
25 Example File Systems25 Example File Systems

1© 2009 Universität Karlsruhe (TH), System Architecture Group

Special Features of Files
Example File Systems

February 9 2009
Winter Term 2008/09

Gerd Liefländer

Recommended Reading

 Bacon, J.: Concurrent Systems (5)
 Nehmer, J.: Systemsoftware: Grlg. mod. BS, (9)
 Silberschatz, A.: Operating System Concepts (10,11)
 Stallings, W.: Operating Systems (12)

Introduction

© 2009 Universität Karlsruhe (TH), System Architecture Group 2

 Tanenbaum, A.: Modern Operating Systems (5, 6)

Introduction

Roadmap for Today

 Special Features of Files & File Systems
 File Control Structures

 Memory Mapped Files

 Log Structured FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 3

 Example File Systems
 Unix

 BSD FFS

 EXT2

 Linux VFS

 Reiser FS

File Control StructuresFile Control Structures

4© 2009 Universität Karlsruhe (TH), System Architecture Group

File Control Block

 Per application there is a list of opened files

 Per opened file there is a file control block (FCB)
 Position pointer

 Current block address

File Control Structure

© 2009 Universität Karlsruhe (TH), System Architecture Group 5

 Links to buffers in main memory

 Filling grade of buffer

 Lock information

 Access dates (e.g. time when file was opened)

 Access rights

Unix FCBs per Task/Process

 Per default each task has a couple of standard files
 stdin FID = 0
 stdout FID = 1
 stderr FID = 2

File Control Structure

© 2009 Universität Karlsruhe (TH), System Architecture Group 6

 FIDs with higher value are used for other files

 Once a file is closed, its FID is never used again

 With FIDs it is easy to redirect output to different
files and to establish piped applications

Unix FCBs

 Besides collecting info on opened files per task, in
most system there is also a table/list of all opened
files

File Control Structure

FCBs per Task FCBs’ per system

© 2009 Universität Karlsruhe (TH), System Architecture Group 7

Task 1

Task 2

Memory Mapped FilesMemory Mapped Files

8© 2009 Universität Karlsruhe (TH), System Architecture Group

Memory Mapped Files

Memory-Mapped Files

 Map a file into a region of an AS of a task

 Idea: Access a mapped file as any other AS region

Implementation:

R i t i ithi AS d th ?

© 2009 Universität Karlsruhe (TH), System Architecture Group 9

 Reserve appropriate region within AS and then?
 PTEs point to file disk blocks instead of …?

 Via page fault you load the corresponding “file page”

 Upon unmap, write back all modified pages

Memory Mapped Files

Memory-Mapped Files

code code

© 2009 Universität Karlsruhe (TH), System Architecture Group 10

(a) Segmented process before mapping files
into its address space

(b) Process after mapping
 existing file abc into one segment

 reserving a new segment for a new file xyz

Memory Mapped Files

 Avoids translating from disk format to RAM format
(and vice versa)
 Supports complex structures

 No read/write system calls!!!

 Unmap the file implicitly when task/process exits

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 11

 Unmap the file implicitly when task/process exits

 Problems:
 Determining actual size after several modifications

 Care must be taken if file f is shared, e.g.

 process P1 uses f as a memory-mapped file

 process P2 uses f via conventional file operations (read/write)

Memory Mapped Files

Memory-Mapped Files

 Appended slides are by Vivek Pai et al.

 Another set of good slides concerning memory-
mapped files in Linux

 see: Linux Proseminar 2004/04 + 2004/05

© 2009 Universität Karlsruhe (TH), System Architecture Group 12

 Fabian Keller
 Sebastian Möller

 Bad news: Study of your own!!!!

 Good news: Not in the focus of this year’s exams

Allocating Memory

 Old days:
 manual tuning of sizes

 Benefits?
VM

FS Cache
Network

OS
OS

Network
OS
OS

FS Cache
Network

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 13

 Drawbacks?

VM
VM
VM
VM
VM
VM
VM

Desktop

VM
VM

Server

FS Cache
FS Cache
FS Cache
FS Cache
FS Cache

Manual Memory Tuning

 Fixed-size allocations for VM, FS cache

 Done right, protects programs from each other

 Backing up file system trashes FS cache

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 14

 Large-memory programs don’t compete with disk-
bound programs

 However, done poorly memory underutilized

What Is Main Memory?

 At some level, a cache for the disk
 Permanent data written back to fs
 Temporary data in main memory or swap

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 15

 Main memory is much faster than disk

 Consider one program that accesses lots of
files and uses lots of memory
 How do you optimize this program?
 Could you view all accesses as page faults?

Consider Ages With Pages

 What happens if 5 FS pages are
really active?

 What happens if relative
demands change over time? VM 100

FS, 5
FS, 3
FS, 1
FS, 1

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 16

g

VM, 1
VM, 1
VM, 3
VM, 5
VM, 10
VM, 20
VM, 50
VM, 100

Unified VM Systems

 Now what happens when a
page is needed?

 What happens on disk
backup?
Did h th FS 5

VM, 10
VM, 20
VM, 50
VM, 100

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 17

 Did we have the same
problem before?

VM, 1
VM, 1
FS, 1
FS, 1
FS, 3
VM, 3
VM, 5
FS, 5

Why Mmap?

 File pages are a lot like VM pages

 We don’t load all of a process at once

 Why load all of a file at once?

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 18

 Why copy a file to access it?
 There’s one good reason

Mmap Definition

void *mmap(void *addr, size_t len,
int prot, int flags,
int fildes, off_t off);

 addr: where we want to map it (into our AS)

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 19

p ()

 len: how much we want mapped

 prot: allow reading, writing, exec

 flags: is mapped shared/private/anonymous,
fixed/variable location, swap space reserved?

 fildes: what file is being mapped

 off: start offset in file

Mmap Diagram

Stack
Stack

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 20

Code
Code
Data
Heap

File A Process File B

Mmap Implications

 # of VM regions increases
 Was never really just code/text/heap/stack
 Access/protection info on all regions

 File system no longer sole way to access file

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 21

 File system no longer sole way to access file
 Previously, access info via read() and write()
 Same file via file system and mmap?

Mmap Versus Read

 When read() completes
 All pages in range were loaded at some point
 A copy of the data in user’s buffers
 If underlying file changes, no change to data in

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 22

y g g , g
user’s buffer

 When mmap() completes
 Mapping of the file is complete
 Virtual address space modified
 No guarantee file is in memory

Cost Comparison

 Read:
 All work done (incl disk) before call returns
 No extra VM trickery needed
 Contrast with write()

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 23

 Mmap:
 Inode in memory from open()
 Mapping is relatively cheap
 Pages needed only on access

Lazy Versus Eager

 Eager:
 Do it right now
 Benefit: low latency if you need it
 Drawback: wasted work if you don’t

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 24

 Lazy:
 Do it at the last minute
 Benefit: “pay as you go”
 Drawback: extra work if you need it all

Double Buffering

Stack
Stack

FS

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 25

Code
Code
Data

FS Copy
Heap

File Read Process File Mmap

Sharing Memory

 Two processes map same file shared

 Both map it with “shared” flag
 Same physical page accessed by two processes at

t i t l dd

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 26

two virtual addresses

 What happens when that page victimized
(PTE mechanics)?
 Have we seen this somewhere else?

Reloading State

 Map a file at a fixed location

 Build data structures inside it

 Re-map at program startup

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 27

 Re map at program startup

 Benefits versus other approaches?

What Is a “Private” Mapping?

 Process specifies changes not to be visible to
other processes

 Modified pages look like VM pages

Memory-Mapped Files

© 2009 Universität Karlsruhe (TH), System Architecture Group 28

 Written to swap if pressure
 Disposed when process dies

Log Structured FSLog Structured FS

29© 2009 Universität Karlsruhe (TH), System Architecture Group

Log-Structured File Systems*

 With CPUs faster & memory larger

 disk caches can also be larger

 many read requests can come from cache

 most disk accesses will be writes

Special Cases

© 2009 Universität Karlsruhe (TH), System Architecture Group 30

 most disk accesses will be writes
 If writes, will cover only a few bytes

 If writes, to Unix-like new files
 Inode of directory, directory

 Inode of file, meta blocks and data blocks of file

*Rosenblum and Ousterhout

Log-Structured File Systems

 Log-structured FS: use disk as a circular buffer:

 Write all updates, including inodes, meta data
to end of log
 have all writes initially buffered in memory

Special Cases

© 2009 Universität Karlsruhe (TH), System Architecture Group 31

 have all writes initially buffered in memory
 periodically write these within 1 segment (1 MB)
 when file opened, locate i-node, then find blocks

 From the other end, clear all data, no longer
used

Introduction

Example File SystemsExample File Systems

32© 2009 Universität Karlsruhe (TH), System Architecture Group

CD-ROM
Classic FS

CP/M
MS-DOS
Unix
BSD FFS
EXT2
Linux VFS

Journaling (log strutured) FS
EXT3
XFS
JFS
Reiser
NTFS
Veritas

Special slides File_Appendix1

FS Cache “writes-behind”
in case of RAM pressure or
periodically or due to
system calls or commands

UNIX File System Structure

Unix FS

Application

© 2009 Universität Karlsruhe (TH), System Architecture Group 33

?
Character Block

Device Drivers (e.g. disk driver)

Buffer

File Subsystem

Cache

file block f0

Speedup due
to FS cache

File and FS
consistency problems

Using a Unix File

 Opening a file creates a file descriptor fid
 Used as an index into a process-specific table of open files
 The corresponding table entry points to a system-wide file table
 Via buffered inode table, you finally get the data blocks

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 34

fid =open(...)

user address space

read(fid,…)

open files
per process

file table
(system wide)

inode table
(in a buffer)

kernel address space

Original Unix File System
 Simple disk layout

 Block size = sector size (512 bytes)
 Inodes on outermost cylinders1

 Data blocks on the inner cylinders
 Freelist as a linked list

 Issues

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 35

 Index is large
 Fixed number of files
 Inodes far away from data blocks
 Inodes for directory not close

together
 Consecutive file blocks can be

anywhere
 Poor bandwidth (20 KB/sec) for

sequential access

1in very early Unix FSs inode table in the midst of the cylinders

Unix File Names

 Historically only 14 characters

 Version V up to 255 ASCII characters

<filename> . <extension>

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 36

 program.c ~ a C-source code

 program.h ~ header file for type definition etc.

 program.o ~ an object file

Important Unix Directories

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 37

Unix V Directory Entry V71

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 38

1Historical version

BSD FFS

 Use a larger block size: 4 KB or 8 KB

 Allow large blocks to be chopped into fragments

 Used for little files and pieces at the ends of files

BSD FFS

© 2009 Universität Karlsruhe (TH), System Architecture Group 39

 Use bitmap instead of a free list

 Try to allocate more contiguously

 10% reserved disk space

BSD FFS Directory

 Directory entry needs three elements:
 length of dir-entry (variable length of file names)

 file name (up to 255 characters)

inode number (index to a table of inodes)

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 40

 inode number (index to a table of inodes)

 Each directory contains at least two entries:
 .. = link to the parent directory (forming the directory tree)

 . = link to itself

 FFS offers a “tree-like structure” (like Multics),
supporting human preference, ordering hierarchically

Unix BSD FFS Directory (2)

Unix FS

voluminous = colossal

19 19

© 2009 Universität Karlsruhe (TH), System Architecture Group 41

 BSD directory three entries (voluminous = hardlink to colossal)

 Same directory after file voluminous has been removed

Unix Directories

 Multiple directory entries may point to same inode (hard link)

 Pathnames are used to identify files
/etc/passwd an absolute pathname
../home/lief/examination a relative pathname

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 42

 Pathnames are resolved from left to right

 As long as it’s not the last component of the pathname,
the component name must be a directory

 With symbolic links you can address files and directories with
different names. You can even define a symbolic link to a file
currently not mounted (or even that never existed); i.e. a
symbolic link is a file containing a pathname

/

bin etc usr

cc sh passwdgetty

mount-point

root file system

Logical and Physical File System

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 43

cc sh passwdgetty

/

bin include src

awk yacc stdio.h uts

mountable file system

Mounting a File System

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 44

(a) Before mounting (b) After mounting

Logical and Physical File System

 A logical file system can consist of different physical file
systems

 A file system can be mounted at any place within another
file system

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 45

 When accessing the “local root” of a mounted file system, a
bit in its inode identifies this directory as a so-called mount
point

 Using mount respectively umount the OS manages a so
called mount table supporting the resolution of path names
crossing file systems

 The only file system that has to be resident is the root file
system (in general on a partition of a hard disk)

Layout of a Logical Disk

 Each physical file system is placed within a logical disk partition.
A physical disk may contain several logical partitions (or logical
disks)

 Each partition contains space for the boot block, a super block,
the inode table, and the data blocks
O l th t titi t i l b t bl k

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 46

b s inode table

. . .

file data blocks

. . .

border

 Only the root partition contains a real boot block
 Border between inodes and data blocks region can be set, thus

supporting better usage of the file system
 with either few large files or
 with many small files

Linking of Files

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 47

(a) Before linking (b) After linking

Hard Links Symbolic Links

Hard link is another file name, i.e. another directory entry
pointing to a specific file; its inode-field is the same in all hard
links. Hard links are bound to the logical device (partition).

Each new hard link increases the link counter in file’s i-node.
As long as link counter 0, file remains existing after a rm.

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 48

In all cases, a remove decreases link counter.

Symbolic link is a new file containing a pathname pointing to
a file or to a directory. Symbolic links are evaluated per access.
If file or directory is removed the symbolic link points to
nirwana.

You may even specify a symbolic link to a file or to a directory
currently not present or even currently not existent.

sys realfile.h

/

usr

src include

inode.h

uts

sys

testfile.h

Symbolic Links

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 49

With: symlink(“/usr/src/uts/sys”, “/usr/include/sys/”) you add a symbolic link to a directory,
i.e. you create the file /usr/include/sys pointing to the directory /usr/src/uts/sys

With: symlink(“/usr/include/realfile.h”, “/usr/src/uts/sys/testfile”) you add a file link to
realfile.h

The following 3 pathnames access the same file: /usr/include/realfile.h
/usr/include/sys/sys/testfile.h
/usr/src/uts/sys/testfile.h

Using relative path names you may benefit from hard and soft links

How to use a Symbolic Link?

What does Unix do, when accessing a symbolic link?

Example of the previous slide:

fopen(/usr/src/uts/sys/testfile.h, …);

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 50

cp(/usr/src/uts/sys/testfile.h, newfile)

Unix File Management

 Ordinary files = array of bytes, no record structures
at system level

 Types of files
 ordinary: contents entered by user or program

di t t i li t f fil

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 51

 directory: contains a list of file names
 (including length field and inode-numbers
 special: used to access peripheral devices
 named: for named pipes

 Inode = file descriptor (file header) containing file attributes
 file mode
 link count
 owner and group id
 … etc.

Unix Inode

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 52

single indirect

.

.
.
.

.

double indirect

.

.

.

triple indirect

Access Structure

Unix FS

direct

© 2009 Universität Karlsruhe (TH), System Architecture Group 53

. .

.

.

.

.

Remark:
Depending on the block size (e.g. 512 Bytes, ...)
and on the pointer length (e.g. 4 Bytes)
maximum file size is greater than 2 MB.
“Small” files are favored concerning access speed.

Buffering

 Disk blocks are buffered in main memory. Access to
buffers is done via a hash table.

 Blocks with the same hash value are chained together
 Buffer replacement policy = LRU
 Free buffer management is done via a double-linked list.

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 54

hash table

head of free list

g

block status flags
pointer to cached block

device number

Data block in memory

Used for

Dirty block,
Locked block etc.

UNIX Block Header

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 55

block number on device
I/O error status

bytes left to transfer

pair of pointers in case
of hash collisions

pair of pointers
for the free list

Between other
block headers

Used for
hashing

Used by
disk I/O driver

Device#,Block#

“Block Headers”Device List
(hash table)

UNIX Buffer Cache (1)

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 56

X

Y

Z

Remark:
X,Y, and Z are block headers of blocks mapped into the same hash table entry

Free List Header

Device List
(hash table)

Device#,Block#

Top of the LRU-stack =
most recently accessed block

The other
“green” pointers

establishing the free list
are omitted

UNIX Buffer Cache (2)

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 57

“Free List Header”

forward

Remark: The free list contains all block headers, establishing a LRU order
Least recently
accessed block

X

Y

Z

UNIX Buffer Cache (3)

Advantages:
 reduces disk traffic

 “well-tuned” buffer has hit rates up to 90%
(di t O t h t 10 th SOSP 1985)

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 58

(according to Ousterhout 10.th SOSP 1985)

 ~ 10% of main memory for the buffer cache
(recommendation for old configurations)

UNIX Buffer Cache (4)

Disadvantages:
 Write-behind policy might lead to

 data losses in case of system crash and/or

 inconsistent state of the FS

Unix FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 59

 rebooting system might take some time due to fsck,
i.e. checking all directories and files of FS

 Always two copies involved
 from disk to buffer cache (in kernel space)

 from buffer to user address space

 FS Cache wiping if sequentially reading a very large
file from end to end and not accessing it again

Linux File System(s)

 Virtual File System VFS
 Used to host different file systems, e.g.

 EXT2

 EXT3

Linux FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 60

 Reiser FS

 …

 A generic interface

See: Various Linux Proseminar talks
Extract the pros & cons of the VFS approach

Reiser FSReiser FS

61© 2009 Universität Karlsruhe (TH), System Architecture Group

Slides cover Reiser3
Reiser4 see:

http://www.namesys.com/v4/v4.html#repacker

Outline

??

??

Reiser FS

1. What is ReiserFS?

© 2009 Universität Karlsruhe (TH), System Architecture Group 62

??

??

2. How is it implemented?

3. Why did they do it like they did?

References

 Namesys’s Homepage www.namesys.com,

 ReiserFS Architectural Overview
(www.namesys.com/v4/v4.html)

Where?Where?

Reiser FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 63

 “Future Visions” Whitepaper
(www.namesys.com/whitepaper.html)

 The Source Code
http://homes.cerias.purdue.edu/~florian/reiser/reiserfs.php

 And many more papers on Reiser FS

Introduction
What?What?

Reiser FS

 FS developed by Hans Reiser’s company Namesys

 First version released in mid-90s

 Part of Linux since 2.4.1 (ReiserFS V3.5)

© 2009 Universität Karlsruhe (TH), System Architecture Group 64

This slides are about Reiser V3 (4)

 ReiserFS V3.6 is default FS for
 SuSE

 Lindows

 Gentoo

Reiser FS Features

Good design
and clever

implementation

What?What?

Reiser FS

 fast, but space efficient

 scalable
 about 10 times faster than ext2fs

 no penalty for small files

© 2009 Universität Karlsruhe (TH), System Architecture Group 65

implementation

 reliable
 journaling support

 atomic file operations (i.e. transaction alike)

 compatible, but extensible
 full support for UNIX semantics

 sophisticated plugin system

Reiser FS and Disk Partitions

 Each ReiserFS partition might contain 232 blocks
 Partition capacity depends on size of block

 First 64 K reserved for

 partition labels and booting info

© 2009 Universität Karlsruhe (TH), System Architecture Group 66

 Next, one superblock (for complete partition)

 Next, bitmap (for partition management)

 Each file object→ (at least) one unambiguous key
 Directory id

 Object id

 Offset

 Type

Reiser FS Features
How?How?

Reiser FS

 fast, but space efficient

 about 10 times faster than ext2fs

 no penalty for small files

© 2009 Universität Karlsruhe (TH), System Architecture Group 67

p y

 reliable

 compatible, but extensible

Semantic vs. Storage Layer

 Theoretical point of view:
Filesystem: Name Object

 Two software layers:

 Semantic Layer: convert name

How?How?
~/home/reiser.txt

2342

VFS

Reiser FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 68

Semantic Layer: convert name
to key (mostly VFS)

 Storage Layer: find object
with given key

 B+ tree based in RSF3 and
dancing tree1 in RSF4

2342

1Try to collect neighboring data before writing to disk

Recap: B+Trees (1)
How?How?

distance between
leaf and root

same leaves

nodes have [n/2, n] children

items sorted
according to keys

Reiser FS

 Balanced n-way search tree

© 2009 Universität Karlsruhe (TH), System Architecture Group 69

German: “Verzweigungsfaktor”

 Tree grows only at root stays balanced

 High fanout flat tree: good for slow media!

Recap: B+Trees (2)
How?How?

Reiser FS

 B Trees:

 Subtrees “hang” between two data items

 These items’ keys delimit possible keys in subtree

© 2009 Universität Karlsruhe (TH), System Architecture Group 70

 B+Trees:

 Actual data items only in leaves (at lowest level)
 helps caching because of increased locality

 Roots of subtrees store delimiting keys (not actual
items)

A Sample B+Tree

1 23

1 4 23 57

How?How?

delimiting key

pointer to subtree

node

height: 3
fanout: 2

root

Reiser FS

© 2009 Universität Karlsruhe (TH) System Architecture Group
71

1 4 23 57

X X X X X X X X1 3 4 17 23 57 63

no subtree
no delimiter

data item with key 57

node

leaves

Storage Layer How?How?

Reiser FS

 File objects stored in B+Tree (2 ≤ height ≤ 5)

 Node size fixed (4K) no external fragmentation

 Object size variable: split into items that fit into nodes

M ll bj t b t d i t d

© 2009 Universität Karlsruhe (TH), System Architecture Group 72

Additionally: some maintenance structures
(superblock, allocation bitmaps ~ like ext2fs)

 Many small objects can be aggregated into one node
(avoids internal fragmentation)

 One large object can be distributed over multiple nodes

 Very large objects (>16K) are stored in super-size nodes
(called extents)

The Storage Layer in Action
How?How?

root node

branch node

super block

Reiser FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 73

twig node

leaf nodes formatted leaf

unfleaf
(unformatted leaf)

extent
item

extent pointernode pointer

...

Node Layout

block
h d

item body
0

item body
1

item
h d 1

item
h d 0

...

How?How?

Reiser FS

 unfleaf: unformatted, just raw data

 formatted leaf:

© 2009 Universität Karlsruhe (TH), System Architecture Group 74

head 0 1 head 1head 0

 twig node: similar structure; no actual data, only
pointers

 branch node: like twig node, no extent pointers

Item Layout

 item = body + head (see above)
 head layout:

key offset flags type

How?How?

Reiser FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 75

key offset flags type

object this item
belongs to

address of item
body

(seems to be
unused so far)

type of this
item

Item Types How?How?

Reiser FS

 Node Pointer: points to a node (holds delimiting keys)

 Extent Pointer: points to an extent (holds extent’s size
and key)

 File Body: raw data

© 2009 Universität Karlsruhe (TH), System Architecture Group 76

 Stat Data: file metadata (ext2fs inode)

 Directory item: hash table of file names and keys

Plugins enable to create your own item types.

Keys

 Object

How?How?

composed of items (storage layer)

composed of units (semantic layer)

keys actually
designate
units, not
objects!

 Key structure:

Reiser FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 77

major
locality object id offsetminor

locality
un-
used

parent directory’s
object id

“data or
metadata?”

file this unit
belongs to

position of unit
within file

How?How?

<key1>
0x001C
0x0000

<key2>
0x0025
0x0000

block header item body 1 item headers

u e s t i o n s ? I n a

item body 2

key
offs
flag

0000 0002 0F9B 0029
52344653 091F88A5
0000000000000000

0000 0100

Reiser FS

A Real-Life Leaf Node

© 2009 Universität Karlsruhe (TH), System Architecture Group 78

0x00060x0006

28 37 41

<key2> = 0x00000000000000000000000000371D350000000000047114
<key1> = 0x000000000001DFF70000000001B129C10000000000047114

offset major loc.object id

/home/reiser.txt /home/hobbit.txt

minor loc.

g
type0000 0100

0 4096

Journaling
How?How?

Reiser FS

 All FS modifications done as atomic transactions

 An atomic transaction...
 either completes or does nothing

 never leaves metadata in inconsistent state

© 2009 Universität Karlsruhe (TH), System Architecture Group 79

 never leaves metadata in inconsistent state

 Intermediate state stored in a journal/log

 Transaction procedure:
1. log start of transaction

2. do transaction

3. log completion of transaction

Fixed Logs How?How?

Reiser FS

 partition disk into logging area and commit area
 copy data to logging area first, then to destination
 log structured as circular buffer fast insertion
 but: need two copies!

© 2009 Universität Karlsruhe (TH), System Architecture Group 80

log area commit area

Wandering Logs

 Idea: don’t move block to commit area, instead
move commit area to block

How?How?

log

Reiser FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 81

... ...

but: move a node
 have to move its parent node
...
have to move root of tree

still points to old node!still points to old node!
ReiserFS decides at runtime which method to use.

commit

Log Implementation How?How?

Reiser FS

 ReiserFS partitions changed blocks into two sets
 Relocate Set: blocks that can stay where they are

(i.e., blocks with Wandering Log policy)
 Overwrite Set: blocks that have to be copied

somewhere else (i.e., blocks with Write Twice

© 2009 Universität Karlsruhe (TH), System Architecture Group 82

somewhere else (i.e., blocks with Write Twice
policy)

 Transaction represented by its Wander List: records
destinations of blocks from Overwrite Set

 Wander Lists of incomplete transactions recorded at
fixed disk location

 If system crashes: Wander List “replayed” on next
boot

Plugins

 ReiserFS can be customized through plugins:
 object plugins: provide object semantics (standard: regular

file, symlink, directory)

 security plugins: control access to object data (used by
object plugins)

How?How?

semantic

layer

Reiser FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 83

 hash plugins: implement hash functions to order directory
entries

 tail policy plugins: decide whether an object should be
split into items or put into an extent

 item plugins: define new kinds of items

 node plugins: define new kinds of nodes

 plus some more esoteric ones...

 Reiser4: plugins static, dynamic ones to come

storage

layer

Reiser FS and VFS

 VFS requests: handed to object plugins
 plugin: knows how to handle them (e.g., standard file

plugin supports traditional UNIX semantics)
 system call reiser4: access to more advanced

R i FS f t (f l i)

How?How?

Reiser FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 84

ReiserFS features (e.g., fancy plugins)
 but: using a separate system call just for ReiserFS is

tricky and overall just

DROP DEAD UGLYDROP DEAD UGLY
(Reiser promises it is only a temporary solution ...)

 fast, but space efficient
 about 10 times faster than ext2fs
 no penalty for small files

How?How?

Reiser FS

Reiser FS Features

© 2009 Universität Karlsruhe (TH), System Architecture Group 85

 reliable
 journaling support

 compatible, but extensible
 full support for UNIX semantics
 sophisticated plugin system

The Big Picture Why?Why?

Reiser FS

 Speed and reliability: hardly need justification

 Efficient small file handling
 more important than you might realize: Max’s home

installation has more than 80% files <16K!
 Allows nice generalization: file attributes can be stored as

© 2009 Universität Karlsruhe (TH), System Architecture Group 86

 Allows nice generalization: file attributes can be stored as
separate, small files

 Whole databases could be integrated into the file system

 Future versions:
 Reiser5: distributed FS
 Reiser6: non-hierarchical file lookup (DB queries)

Ultimate Goal:
Unifying FS, database and search engine.

Evaluation

 Pro:
+ speed
+ reliability
+ extensibility

So?So?

Reiser FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 87

 Con:
 difficult setup (no easy conversion from ext2fs)
 Linux only
 complex code:

ext2fs: 4659 LOC
ext3fs: 7840 LOC
Reiser3: 20780 LOC
Reiser4: 92061 LOC but: relatively clean code; no foos

cf. fs/ext2fs/super.c:174:
static void init_once(void * foo, ...)

Summary

 Reiser FS is a modern file system supporting

 fast and efficient file handling through tree
structured storage layer

 transaction safety and easy crash recovery

Reiser FS

© 2009 Universität Karlsruhe (TH), System Architecture Group 88

 transaction safety and easy crash recovery
through journaling

 extensibility and scalability through plugins

 Its more advanced semantics, however, cannot
adequately be supported by commodity OSes like
Linux.

