit native Dec Alpha)
 Support for multiprocessor architectures (SMPs)

 Other new features included:
 Improved memory-management code

History & Current State

© 2008 Universität Karlsruhe (TH), System Architecture Group 16

 Improved TCP/IP performance
 Support for internal kernel threads, …,  and for automatic 

loading of kernel modules on demand.
 Standardized configuration interface

 Available for:
 Motorola 68000-series , 
 Sun Sparc systems, and 
 PC and PowerMac systems



Linux 2.4 + 2.6 

 2.4 and 2.6 
 increased SMP support
 added journaling file system

ti k l

History & Current State
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 preemptive kernel
 64-bit memory support



The Linux System

 Linux uses many tools developed as part of 
Berkeley’s BSD OS, MIT’s X  Window System, and the 
Free Software Foundation's GNU project

 The min system libraries were started by the GNU 
project with improvements provided by the Linux
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project, with improvements provided by the Linux 
community

 Linux networking-administration tools were derived 
from 4.3BSD code; recent BSD derivatives such as 
Free BSD have borrowed code from Linux in return



Linux Distributions

 Standard, precompiled sets of packages, or 
distributions, include the basic Linux system, system 
installation and management utilities, and ready-to-
install packages of common UNIX tools

 The first distributions managed these packages by 
simply providing a means of unpacking all the files
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simply providing a means of unpacking all the files 
into the appropriate places; modern distributions 
include advanced package management

 Early distributions included SLS and Slackware 
 Red Hat and Debian are popular distributions from 

commercial and noncommercial sources, respectively

 The RPM Package file format permits compatibility 
among the various Linux distributions



Linux Licensing

 The Linux kernel is distributed under the GNU 
General Public License (GPL), the terms of which are 
set out by the Free Software Foundation

 Anyone using Linux, or creating their own derivative 
of Linux may not make the derived product
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of Linux, may not make the derived product 
proprietary; software released under the GPL may 
not be redistributed as a binary-only product



Design PrinciplesDesign Principles
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src Directory Structure
linux

mm net kernel init libincludeipc archdriversfs
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Linux Sources & Documentation

From Athanasios E. Papathanasiou
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 Principles and Policies

 Mechanisms

 Algorithms

D t St t

First View onto Linux

Linux Architecture
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 Data Structures

 No Details

 Notions

 System Architecture

 Association of Ideas



Design Principles 1

 Linux is a
 Multi-User system 

 Multi-Tasking system with 

 A full set of UNIX-compatible tools
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 Its FS adheres to traditional UNIX semantics, and it 
implements the standard UNIX networking model

 Main design goals have been:
 Speed

 Efficiency 

 Standardization



Design Principles 2

 Linux is compliant with the POSIX standards; 
two Linux distributions have achieved the 
official POSIX certification
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 Linux programming interface adheres to SVR4 
UNIX semantics, rather than to BSD behavior



Components of a Linux System
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When loaded, then into the kernel AS



Linux Components

 Kernel (see next slides)

 System libraries = standard set of functions
1.applications use to interact with the kernel
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2.Implementing some system services without 
interacting with the kernel

 System utilities perform individual specialized 
management tasks



Core Kernel

M
O
D
U

System Call Interface, Exceptions, Interrupts

FILE RELATED PROCESS RELATED
FILE SYSTEM

NETWORKING

SCHEDULER

MEMORY MANAGEMENT

Linux Architecture
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L
E
S Hardware Dependent Code

DEVICE DRIVERS IPC

HARDWARE



Interaction of System Components

Application
System Libraries

Linux Architecture
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Linux Kernel

Hardware

Interacts with CPU and I/O Registers via
load and store and privileged instructions

Interacts with non 
privileged instructions 

with the CPU



Interactions of System Components

Application

System Libraries

Interaction via function call to library procedures

Linux Architecture
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Linux Kernel

Hardware

Interaction via System Calls



Linux Kernel

 Two main abstractions of the system
 Process (task)
 File

Linux Architecture
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 Only kernel executes in kernel mode with
 full access to all physical resources and 

 allowed to execute all CPU instructions

 Kernel code & kernel data structures are kept 
in one single kernel address space KAS



User & Kernel Address Space
0xFFFF FFFF

Shared Kernel AS

TASK_SIZE

Linux Architecture

Adjustable by
“super user”
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0x0000 0000



Kernel Modules

 Sections of kernel code that can be compiled, loaded, 
and unloaded independent of the rest of the kernel

 A kernel module typically implements
 device driver
 file system
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y
 networking protocol
 …

 Module interface allows third parties to write and 
distribute, on their own terms, e.g.
 device drivers or 
 file systems 

that could not be distributed under the GPL



Kernel Modules (2)

 Kernel modules allow a Linux system to be 
set up with a standard, “minimal” kernel, 
without any extra device drivers built in

Th Li d l
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 Three components to Linux module support:
 module management 

 driver registration

 conflict resolution



Module Management

 Supports loading modules into memory and letting 
them interact with the rest of the kernel

 Module loading is split into two separate sections:
 Managing sections of module code in kernel memory
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 Handling symbols that modules are allowed to reference

 The module requestor manages the loading of 
requested, but currently unloaded, modules

 It also regularly queries the kernel to see whether a 
dynamically loaded module is still in use, and will 
unload it when it is no longer actively needed 



Driver Registration

 Allows modules to tell the rest of the kernel that a 
new driver has become available

 Kernel maintains dynamic tables of all known drivers, 
and provides a set of routines to allow drivers to be 
added to or removed from these tables at any time
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added to or removed from these tables at any time

 Registration tables include the following items:  
 Device drivers
 File systems 
 Network protocols
 Binary format



Conflict Resolution

 A mechanism that allows different device drivers to 
reserve hardware resources and to protect those 
resources from accidental use by another driver

 The conflict resolution module aims to:
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 Prevent modules from clashing over access to 
hardware resources

 Prevent autoprobes from interfering with existing 
device drivers

 Resolve conflicts with multiple drivers trying to access 
the same hardware



Summary on Kernel Modules

 Many kernel modules are written in C/C++  huge 
risk for the safety of the kernel

 All modules share one and only one KAS

 It’s common to produce severe software bugs within these 
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kernel modules, i.e. 

 System crashes are pre-programmed

 Added value of extensibility is lost due to the risk of 
increased insecurity

 If you are interested in a critical comment on 
extensible kernels, read the paper of P. Druschel



UNIX/Linux Process Management

 The UNIX process management separates the creation of 
processes and the running of a new program into two 
distinct system cals
 The fork system call creates a new process
 The new program is run after the system call execve
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 Under UNIX, a process encompasses all the information 
that the OS must maintain to track the context of a single 
execution of a single program

 Under Linux, process properties fall into three groups:  
 Process identity
 Process environment
 Process context



Process Identity

 Process ID (PID): The unique identifier for the process; 
used to specify processes to the operating system when 
an application makes a system call to signal, modify, or 
wait for another process

 Credentials: Each process must have an associated user 
ID and one or more group IDs that determine the
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ID and one or more group IDs that determine the 
process’s rights to access system resources and files

 Personality: Not traditionally found on UNIX systems, but 
under Linux each process has an associated personality 
identifier that can slightly modify the semantics of certain 
system calls
 Used primarily by emulation libraries to request that system 

calls be compatible with certain specific flavors of UNIX



Process Environment

 Process’s environment is inherited from its parent, and is 
composed of two null-terminated vectors:
 Argument vector lists command-line arguments used to invoke the 

running program (starts with the name of the program itself)

 Environment vector is a list of “NAME=VALUE” pairs that associates 
named environment variables with arbitrary textual values
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At least some flexibility

 Passing environment variables among processes and inheriting 
variables by a process’s children are flexible means of passing 
information to components of the user-mode system software

 The environment-variable mechanism provides a 
customization of the OS that can be set on a per-
process basis, rather than being configured for the 
system as a whole



Process Context
 Context is the internal state of a running program at 

any point in time

 Scheduling context is the relevant part of the PCB the 
scheduler needs to suspend and restart the process

Kernel maintains accounting information about the
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 Kernel maintains accounting information about the 
resources currently being consumed by each process, 
and the total resources consumed by the process in 
its lifetime so far

 The file table is an array of “pointers” (~capabilities) 
to kernel file structures
 When making file I/O system calls, processes refer to files by their 

index into this table



Process Context (Cont.)

 Whereas the file table lists the existing open files, the 
file-system context applies to requests to open new 
files
 The current root and default directories to be used for new 

file searches are stored here
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 Signal-handler table defines the routine in the 
process’s AS to be called when specific signals arrive

 Virtual-memory context of a process describes the 
full contents of the its private address space



Processes and Threads

 Linux uses same internal representation for threads 
and processes; a thread is simply a new process that 
happens to share the same AS as its parent

 A distinction is only made when a new thread is 
c eated b the l () s stem call
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created by the clone() system call
 fork() creates a new process with its own entirely new 

process context
 clone() creates a “new process” with its own identity, but 

that is allowed to share the data structures of its parent

 clone() gives an application fine-grained control 
over exactly what is shared between caller and callee



Traditionaal Unix versus Solaris
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Linux Process/Thread States
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Scheduling

 While scheduling is normally thought of as the 
running and interrupting of application processes, in 
Linux, scheduling also includes the running of the 
various kernel activities

 Running kernel activities encompasses both tasks 
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g p
that are requested by a running process and tasks 
that execute internally on behalf of a device driver

 As of 2.5, new scheduling algorithm –
preemptive, priority-based

 real-time range

 nice value



Relationship between Priority and TS-Length
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List of Tasks Indexed by Priority
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Process/Task Switch

Thread of Task 1
is running 

in user mode

Thread of Task 2
is running 

in user mode

?
kernel

Linux Concepts
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timetx tx+

1. What events trigger tx?

2. Who switches system from user mode to kernel mode?

3. Who is selecting a thread of task 2?

4. How long does it take to switch from task 1 to task 2?

5. Where to continue or begin within task 2?



Main Data Structures
 The task structure (…/linux/sched.h)

struct task_struct {
volatile long state; . . .
long counter;
long priority; . . .
/* smp */
int has cpu (?); int processor; int last processor

Linux Concepts
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int has_cpu (?); int processor; int last_processor
struct task_struct *next_struct, *prev_struct;
/* relationships */
struct task_struct 
*p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr; . . .
/* memory */
struct mm_struct *mm; . . .
/* VFS - umask */
struct fs_struct *fs;
/* files */
struct files_struct *files;
};



Task Data Structure and Files

files
fs

inode

inode

inode

task_struct fs_struct

count

umask

*root

*pwd

Linux Concepts
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f_mode
f_pos
f_flags
f_count
f_owner
f_inode
f_op
f_version

file

inode

File operation 
routines

count
close_on_exec
open_fs
fd[0]

fd[255]

fd[1]

. . .

file_struct



Task Data Structure: Memory
Processes 

Virtual Memory

mm

task_struct

data

vm_area_struct
vm_end
vm_start
vm_flags
vm_inode
vm_ops

count
pgd

mmap

. . .

mm_struct

Linux Concepts
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vm_end
vm_start
vm_flags
vm_inode
vm_ops

vm_next

vm_area_struct
code

vm_next

p
mmap_avl
mmap_sem



Kernel Synchronization

 Request for kernel-mode execution can occur in two 
ways:
 A running program may request an OS service, 

 either explicitly via a system call

or implicitly for example when a page fault occurs
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 or implicitly, for example, when a page fault occurs

 A device can deliver a hardware interrupt that causes the 
CPU to start executing a kernel-defined interrupt handler 

 Kernel synchronization requires a framework that will 
allow the kernel’s critical sections to run without 
interruption by another critical section



Kernel Synchronization (Cont.)

 Linux uses two techniques to protect critical sections:

1. Normal kernel code is non preemptible (until 2.4)
– when a time interrupt is received while a process is

executing a kernel system service routine, the kernel’s 
need_resched flag is set so that the scheduler will run 
once the system call has completed and control is
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y p
about to be returned to user mode

2. The second technique applies to critical sections that occur 
in an interrupt service routines
– By using the processor’s interrupt control hardware to 
disable interrupts during a critical section, the kernel 
guarantees that it can proceed without the risk of 
concurrent access of shared data structures



Kernel Synchronization (Cont.)

 To avoid performance penalties, Linux’s kernel uses a 
synchronization architecture that allows long critical 
sections to run without having interrupts disabled for 
the critical section’s entire duration

 Interrupt service routines are separated into a top 
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p p p
half and a bottom half.
 The top half is a normal interrupt service routine, and runs 

with recursive interrupts disabled

 The bottom half is run, with all interrupts enabled, by a 
miniature scheduler that ensures that bottom halves never 
interrupt themselves

 This architecture is completed by a mechanism for disabling 
selected bottom halves while executing normal, foreground 
kernel code



Interrupt Protection Levels
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 Each level may be interrupted by code running at a higher level, 
but will never be interrupted by code running at the same or a 
lower level

 User processes can always be preempted by another process 
when a time-sharing scheduling interrupt occurs



Process Scheduling
 Linux uses two separate scheduling algorithms:

 A time-sharing algorithm for fair preemptive scheduling between 
multiple processes

 A real-time algorithm for tasks where absolute priorities are more 
important than fairness

 A process’s scheduling class defines which algorithm to apply
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priority
2

credits : credits 

 For time-sharing processes, Linux uses a prioritized, credit 
based algorithm
 The crediting rule


factors in both the process’s history and its priority
 This crediting system automatically prioritizes interactive or I/O-

bound processes



Process Scheduling (Cont.)

 Linux implements the FIFO and round-robin real-time 
scheduling classes; in both cases, each process has a 
priority in addition to its scheduling class

 The scheduler runs the process with the highest priority; for 
equal-priority processes, it runs the process waiting the
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equal priority processes, it runs the process waiting the 
longest 

 FIFO processes continue to run until they either exit or block 

 A round-robin process will be preempted after a while and 
moved to the end of the scheduling queue, so that round-
robin processes of equal priority automatically time-share 
between themselves



Symmetric Multiprocessing

 Linux 2.0 was the first Linux kernel to support SMP 
hardware; separate processes or threads can execute 
in parallel on separate processors

 To preserve the kernel’s non preemptible
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To preserve the kernel s non preemptible 
synchronization requirements, SMP imposes the 
restriction, via a single kernel spinlock, that only one 
processor at a time may execute kernel-mode code

 Newer versions allow preemptible kernels



Memory Management

 Linux’s physical memory-management system deals 
with allocating and freeing pages, groups of pages, 
and small blocks of memory

 It has additional mechanisms for handling virtual 

© 2008 Universität Karlsruhe (TH), System Architecture Group 62

memory, memory mapped files into the address 
space of running processes

 Splits memory into three different zones due to 
hardware characteristics



Relationship of Zones and Physical 
Addresses on 80x86
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Splitting of Memory in a Buddy Heap
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Managing Physical Memory

 The page allocator allocates and frees all physical pages; it can 
allocate ranges of physically-contiguous pages on request

 The allocator uses a buddy-heap algorithm to keep track of 
available physical pages
 Each allocatable memory region is paired with an adjacent partner

Wh ll d i b h f d h
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 Whenever two allocated partner regions are both freed up they are 
combined to form a larger region

 If a small memory request cannot be satisfied by allocating an 
existing small free region, then a larger free region will be 
subdivided into two partners to satisfy the request

 Memory allocations in the Linux kernel occur either statically 
(drivers reserve a contiguous area of memory during system 
boot time) or dynamically (via the page allocator)

 Also uses slab allocator for kernel memory



21.07
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Virtual Memory

 VM system maintains the AS visible to each process:  
it creates pages of virtual memory on demand, and 
manages the loading of those pages from disk or 
their swapping back out to disk as required

VM manager maintains two separate views of a
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 VM manager maintains two separate views of a 
process’s address space:
 A logical view describing instructions concerning the layout 

of the address space
 AS consists of a set of non overlapping regions, each one 

represents a continuous, page-aligned subset of the AS

 A physical view of each AS which is stored in the hardware 
page tables for the process



Virtual Memory (Cont.)

 Virtual memory regions are characterized by:
 Backing store, which describes from where the 

pages for a region come

 regions are usually backed by a file or by nothing 
(demand-zero memory)
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(demand-zero memory)

 The region’s reaction to writes (explicit page 
sharing or copy-on-write)

 The kernel creates a new virtual AS
1. When a process runs a new program via exec
2. Upon creation of a new process by the fork 



Virtual Memory (Cont.)

 On executing a new program, process is given a new, 
completely empty virtual AS; the program-loading 
routines populate the AS with virtual-memory regions

 Creating a new process with fork involves creating a 
“complete copy” of the existing process’s virtual AS
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p py g p
 kernel copies the parent process’s VMA region descriptors, 

then creates a new set of page tables for the child

 The parent’s page tables are copied directly into the child 
with a incremented reference count of each page

 After the fork, the parent and child share the same physical 
pages of memory in their address spaces

 How to avoid mutual overwriting? COPY ON WRITE



Shared Read-Write Region

VASCB1 VASCB2
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Region 01

sharable readonly

01

sharable readonly



Copy On Write Region
VASCB1 VASCB2

Region 1000 10
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Region 

sharable readonly sharable readonly

Writing to the region raises an exception  we need another control bit to
distinguish between private read only and copy on write regions (pages)



Virtual Memory (Cont.)

 The VM paging system relocates pages of memory 
from physical memory out to disk when the memory 
is needed for something else

 The VM paging system can be divided into two
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 The VM paging system can be divided into two 
sections:

 Pageout-policy algorithm decides which pages to write 
out to disk, and when

 Paging mechanism actually carries out the transfer, 
and pages data back into physical memory as needed



Virtual Memory (Cont.)

 Linux kernel reserves a constant, architecture-
dependent region of the virtual AS of every process 
for its own internal use

 This kernel virtual-memory area contains two 
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regions:
 A static area that contains page table references to every 

available physical page of memory in the system, so that 
there is a simple translation from physical to virtual 
addresses when running kernel code

 The reminder of the reserved section is not reserved for any 
specific purpose; its page-table entries can be modified to 
point to any other areas of memory



Executing and Loading User Programs

 Linux maintains a table of functions for loading programs; it 
gives each function the opportunity to try loading the given file 
when an exec system call is made

 The registration of multiple loader routines allows Linux to 
support both the ELF and a.out binary formats

© 2008 Universität Karlsruhe (TH), System Architecture Group 74

 Initially, binary-file pages are mapped into virtual memory
 Only when a program tries to access a given page will a page fault 

result in that page being loaded into physical memory

 An ELF-format binary file consists of a header followed by 
several page-aligned sections
 The ELF loader works by reading the header and mapping the 

sections of the file into separate regions of virtual memory



Memory Layout for ELF Programs
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Static and Dynamic Linking

 A program whose necessary library functions are 
embedded directly in the program’s executable binary 
file is statically linked to its libraries

 The main disadvantage of static linkage is that every 
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program generated must contain copies of exactly 
the same common system library functions

 Dynamic linking is more efficient in terms of both 
physical memory and disk-space usage because it 
loads the system libraries into memory only once



File Systems
 To the user, Linux’s file system appears as a 

hierarchical directory tree obeying UNIX semantics

 Internally, kernel hides implementation details and 
manages the multiple different file systems via an 
abstraction layer, that is, the virtual file system (VFS)
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 The Linux VFS is designed around object-oriented 
principles and is composed of two components:
 A set of definitions that define what a file object is allowed 

to look like
 The inode-object and the file-object structures represent 

individual files

 the file system object represents an entire file system

 A layer of software to manipulate those objects



Linux VFS

 Uniform FS interface to user processes

 Represents any conceivable file system’s 
general feature and behavior
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 Assumes files are objects that share basic 
properties regardless of the target file system



VFS
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VFS
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The Linux Ext2fs File System

 Ext2fs uses a mechanism similar to that of BSD Fast File System 
(ffs) for locating data blocks belonging to a specific file

 The main differences between ext2fs and ffs concern their disk 
allocation policies

 In ffs, the disk is allocated to files in blocks of 8Kb, with blocks 
being subdivided into fragments of 1Kb to store small files or
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being subdivided into fragments of 1Kb to store small files or 
partially filled blocks at the end of a file

 Ext2fs does not use fragments; it performs its allocations in smaller 
units  
 The default block size on ext2fs is 1Kb, although 2Kb and 4Kb blocks 

are also supported

 Ext2fs uses allocation policies designed to place logically adjacent 
blocks of a file into physically adjacent blocks on disk, so that it can 
submit an I/O request for several disk blocks as a single operation



Ext2fs Block-Allocation Policies
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The Linux Proc File System

 The proc file system does not store data, rather, its 
contents are computed on demand according to user 
file I/O requests

 proc must implement a directory structure, and the 
file contents within; it must then define a unique and
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file contents within; it must then define a unique and 
persistent inode number for each directory and files it 
contains
 It uses this inode number to identify just what operation is 

required when a user tries to read from a particular file 
inode or perform a lookup in a particular directory inode

 When data is read from one of these files, proc collects the 
appropriate information, formats it into text form and places 
it into the requesting process’s read buffer



Input and Output

 The Linux device-oriented file system accesses disk 
storage through two caches:
 Data is cached in the page cache, which is unified with the 

virtual memory system

 Metadata is cached in the buffer cache, a separate cache 
indexed by the physical disk block
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indexed by the physical disk block

 Linux splits all devices into three classes:
 block devices allow random access to completely 

independent, fixed size blocks of data

 character devices include most other devices; they don’t 
need to support the functionality of regular files

 network devices are interfaced via the kernel’s networking 
subsystem



Device-Driver Block Structure
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Block Devices

 Provide the main interface to all disk devices in a 
system

 Block buffer cache serves two main purposes:
 it acts as a pool of buffers for active I/O
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p
 it serves as a cache for completed I/O

 Request manager manages the reading and writing 
of buffer contents to and from a block device driver



Character Devices

 A device driver which does not offer random access to fixed 
blocks of data

 A character device driver must register a set of functions which 
implement the driver’s various file I/O operations

 The kernel performs almost no preprocessing of a file read or 
it t t h t d i b t i l th
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write request to a character device, but simply passes on the 
request to the device

 The main exception to this rule is the special subset of character 
device drivers which implement terminal devices, for which the 
kernel maintains a standard interface



Interprocess Communication

 Like UNIX, Linux informs processes that an event has 
occurred via signals

 There is a limited number of signals, and they cannot 
carry information:  Only the fact that a signal 
occurred is available to a process
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p

 The Linux kernel does not use signals to 
communicate with processes with are running in 
kernel mode, rather, communication within the kernel 
is accomplished via scheduling states and wait.queue 
structures



Passing Data Between Processes

 Classic pipe mechanism allows a child to inherit a 
communication channel to its parent, data written to 
one end of the pipe can be read a the other

 Shared memory offers an extremely fast way of 
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communicating; any data written by one process to a 
shared memory region can be read immediately by 
any other process that has mapped that region into 
its address space

 To obtain synchronization, however, shared memory 
must be used in conjunction with another Inter-
process-communication mechanism



Shared Memory Object

 The shared-memory object acts as a backing store 
for shared-memory regions in the same way as a file 
can act as backing store for a memory-mapped 
memory region

 Shared-memory mappings direct page faults to map
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 Shared memory mappings direct page faults to map 
in pages from a persistent shared-memory object

 Shared-memory objects remember their contents 
even if no processes are currently mapping them into 
virtual memory



Network Structure

 Networking is a key area of functionality for Linux.
 It supports the standard Internet protocols for UNIX to UNIX 

communications

 It also implements protocols native to non UNIX operating 
systems, in particular, protocols used on PC networks, such
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systems, in particular, protocols used on PC networks, such 
as Appletalk and IPX

 Internally, networking in the Linux kernel is 
implemented by three layers of software:
 The socket interface
 Protocol drivers
 Network device drivers



Network Structure (Cont.)

 The most important set of protocols in the 
Linux networking system is the internet 
protocol suite

It implements routing between different hosts
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 It implements routing between different hosts 
anywhere on the network

 On top of the routing protocol are built the UDP, 
TCP and ICMP protocols



Security

 The pluggable authentication modules (PAM) system is available 
under Linux

 PAM is based on a shared library that can be used by any 
system component that needs to authenticate users

 Access control under UNIX systems, including Linux, is 
f d th h th f i i id tifi ( id

© 2008 Universität Karlsruhe (TH), System Architecture Group 93

performed through the use of unique numeric identifiers (uid
and gid)

 Access control is performed by assigning objects a protections 
mask, which specifies which access modes:
 read, write, or execute

are to be granted to processes with owner, group, or world 
access



Security (Cont.)

 Linux augments the standard UNIX setuid
mechanism in two ways:

 It implements the POSIX specification’s saved user-id
mechanism, which allows a process to repeatedly drop and 
reacquire its effective uid
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 It has added a process characteristic that grants just a 
subset of the rights of the effective uid

 Linux provides another mechanism that allows a 
client to selectively pass access to a single file to 
some server process without granting it any other 
privileges



Linux Evolution
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