
23 Files & File 23 Files & File
ManagementManagement

1© 2009 Universität Karlsruhe (TH), System Architecture Group

Motivation, Introduction, Files,
File Access Organizations

February 2 2009
Winter Term 2008/09

Gerd Liefländer

Recommended Reading

 Bacon, J.: Operating Systems (6)

 Silberschatz, A.: Operating System Concepts (10,11)

 Stallings, W.: Operating Systems (12)

b d O S (6)

© 2009 Universität Karlsruhe (TH), System Architecture Group 2

 Tanenbaum, A.: Modern Operating Systems (6)

 Nehmer, J.: Systemsoftware (9)

 Solomon, D.A.: Inside Windows NT, 1998

 … Distributed File-Systems related Papers

Overview

Roadmap of Today*

 Motivation, Introduction
 File Management
 File Access Implementation

 Sequential
 Index Sequential Not in Tanenbaum’s

© 2009 Universität Karlsruhe (TH), System Architecture Group 3

 Index Sequential
 Direct

 Preview: Objectives
 To explain the function of file systems
 To describe the interfaces to file systems
 To discuss file-system design tradeoffs, including access

methods, file sharing, file locking, and directory structures
 To explore file-system protection

Textbook

Motivation/IntroductionMotivation/Introduction

4© 2009 Universität Karlsruhe (TH), System Architecture Group

File ~ contiguous logical address space
File types:

 data
 numeric
 character
 binary

 program

Motivation

Tanenbaum’s Motivation

Requirements motivating files & file systems

1. Enable the storing of large amount of data

2. Store data consistently & persistently

© 2009 Universität Karlsruhe (TH), System Architecture Group 5

y p y

3. Look up “easily” previously stored data

4. But, some people claim that traditional FS are
out and will be replaced sooner or later

Motivation

Motivation

Do we still need files and a classical file system1?
 Save (huge) information sets for future use

Files are the third major OS-provided abstraction
over HW resources

© 2009 Universität Karlsruhe (TH) System Architecture Group
6

OS Abstraction HW Resource
Processes, Threads CPU
Address Space Main Memory (RAM)
Files Disk2, CD, …

1see http://www.osnews.com/story.php?news_id=9228
2Our main example

Jakob Nielson’s Arguments

 Current FS are based on 3 assumptions:

1. Information is partitioned into coherent and disjoint units,
each of which is treated as a separate object (file). Users
typically manipulate information using a file and are often
restricted to be "in" one file at a time.

© 2009 Universität Karlsruhe (TH), System Architecture Group 7

2. Information objects are classified according to a single
hierarchy: the subdirectory structure.

3. Each information object is given a single, semi-unique
name, which is fixed. This file name is the main way users
access information inside the file object.

 This characteristics no longer holds in www-times

Single Unit Argument

 Web page consists of a text file + some image “objects” either
 jpg file
 gif file

 jpg and gif files can exist in the file system or are generated
dynamically on demand from an underlying image
representation with parameters as

© 2009 Universität Karlsruhe (TH), System Architecture Group 8

 Compression
 Lossyness
 Colordepth
 …

 Instead of one single executable file we might want to have the
executable enhanced by adequate environments depending
whether it should run on our
 Office PC

 PAD

 Mobile

Single Hierarchy Argument

 Suppose you do regularly multiple presentations
using
 Screen shots
 Measurement graphs
 …

If you have to change or adapt a screen shot you do

© 2009 Universität Karlsruhe (TH), System Architecture Group 9

 If you have to change or adapt a screen shot, you do
not want to change or adapt this screen shot in each
of your presentation file

 Find appropriate arguments against the current use
of traditional file names

 Geoff Barell describes spotlight: Apple’s Index in OS
http://www.computerworld.com/hardwaretopics/hardware/desktops/story/0,108
01,103518,00.html

Motivation

File
Collection of related information recorded on some form of media

Files can consist of very different kind of recorded information, e.g.
 Executable program
 Text files (e.g. Fender’s catalogue of E-guitars)
 …

© 2009 Universität Karlsruhe (TH), System Architecture Group 10

A file has a set of attributes, i.e. its meta data

Attributes differ between OSes and FSs, e.g.:
 Name, identifier
 Type (needed for OS that support different types, e.g. .exe)
 Location (physical address of file on device)
 Size (# bytes or #blocks)
 Protection (who can access and how)
 others

Typical File Attributes

Attributes

© 2009 Universität Karlsruhe (TH), System Architecture Group 11

File Structure

 None - sequence of words, bytes

 Simple record structure
 Lines

 Fixed length Fixed length

 Variable length

 Complex Structures
 Formatted document

 Relocatable load file

© 2009 Universität Karlsruhe (TH), System Architecture Group 12

File Structure (OS’s Point of View)

File Structure

© 2009 Universität Karlsruhe (TH), System Architecture Group 13

Three kinds of files:
(a) byte sequence (provides maximal flexibility)
(b) record sequence (often with fixed sized records)
(c) Tree (sometimes with variable sized records)

Motivation

File Types
 A file can have a type (e.g. .exe)

 understood by the FS
 block, character, device, portal, link, …

 understood by all parts of OS or runtime libraries
 executable, dll, source, object, text, …

© 2009 Universität Karlsruhe (TH), System Architecture Group 14

 A file’s type can be encoded in
 its name, e.g. MS

 .com, .exe, .bat, .dll, .jpg …

 its content, e.g. Unix/Linux file use
 its inode, magic number or
 an initial character (e.g. #! for shell scripts)

Example File Types

© 2009 Universität Karlsruhe (TH), System Architecture Group 15

Unix File Types (1)

 Regular files
 ASCII (→ unicode)

 Binaries
 Executable files

File Types

© 2009 Universität Karlsruhe (TH), System Architecture Group 16

 Archive

 Directories

 Device files
 Character device

 Block device

File Types (2)

File Types

?

© 2009 Universität Karlsruhe (TH), System Architecture Group 17

(a) Executable file (e.g. ELF) (b) Archive file

code

Motivation

Typical File Applications
 Private data bases

 Music-CDs, MP3
 Movies, Photo Gallery, …

 Commercial software in specific formats (e.g. .zip)

 OS itself as an executable file loaded at boot time

© 2009 Universität Karlsruhe (TH), System Architecture Group 18

 Typical file contents:
 Numeric data
 Audio-/Visual information

 Books, catalogues, lyrics & tabs, …
 Photos, drawings, …

 Binary programs

Abstract File Operations

A file is an abstract data type/object offering
 create()
 write ()
 read ()
 reposition () (within file)
 delete ()
 truncate ()
 open(Fi) – search the directory structure on disk

for entry Fi, and move its content to memory
 close (Fi)-move content of entry Fi in memory

to directory structure on disk

© 2009 Universität Karlsruhe (TH), System Architecture Group 19

Interaction with a Classical FS

Motivation

Application

filename fid fid result FS Interface
(often syscall API)

© 2009 Universität Karlsruhe (TH), System Architecture Group 20

File Directory
Service

File Storage
Service

Hides specifics of storage media +
preserves files even in case of

HW failures or SW crashes

Resolves filename +
enhances usage of files +
controls access + sharing

File Systems

 Most files are still located on disks which are really
messy physical devices:
 Errors, bad blocks, missed seeks, …

 Job of an OS is to hide this mess from higher level
software

© 2009 Universität Karlsruhe (TH), System Architecture Group 21

 Low-level device control (initiate a disk read, etc.)

 High-level abstractions (read file)

 OS might provide different levels of disk access to
different clients (applications)
 Physical disk (surface, cylinder, sector)

 Logical disk (disk block#)

 Logical file (file block, record, byte#)

Overview File System

Introduction

 Hierarchical FS as a rooted tree
internal node = directory All Files

group1 ... groupg file f

file 1 file 2 filen file k file s

© 2009 Universität Karlsruhe (TH), System Architecture Group 22

 Additional links (acyclic graph)

company

templates Frank Raphael

letter_templ.dot letter1.doc .. lettern.doc letter1.doc letterx.doc

division

file 1 file 2 ... file n file k ... file s

File System Basics

 OS may support multiple file systems
 instances of the same FS type

 Different FS types, e.g. EXt2 & Reiser

All fil t t i ll b d i t

© 2009 Universität Karlsruhe (TH), System Architecture Group 23

 All file systems are typically bound into a
single namespace
 Often hierarchical

Hierarchy of File Systems

© 2009 Universität Karlsruhe (TH), System Architecture Group 24

 Why hierarchical?

 Alternative ways of organizing a name space

 Why not a single file system?

File ManagementFile Management

25© 2009 Universität Karlsruhe (TH), System Architecture Group

Names
Structure

Types
Attributes

Motivation

File Management

 A file should only disappear if the authorized instance
(subject) explicitly deletes it

 An authorized subject can be the
 owner
 system administrator

© 2009 Universität Karlsruhe (TH), System Architecture Group 26

system administrator
 system security manager

 Design space of file organization depends on file
 naming
 structuring
 accessing
 protecting
 implementing

Goals of File Management

 Provide a convenient naming scheme for files

 Provide uniform I/O support for a variety of storage
device types

 Provide standardized set of I/O interface functions

Introduction

© 2009 Universität Karlsruhe (TH), System Architecture Group 27

 Minimize/eliminate lost or corrupted data

 Provide I/O support and access control for multiple users

 Enhance system administration (e.g. backup)

 Provide acceptable performance

File Names

 FS with a convenient naming scheme, e.g.
 Textual names
 Restricted alphabet, i.e.

 Only certain characters (e.g. no ‘?’ or ‘/’)

Naming

© 2009 Universität Karlsruhe (TH), System Architecture Group 28

 Limited length
 only certain formats, e.g.

 DOS 8 character string.xyz character suffix

 XP 255 character.xyz character suffix

 Case (in)sensitive
 Names must fulfill certain convention, extension

xyz.c or xyz.C if C(++)-Compiler should run

Open Files

 Several meta data are needed to manage
open files:
 file pointer: pointer to last read/write location,

per process that has the file open

 file-open count: counter of number of times a file
is open – to allow removal of data from open-file
table when last processes closes it

 disk location: cache of data access information

 access rights: per-process/task access mode
information, who is allowed to do what

© 2009 Universität Karlsruhe (TH), System Architecture Group 29

File Access

 Strictly sequential access (early systems)
 read all bytes/records from the beginning

 cannot jump around, could only rewind

 sufficient as long as storage was a tape

File Access

© 2009 Universität Karlsruhe (TH), System Architecture Group 30

g g p

 Random access (current systems)
 bytes/records read in any order

 essential for database systems, e.g.
 Airline reservation

 DVD or Audio CD

Access Methods

 Sequential Access: read next
write next
reset
no read after last write
appendpp

 Direct Access: read n
write n
position to n

read next
write next

rewrite n
n = relative block number

© 2009 Universität Karlsruhe (TH), System Architecture Group 31

Example: File Operation (1)

Example of FS Calls

Usage of the following program: $ copyfile abc xyz

© 2009 Universität Karlsruhe (TH), System Architecture Group 32

Example: File Operation (2)

Example of FS Calls

© 2009 Universität Karlsruhe (TH), System Architecture Group 33

File Access Methods

 Plain (unstructured) file (generic file)
 Entity: byte (sometimes: block)
 If an application wants to structure a persistent

data container it has to implement its internal
structure

File Access

© 2009 Universität Karlsruhe (TH), System Architecture Group 34

Remark: Since Unix, many OSes only offer plain files,
applications and libraries can implement
specific structured file types on top of this.

 Structured file
 Entity: record (or user type objects…)

Definition: A plain file is a sequence of bytes (gaps are
possible). Typically located on a disk.

0 1 2 3 4 5 6 7 8 9 10 ...

Plain File

File Organization

© 2009 Universität Karlsruhe (TH) System Architecture Group
35

. . .

file pointer to the current location within a file
Characteristic: You can randomly access any byte within an unstructured file

if you have positioned its file pointer appropriately.

Problem: Disks cannot access bytes; only blocks.
Solution: Buffer file blocks (classical method) or

entire files (memory mapped files) within main memory
(see later paragraph “file buffering”) or virtual memory.

0 1 2 3 4 5 6 7 8 9 …. 511

. . .

file pointer to a valid location
0

0 1 2 3 4 5 6 7 8 9 …. 511

. . .

0 1 2 3 4 5 6 7 8 9 …. 511

.

1 b

0 1 2 128 129 . . .

Structured File

File Organization

© 2009 Universität Karlsruhe (TH) System Architecture Group
36

Records = logical entities tightly coupled to a specific application, e.g.
record of an employee

Employee-file might contain all relevant information, e.g.
 employee number, family name, Christian name,
 employee position, department number,
 passport number, birth date, salary, etc.

Records of equal size or not (then additional length field is needed)
Records with special key field ( some ordering within the file)

File Organization and Access

 Possible access patterns:

 Read the whole file

 Read individual blocks of a file

File Organization

© 2009 Universität Karlsruhe (TH), System Architecture Group 37

 Read blocks preceding/following the current one

 Retrieve a subset of records

 Write/update a complete file sequentially

 Insert/delete/update one record in a file

 Update blocks in a file

CreateFile(pathname)
DestroyFile(pathname)
OpenFile(pathname, read/write)
ReadFile(FID, byte-range, where to put
bytes into main memory)

Operations on Unstructured Files

File Organization

© 2009 Universität Karlsruhe (TH) System Architecture Group
38

y y)
WriteFile(FID, byte-range to write, where to find
bytes in main memory)
CloseFile(FID)
PositionPointer(FID, posi. for pointer in byt.)

Remark: “bytes in main memory” is data space within AS of
the calling client (e.g. global data segment or stack).

File Organization and Access

Programmer’s perspective:

 Given an OS supporting only unstructured
files, i.e. data containers with a sequence of

File Organization

© 2009 Universität Karlsruhe (TH), System Architecture Group 39

bytes (see Linux, Unix, MSxyz …)

 Programmer has full flexibility to impose any
desired structure on a plain file, but it has
also the burden to do so

 How to organize the contents of these files?

A Sequential Access to a File

© 2009 Universität Karlsruhe (TH), System Architecture Group 40

Simulation of a Sequential-Access

 Given a direct (or random access) file

 How to implement sequential access?

© 2009 Universität Karlsruhe (TH), System Architecture Group 41

Structured FilesStructured Files

42© 2009 Universität Karlsruhe (TH), System Architecture Group

Performance Criteria
Sequential

Index- & Tree-Sequential
Extensible Hashed

Terms in Structured Files

 Field
 basic element of data
 contains one single value of a specific data type
 characterized by its length and data type

 Record
collection of related fields

File Organization

© 2009 Universität Karlsruhe (TH), System Architecture Group 43

 collection of related fields
 treated as a unit (e.g. employee record)

 File
 collection of similar records
 treated as a single entity
 with restricted access

 Database
 collection of related data (files)
 relationships exist among elements

Operations on Structured Files

 Retrieve_All, Retrieve_Few, Retrieve_One
(e.g. sequential processing, all records satisfying some criteria)

 Retrieve_Next, Retrieve_Previous
(e g search within a file for a specific attribute)

File Organization

© 2009 Universität Karlsruhe (TH), System Architecture Group 44

(e.g. search within a file for a specific attribute)

 Insert_One, Delete_One
(e.g. hire a new employee or fire an old one)

 Update_One, Update_All
(e.g. decrease the salary or increase time of work of an employee)

Criteria for File Implementation (1)

 Rapid access
 Needed when accessing a single record
 Not needed for batch mode

File Organization

© 2009 Universität Karlsruhe (TH), System Architecture Group 45

 Ease of update
 Some files may be updated periodically
 File on a CD-ROM will never be updated

Criteria for File Implementation (2)

 Economy of storage
 Should be minimal redundancy in the data

 Redundancy can be used to speed up access (e.g.
via index or keys)

File Organization

© 2009 Universität Karlsruhe (TH), System Architecture Group 46

via index or keys)

 Simple maintenance

 Reliability
 Redundancy and checkpoints can be used to

improve robustness

Fundamental Access Methods

  many ways to access the content of a
structured file, e.g.:
 sequential

File Organization

Specialist

© 2009 Universität Karlsruhe (TH), System Architecture Group 47

 indexed sequential

 Allows sequential & direct access

 direct or hashed

Generalist

Specialist

Sequential FilesSequential Files

48© 2009 Universität Karlsruhe (TH), System Architecture Group

Sequential File

Sequential file (fixed/variable record length)

 basic operations: read/write next record/ append

 with optional key field(s):

Sequential File

© 2009 Universität Karlsruhe (TH), System Architecture Group 49

p y ()
 one field is key field

 uniquely identifies the record
 records are stored in key sequence

 new records are placed in a “log or transaction file”

 when closing the file (or periodically), a batch update
is done to merge the log file with the master file

r1

r2

r3

Fixed-length Records

Sequential File

Sequential File

© 2009 Universität Karlsruhe (TH) System Architecture Group
50

Remark:
File with 6 records of 4 fields, 1. field may serve as a key), e.g.
personnel number, name, department, salary

r4

r5

r6

Analysis of Sequential Files

 Update (all records)
 Same sized record, very good
 Variable sized record, ok

Sequential File

© 2009 Universität Karlsruhe (TH), System Architecture Group 51

 Retrieval
 Single record, poor
 Subset, poor
 Exhaustive, ok

3 explicit pointers:
• head of file
• current file pointer
• tail of file

r4

read(current file, next record)

Implementing Sequential Files (1)

Sequential File

© 2009 Universität Karlsruhe (TH) System Architecture Group
52

r1 r2 r3 r4 r5 r6 r7

head old file
pointer

tail

Remark:
Each file operation is related to the current position of the file pointer

new file
pointer

old file
pointer

r4’

In some cases you can only append to a sequential file.
Updates in the midst of a sequential file are only possible
if the updated record has the same size

Implementing Sequential Files (2)

Sequential File

© 2009 Universität Karlsruhe (TH) System Architecture Group
53

update
r1 r2 r3 r4 r5 r6 r7 r8 append

In general you have operations to manipulate the file pointer:
• next  place file pointer at the next record
• previous  place file pointer at the previous record
• reset  place file pointer at the head of the file
• arbitrary  any place within the “range” of a file

IndexIndex-- TreeTree--Sequential Sequential

54© 2009 Universität Karlsruhe (TH), System Architecture Group

Classical Index-Sequential Files
Modern Tree-Index-Sequential Files

Index(ed) Sequential File

Index Sequential File

 Index sequential files support two different
access methods for structured files

 Lookup of a specific record 
we need additional meta data

© 2009 Universität Karlsruhe (TH), System Architecture Group 55

we need additional meta data

 Sequential access to all records (sorted by key)

key
record

Offset (can be zero)

Index Sequential File

 Index key provides a quite fast lookup
capability to find vicinity of desired record

 contains a key field and a pointer to main file

 index is searched to find highest key value

File Organization

© 2009 Universität Karlsruhe (TH), System Architecture Group 56

 Additionally, records are stored sequentially
logically

 index is searched to find highest key value

that is equal or less than the desired key value

 search continues in the main file at the location
indicated by the pointer

Sequential  Ind. Sequential File

r1 ri rr

Sequential file contains r = 1 000 000 records

Average lookup costs ~ 500 000 comparisons

Index Sequential File

© 2009 Universität Karlsruhe (TH), System Architecture Group 57

Indexed sequential file with 1000 indices à 1000 records

r1 ri rr

i1 i1

Average lookup costs ~ 500 + 500 = 1000 comparisons

If key i1

Classical Ind. Sequential File

 If file full, a new record is added to overflow container

 Record that precedes the new record in file is updated
to contain a pointer to the new record

 Overflow container is merged with main file during a

Index Sequential File

© 2009 Universität Karlsruhe (TH), System Architecture Group 58

1 10 11 18 21 22 23 29 31 37 38 39 40 41 55 99

18 29 39 99

 Overflow container is merged with main file during a
batch update

Index vector

Adding data dynamically requires an overflow container.
Example: You want to add data with keys 13, 32, 33, 17.

18 29 39 99 index vector

Classical Ind. Sequential File (2)

Index Sequential File

© 2009 Universität Karlsruhe (TH) System Architecture Group
59

13 32 33 17

1 10 11 18 21 22 23 29 31 37 38 39 40 41 55 99 container

overflow container

Remark: The longer the overflow container  the worse the performance.
Merging file & overflow container may be costly if file is large.

11 31

Index
Levels

1
2

n

Main File

Tree Ind. Sequential File

Tree Sequential File

© 2009 Universität Karlsruhe (TH) System Architecture Group
60

Overflow
File

Remark: With B*-trees (R. Bayer 1970) we establish more efficient
indexed sequential files. Be familiar with B and B*-trees!

Use an appropriate tree
that eliminates the need
for an overflow file

B*-Indexed Sequential Files

What does the B in B*-tree mean?
 B → Balanced tree
 B → Broad Trees
 B → Brushy Trees

B B t (d t f it i t)

Tree Sequential File

© 2009 Universität Karlsruhe (TH), System Architecture Group 61

B*-tree = a dynamically height-balanced,
t-ary (maximal t successors per inner node),
leaf-oriented (real data in the leaves).

The leaves of a B*-tree form a double-linked list
to facilitate sequential accesses

 B → Bayer tree (due to one of its inventors)

B Tree, B+ Tree, B* Tree

 B Tree contains data in inner nodes
 B+ Tree is leaf-oriented
 B* Tree ~ B+ Tree + sequential ordering

Tree Sequential File

© 2009 Universität Karlsruhe (TH), System Architecture Group 62

Specific literature on B, B+ and B*-trees:

Knuth, D.: Vol. 3, Searching and Sorting, p. 476 – 481

Wirth, N.: Algorithms + Data Structures = Programs, p. 242 – 264

Bayer, R.: Organizing and Maintenance of Large Ordered Indexes,
ACTA Informatica 1:3, p. 173 – 189, 1972

Comer, D.: The Ubiquitous B-Tree, ACM Computing Surveys, 11:2,
p. 121 – 138, 1979

B*-Indexed Sequential Files

 Data containers (= leaves of a B*-tree) are linked
together  accelerating sequential access

 Inner nodes contain up to t elements of lower lever
inner nodes or of leaves

Tree Sequential File

© 2009 Universität Karlsruhe (TH), System Architecture Group 63

 Height of a B*-tree only depends on
 number of records

 capacity of inner nodes and leaves

35 70

15 30 35 45 60 70

Head for
sequential
access

Head for
indexed
access

Example of a B*-ISF

Tree Sequential File

© 2009 Universität Karlsruhe (TH) System Architecture Group
64

10 13 15 50 55 6020 25 30 35 40 45 65 70

Remark:
Analogous to an extensible hash file, minor changes in the file might
affect only neighboring containers and its next higher inner node.

B*-trees try to remain balanced (more or less)
Reorganization of multiple levels are rare (however, possible).

35 70

15 30 35 45 60 70

Insert records
with key 26, 27

Operation on a B*-File (1)

Tree Sequential File

© 2009 Universität Karlsruhe (TH) System Architecture Group
65

10 13 15 50 55 6020 25 30 35 40 45 65 70

The appropriate container is already full,
but the neighbored container to the right isn‘t,
 try to move data to the neighbored container.26

27

How would you organize this move-operation?

35 70

15 26 35 45 60 70

Insert records,
with key 26, 27

Operation on a B*-File (2)

Tree Sequential File

© 2009 Universität Karlsruhe (TH) System Architecture Group
66

10 13 15 50 55 6020 25 26 27 30 35 40 45 65 70

Result: Tree is still balanced (more or less),
modifications in 2 containers and 1 inner node

Analysis:Quite cheap, try to apply whenever possible without affecting
the main characteristic of a B*-tree structured index file

35 70

15 26 35 45 60 70

Insert record
with key 23

Operation on a B*-File (3)

Tree Sequential File

© 2009 Universität Karlsruhe (TH) System Architecture Group
67

10 13 15 50 55 6020 25 26 27 30 35 40 45 65 70

Container is full as well as both neighbors
 Split this container and ...

23

35 70

15 26 35 45 60 70

Insert record
with key 23

Operation on a B*-File (4)

Tree Sequential File

© 2009 Universität Karlsruhe (TH) System Architecture Group
68

10 13 15 50 55 60

20 23

27 30 35 40 45 65 70

25 26

Attention: It‘s quite easy to split up.
Even 26 is still the maximal
key in both containers,
but now in the inner node
there is no entry for the key 23
 split also the inner node

23 35 70

26 35 45 60 70

Insert record
with key 23

15 23

Operation on a B*-File (5)

Tree Sequential File

© 2009 Universität Karlsruhe (TH) System Architecture Group
69

10 13 15 50 55 6020 23 27 30 35 40 45 65 7025 26

Remark:
In this case an update on a lower lever may cause updates on higher
levels, and might even require a complete new level within the B*-tree)

Multiple Indexed File*

 Uses multiple indexes for different key fields, i.e.
more than 1 “field” in the record may be a key

 Might contain an exhaustive index that contains
one entry for every record in the main file

Multiple Indexed File

© 2009 Universität Karlsruhe (TH), System Architecture Group 70

*see course: communication and databases next ST

 Might contain a partial index, only

Example:
Databases for airline reservation system
 ...

Extensible HashingExtensible Hashing

71© 2009 Universität Karlsruhe (TH), System Architecture Group

• Key field ki required for each record ri
• Key maps directly or via a hash function to an address

within the file

ki ri

Direct or Hashed File

File Organization

© 2009 Universität Karlsruhe (TH) System Architecture Group
72

Use a hash function ai = f(ki), e.g. ai = ki mod n

ai = address of the data container (≠ physical block number)
 you need an additional mapping (on lower levels)

If  an overflow in the container you have to resolve this collision.

Direct or Hashed File

File Organization

key
HASH

index

© 2009 Universität Karlsruhe (TH) System Architecture Group
73

key record

HASH

Hashed File

Problem to solve:
Find a hash function enabling incremental file extension
Solution:
Indirect addressing of scattered containers via a base vector
Extension is done via

Extensible Hashing

File Organization

© 2009 Universität Karlsruhe (TH) System Architecture Group
74

e s o s do e a
 doubling the size of this base vector or
 just splitting a container.

Extensible hash function → ind (=index of base vector):

ind = k mod 2gcurrent_max

Entry of base vector:
 generation number g
 pointer to the target container

Assumption: current maximal generation number gmax= 2
length of base vector = 22 = 4 and 
hash function: ind = ki mod 4
container capacity = 4

ind 0 1 2 3

Extensible Hashing (2)

© 2009 Universität Karlsruhe (TH) System Architecture Group
75

2 2 2 2gen
pointer

16 20 17 13 25 33 14 22 18 23 15

ki mod 4 = 0 ki mod 4 = 1 ki mod 4 = 2 ki mod 4 = 3

containers

base vector

Problem: How to add a record with key 21?

Double base vector  create new gmax = 3, update generation.no
for index 1 and 5, add another container, rehash the old container,
insert new element 21, adjust the pointers with generation.no 2

ind 0 1 2 3 4 5 6 7
2 3 2 2gen 2 3 2 2 New key to add is 21

Extensible Hashing (3)

File Organization

© 2009 Universität Karlsruhe (TH) System Architecture Group
76

17 25 33
ki mod 8 = 1

16 20
ki mod 4 = 0

14 22 18
ki mod 4 = 2

23 15
ki mod 4 = 3

containers

pointer

13 21
ki mod 8 = 5

How to add data with keys 44, 36, 24 ?

Add 44 and 36 to container 0, then only increase generation
number for indices ind =0 and 4, add another container,
rehash both containers, insert 24, adjust the pointers.

3 3 2 2
ind 0 1 2 3 4 5 6 7

gen
pointer

3 3 2 2 new keys 44, 36, 24

Extensible Hashing (4)

File Organization

© 2009 Universität Karlsruhe (TH) System Architecture Group
77

16 24 17 25 33

14 22 18 23 15

ki mod 8 = 0 ki mod 8 = 1

ki mod 4 = 2 ki mod 4 = 3
containers

13 21
ki mod 8 = 5

20 44 36
ki mod 8 = 4

No ordering
within the
containers

Extensible Hashing (5)

 Find criteria for how to shrink extensible hashed files

 Find criteria for determining length of a container

 Is it possible to get all records of a extensible hashed

File Organization

© 2009 Universität Karlsruhe (TH), System Architecture Group 78

file?

 Up to now, we’ve assumed that the key field is a
well-behaving bit pattern; how to find such a
pattern?

Hashed File Performance

 Update
 Same sized record, very good
 Variable sized record, poor1

File Organization

k

© 2009 Universität Karlsruhe (TH) System Architecture Group
79

 Retrieval
 Single record excellent
 Subset, poor
 Exhaustive, poor

key

key record

HASH

Hashed File

1Classic direct files need fixed sized records
Extensible Hashing allows variable sized records

File method Usage of space Update(file) Retrieval (single record – file)

Ext. Hashing N*C + BV

O(ln(M)+1) O(M/C +1) B*-Index-S. N*C + Sum(IN) O(M/C +1)

O(1+1) M*O(1+1)M*O(1+1)

Extens. Hashing  B*-Sequential

File Organization

© 2009 Universität Karlsruhe (TH) System Architecture Group
80

N = # of Containers
C = Capacity of container
BV = Basis vector
IN = Capacity of inner node
M = # of different keys

Start at the sequential head

Summary: File Organization

 A FS should support the most common access
methods of its files

 Files are typically used as follows:
 Most files are very small only a few KB

File Organization

© 2009 Universität Karlsruhe (TH), System Architecture Group 81

 Most files are very small, only a few KB

 Files are
 often read
 sometimes written
 rarely deleted

 Sequential access is dominant

 Files can be shared by multiple applications/users,
but they are rarely accessed concurrently

