
27 Linux27 Linux

1© 2008 Universität Karlsruhe (TH), System Architecture Group

Linux
February 11 2009

Winter Term 2008/09
Gerd Liefländer

Recommended Reading1

Introduction

 Bacon, J.: Operating Systems (24)

 Silberschatz, A.: Operating System Concepts (22)

 Tanenbaum, A.: Modern Operating Systems (10)

 Linux Textbooks
f h h b d ll b ll i

© 2008 Universität Karlsruhe (TH), System Architecture Group 2

1 For details see slides of previous Proseminars: “Linux Internals”

Some slides of this lecture are taken from Silberschatz,
others are taken from Athanasios E. Papathanasiou
Computer Science Department, University of Rochester

 none of these has been rated excellent by all reviewers

 My personal recommendation:
Bovet, D.P., Cesati, M.: "Understanding the LINUX Kernel,
O'Reilly, 2. Edition, November 2005

Linux Textbooks & Online Info (2)

 C. Benvenuti: Understanding Linux Network Internals,
December 2005

 J. Corbet: Linux Device Drivers, 3. Edition

 C. Hallinan: Embedded Linux Primer

 G. Kroah-Hartman: Linux Kernel in a Nutshell, dec. 2006

© 2008 Universität Karlsruhe (TH), System Architecture Group 3

 R. Love: Linux System Programming

 C. Newham et al.: Bash Cookbook: Solution and Examples for
Bash Users

 http://jungla.dit.upm.es/~jmseyas/linux/kernel/hackers-docs.html
 http://bravo.ce.uniroma2.it/kernelhacking2006/schedule.html
 http://www.spinics.net/linux/

Roadmap for Today

 Introduction
 Evaluation of Lecture
 Linux History
 Design Principles
 Kernel Modules
 Process Management

© 2008 Universität Karlsruhe (TH), System Architecture Group 4

 Process Management
 Scheduling
 Memory Management
 File Systems
 Input and Output
 IPC
 Network Structure
 Security

Objectives of this Lecture

 Overview on history of UNIX and Linux

 Some principles Linux is designed upon

 Focus on Unix/Solaris/Linux process model, e.g.
 How does Unix/Solaris/Linux schedule processes/threads

© 2008 Universität Karlsruhe (TH), System Architecture Group 5

 What inter-process communication (IPC) is offered

 Basics of memory management

 Design and implementation of
 (Virtual) File systems and

 I/O device management

What is Linux?

 Open source Unix alike OS kernel

 What is Unix?

“Unix is simple and coherent, but it takes

Introduction

© 2008 Universität Karlsruhe (TH), System Architecture Group 6

Unix is simple and coherent, but it takes
a genius (or at any rate a programmer) to
understand and appreciate its simplicity.”

---Dennis Ritchie

What is Linux?

 Free does not mean bad !
 exceptions to the line: "Quality has a price“

 It is a free OS, started by Linus Torvalds, together with some
"volunteers" spread all over the "Internet". Most of the programmers
that have contributed to Linux are working for free.

Th i ll fi d t ki f ll ti it d illi f

Introduction

© 2008 Universität Karlsruhe (TH), System Architecture Group 7

 There is a small fixed team working full time on it, and millions of
users contribute to its development, even simply by sending
 suggestions
 detected errors
 …

 Because Linux is used (and then tested!) all over the world, on
different machines with different configurations, some claim:

“Linux had an harder beta-test than any other commercial OS”

Linux HistoryLinux History

8© 2008 Universität Karlsruhe (TH), System Architecture Group

History of ...nix Systems

 UNIX: 1969 Ken Thomson and Dennis Ritchie at AT&T Bell Labs

 BSD: 1978 Berkeley Software Distribution

 Commercial Vendors: Sun, HP, IBM, SGI, DEC

 GNU: 1984 Richard Stallmann, FSF = Free Software Foundation

Introduction

© 2008 Universität Karlsruhe (TH), System Architecture Group 9

 POSIX: 1986 IEEE Portable Operating System unIX

 Minix: 1987 Andy Tanenbaum

 SVR4: 1989 AT&T and Sun

 Linux: 1991 Linus Thorvalds on Intel 386

 OpenSource: GPL

?

What do People think of Linux?

 “Well”-organized code*

 Linux = aesthetic system architecture*

 Others blame …

Introduction

© 2008 Universität Karlsruhe (TH), System Architecture Group 10

 its cryptic commands and system calls
 its huge macro kernel (old fashioned SA style)

 Well defined generic interfaces
 (e.g. VFS for all supported FSs)
 …

*Mauerer’s opinion

User
Interface

Unix Architecture

Introduction

il

© 2008 Universität Karlsruhe (TH), System Architecture Group 11

Linux

il

Modern Unix Kernel

© 2008 Universität Karlsruhe (TH), System Architecture Group 12

Linux History

 A “modernized”, free* OS based on UNIX standards

 Small kernel in 1991 by Linus Torvalds, with the
major design goal: UNIX compatibility

 Designed to run efficiently and reliably on common
PC HW but also on some other platforms e g high

History & Current State

© 2008 Universität Karlsruhe (TH), System Architecture Group 13

PC-HW, but also on some other platforms, e.g. high-
end computers

 Core of Linux kernel entirely original, but it can run
much existing free UNIX software,

entire UNIX-compatible OS free from proprietary code

*In contrast to Tanenbaum’s Minix

Linux Kernel

 Version 0.01 (May 1991)
 no networking
 only on 80386-compatible Intel processors

and on PC hardware

History & Current State

© 2008 Universität Karlsruhe (TH), System Architecture Group 14

and on PC hardware
 extremely limited device-driver support
 only Tanenbaum’s Minix file system

Linux Kernel

 Linux 1.0 (March 1994) included:
 UNIX’s standard TCP/IP networking protocols
 BSD-compatible socket interface for networking
 Device-driver support for running IP over an

Ethernet

History & Current State

© 2008 Universität Karlsruhe (TH), System Architecture Group 15

 Enhanced file system
 Support for a range of SCSI controllers for

high-performance disk access
 Extra hardware support

 Version 1.2 (March 1995) the final PC-
only Linux kernel.

Linux 2.0

 Released (June 1996) 2 major new functionalities:
 Support for multiple architectures (64-bit native Dec Alpha)
 Support for multiprocessor architectures (SMPs)

 Other new features included:
 Improved memory-management code

History & Current State

© 2008 Universität Karlsruhe (TH), System Architecture Group 16

 Improved TCP/IP performance
 Support for internal kernel threads, …, and for automatic

loading of kernel modules on demand.
 Standardized configuration interface

 Available for:
 Motorola 68000-series ,
 Sun Sparc systems, and
 PC and PowerMac systems

Linux 2.4 + 2.6

 2.4 and 2.6
 increased SMP support
 added journaling file system

ti k l

History & Current State

© 2008 Universität Karlsruhe (TH), System Architecture Group 17

 preemptive kernel
 64-bit memory support

The Linux System

 Linux uses many tools developed as part of
Berkeley’s BSD OS, MIT’s X Window System, and the
Free Software Foundation's GNU project

 The min system libraries were started by the GNU
project with improvements provided by the Linux

© 2008 Universität Karlsruhe (TH), System Architecture Group 18

project, with improvements provided by the Linux
community

 Linux networking-administration tools were derived
from 4.3BSD code; recent BSD derivatives such as
Free BSD have borrowed code from Linux in return

Linux Distributions

 Standard, precompiled sets of packages, or
distributions, include the basic Linux system, system
installation and management utilities, and ready-to-
install packages of common UNIX tools

 The first distributions managed these packages by
simply providing a means of unpacking all the files

© 2008 Universität Karlsruhe (TH), System Architecture Group 19

simply providing a means of unpacking all the files
into the appropriate places; modern distributions
include advanced package management

 Early distributions included SLS and Slackware
 Red Hat and Debian are popular distributions from

commercial and noncommercial sources, respectively

 The RPM Package file format permits compatibility
among the various Linux distributions

Linux Licensing

 The Linux kernel is distributed under the GNU
General Public License (GPL), the terms of which are
set out by the Free Software Foundation

 Anyone using Linux, or creating their own derivative
of Linux may not make the derived product

© 2008 Universität Karlsruhe (TH), System Architecture Group 20

of Linux, may not make the derived product
proprietary; software released under the GPL may
not be redistributed as a binary-only product

Design PrinciplesDesign Principles

21© 2008 Universität Karlsruhe (TH), System Architecture Group

src Directory Structure
linux

mm net kernel init libincludeipc archdriversfs

ext
proc

unix
core

char
pci

alpha
i386

linux
asm-arch

Linux Sources & Documentation

From Athanasios E. Papathanasiou

© 2008 Universität Karlsruhe (TH), System Architecture Group 22

fat

vfat
nfs

minix
msdos

ext2

. . .

ipv4
ipv6
. . .

. . .

net
block

scsi

sound
video

cdrom

sparc

. . .

sparc64
mips

net

scsi
video

 Principles and Policies

 Mechanisms

 Algorithms

D t St t

First View onto Linux

Linux Architecture

© 2008 Universität Karlsruhe (TH), System Architecture Group 23

 Data Structures

 No Details

 Notions

 System Architecture

 Association of Ideas

Design Principles 1

 Linux is a
 Multi-User system

 Multi-Tasking system with

 A full set of UNIX-compatible tools

© 2008 Universität Karlsruhe (TH), System Architecture Group 24

 Its FS adheres to traditional UNIX semantics, and it
implements the standard UNIX networking model

 Main design goals have been:
 Speed

 Efficiency

 Standardization

Design Principles 2

 Linux is compliant with the POSIX standards;
two Linux distributions have achieved the
official POSIX certification

© 2008 Universität Karlsruhe (TH), System Architecture Group 25

 Linux programming interface adheres to SVR4
UNIX semantics, rather than to BSD behavior

Components of a Linux System

© 2008 Universität Karlsruhe (TH), System Architecture Group 26

When loaded, then into the kernel AS

Linux Components

 Kernel (see next slides)

 System libraries = standard set of functions
1.applications use to interact with the kernel

© 2008 Universität Karlsruhe (TH), System Architecture Group 27

2.Implementing some system services without
interacting with the kernel

 System utilities perform individual specialized
management tasks

Core Kernel

M
O
D
U

System Call Interface, Exceptions, Interrupts

FILE RELATED PROCESS RELATED
FILE SYSTEM

NETWORKING

SCHEDULER

MEMORY MANAGEMENT

Linux Architecture

© 2008 Universität Karlsruhe (TH), System Architecture Group 28

L
E
S Hardware Dependent Code

DEVICE DRIVERS IPC

HARDWARE

Interaction of System Components

Application
System Libraries

Linux Architecture

© 2008 Universität Karlsruhe (TH), System Architecture Group 29

Linux Kernel

Hardware

Interacts with CPU and I/O Registers via
load and store and privileged instructions

Interacts with non
privileged instructions

with the CPU

Interactions of System Components

Application

System Libraries

Interaction via function call to library procedures

Linux Architecture

© 2008 Universität Karlsruhe (TH), System Architecture Group 30

Linux Kernel

Hardware

Interaction via System Calls

Linux Kernel

 Two main abstractions of the system
 Process (task)
 File

Linux Architecture

© 2008 Universität Karlsruhe (TH), System Architecture Group 31

 Only kernel executes in kernel mode with
 full access to all physical resources and

 allowed to execute all CPU instructions

 Kernel code & kernel data structures are kept
in one single kernel address space KAS

User & Kernel Address Space
0xFFFF FFFF

Shared Kernel AS

TASK_SIZE

Linux Architecture

Adjustable by
“super user”

© 2008 Universität Karlsruhe (TH), System Architecture Group 32

0x0000 0000

Kernel Modules

 Sections of kernel code that can be compiled, loaded,
and unloaded independent of the rest of the kernel

 A kernel module typically implements
 device driver
 file system

© 2008 Universität Karlsruhe (TH), System Architecture Group 33

y
 networking protocol
 …

 Module interface allows third parties to write and
distribute, on their own terms, e.g.
 device drivers or
 file systems

that could not be distributed under the GPL

Kernel Modules (2)

 Kernel modules allow a Linux system to be
set up with a standard, “minimal” kernel,
without any extra device drivers built in

Th Li d l

© 2008 Universität Karlsruhe (TH), System Architecture Group 34

 Three components to Linux module support:
 module management

 driver registration

 conflict resolution

Module Management

 Supports loading modules into memory and letting
them interact with the rest of the kernel

 Module loading is split into two separate sections:
 Managing sections of module code in kernel memory

© 2008 Universität Karlsruhe (TH), System Architecture Group 35

 Handling symbols that modules are allowed to reference

 The module requestor manages the loading of
requested, but currently unloaded, modules

 It also regularly queries the kernel to see whether a
dynamically loaded module is still in use, and will
unload it when it is no longer actively needed

Driver Registration

 Allows modules to tell the rest of the kernel that a
new driver has become available

 Kernel maintains dynamic tables of all known drivers,
and provides a set of routines to allow drivers to be
added to or removed from these tables at any time

© 2008 Universität Karlsruhe (TH), System Architecture Group 36

added to or removed from these tables at any time

 Registration tables include the following items:
 Device drivers
 File systems
 Network protocols
 Binary format

Conflict Resolution

 A mechanism that allows different device drivers to
reserve hardware resources and to protect those
resources from accidental use by another driver

 The conflict resolution module aims to:

© 2008 Universität Karlsruhe (TH), System Architecture Group 37

 Prevent modules from clashing over access to
hardware resources

 Prevent autoprobes from interfering with existing
device drivers

 Resolve conflicts with multiple drivers trying to access
the same hardware

Summary on Kernel Modules

 Many kernel modules are written in C/C++ huge
risk for the safety of the kernel

 All modules share one and only one KAS

 It’s common to produce severe software bugs within these

© 2008 Universität Karlsruhe (TH), System Architecture Group 38

kernel modules, i.e.

 System crashes are pre-programmed

 Added value of extensibility is lost due to the risk of
increased insecurity

 If you are interested in a critical comment on
extensible kernels, read the paper of P. Druschel

UNIX/Linux Process Management

 The UNIX process management separates the creation of
processes and the running of a new program into two
distinct system cals
 The fork system call creates a new process
 The new program is run after the system call execve

© 2008 Universität Karlsruhe (TH), System Architecture Group 39

 Under UNIX, a process encompasses all the information
that the OS must maintain to track the context of a single
execution of a single program

 Under Linux, process properties fall into three groups:
 Process identity
 Process environment
 Process context

Process Identity

 Process ID (PID): The unique identifier for the process;
used to specify processes to the operating system when
an application makes a system call to signal, modify, or
wait for another process

 Credentials: Each process must have an associated user
ID and one or more group IDs that determine the

© 2008 Universität Karlsruhe (TH), System Architecture Group 40

ID and one or more group IDs that determine the
process’s rights to access system resources and files

 Personality: Not traditionally found on UNIX systems, but
under Linux each process has an associated personality
identifier that can slightly modify the semantics of certain
system calls
 Used primarily by emulation libraries to request that system

calls be compatible with certain specific flavors of UNIX

Process Environment

 Process’s environment is inherited from its parent, and is
composed of two null-terminated vectors:
 Argument vector lists command-line arguments used to invoke the

running program (starts with the name of the program itself)

 Environment vector is a list of “NAME=VALUE” pairs that associates
named environment variables with arbitrary textual values

© 2008 Universität Karlsruhe (TH), System Architecture Group 41

At least some flexibility

 Passing environment variables among processes and inheriting
variables by a process’s children are flexible means of passing
information to components of the user-mode system software

 The environment-variable mechanism provides a
customization of the OS that can be set on a per-
process basis, rather than being configured for the
system as a whole

Process Context
 Context is the internal state of a running program at

any point in time

 Scheduling context is the relevant part of the PCB the
scheduler needs to suspend and restart the process

Kernel maintains accounting information about the

© 2008 Universität Karlsruhe (TH), System Architecture Group 42

 Kernel maintains accounting information about the
resources currently being consumed by each process,
and the total resources consumed by the process in
its lifetime so far

 The file table is an array of “pointers” (~capabilities)
to kernel file structures
 When making file I/O system calls, processes refer to files by their

index into this table

Process Context (Cont.)

 Whereas the file table lists the existing open files, the
file-system context applies to requests to open new
files
 The current root and default directories to be used for new

file searches are stored here

© 2008 Universität Karlsruhe (TH), System Architecture Group 43

 Signal-handler table defines the routine in the
process’s AS to be called when specific signals arrive

 Virtual-memory context of a process describes the
full contents of the its private address space

Processes and Threads

 Linux uses same internal representation for threads
and processes; a thread is simply a new process that
happens to share the same AS as its parent

 A distinction is only made when a new thread is
c eated b the l () s stem call

© 2008 Universität Karlsruhe (TH), System Architecture Group 44

created by the clone() system call
 fork() creates a new process with its own entirely new

process context
 clone() creates a “new process” with its own identity, but

that is allowed to share the data structures of its parent

 clone() gives an application fine-grained control
over exactly what is shared between caller and callee

Traditionaal Unix versus Solaris

© 2008 Universität Karlsruhe (TH), System Architecture Group 45

© 2008 Universität Karlsruhe (TH), System Architecture Group 46

Linux Process/Thread States

© 2008 Universität Karlsruhe (TH), System Architecture Group 47

Scheduling

 While scheduling is normally thought of as the
running and interrupting of application processes, in
Linux, scheduling also includes the running of the
various kernel activities

 Running kernel activities encompasses both tasks

© 2008 Universität Karlsruhe (TH), System Architecture Group 48

g p
that are requested by a running process and tasks
that execute internally on behalf of a device driver

 As of 2.5, new scheduling algorithm –
preemptive, priority-based

 real-time range

 nice value

Relationship between Priority and TS-Length

© 2008 Universität Karlsruhe (TH), System Architecture Group 49

List of Tasks Indexed by Priority

© 2008 Universität Karlsruhe (TH), System Architecture Group 50

Process/Task Switch

Thread of Task 1
is running

in user mode

Thread of Task 2
is running

in user mode

?
kernel

Linux Concepts

© 2008 Universität Karlsruhe (TH), System Architecture Group 51

timetx tx+

1. What events trigger tx?

2. Who switches system from user mode to kernel mode?

3. Who is selecting a thread of task 2?

4. How long does it take to switch from task 1 to task 2?

5. Where to continue or begin within task 2?

Main Data Structures
 The task structure (…/linux/sched.h)

struct task_struct {
volatile long state; . . .
long counter;
long priority; . . .
/* smp */
int has cpu (?); int processor; int last processor

Linux Concepts

© 2008 Universität Karlsruhe (TH), System Architecture Group 52

int has_cpu (?); int processor; int last_processor
struct task_struct *next_struct, *prev_struct;
/* relationships */
struct task_struct
*p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr; . . .
/* memory */
struct mm_struct *mm; . . .
/* VFS - umask */
struct fs_struct *fs;
/* files */
struct files_struct *files;
};

Task Data Structure and Files

files
fs

inode

inode

inode

task_struct fs_struct

count

umask

*root

*pwd

Linux Concepts

© 2008 Universität Karlsruhe (TH), System Architecture Group 53

f_mode
f_pos
f_flags
f_count
f_owner
f_inode
f_op
f_version

file

inode

File operation
routines

count
close_on_exec
open_fs
fd[0]

fd[255]

fd[1]

. . .

file_struct

Task Data Structure: Memory
Processes

Virtual Memory

mm

task_struct

data

vm_area_struct
vm_end
vm_start
vm_flags
vm_inode
vm_ops

count
pgd

mmap

. . .

mm_struct

Linux Concepts

© 2008 Universität Karlsruhe (TH), System Architecture Group 54

vm_end
vm_start
vm_flags
vm_inode
vm_ops

vm_next

vm_area_struct
code

vm_next

p
mmap_avl
mmap_sem

Kernel Synchronization

 Request for kernel-mode execution can occur in two
ways:
 A running program may request an OS service,

 either explicitly via a system call

or implicitly for example when a page fault occurs

© 2008 Universität Karlsruhe (TH), System Architecture Group 55

 or implicitly, for example, when a page fault occurs

 A device can deliver a hardware interrupt that causes the
CPU to start executing a kernel-defined interrupt handler

 Kernel synchronization requires a framework that will
allow the kernel’s critical sections to run without
interruption by another critical section

Kernel Synchronization (Cont.)

 Linux uses two techniques to protect critical sections:

1. Normal kernel code is non preemptible (until 2.4)
– when a time interrupt is received while a process is

executing a kernel system service routine, the kernel’s
need_resched flag is set so that the scheduler will run
once the system call has completed and control is

© 2008 Universität Karlsruhe (TH), System Architecture Group 56

y p
about to be returned to user mode

2. The second technique applies to critical sections that occur
in an interrupt service routines
– By using the processor’s interrupt control hardware to
disable interrupts during a critical section, the kernel
guarantees that it can proceed without the risk of
concurrent access of shared data structures

Kernel Synchronization (Cont.)

 To avoid performance penalties, Linux’s kernel uses a
synchronization architecture that allows long critical
sections to run without having interrupts disabled for
the critical section’s entire duration

 Interrupt service routines are separated into a top

© 2008 Universität Karlsruhe (TH), System Architecture Group 57

p p p
half and a bottom half.
 The top half is a normal interrupt service routine, and runs

with recursive interrupts disabled

 The bottom half is run, with all interrupts enabled, by a
miniature scheduler that ensures that bottom halves never
interrupt themselves

 This architecture is completed by a mechanism for disabling
selected bottom halves while executing normal, foreground
kernel code

Interrupt Protection Levels

© 2008 Universität Karlsruhe (TH), System Architecture Group 58

 Each level may be interrupted by code running at a higher level,
but will never be interrupted by code running at the same or a
lower level

 User processes can always be preempted by another process
when a time-sharing scheduling interrupt occurs

Process Scheduling
 Linux uses two separate scheduling algorithms:

 A time-sharing algorithm for fair preemptive scheduling between
multiple processes

 A real-time algorithm for tasks where absolute priorities are more
important than fairness

 A process’s scheduling class defines which algorithm to apply

© 2008 Universität Karlsruhe (TH), System Architecture Group 59

priority
2

credits : credits

 For time-sharing processes, Linux uses a prioritized, credit
based algorithm
 The crediting rule

factors in both the process’s history and its priority
 This crediting system automatically prioritizes interactive or I/O-

bound processes

Process Scheduling (Cont.)

 Linux implements the FIFO and round-robin real-time
scheduling classes; in both cases, each process has a
priority in addition to its scheduling class

 The scheduler runs the process with the highest priority; for
equal-priority processes, it runs the process waiting the

© 2008 Universität Karlsruhe (TH), System Architecture Group 60

equal priority processes, it runs the process waiting the
longest

 FIFO processes continue to run until they either exit or block

 A round-robin process will be preempted after a while and
moved to the end of the scheduling queue, so that round-
robin processes of equal priority automatically time-share
between themselves

Symmetric Multiprocessing

 Linux 2.0 was the first Linux kernel to support SMP
hardware; separate processes or threads can execute
in parallel on separate processors

 To preserve the kernel’s non preemptible

© 2008 Universität Karlsruhe (TH), System Architecture Group 61

To preserve the kernel s non preemptible
synchronization requirements, SMP imposes the
restriction, via a single kernel spinlock, that only one
processor at a time may execute kernel-mode code

 Newer versions allow preemptible kernels

Memory Management

 Linux’s physical memory-management system deals
with allocating and freeing pages, groups of pages,
and small blocks of memory

 It has additional mechanisms for handling virtual

© 2008 Universität Karlsruhe (TH), System Architecture Group 62

memory, memory mapped files into the address
space of running processes

 Splits memory into three different zones due to
hardware characteristics

Relationship of Zones and Physical
Addresses on 80x86

© 2008 Universität Karlsruhe (TH), System Architecture Group 63

Splitting of Memory in a Buddy Heap

© 2008 Universität Karlsruhe (TH), System Architecture Group 64

Managing Physical Memory

 The page allocator allocates and frees all physical pages; it can
allocate ranges of physically-contiguous pages on request

 The allocator uses a buddy-heap algorithm to keep track of
available physical pages
 Each allocatable memory region is paired with an adjacent partner

Wh ll d i b h f d h

© 2008 Universität Karlsruhe (TH), System Architecture Group 65

 Whenever two allocated partner regions are both freed up they are
combined to form a larger region

 If a small memory request cannot be satisfied by allocating an
existing small free region, then a larger free region will be
subdivided into two partners to satisfy the request

 Memory allocations in the Linux kernel occur either statically
(drivers reserve a contiguous area of memory during system
boot time) or dynamically (via the page allocator)

 Also uses slab allocator for kernel memory

21.07

© 2008 Universität Karlsruhe (TH), System Architecture Group 66

Virtual Memory

 VM system maintains the AS visible to each process:
it creates pages of virtual memory on demand, and
manages the loading of those pages from disk or
their swapping back out to disk as required

VM manager maintains two separate views of a

© 2008 Universität Karlsruhe (TH), System Architecture Group 67

 VM manager maintains two separate views of a
process’s address space:
 A logical view describing instructions concerning the layout

of the address space
 AS consists of a set of non overlapping regions, each one

represents a continuous, page-aligned subset of the AS

 A physical view of each AS which is stored in the hardware
page tables for the process

Virtual Memory (Cont.)

 Virtual memory regions are characterized by:
 Backing store, which describes from where the

pages for a region come

 regions are usually backed by a file or by nothing
(demand-zero memory)

© 2008 Universität Karlsruhe (TH), System Architecture Group 68

(demand-zero memory)

 The region’s reaction to writes (explicit page
sharing or copy-on-write)

 The kernel creates a new virtual AS
1. When a process runs a new program via exec
2. Upon creation of a new process by the fork

Virtual Memory (Cont.)

 On executing a new program, process is given a new,
completely empty virtual AS; the program-loading
routines populate the AS with virtual-memory regions

 Creating a new process with fork involves creating a
“complete copy” of the existing process’s virtual AS

© 2008 Universität Karlsruhe (TH), System Architecture Group 69

p py g p
 kernel copies the parent process’s VMA region descriptors,

then creates a new set of page tables for the child

 The parent’s page tables are copied directly into the child
with a incremented reference count of each page

 After the fork, the parent and child share the same physical
pages of memory in their address spaces

 How to avoid mutual overwriting? COPY ON WRITE

Shared Read-Write Region

VASCB1 VASCB2

© 2008 Universität Karlsruhe (TH), System Architecture Group 70

Region 01

sharable readonly

01

sharable readonly

Copy On Write Region
VASCB1 VASCB2

Region 1000 10

© 2008 Universität Karlsruhe (TH), System Architecture Group 71

Region

sharable readonly sharable readonly

Writing to the region raises an exception we need another control bit to
distinguish between private read only and copy on write regions (pages)

Virtual Memory (Cont.)

 The VM paging system relocates pages of memory
from physical memory out to disk when the memory
is needed for something else

 The VM paging system can be divided into two

© 2008 Universität Karlsruhe (TH), System Architecture Group 72

 The VM paging system can be divided into two
sections:

 Pageout-policy algorithm decides which pages to write
out to disk, and when

 Paging mechanism actually carries out the transfer,
and pages data back into physical memory as needed

Virtual Memory (Cont.)

 Linux kernel reserves a constant, architecture-
dependent region of the virtual AS of every process
for its own internal use

 This kernel virtual-memory area contains two

© 2008 Universität Karlsruhe (TH), System Architecture Group 73

regions:
 A static area that contains page table references to every

available physical page of memory in the system, so that
there is a simple translation from physical to virtual
addresses when running kernel code

 The reminder of the reserved section is not reserved for any
specific purpose; its page-table entries can be modified to
point to any other areas of memory

Executing and Loading User Programs

 Linux maintains a table of functions for loading programs; it
gives each function the opportunity to try loading the given file
when an exec system call is made

 The registration of multiple loader routines allows Linux to
support both the ELF and a.out binary formats

© 2008 Universität Karlsruhe (TH), System Architecture Group 74

 Initially, binary-file pages are mapped into virtual memory
 Only when a program tries to access a given page will a page fault

result in that page being loaded into physical memory

 An ELF-format binary file consists of a header followed by
several page-aligned sections
 The ELF loader works by reading the header and mapping the

sections of the file into separate regions of virtual memory

Memory Layout for ELF Programs

© 2008 Universität Karlsruhe (TH), System Architecture Group 75

Static and Dynamic Linking

 A program whose necessary library functions are
embedded directly in the program’s executable binary
file is statically linked to its libraries

 The main disadvantage of static linkage is that every

© 2008 Universität Karlsruhe (TH), System Architecture Group 76

program generated must contain copies of exactly
the same common system library functions

 Dynamic linking is more efficient in terms of both
physical memory and disk-space usage because it
loads the system libraries into memory only once

File Systems
 To the user, Linux’s file system appears as a

hierarchical directory tree obeying UNIX semantics

 Internally, kernel hides implementation details and
manages the multiple different file systems via an
abstraction layer, that is, the virtual file system (VFS)

© 2008 Universität Karlsruhe (TH), System Architecture Group 77

 The Linux VFS is designed around object-oriented
principles and is composed of two components:
 A set of definitions that define what a file object is allowed

to look like
 The inode-object and the file-object structures represent

individual files

 the file system object represents an entire file system

 A layer of software to manipulate those objects

Linux VFS

 Uniform FS interface to user processes

 Represents any conceivable file system’s
general feature and behavior

© 2008 Universität Karlsruhe (TH), System Architecture Group 78

 Assumes files are objects that share basic
properties regardless of the target file system

VFS

© 2008 Universität Karlsruhe (TH), System Architecture Group 79

VFS

© 2008 Universität Karlsruhe (TH), System Architecture Group 80

The Linux Ext2fs File System

 Ext2fs uses a mechanism similar to that of BSD Fast File System
(ffs) for locating data blocks belonging to a specific file

 The main differences between ext2fs and ffs concern their disk
allocation policies

 In ffs, the disk is allocated to files in blocks of 8Kb, with blocks
being subdivided into fragments of 1Kb to store small files or

© 2008 Universität Karlsruhe (TH), System Architecture Group 81

being subdivided into fragments of 1Kb to store small files or
partially filled blocks at the end of a file

 Ext2fs does not use fragments; it performs its allocations in smaller
units
 The default block size on ext2fs is 1Kb, although 2Kb and 4Kb blocks

are also supported

 Ext2fs uses allocation policies designed to place logically adjacent
blocks of a file into physically adjacent blocks on disk, so that it can
submit an I/O request for several disk blocks as a single operation

Ext2fs Block-Allocation Policies

© 2008 Universität Karlsruhe (TH), System Architecture Group 82

The Linux Proc File System

 The proc file system does not store data, rather, its
contents are computed on demand according to user
file I/O requests

 proc must implement a directory structure, and the
file contents within; it must then define a unique and

© 2008 Universität Karlsruhe (TH), System Architecture Group 83

file contents within; it must then define a unique and
persistent inode number for each directory and files it
contains
 It uses this inode number to identify just what operation is

required when a user tries to read from a particular file
inode or perform a lookup in a particular directory inode

 When data is read from one of these files, proc collects the
appropriate information, formats it into text form and places
it into the requesting process’s read buffer

Input and Output

 The Linux device-oriented file system accesses disk
storage through two caches:
 Data is cached in the page cache, which is unified with the

virtual memory system

 Metadata is cached in the buffer cache, a separate cache
indexed by the physical disk block

© 2008 Universität Karlsruhe (TH), System Architecture Group 84

indexed by the physical disk block

 Linux splits all devices into three classes:
 block devices allow random access to completely

independent, fixed size blocks of data

 character devices include most other devices; they don’t
need to support the functionality of regular files

 network devices are interfaced via the kernel’s networking
subsystem

Device-Driver Block Structure

© 2008 Universität Karlsruhe (TH), System Architecture Group 85

Block Devices

 Provide the main interface to all disk devices in a
system

 Block buffer cache serves two main purposes:
 it acts as a pool of buffers for active I/O

© 2008 Universität Karlsruhe (TH), System Architecture Group 86

p
 it serves as a cache for completed I/O

 Request manager manages the reading and writing
of buffer contents to and from a block device driver

Character Devices

 A device driver which does not offer random access to fixed
blocks of data

 A character device driver must register a set of functions which
implement the driver’s various file I/O operations

 The kernel performs almost no preprocessing of a file read or
it t t h t d i b t i l th

© 2008 Universität Karlsruhe (TH), System Architecture Group 87

write request to a character device, but simply passes on the
request to the device

 The main exception to this rule is the special subset of character
device drivers which implement terminal devices, for which the
kernel maintains a standard interface

Interprocess Communication

 Like UNIX, Linux informs processes that an event has
occurred via signals

 There is a limited number of signals, and they cannot
carry information: Only the fact that a signal
occurred is available to a process

© 2008 Universität Karlsruhe (TH), System Architecture Group 88

p

 The Linux kernel does not use signals to
communicate with processes with are running in
kernel mode, rather, communication within the kernel
is accomplished via scheduling states and wait.queue
structures

Passing Data Between Processes

 Classic pipe mechanism allows a child to inherit a
communication channel to its parent, data written to
one end of the pipe can be read a the other

 Shared memory offers an extremely fast way of

© 2008 Universität Karlsruhe (TH), System Architecture Group 89

communicating; any data written by one process to a
shared memory region can be read immediately by
any other process that has mapped that region into
its address space

 To obtain synchronization, however, shared memory
must be used in conjunction with another Inter-
process-communication mechanism

Shared Memory Object

 The shared-memory object acts as a backing store
for shared-memory regions in the same way as a file
can act as backing store for a memory-mapped
memory region

 Shared-memory mappings direct page faults to map

© 2008 Universität Karlsruhe (TH), System Architecture Group 90

 Shared memory mappings direct page faults to map
in pages from a persistent shared-memory object

 Shared-memory objects remember their contents
even if no processes are currently mapping them into
virtual memory

Network Structure

 Networking is a key area of functionality for Linux.
 It supports the standard Internet protocols for UNIX to UNIX

communications

 It also implements protocols native to non UNIX operating
systems, in particular, protocols used on PC networks, such

© 2008 Universität Karlsruhe (TH), System Architecture Group 91

systems, in particular, protocols used on PC networks, such
as Appletalk and IPX

 Internally, networking in the Linux kernel is
implemented by three layers of software:
 The socket interface
 Protocol drivers
 Network device drivers

Network Structure (Cont.)

 The most important set of protocols in the
Linux networking system is the internet
protocol suite

It implements routing between different hosts

© 2008 Universität Karlsruhe (TH), System Architecture Group 92

 It implements routing between different hosts
anywhere on the network

 On top of the routing protocol are built the UDP,
TCP and ICMP protocols

Security

 The pluggable authentication modules (PAM) system is available
under Linux

 PAM is based on a shared library that can be used by any
system component that needs to authenticate users

 Access control under UNIX systems, including Linux, is
f d th h th f i i id tifi (id

© 2008 Universität Karlsruhe (TH), System Architecture Group 93

performed through the use of unique numeric identifiers (uid
and gid)

 Access control is performed by assigning objects a protections
mask, which specifies which access modes:
 read, write, or execute

are to be granted to processes with owner, group, or world
access

Security (Cont.)

 Linux augments the standard UNIX setuid
mechanism in two ways:

 It implements the POSIX specification’s saved user-id
mechanism, which allows a process to repeatedly drop and
reacquire its effective uid

© 2008 Universität Karlsruhe (TH), System Architecture Group 94

 It has added a process characteristic that grants just a
subset of the rights of the effective uid

 Linux provides another mechanism that allows a
client to selectively pass access to a single file to
some server process without granting it any other
privileges

Linux Evolution
Linux Kernel Size (.tar.gz)

25

30

35

40

45

M
B

)

Linux Summary

© 2008 Universität Karlsruhe (TH), System Architecture Group 95

0

5

10

15

20

25

Aug-93 Jan-95 May-96 Sep-97 Feb-99 Jun-00 Nov-01 Mar-03 Aug-04
Date

Si
ze

 (M

Problem: Complexity of OS worse maintainability

