
24 File System24 File System
Directories, Links, FS Implementation

February 4 2009
Winter Term 2008/09

Gerd Liefländer

Recommended Reading
 Bacon, J.: Operating Systems (5)

 Silberschatz, A.: Operating System Concepts (10,11)

 Stallings, W.: Operating Systems (12)

 Tanenbaum, A.: Modern Operating Systems (6)

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Nehmer, J.: Systemsoftware (9)

 Solomon, D.A.: Inside Windows NT, 1998

 … Distributed File-Systems related Papers

Summary on some commodity OSes
http://www.wsfprojekt.de/index.html

2

Overview

Roadmap for Today
 Directories

 Pathname
 Link, Shortcut, Alias
 File Sharing
 Access Rights

 Implementation of a FS
 Files

we focus on Unix/Linux

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Directories
 Shared Files
 Protected Files

 Storage Management
 Disk Space Management
 Block Size

 FS Reliability

 FS Performance
not in this course

Study of your own and apply
concepts of RAM-Management

3

DirectoriesDirectories

Disk Structure
 Disk can be subdivided into partitions

 Disks, partitions1 can be RAID protected against failure

 Disk or partition can be used raw – without a file
system, or formatted with a file system (FS)

 Entity containing a FS known as a volume

 Each volume containing a FS also tracks that FS’s info in
device directory or volume table of contents

 As well as general-purpose FSs there are many special-
purpose FSs, frequently all within the same operating
system or computer

1Partitions also known as minidisks, slices
© 2009 Universität Karlsruhe (TH) System Architecture Group

5

A Typical File-system Organization

Volume

© 2009 Universität Karlsruhe (TH) System Architecture Group
6

Operations Performed on Directory

 Search for a file

 Create a file

 Delete a file

 List a directory

 Rename a file

 Traverse the file system

© 2009 Universität Karlsruhe (TH), System Architecture Group 7

Organization of Directories

 Efficiency: locating a file quickly

 Naming: convenient to users
 Two users can have same name for different files

Th fil h l diff t The same file can have several different names

 Grouping: logical grouping of files by properties
 all Java programs
 all games
 all programs of a project
 …

© 2009 Universität Karlsruhe (TH), System Architecture Group 8

Directory (Folder)
 Directory is a node in a FS owned by an (authorized)

subject (e.g. root) containing information about
(some or all) files of the FS

Directories

Directory

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Both directories and files reside on disk or …
 Backups of these both objects are kept on tapes etc.

F 1 F 2 F 3
F 4

F n
Files

9

Directory (Folder)

 The collection of directories and files establish a
(hierarchical) FS structure

 In LINUX there are some special directories e.g.
 root

Directories

© 2009 Universität Karlsruhe (TH), System Architecture Group

 home
 working

 Principle structure of a modern FS is a rooted tree
 Pathnames help to unambiguously identify files

 Provides mapping between file names → files

 Process of file retrieval = navigation

10

Single-Level Directory

 A single directory for all users

Naming problem

Grouping problem

© 2009 Universität Karlsruhe (TH), System Architecture Group 11

Two-Level Directory
 Separate directory for each user

• Path name
• Can have the same file name for different user
• Efficient searching
• No grouping capability

© 2009 Universität Karlsruhe (TH), System Architecture Group 12

Tree-Structured Directories

Efficient Searching & Grouping Capability
Current directory (working directory)

cd /spell/mail/prog
type list

© 2009 Universität Karlsruhe (TH), System Architecture Group 13

Role of Working Directory

 Absolute pathnames can be tedious, especially when
FS-tree is deep

 Idea of a (current or) working directory cwd
 File is referenced via a (hopefully shorter) relative pathname

d b l (’) k’

Directories

© 2009 Universität Karlsruhe (TH), System Architecture Group

 cwd belongs to a (process’) task’s execution environment

 The initial wd is often called home

 Example:
cwd = /home/lief/secret/examinations/SA
lpr ./solution_exam

14

Relative ver. Absolute Pathnames

 Absolute pathname
 Path from root of FS to file, e.g.

 /home/lief/secret/examinations/SA
 Relative pathname

P h f ki di fil

Directories

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Path from current working directory to file

Note:

 ‘.’ refers to current directory
 ‘..’ refers to parent directory

15

Benefit of Relative Pathname

 Improved portability
Example: A program system

Directories

/

toolsX toolsY

© 2009 Universität Karlsruhe (TH), System Architecture Group

data programs

dat1.a liba libb prog

If you move the complete program system you must change all
absolute pathnames whereas relative pathnames can survive

16

Hierarchical FS (à la Unix)

Directories

passwd

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Unambiguous file names via pathnames, e.g.

/bin/passwd ≠ /etc/passwd

passwd

17

UNIX Directory Operations

 Create Readdir

Directories

Example: Unix directory operations

© 2009 Universität Karlsruhe (TH) System Architecture Group

 Delete
 Opendir
 Closedir

 Rename
 Link
 Unlink

18

Unix/Linux Link

Links

 Direct access to a file without navigation

 Unix hard link: ln filename linkname
(another name to the same file = same
inode file is only deleted if last hardlink has

© 2009 Universität Karlsruhe (TH), System Architecture Group

inode, file is only deleted if last hardlink has
been deleted, i.e. if refcount in inode = 0);
invalid links are not possible

 Symbolic link: ln –s filename linkname
(a new file linkname with a link to a file
with name filename, whose file might be
currently not mounted or not even exist.)

19

Acyclic-Graph FS Structure

© 2009 Universität Karlsruhe (TH), System Architecture Group

Shared subdirectory

Local
copy

Local
copy

20

File Sharing

 In multi-user systems, files can be shared
among multiple users

 Three issues

File Sharing

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Efficiently access to the same file?

 How to determine access rights?

 Management of concurrent accesses?

21

Access Rights (1)

 None
 User might not know of existence of file
 User is not allowed to read directory

containing the file

Access Rights

© 2009 Universität Karlsruhe (TH), System Architecture Group

g

 Knowledge
 User can only determine the

 file existence
 file ownership

22

Access Rights (2)

 Execution
 User can load and execute a program, but

cannot copy it

Reading

Access Rights

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Reading
 User can read the file for any purpose,

including copying and execution

 Appending
 User can only add data to a file, but cannot

modify or delete any data in the file

23

Access Rights (3)

 Updating
 User can modify, delete, and add to file’s

data, including creating the file, rewriting
it, removing all or some data from the file

Access Rights

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Changing protection
 User can change access rights granted to

other users

 Deletion
 User can delete the file

24

Access Rights (4)

 Owner

 Has all rights previously listed

 May grant rights to other users using the

Access Rights

© 2009 Universität Karlsruhe (TH), System Architecture Group

y g g g
following classes of users
 Specific user
 User groups
 All (for public files)

25

Classical Unix Access Rights (1)

total 1704
drwxr-x--- 3 lief 4096 oct 14 08:13 .
drwxr-x--- 3 lief 4096 oct 14 08:13 ..
-rw-r----- 1 lief 123000 feb 01 22:30 exam

f

Access Rights

© 2009 Universität Karlsruhe (TH), System Architecture Group

 First letter: file type
 d for directories
 - for regular files
 b for block files
 …

 Three user categories:
 user, group, and others

What else?

26

Classical Unix Access Rights (2)

total 1704
drwxr-x--- 3 lief 4096 oct 14 08:13 .
drwxr-x--- 3 lief 4096 oct 14 08:13 ..
-rw-r----- 1 lief 123000 feb 01 22:30 exam

Access Rights

hardlink count

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Three access rights per category
 read, write, and execute

 Execute permission for a directory = permission to
access files in the directory

 You must have the read permission to a directory if you
want to list its content

27

Classical Unix Access Rights (3)

 Shortcomings

 Three user(subject) categories is not enough

 In Windows you have finer granularity concerning
access rights per folder and per file e g you can

Access Rights

© 2009 Universität Karlsruhe (TH), System Architecture Group

access rights per folder and per file, e.g. you can
explicitly deny/allow access for a specific user

 Unix has introduced the concept of ACLs

 An ACL is a list -bound to a file f- containing
all individual subjects & their individual
permissions how to access this file f

28

Unix ACLs
If I want to view the content of the ACL of the file exam in my
current directory, I can use the following command:

getacl exam the possible result will be
file: exam
owner: lief
group: users

© 2009 Universität Karlsruhe (TH), System Architecture Group

g p
#
user::rwx
group::
other::
In this particular case, the getacl command shows that lief
(= owner of account) is the only one who has read, write, and
execute permissions for the file exam

29

Unix ACLs

If I wish to allow another person with an account on the same
system to access file exam, I use the setacl command, e.g.

setacl -u user:name:permissions file
name is loginID of the person to which you want to assign access,
permissions can be one or more of the following: r,w,x

© 2009 Universität Karlsruhe (TH), System Architecture Group

p g , ,
file is the name of the file.

Example:
I want to enable Raphael with an assumed loginID rneider to
read & modify, but not to execute my file exam: I would use:

setacl -u user:rneider:rw- exam

Note: you always have to use the complete permission triple
30

Unic ACL

Now when I type again getacl exam, the following
information is displayed:

file: exam
owner: lief

© 2009 Universität Karlsruhe (TH), System Architecture Group

owner: lief
group: users

user::rwx
user:rneider:rw-
group::
other::

31

Concurrent Access to Files

 Some OSes provide mechanisms for users to manage
concurrent access to files
 Examples: lock() , flock() system calls

 Typically user can lock
 entire file for updating file or

Concurrent Access

© 2009 Universität Karlsruhe (TH), System Architecture Group

 entire file for updating file or
 individual records for updating

 Mutual exclusion & deadlock are issues for concurrent
access to shared files

 See: solutions to the reader/writer problem

 However: Be careful, some published solutions might
contain errors (see the latest 2 SA examinations)

32

Summary: File Management

 Identifying and locating a selected file
 Using a directory to describe the location of all its files plus

their attributes

 Owner of a file might want to
 Determine user access

Summary

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Find an appropriate file organization for his application
 Easily move data between different files
 Backup and recover her/his files

 Concurrent accesses to files have to be supported

 Users must be controlled when accessing others’ files
 Often the default access mask is too weak

33

Implementing FilesImplementing Files

Implementing Files

Motivation

8
7
6
5

3 4 36 7

© 2009 Universität Karlsruhe (TH), System Architecture Group

4
3
2
1
0

File with a set of
logical file blocks (records)

0

1

2
5

8

Disk with allocated and free
physical disk blocks

???

35

Implementing a FS on Disk

Implementing Files

© 2009 Universität Karlsruhe (TH) System Architecture Group

 Possible FS layout per partition
 Sector 0 = MBR

 Boot info (if PC is booting, BIOS reads in and executes MBR)
 Disk partition info

36

Implementing Files

 FS must keep track of some meta data
 Which logical block belongs to which file?
 In what order do the blocks form the file?
 Which blocks are free for the next allocation?

Gi l i l i f fil th FS t id tif

Implementing Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Given a logical region of a file, the FS must identify
the corresponding block(s) on disk
 Needed meta data stored in

 FAT
 Directory
 Inode

 Creating (and updating) files might imply allocating
new blocks (and moving old blocks) on the disk
 How to do?

37

Allocation Policies

 Preallocation (reservation ~prepaging):
 Need to know maximum size of a file at creation time

(in some cases no problem, e.g. file copy etc.)

 Difficult to reliably estimate maximum size of a file

Implementing Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Users tend to overestimate file size, just to avoid
running out of space

 Dynamic allocation (~demand paging):
 Allocate in pieces as needed

 Analyze pros and cons of both policies

38

Fragment Size *
 Extremes:

 Fragment size = length of file
 Fragment size = smallest disk block size (sector size)

 Tradeoffs:
 Contiguity speedup for sequential accesses

Implementing Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

*see page size

 Many small fragments larger tables needed to
manage free storage management as well as to
support access to files

 Larger fragments help to improve data transfer

 Fixed-size fragments simplify reallocation of space

 Variable-size fragments minimize internal ~, but can
lead to external fragmentation

39

Implementing Files

 3 ways of allocating space for files:
 contiguous
 chained

indexed

Implementing Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 indexed
 fixed block fragments
 variable block fragments

40

Contiguous Allocation

 Array of N contiguous logical blocks reserved per file (to be
created)

 Minimum meta data per entry in FAT/directory
 Starting block address
 N

Implementing Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 What is a good default value for N?

 What to do with an application that needs more than N blocks?

 Discussion similar to ideal page size
 Internal fragmentation
 External fragmentation

 scattered disk

41

Scattered Disk

Implementing Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

(a) Contiguous allocation of disk space for 7 files
(b) State of the disk after files D and F have been removed

42

File Allocation Table

File Name Start Block Length
FileA
FileB
FileC
FileD

2 3
9 5

18 8
27 2

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

FileA

FileB

Contiguous File Allocation

Implementing Files

© 2009 Universität Karlsruhe (TH) System Architecture Group

FileD
FileE

27 2
30 310 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

FileC

FileD

FileE

Remark: To overcome
external fragmentation

 periodic compaction

43

File Allocation Table

File Name Start Block Length
FileA
FileB
FileC
FileD

0 3
3 5
8 8
16 2

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

FileA FileB

FileC

Contiguous File Allocation
(After Compaction)

Implementing Files

© 2009 Universität Karlsruhe (TH) System Architecture Group

FileD
FileE

16 2
18 3

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

FileD FileE

44

Chained Allocation (Linked List)

Implementing Files

 Per file a linked list of logical file blocks, i.e.
 Each file block contains a pointer to next file block, i.e. the

amount of data space per block is no longer a power of two,
 Consequences?

 Last block contains a NIL-pointer (e.g. -1)

 FAT or directory contains address of first file block

© 2009 Universität Karlsruhe (TH), System Architecture Group

 FAT or directory contains address of first file block

 No external fragmentation
 Any free block can be added to the chain

 Only suitable for sequential files

 No accommodation of the principle of disk locality
 File blocks will end up scattered across the disk
 Run a defragmentation utility to improve situation

45

Chained Allocation (2)

Implementing Files

Logical/

Nil

© 2009 Universität Karlsruhe (TH) System Architecture Group

Storing a file as a linked list of disk blocks

Logical/

Nil

46

File Allocation Table

File Name Start BlockLength
...

......
FileB 5

...
1

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

FileB

Chained Allocation (3)

Implementing Files

© 2009 Universität Karlsruhe (TH) System Architecture Group

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

Remark:
If you only access sequentially
this implementation is quite suited.

However requesting an individual record
requires tracing through the chained block,
i.e. far too many disk accesses in general.

47

Linked List Allocation within RAM

Implementing Files

 Each file block only used for
storing file data

 Linked list allocation
with FAT in RAM
 Avoids disk accesses when

hi f bl k

© 2009 Universität Karlsruhe (TH) System Architecture Group

searching for a block
 Entire block is available for

data
 Table gets far too large for

modern disks,
 Can cache only, but still

consumes significant RAM
 Used in MS-DOS, OS/2

Similar to an inverted page table, one entry per disk block

48

Indexed Allocation (1)

 Indexed allocation
 FAT (or special inode table) contains a one-level

index table per file

 Generalization n-level-index table

Implementing Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Generalization n-level-index table
 Index has one entry for allocated file block

 FAT contains block number for the index

49

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

File Allocation Table

File Name Index Block

...
...
...

...FileB 24

FileB

Indexed Allocation (2)

Implementing Files

© 2009 Universität Karlsruhe (TH) System Architecture Group

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

1
8
3
14
28

50

0 1 2 3 4

5 6 7 8 9

File Allocation Table

File Name Index Block

...

...

...

...
FileC 24

FileB

Indexed Allocation (3)

Implementing Files

© 2009 Universität Karlsruhe (TH) System Architecture Group

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

Start Block Length
1
28
14

3
4
1

Variable sized file portion in # blocks

51

Analysis of Indexed Allocation

Implementing Files

 Supports sequential and random access to a file

 Fragments
 Block sized

 Eliminates external fragmentation

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Eliminates external fragmentation

 Variable sized
 Improves contiguity
 Reduces index size

 Most popular form of all three allocation schemes

52

Indexed Allocation (5)

Implementing Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

An example i-node
53

characteristic contiguous chained indexed
preallocation? necessary possible possible
fixed or variable
size fragment?

variable fixed fixed variable

Summary: File Allocation Methods

Implementing Files

© 2009 Universität Karlsruhe (TH) System Architecture Group

fragment size large small small medium
allocation
frequency

once low to
high

high low

time to allocate medium long short medium
file allocation
table size

one entry one entry large medium

54

Implementing DirectoriesImplementing Directories

Implementing Directories

Implementing Directories

© 2009 Universität Karlsruhe (TH) System Architecture Group

 (a) A simple directory (MS-DOS)
 fixed size entries
 disk addresses and attributes in directory entry

 (b) Directory in which each entry just refers to an i-node (Unix)

56

Implementing Directories

 How to implement a Unix-like directory?

Implementing Directories

© 2009 Universität Karlsruhe (TH), System Architecture Group

filename

inode

 What to do when some entries are deleted?
 Never reuse

 Bridge over the directory holes
 Compaction, but when?

 eager or
 lazy

57

Directory Entries & Long Filenames

Implementing Directories

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Two ways of handling long file names in directory
 (a) In-line
 (b) In a heap

58

Analysis: Linear Directory Lookup

 Linear search for big directories not efficient

 Space efficient as long as we do compaction
 Either eagerly after entry deletion or

 Lazily (but when???)

Implementing Directories

© 2009 Universität Karlsruhe (TH), System Architecture Group

 With variable file names deal with fragmentation

 Alternatives?
 Remember our various file organizations (including special

file access methods)

 Hashing

 Tree-Index-sequential

59

Tree Structure for a Directory

 Method
 Sort files by name
 Store directory entries in a B-tree like

structure
 Create/delete/search in that B-tree

Implementing Directories

© 2009 Universität Karlsruhe (TH), System Architecture Group

/ /

 Advantages:
 Efficient for a large number of files per

directory

 Disadvantages:
 Complex
 Not that efficient for a small number of files
 More space

…

60

Hashing a Directory Lookup

 Method:
 Hashing a file name to an inode
 Space for filename and meta data is variable sized
 Create/delete will trigger space allocation and free

 Advantages:

Implementing Directories

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Advantages:
 Fast lookup and relatively simple

 Disadvantages:
 Not as efficient as trees for very large directories (due to Kai

Li, Princeton)

61

Implement Shared FilesImplement Shared Files

Shared Files
Shared Access

Implementing Shared Files

Shared Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 File system containing a shared file

63

Shared Files via Hardlinks

Shared Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

(a) Situation prior to linking

(b) After the link is created

(c) After the original owner removes the file

64

Problems with Links

Shared Files

 Hardlinks
 Owner wants to delete her/his file problems??

 Symbolic links (softlinks)
 Overhead to lookup shared file

© 2009 Universität Karlsruhe (TH), System Architecture Group

p
 Name resolution for the symbolic link name
 Name resolution for the pathname stored in the symbolic link

 How to avoid copying the same shared file multiple
times during backup?
 Do you have a clever idea?

65

Shared Access

 User locks entire file when it is to be updated

 User locks individual records during an update

 Mutual exclusion and danger of deadlock are

Shared Access

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Mutual exclusion and danger of deadlock are
issues for shared files (especially for files with
more than one entry point, e.g. a B*-file)

 Remember: Read-/write-locks have been
invented just for this purpose

66

Implement Protected FilesImplement Protected Files

Protected Files
How to provide security and protection?

 Security policy vs. protection mechanism

 Protection is a mechanism to enforce a security policy
 Roughly the same set of choices, no matter what policy

Secure Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 A security policy delineates what is acceptable and
unacceptable behavior
 Example security policies:

1. Each user can only allocate 40 MB of disk
2. No one but root can write to password file
3. No one can read other’s emails

68

Protection

 Authentication
 Make sure we know whom we are talking to

 Unix: login + password
 Credit card companies: social security no + mom’s name
 Bars: driver’s license

Secure Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

Mechanism

Policy

 Authorization
 Determine if user x is allowed to do action y
 Need a simple database

 Access enforcement
 Enforce authorization decision
 Ensure there are no loopholes

69

Good Security via Passwords?

Secure Files

 If properly used yes

 In reality no, no, no
 Good passwords are written down &

placed under the keyboard

© 2009 Universität Karlsruhe (TH), System Architecture Group

 placed under the keyboard

 pinned to the monitor etc.

 Bad passwords can be
 guessed easily or

 detected via a dictionary attack

 Find better ways to do authentication

70

Protection Domain
 Once the identity of user Bob is known, what is Bob

allowed to do in the FS?

 Can be represented as an access control matrix ACM
with row per subject & column per resource (object)

h h d h f h h

Secure Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 What are the pros and the cons of this approach?

File A File B File C

Domain 1 r w rw

Domain 2 rw rw …

Domain 3 r … r

71

Access Control List ACL

 With each file, indicate which users are
allowed to perform which operations
 Each object has a list of pairs <user, operation>

l d d

Secure Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 ACLs are simple, and used in many FS

 Implementation
 Store ACL with each file
 Use login authentication to identify user
 Kernel implements ACL check

72

Capabilities
 With each user1, indicate which files are allowed to

be accessed and in what ways
 Store list of pairs <file, operations> per user

 Capabilities frequently do both naming and protection
 User can only see a file if he has a capability for it

Default is no access

Secure Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Default is no access

 Capabilities used in systems with high security level

 Issues with capabilities?2

1However, you can also establish a finer granularity for the subjects

2EROS is a system with a complete capability protection scheme

73

Access Enforcement

 Use a trusted party to
 Enforce proper access control
 Protect your authorization information

Kernel is typically the trusted party

Secure Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Kernel is typically the trusted party
 Kernel can do what it wants
 If it has a security bug entire system can crash
 Want to be as small & simple as possible

 Tautology: Security is as strong as the
weakest link in its protection system

74

Some Easy Attacks

 Abuse of privilege
 On Unix, super-user can do anything, e.g.

 Read your mail, send mail in your name, etc.
 More prosaic: you delete the code for OS/161 assignment 3,

your partner might not be that happy

Spoiler/Denial of service (DoS)

Secure Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Spoiler/Denial of service (DoS)
 Use up all resources and make a system crash
 Run a shell script: while(1){mkdir foo; cd foo;}
 Run C program:
while(1){fork(); malloc(1000)[40]=1;}

 Listener
 Passively watch network traffic. Will see anyone’s passwd as

they type it to telnet. Or just watch for file traffic: Often it will be
transmitted in plaintext

75

No Perfect Protection System

 Most abuse done by annoyed employees

 Protection can only increase the effort needed to
intrude the system
 It cannot prevent bad things happening

Secure Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Even assuming a technically perfect system, there
are always ways to defeat
 Burglary, bribery, blackmail, etc.

 Every system has security holes
 It’s just what they look like

76

Storage ManagementStorage Management

Study of your own
(see disk management)

Find out which of these

Storage Media

 Magnetic Media
 Disk
 Floppy
 Streamer

Disk Space Management

© 2009 Universität Karlsruhe (TH), System Architecture Group

Find out which of these
media is more suitable
for specific applications

 Optical Media
 CD-ROM
 CD-R or CD-RW
 DVD
 ...

 Magneto-optical Media

78

Tradeoff in Block Size

 Sequential access
 With a large bloc size, fewer slow I/Os are needed

 Random Access
With a large block size more unrelated data are

Implementing Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 With a large block size more unrelated data are
loaded, wasting main memory and I/O bandwidth

 Consequence
 Choosing the right block size is a compromise

 Modern solution: Offer multiple block sizes

79

Influence of Block Size Why?

Implementing Files

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Red line (left hand scale) gives data rate of a disk
 Dotted line (right hand scale) gives disk space efficiency
 Assumption: all files have size 2KB

Block size

80

Fixed blocking (widely used)

Gaps due to hardware design

Record Blocking Methods

Implementing Files

© 2009 Universität Karlsruhe (TH) System Architecture Group

R5 Track 2R6 R7 R8

Size of physical block
Waste due to block size

constraint from fixed record size

Analysis:
1. Simplifies I/O and buffer allocation in main memory
2. Simplifies memory management on secondary storage (e.g. disk)

81

Variable Blocking: Spanned

Track 1R1 R2 R3 R4 R4 R5 R6

Record Blocking Method (2)

Implementing Files

© 2009 Universität Karlsruhe (TH) System Architecture Group

Track 2R6 R7 R8 R9 R9 R10 R11 R12 R13

Analysis:
1. No wasted space on disk (except at the end of the file)
2. Additional linking between parts of a record is necessary

 random access may require up to 2 disk I/Os
3. No limit on the size of a record

82

Variable Blocking: Unspanned

Track 1R1 R2 R3 R4 R5

Record Blocking Method

Implementing Files

© 2009 Universität Karlsruhe (TH) System Architecture Group

Track 2R6 R7 R8 R9 R10

Analysis:
1. Most physical blocks have wasted space

(unless next record fits exactly into the reminder of the block)
2. Limits size of a record size to the size of a physical block

83

Disk Space Management

Disk Space Management

© 2009 Universität Karlsruhe (TH) System Architecture Group

(a) Storing the free disk block list via a linked list (early Unix)

(b) A bit map (in RAM)

84

List of Free Portions

 Free portions may be chained together; you need
only one pointer in main memory as an entry point.

 Can be applied to “all” file allocation methods.

 If allocation is by variable-length pieces, use first-fit

Disk Space Management

© 2009 Universität Karlsruhe (TH), System Architecture Group

l1 l2 l3 lxlx-1l4
...

85

Caching Free List in RAM

Disk Space Management

© 2009 Universität Karlsruhe (TH), System Architecture Group

(a) Almost-full block of pointers to free disk blocks in RAM
 three blocks of pointers on disk

(b) Result of freeing a 3-block file
(c) Alternative strategy for handling 3 free blocks

 shaded entries are pointers to free disk blocks

86

Disk Quotas

Disk Space Management

© 2009 Universität Karlsruhe (TH), System Architecture Group

Quotas for keeping track of each user’s disk use
87

Block number = logical address of a block

0 1 2 3 4 5 6 7 8 9 10 11 2b-3 2b-2 2b-1...

Disk D

Block Number

Disk Space Management

© 2009 Universität Karlsruhe (TH) System Architecture Group

0 1 2 3 4 5 6 7 8 9 10 11 2 2 2...

b = # bits for a blocknumber

Capacity(D) = ?

Reasons for disk partitioning?

88

FS ReliabilityFS Reliability

File System Reliability

FS Reliability

 No FS can offer protection against physical destruction
of its storage medium, but it can help to restore its
data contents

 FS destruction can have severe implications
ll li i / h i S h

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Install policies/mechanism to overcome FS crashes

 Automatic safeguarding against bad blocks well known

 Clever backup is necessary
 Back up to some tape medium
 Incremental back up within the same storage medium (huge

RAID)

90

File System Reliability

Restoration Problems

 Recover from disaster
 Hopefully not that often ~ fire insurance on houses

 Recover from “stupidity”

© 2009 Universität Karlsruhe (TH), System Architecture Group

 User accidentally removes a file, but still needs it
 Windows avoids this, instead of deleting a file, it

moves the file to “recycle bin”, from where it can
be moved back to be used again

91

File System Reliability

Backup Policies

 Complete Backup (Initial Backup!!)
 Physical dump
 Logical dump

Incremental Backup

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Incremental Backup
 Logical dump

 Non-technical considerations
 Where to store backup tape, e.g. better far away

from the computer, at least not in the same room

92

File System Reliability

Physical Dump

 Dump disk blocks by blocks to backup system

 You can also only backup changed disk blocks
(since the last backup. i.e. incremental
backup)

© 2009 Universität Karlsruhe (TH), System Architecture Group

backup)

 Recovery tool will move the blocks from the
backup storage to the disk when required

93

File System Reliability

Logical Dump

 Traverse the logical FS structure from the root

 You can also dump what you want selectively

 Verify logical structures during backup

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Recovery tool can selectively move files back to FS

 Starts at some specified directory (or directories)

 Don’t dump directories that remained constant

 Recursively dumps all files and subdirectories that
have been changed since previous dump

94

File System Reliability

Recovery from Disk Block Failures

 Boot block
 Create a utility to replace the boot block
 Use a floppy to boot the hard disk image
 Install multiple boot blocks per hard disk (one per

© 2009 Universität Karlsruhe (TH), System Architecture Group

p p (p
partition)

 Super block
 If you have a duplicate, remake the FS
 Otherwise, what to do???

95

File System Reliability

Recovery from Disk Block Failures

 A chained free block or a bitmap block
 Search all reachable files from the root (fsck)
 Figure out what is free and reestablish freelist

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Inode block
 Search reachable files from the root, and then?

 Indirect or data blocks
 Search all reachable files from the root, and then?

96

File System Reliability

Reliability

© 2009 Universität Karlsruhe (TH) System Architecture Group

 A file system to be dumped “logically”
 squares are directories, circles are files
 shaded items, modified since last dump
 each directory & file labeled by i-node number

97

Restoring a FS

 Starting with an empty FS

 Restoring the newest full dump
 First the directories

Then the files

File System Reliability

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Then the files
 Restore free list

 Incremental updating according to
incremental dump files

 Take care with holes in a file

98

File System Reliability

File System Consistency Checks

© 2009 Universität Karlsruhe (TH) System Architecture Group

 File system states
(a) consistent
(b) missing block
(c) duplicate block in free list
(d) duplicate data block

99

FS PerformanceFS Performance

Use a FS Cache (see Disk Cache)

FS Performance (1)

File System Performance

© 2009 Universität Karlsruhe (TH), System Architecture Group

FS cache data structures:
 Hash table for quick look up if file block is already in RAM
 Collision detection linking
 LRU double linking for an exact LRU stack

101

FS Performance (2)

Exact LRU Replacement a good idea?

No, to avoid FS crashes, distinct two
classes of cached blocks:

File System Performance

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Critical blocks
 Inode, meta blocks

 Directory etc.

 “Non critical” file blocks, e.g. data blocks

102

Buffer Management (1)

 Often, data are accessed more than once (e.g. index
blocks etc.) useful to buffer frequently used data
blocks in main memory

 Some OSes use entire free RAM as disk cache

File System Performance

© 2009 Universität Karlsruhe (TH), System Architecture Group

 Before accessing any file data on disk, buffer
management looks to see if desired block is already
in one of its file buffers

103

Buffer Management (2)

 In case of buffer shortage a buffer replacement
(LRU, or LFU) is used

 If you delay updating a modified buffer until it has to
be replaced, you may lose its content in case of a
system crash

File System Performance

© 2009 Universität Karlsruhe (TH), System Architecture Group

system crash

 Important blocks for file system consistency, i.e.
directory blocks or index blocks, should be updated
more frequently.

104

File System Performance

And Don’t Forget:

sync

© 2009 Universität Karlsruhe (TH), System Architecture Group

sync
You are the system architect; it’s your turn to
decide when and how often sync should be
done. Don’t rely on clever users

105

File System Performance (3)

 Improving file system performance
 Readahead of sequential files
 Speculative reading of more than 1 block

File System Performance

© 2009 Universität Karlsruhe (TH), System Architecture Group 106

File System Performance (4)

File System Performance

© 2009 Universität Karlsruhe (TH), System Architecture Group

 I-nodes placed at the start of the disk
 Disk divided into cylinder groups

 each with its own blocks and i-nodes

107

