
22 22 I/O Management I/O Management (2)(2)

1© 2009 Universität Karlsruhe, System Architecture Group

I/O Design, I/O Subsystem, I/O-Handler
Device Driver, Buffering, Disks, RAID

January 28 2009
WT 2008/09

Roadmap
 Motivation

 Repetition: I/O-Devices
 Device Categories
 I/O-Functionality
 Data Transfer

 I/O-Subsystem
D i P t

© 2009 Universität Karlsruhe, System Architecture Group 2

 Design Parameters
 I/O Layering
 I/O-Buffering

 Disk I/O Management
 Disk, CD-Rom, …
 Disk Layouts and Formats
 Disk Scheduling
 RAID
 Disk Caching

 Clocks and Timer

Discuss these trade-offs
very very carefully!!!

Operating System Design Issues

Basic of I/O Software

© 2009 Universität Karlsruhe, System Architecture Group 3

System Design Objectives (1)

Analysis(1): Efficiency?
 Most I/O-devices slow compared to RAM & CPU 

potential bottleneck of system
 Use of multiprogramming allows for some tasks/processes to

be waiting on I/O while another task/process is running

Basic of I/O Software

© 2009 Universität Karlsruhe, System Architecture Group 4

g p g

 Often I/O cannot keep up with processor speed, but some
devices are faster at least than RAM (Gigabit-Network)

 Swapping and Paging may be used to improve multi-
programming degree  more additional I/O operations

 Optimize I/0Optimize I/0--EfficiencyEfficiency
(especially disk & network) is (especially disk & network) is
thethe important issue important issue (( Liedtke)Liedtke)

System Design Objectives (2)

Basic of I/O Software

Analysis (2): How about generality/uniformity?

 Ideally, handle all I/O devices in the same way
 Both in OS (kernel land) and in applications (user land)

 Problem = Diversity of devices

© 2009 Universität Karlsruhe, System Architecture Group 5

y
 Access methods (random ~ versus stream based access)

 Hide details of device I/O in low-level routines so that
tasks/processes and upper level I/O functions can
see devices in general terms such as files
 read and write or

 open and close or

 lock and unlock …

Layers of I/O Software System

Basic of I/O Software

© 2009 Universität Karlsruhe, System Architecture Group 6

Hardware (see repetition slides)

Interrupt Handler (1)

 Interrupt handlers are best hidden
 Can be executed at almost any time

 Raise (complex) concurrency issues in the kernel
 Have similar problems within applications if interrupts are

propagated to user-level code (via signals, upcalls)

Interrupt Handling

© 2009 Universität Karlsruhe, System Architecture Group 7

 Generally, a driver having started an I/O blocks, until the
“completion interrupt” notifies the waiting driver

 Interrupt handler does its work related with the I/O-device
and then unblocks driver that has started the finished I/O

 The following steps must be performed in software
after an interrupt has occurred, …

Interrupt Handler (2)

1. Save registers not already saved by HW-interrupt
mechanism

2. Set up context (address space) for interrupt service
procedure
 Typically, handler runs in the context of the currently running

process/task  not that expensive context switch

Interrupt Handling

© 2009 Universität Karlsruhe, System Architecture Group 8

process/task  not that expensive context switch
3. Set up stack for interrupt service procedure

 Handler usually runs on the kernel stack of the current
process/kernel-level thread

 Handler cannot block, otherwise the unlucky interrupted
process/kernel-thread would also be blocked, might lead to
starvation or even to a deadlock

4. Acknowledge/mask interrupt controller, thus re-enable
other interrupts

Interrupt Handler (2)

5. Run interrupt service procedure
 Acknowledges interrupt at device level
 Figures out what caused the interrupt, e.g.

 Received a network packet
 Disk read has properly finished, …
If needed it signals the blocked device driver

Interrupt Handling

© 2009 Universität Karlsruhe, System Architecture Group 9

 If needed, it signals the blocked device driver
6. In some cases, we have to wake up a higher priority

process/kernel level thread
 Potentially schedule another process/kernel-level thread
 Set up MMU context for process to run next

7. Load new/original process' registers
8. Return from Interrupt, start running new/original

process

Device Driver

Device Driver

© 2009 Universität Karlsruhe, System Architecture Group 10

Communication between drivers and device controllers
is done via the bus

Device Driver

 Drivers classified into similar categories
 Block devices and
 Character (stream of data) devices

 OS defines standard (internal) interface to

Device Driver

© 2009 Universität Karlsruhe, System Architecture Group 11

 OS defines standard (internal) interface to
the different classes of devices
 Device drivers job

 Translate user request through device-independent
standard interface, e.g. open, read, …, close) into
appropriate sequence of device or controller commands
(register manipulation)

 Initialize HW at boot time
 Shut down HW

Device Driver

 After issue the command to the device,
device either
 completes immediately and the driver simply

returns to the caller or it
processes request and the driver usually blocks

Device Driver

© 2009 Universität Karlsruhe, System Architecture Group 12

 processes request and the driver usually blocks
waiting for an I/O (complete) interrupt signal

 Drivers are reentrant as they can be called by
another process while a process is already
blocked in the driver
 Reentrant: code that can be executed by more

than one thread (or CPU) at the same time
 Manages concurrency using synch primitives

Device Drivers upon Micro-Kernels

 Single threaded
 Accepting user request
 Preparing device (controller)
 Reacting on interrupt

Device Driver

© 2009 Universität Karlsruhe, System Architecture Group 13

g p

 Multi-threaded
 Repeated single-threaded
 Pipe-lining

Device-Independent I/O Software (1)

 There is some commonality between drivers
of similar classes 

 Divide I/O software into device-dependent and
device independent I/O software, e.g.

Device Independent Software

© 2009 Universität Karlsruhe, System Architecture Group 14

p / , g

 Buffer or buffer-cache management, i.e.
provide a device-independent block size

 Allocating and releasing dedicate devices

 Error reporting to upper levels, i.e. all errors
the driver cannot resolve

Device-Independent I/O Software (2)

Device Independent Software

© 2009 Universität Karlsruhe, System Architecture Group 15

(a) Without a standard driver interface
(b) With a standard driver interface

Device-Independent I/O Software (3)

Driver  Kernel Interface
 Uniform interface to devices and kernel

 Uniform device interface for kernel code
 Allows different devices to be used in the same way, e.g.

Device Independent Software

© 2009 Universität Karlsruhe, System Architecture Group 16

y, g
no need to rewrite your file-system when you are
switching from IDE to SCSI or even to RAM disks

 Allows internal changes of drivers without fearing of
breaking kernel code

 Uniform kernel interface for device code
 Drivers use a defined interface to kernel service, e.g.

kmalloc, install IRQ handler, etc.
 Allows kernels to evolve without breaking device drivers

Device Independent Software (4)

Device Independent Software

© 2009 Universität Karlsruhe, System Architecture Group 17

(a) Unbuffered input
(b) Buffering in user space
(c) Buffering in the kernel followed by copying to user space
(d) Double buffering in the kernel

Buffering on later Slides

I/O Software Summary

Device Independent Software

© 2009 Universität Karlsruhe, System Architecture Group 18

Layers of I/O system and main functions of each layer

Application
Task

Logical
I/O

Application
Task

Communication
Architecture

Application
Task

Directory
Management

File
System

I/O Management

Quite a lot
of tasks
involved

Examples of I/O-Organization

© 2009 Universität Karlsruhe, System Architecture Group 19

Local peripheral device

Scheduling
& Control

Hardware

Device
I/O

Scheduling
& Control

Communications port

Device
I/O

Hardware

Scheduling
& Control

File System

Device
I/O

Hardware

Physical
Organization

I/O Buffering*

 Reasons for buffering
 Otherwise threads must wait for I/O to complete before

proceeding
 Pages must remain in main memory during physical I/O

 Block-oriented

I/O Buffering

© 2009 Universität Karlsruhe, System Architecture Group 20

 information is stored in fixed sized blocks
 transfers are made a block at a time
 used for disks and tapes

 Stream-oriented
 transfer information as a stream of bytes
 used for terminals, printers, communication ports, mouse, and

most other devices that are not secondary storage

*Principle of buffering was invented because of I/O

No Buffering

 Process reads/writes a device a byte/word at
a time
 Each individual system call adds significant

overhead

I/O Buffering

© 2009 Universität Karlsruhe, System Architecture Group 21

 Process must wait until every I/O is complete
 Blocking/interrupt handling/deblocking adds to

overhead
 Many short CPU phases are inefficient, because

 overhead induced by thread_switch (or even worse
address_space_switch)

 poor cache and TLB usage

Operating System User Process

I/O Device
In

User Level Buffering

I/O Buffering

© 2009 Universität Karlsruhe System Architecture Group
22

No buffering in OS

 Task specifies a memory buffer that incoming data is
placed in until it fills
 Filling can be done by interrupt service routine
 Only one system_call and block/deblock per data buffer

 More efficient than “NO BUFFERING”

User Level Buffering

 Issues
 What happens if buffer is currently paged out to

disk?
 You may loose data while buffer is paged in

I/O Buffering

© 2009 Universität Karlsruhe, System Architecture Group 23

 You could lock/pin this buffer (needed for DMA),
however, you have to trust the application
programmer, that sheThe is not starting a denial of
service attack

 Additional problems with writing?
 When is the buffer available for re-use?

Operating System User Process

Single buffering

I/O Device In Move

Single Buffer

I/O Buffering

© 2009 Universität Karlsruhe, System Architecture Group 24

 User Process can process one block of data while
next block is read in

 Swapping can occur since input is taking place in
system memory, not user memory

 OS keeps track of assignment of system buffers
to user processes

Single Buffer

 Stream-oriented
 Buffer is an input line at time with carriage return

signaling the end of the line

 Block-oriented

I/O Buffering

© 2009 Universität Karlsruhe, System Architecture Group 25

 Block-oriented
 Input transfers made to system buffer
 Buffer moved to user space when needed
 Another block is read into system buffer

Single Buffer Speed Up

 Assumption:
 T = transfer time from device
 C = copying time from system- to user-buffer
 P = processing time of complete buffer content

I/O Buffering

© 2009 Universität Karlsruhe, System Architecture Group 26

p g p
 Processing and transfer can be done in parallel
 Potential speed up with single buffering:

T + P
max{T, P} + C

Single Buffer Problem

 What happens if system buffer is full, user buffer is
swapped out, and more data is received?

 Loose characters or drop network packets

I/O Buffering

© 2009 Universität Karlsruhe, System Architecture Group 27

I/O Device In Move

Operating System User Process

Double Buffer

I/O Buffering

© 2009 Universität Karlsruhe, System Architecture Group 28

Double buffering

 Use 2 system buffers instead of 1 (per user process)

 User process can write to or read from one buffer
while the OS empties or fills the other buffer

time

CPU

Timing Diagram for Double Buffering

I/O Buffering

© 2009 Universität Karlsruhe, System Architecture Group 29

I/O

Analysis: The slower I/O-device is busy the whole input-period,
thus additional buffers are not needed (in this case).

Double Buffer Speed Up

 Processing and memory copying in parallel
with data transfer 

 Speed up with double buffering:

© 2009 Universität Karlsruhe, System Architecture Group 30

T + P
max{T, P+C}

 Usually C << than

Circular Buffering

I/O Buffering

 Double buffering may be insufficient for really
bursty traffic situations:
 Many writes between long periods of

computations

© 2009 Universität Karlsruhe, System Architecture Group 31

 Long periods of computations while receiving data
 Might want to read ahead more than just a single

block from disk

 Circular buffering with n>1 system buffers

Circular Buffering

I/O Device
In Move

Operating System User Task

.

.

I/O Buffering

© 2009 Universität Karlsruhe, System Architecture Group 32

 More than two buffers are used to face I/O-bursts
 Each individual buffer is one unit in a circular buffer

Circular buffering

How to implement Buffering?

 Remember:
Single-, double-,and circular-buffering are all

Bounded-Buffer
d / bl

© 2009 Universität Karlsruhe, System Architecture Group 33

Producer-/Consumer Problems

 Is buffering always a good idea?
 Analyze carefully

Buffering in Fast networks

Device Independent Software

© 2009 Universität Karlsruhe System Architecture Group
34

 Networking may involve many copies
 Copying reduces overall performance
 Super-fast networks put significant effort into

achieving zero-copying
 Buffering may also increase latency

Disk Management

 Management of disk accesses is important

 Huge speed gap between main memory and disk

 Disk throughput is sensitive to

© 2009 Universität Karlsruhe, System Architecture Group 35

 Request order  Disk Scheduling

 Placement of data on the disk 

 File System Design and Implementation

 Swap Area Design

 Disk scheduler must be aware of disk geometry

Inter-sector gap

Sectors Tracks

Inter-track gap

Data block if sector
is large enough

Same track on each
platter of a disk
form the cylinder

Disk Hardware

Disk Data Layout

© 2009 Universität Karlsruhe, System Architecture Group 36

Remark:
Typical sector size 0.5 KB, typical block size [0.5, 8] KB

How would you map blocks
larger than a sector?

Disk Management

Partitioning a Disk

 Set of consecutive cylinders form a “disk partition”

 FFS divides a partition into c cylinder groups:
Storing “related data” into one
cylinder group may help to

© 2009 Universität Karlsruhe, System Architecture Group 37

spindle

minimize head movements

 Contiguous blocks of a file
are located within a
cylinder-group using
interleaving

Modern Disk Geometry

Disk Hardware

© 2009 Universität Karlsruhe, System Architecture Group 38

 Physical geometry of a disk with two zones
 A possible virtual geometry for this disk

Disk Hardware

Disk Hardware

© 2009 Universität Karlsruhe, System Architecture Group 39

Disk parameters for the original IBM PC floppy disk
and a Western Digital WD 18300 hard disk

Low Level Disk Formatting (1)

Disk Management

© 2009 Universität Karlsruhe, System Architecture Group 40

A disk sector

Low Level Disk Formatting (2)

Disk Management

© 2009 Universität Karlsruhe, System Architecture Group 41

An illustration of cylinder skew

Low Level Disk Formatting (3)

Disk Management

© 2009 Universität Karlsruhe, System Architecture Group 42

 No interleaving
 Single interleaving
 Double interleaving
 Modern drives overcome interleaving by simply reading

the entire track into the on-disk-controllers cache

Disk Performance Parameters (1)

 To read or write from or to a disk, the disk
head must be positioned at the desired track
(and at the beginning of the desired sector)

 Seek time

Disk Parameters

© 2009 Universität Karlsruhe, System Architecture Group 43

 Seek time
 time it takes to position head at the desired track

 Rotational delay or rotational latency
 time its takes until the desired sector has been

rotated to line up with read/write-head

Disk Performance Parameters (2)

 Access time
 sum of seek time and rotational delay
 the time it takes to get in position to read or write

 Data transfer occurs as the sector moves

Disk Parameters

© 2009 Universität Karlsruhe, System Architecture Group 44

 Data transfer occurs as the sector moves
under the head

 Data transfer for an entire file is faster when
the file is stored in the same cylinder and in
adjacent sectors

Performance Charactersitic of Disks

 Time required to read or write a disk block
determined by 3 factors
 Seek time
 Rotational delay

Disk Scheduling

© 2009 Universität Karlsruhe, System Architecture Group 45

 Actual transfer time

 Seek time dominates

 For a single disk, there will be a number of disk-I/O
requests  processing them in random order leads
to worst possible disk performance

 Error checking is done by controllers

Disk Disk SchedulingScheduling

No longer needed
Most of Disk scheduling is done

by the Disk Controller

46© 2009 Universität Karlsruhe, System Architecture Group

 Random (no real policy at all)
 First come, first served (FCFS)
 Priority (???)
 SCAN
 C-SCAN

Overview: Disk Scheduling Policies

Disk Scheduling

© 2009 Universität Karlsruhe, System Architecture Group 47

 N-Step SCAN
 Minimal Seek Time First

(Stalling’s Shortest Service Time First!)
 Antcipatory Disk Scheduling
 Shortest Service Time First
 Proportional-share scheduling

Seek time
reducing
disk schedulers

First come, first served (FCFS)

 Manage disk requests as they come

 Fair to all “disk clients” ( no starvation)

 Good for just a few concurrent
processes/tasks with clustered requests

Disk Scheduling

© 2009 Universität Karlsruhe, System Architecture Group 48

processes/tasks with clustered requests

 Performs ~ random scheduling”
if there are many concurrent “disk clients”

Remark: Already a single “copy file” may lead to a
“ping-pong effect” on the disk surface

Priority

 Goal is not to optimize disk usage, but to meet other
objectives, e.g. favor special applications

 Short batch jobs may have higher priority

 May improve turnaround times of these high priority
jobs but ??

Disk Scheduling

© 2009 Universität Karlsruhe, System Architecture Group 49

jobs, but ….??

SCAN (~Elevator)

 Disk arm moves in one direction
 satisfying all pending requests until it reaches the

last track in that direction

 Direction of arm movement is reversed

Disk Scheduling

© 2009 Universität Karlsruhe, System Architecture Group 50

afterwards, …

 Better than FCFS, usually worse than SSTF

 Makes poor use of sequential reads on down-
scan

Example: SCAN

Disk Scheduling

© 2009 Universität Karlsruhe, System Architecture Group 51

C(ircular)-SCAN

 Like elevator, but restricts scanning to one
direction only
 when last track has been visited, move arm at

full speed to first track

Disk Scheduling

© 2009 Universität Karlsruhe, System Architecture Group 52

 Better locality on sequential reads

 Better use of read ahead cache on controller

 Reduce maximal delay to read a particular
sector

N-step-SCAN

 segments the disk request queue into sub-
queues of length N

 sub-queues are processed one at a time,
using SCAN

What‘s the optimal N?
How to initialize?

Disk Scheduling

© 2009 Universität Karlsruhe, System Architecture Group 53

using SCAN

 new requests added to another queue

FSCAN

 (no limit on queue-length)
 two queues

i t f t

Disk Scheduling

© 2009 Universität Karlsruhe, System Architecture Group 54

 one queue is empty for new request

Shortest Seek Time First (SSTF)

 Select the disk I/O request that requires the
least movement of the disk arm from its
current position

 Each request on the most neighbored track is

Disk Scheduling

© 2009 Universität Karlsruhe, System Architecture Group 55

 Each request on the most neighbored track is
serviced regardless of its potential delay due
to rotational time

Remark:
Requests on the most outer/inner tracks may starve,
if we have huge traffic in the midst or at the
opposite side of the disk

Example: SSTF

Disk Scheduling

© 2009 Universität Karlsruhe, System Architecture Group 56

Shortest Service Time First (SSvTF)

 Select disk I/O request that is serviced with
minimal sum of seek and rotational time

Analysis: Algorithmic drawback (comparable to chess novice)

Disk Scheduling

© 2009 Universität Karlsruhe, System Architecture Group 57

Just looking for 1 minimal request,
don‘t reflecting a sequence of requests!!

Counterargument:
Too much overhead and possible changes due to new
arrivals of disk requests.

Proportional-Share Scheduler

 Offers a usage ratio to the current
active competing tasks

 Enables to give quality of service

Disk Scheduling

© 2009 Universität Karlsruhe, System Architecture Group 58

guarantees to disk-clients

Anticipatory Disk Scheduling*

 See slides of “HotSystem WT 200172002” and
http://cs.nmu.edu/~randy/research/speaches/1
on topic: Dusk Scheduling in Linux

 Idea:
Even though there is another request wait a bit may

© 2009 Universität Karlsruhe, System Architecture Group 59

Even though there is another request, wait a bit, may
be a better one will arrive soon

 Having waited long enough, use SCAN
 Goal:

Having at least two different request sources, i.e.
different application- or system-pocesses/tasks, next
request = nearby

*Another famous proposal by P. Druschel’s team at Rice

Error Handling

Error Handling

© 2009 Universität Karlsruhe, System Architecture Group 60

 A disk track with a bad sector (and 2 spares)
 Substituting a spare for the bad sector
 Shifting all the sectors to bypass the bad one
 Bad sectors are handled transparently by on-

disk-controller

Stable Storage

Error Handling

© 2009 Universität Karlsruhe System Architecture Group
61

 Use 2 disks to implement stable storage
 Problem is when a write(update) corrupts old

version, without completing write of new version
 Solution: First write to disk 1, then write to disk 2
 Analysis of the influences of crashes on stable

writes

RAID TechnologyRAID Technology

62© 2009 Universität Karlsruhe, System Architecture Group

RAID Management

Further Improvements for Disk-I/O

 Analysis:
data rate of a disk << data rate of CPU or RAM

 Idea:
 Use multiple disks to parallelize disk-I/O

© 2009 Universität Karlsruhe, System Architecture Group 63

 RAID = redundant array of independent disks
(originally: redundant array of inexpensive disks)

 Use multiple disks to parallelize disk I/O
 provide a better disk availability
 Instead of 1 single large expensive disk (SLED) use

strip 0
strip 1
strip 2
strip 3

Logical disk

Array
Mapping
Software

strip 0
strip 2
strip 4
strip6

strip 1
strip 3
strip 5
strip 7

Physical
disk 1

Physical
disk 2

RAID Management

RAID Levels: Mapping Logical Disk(s) to
Phsyical Disk(s)

© 2009 Universität Karlsruhe, System Architecture Group 64

strip 3

strip 4
strip 5

strip6 st p

Remark:
A strip is either a physical block, e.g. a sector or a multiple of it

strip 0

strip 4

strip 8

strip 1

strip 5

strip 9

strip 2

strip 6

strip 10

strip 3

strip 7

strip 11

stripe 0

RAID 0 (without any redundancy)

RAID Management

© 2009 Universität Karlsruhe System Architecture Group
65

strip 12 strip 13 strip 14 strip 15

 Decreased availability compared to the SLED
 Increased bandwidth to/from logical disk
 Analyze applications which may profit from RAID0

strip 0

strip 4

strip 8
strip 12

strip 1

strip 5
strip 9

strip 13

strip 2

strip 6

strip 10

strip 14

strip 3

strip 7

strip 11
strip 15

RAID 1 (just mirrored)

RAID Management

© 2009 Universität Karlsruhe, System Architecture Group 66

strip 0

strip 4

strip 8
strip 12

strip 1

strip 5
strip 9

strip 13

strip 2

strip 6

strip 10

strip 14

strip 3

strip 7

strip 11
strip 15

Remark: Discuss the pros and cons of RAID 1. How to start with?

f0(b)b2b1b0 b2
f1(b) f2(b)

RAID 2 (redundancy through Hamming code)

RAID Management

© 2009 Universität Karlsruhe, System Architecture Group 67

Rough analysis:
RAID 2 is an overkill and never implemented
Hamming code used for f(b), b are very small strips,
still a remarkable disk overhead compared to RAID 0

data disks parity disk

RAID 3 (bit-interleaved parity)

RAID Management

© 2009 Universität Karlsruhe, System Architecture Group 68

P(b)b2b1b0 b2

block 0

block 4

block 8

block 12

block 1

block 5

block 9

block 13

block 2

block 6

block 10

block 14

block 3

block 7

block 11

block 15

P(0-3)

P(4-7)

P(8-11)

P(12 15)

RAID 4 (block-level parity)

RAID Management

© 2009 Universität Karlsruhe, System Architecture Group 69

block 12 block 13 block 14 block 15 P(12-15)

Parity computation: P(0..3) = block0  block1  block2 block3

Result:
Small updates require 2 reads (old block + parity) and
2 writes (new block + parity) to update a single disk block
Parity disk may be a bottleneck

block 0

block 4

block 8

block 12

block 1

block 5

block 9

P(12-15)

block 2

block 6

P(8-11)
block 13

block 3

P(4-7)
block 10

block 14

P(0-3)

block 7

block 11

block 15

RAID 5 (block-level distributed parity)

RAID Management

© 2009 Universität Karlsruhe System Architecture Group
70

P(16-19) block 16 block 17 block 18 block 19

 Like RAID4, but we distribute parity block on all disks
no longer a “bottleneck disk”

 Update performance still less than on a SLED
 Reconstruction after a failure is a bit tricky

Raid Summary

 RAID0 provides performance improvements, but no
additional availability

 RAID1 provides performance and availability
improvements, but expensive to implement

RAID Management

© 2009 Universität Karlsruhe, System Architecture Group 71

 RAID5 is cheaper (only 1 single additional disk
compared to RAID0), but has a poor write update
performance

 Others are not used

Example: HP AutoRAID

 Uses RAID1 and RAID5 at the same time

 Hot data uses RAID1 for good performance

 When disk space is tight, it transparently migrates

RAID Management

© 2009 Universität Karlsruhe, System Architecture Group 72

some of the data into RAID5

 Goal is to provide best of both approaches:
 Good performance
 Compact, available stable storage

Disk Caches

 Buffer in main memory for disk sectors (blocks)

 Contains a copy of some sector on the disk

 From time to time “cache contents” have to be

Disk Caches

© 2009 Universität Karlsruhe, System Architecture Group 73

“swapped out to” disk to keep the memory blocks
consistent with the disk blocks

 If cache is full buffers have to be replaced according to
some replacement policy (see paging)

Least Recently Used

 Block that has been in the cache the longest with no
reference in the very past will be used for
replacement

 Cache consists of a “stack of blocks”

Disk Caches

© 2009 Universität Karlsruhe, System Architecture Group 74

 Most recently referenced block is on the top of the
stack

 Whenever a block is referenced or brought into
cache, it is placed on top of LRU-stack

Least Recently Used

 The block on the bottom of the stack is removed
when the cache is full, if a new block has to be
swapped in

 Blocks don’t actually move around in main memory

Disk CachesDisk Caches

© 2009 Universität Karlsruhe, System Architecture Group 75

y y

 Pointers within some block-headers are used to
establish the LRU-stack

Least Frequently Used

 The block that has experienced the fewest references
is replaced

 A counter is associated with each block

Disk CachesDisk Caches

© 2009 Universität Karlsruhe, System Architecture Group 76

 Counter is incremented each time block accessed

 Some blocks may be referenced many times in a
short period of time and then not needed any more

CD-ROM

CD-ROM Hardware

© 2009 Universität Karlsruhe, System Architecture Group 77

Recording structure of a CD or CD-ROM

CD-Rom (2)

CD-ROM Hardware

© 2009 Universität Karlsruhe, System Architecture Group 78

Logical data layout on a CD-ROM

CD-ROM (3)

CD-ROM Hardware

© 2009 Universität Karlsruhe, System Architecture Group 79

 Cross section of a CD-R disk and laser (not to scale)
 Silver CD-ROM has similar structure

 without dye layer
 with pitted aluminum layer instead of gold

DVD-Disk

CD-ROM Hardware

© 2009 Universität Karlsruhe, System Architecture Group 80

A double sided, dual layer DVD disk

Clocks

Clock DevicesClock Devices

© 2009 Universität Karlsruhe, System Architecture Group 81

A programmable clock

Clock Software (1)

Clock DevicesClock Devices

© 2009 Universität Karlsruhe, System Architecture Group 82

Three ways to maintain the time of day

Clock Software (2)

Clock DevicesClock Devices

© 2009 Universität Karlsruhe, System Architecture Group 83

Simulating multiple timers with a single clock

Soft Timers

 A second clock available for timer interrupts
 specified by applications
 no problems if interrupt frequency is low

Clock DevicesClock Devices

© 2009 Universität Karlsruhe, System Architecture Group 84

 Soft timers avoid interrupts
 kernel always checks for soft timer expiration

before kernel exits to user mode
 how well this works depends on rate of kernel

entries

Additional ReadingAdditional Reading

Recommended Reading

Alessandro Rubini: Linux Device Drivers, O’Reilly 2001

P. Chen et al.: RAID: High Performance,
Reliable Secondary Storage,

© 2009 Universität Karlsruhe, System Architecture Group 85

ACM Computing Surveys, 1994

D. Patterson et al.: Computer Organization and Design,
Morgan Kaufmann, 1998

