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Roadmap
 Motivation

 Repetition: I/O-Devices
 Device Categories
 I/O-Functionality
 Data Transfer

 I/O-Subsystem
D i P t
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 Design Parameters
 I/O Layering
 I/O-Buffering

 Disk I/O Management 
 Disk, CD-Rom, …
 Disk Layouts and Formats
 Disk Scheduling
 RAID
 Disk Caching

 Clocks and Timer



Discuss these trade-offs 
very very carefully!!!

Operating System Design Issues

Basic of I/O Software
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System Design Objectives (1)

Analysis(1): Efficiency?
 Most I/O-devices slow compared to RAM & CPU 

potential bottleneck of system
 Use of multiprogramming allows for some tasks/processes to 

be waiting on I/O while another task/process is running

Basic of I/O Software
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 Often I/O cannot keep up with processor speed, but some 
devices are faster at least than RAM (Gigabit-Network) 

 Swapping and Paging may be used to improve multi-
programming degree  more additional I/O operations

 Optimize I/0Optimize I/0--EfficiencyEfficiency
(especially disk & network) is (especially disk & network) is 
thethe important issue important issue (( Liedtke)Liedtke)



System Design Objectives (2)

Basic of I/O Software

Analysis (2): How about generality/uniformity?

 Ideally, handle all I/O devices in the same way
 Both in OS (kernel land) and in applications (user land)

 Problem = Diversity of devices
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y
 Access methods (random ~ versus stream based access)

 Hide details of device I/O in low-level routines so that 
tasks/processes and upper level I/O functions can 
see devices in general terms such as files
 read and write or

 open and close or

 lock and unlock …



Layers of I/O Software System

Basic of I/O Software
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Hardware (see repetition slides)



Interrupt Handler (1)

 Interrupt handlers are best hidden
 Can be executed at almost any time

 Raise (complex) concurrency issues in the kernel
 Have similar problems within applications if interrupts are 

propagated to user-level code (via signals, upcalls)

Interrupt Handling
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 Generally, a driver having started an I/O blocks, until the 
“completion interrupt” notifies the waiting driver

 Interrupt handler does its work related with the I/O-device 
and then unblocks driver that has started the finished I/O

 The following steps must be performed in software 
after an interrupt has occurred, …



Interrupt Handler (2)

1. Save registers not already saved by HW-interrupt 
mechanism

2. Set up context (address space) for interrupt service 
procedure
 Typically, handler runs in the context of the currently running 

process/task  not that expensive context switch

Interrupt Handling
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process/task  not that expensive context switch
3. Set up stack for interrupt service procedure

 Handler usually runs on the kernel stack of the current 
process/kernel-level thread 

 Handler cannot block, otherwise the unlucky interrupted 
process/kernel-thread would also be blocked, might lead to 
starvation or even to a deadlock

4. Acknowledge/mask interrupt controller, thus re-enable 
other interrupts



Interrupt Handler (2)

5. Run interrupt service procedure
 Acknowledges interrupt at device level
 Figures out what caused the interrupt, e.g.

 Received a network packet
 Disk read has properly finished, …
If needed it signals the blocked device driver

Interrupt Handling

© 2009 Universität Karlsruhe, System Architecture Group 9

 If needed, it signals the blocked device driver
6. In some cases, we have to wake up a higher priority 

process/kernel level thread
 Potentially schedule another process/kernel-level thread
 Set up MMU context for process to run next

7. Load new/original process' registers
8. Return from Interrupt, start running new/original 

process



Device Driver

Device Driver
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Communication between drivers and device controllers 
is done via the bus



Device Driver

 Drivers classified into similar categories
 Block devices and 
 Character (stream of data) devices

 OS defines standard (internal) interface to

Device Driver
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 OS defines standard (internal) interface to 
the different classes of devices
 Device drivers job

 Translate user request through device-independent 
standard interface, e.g. open, read, …, close) into 
appropriate sequence of device or controller commands 
(register manipulation)

 Initialize HW at boot time
 Shut down HW



Device Driver

 After issue the command to the device, 
device either
 completes immediately and the driver simply 

returns to the caller or it
processes request and the driver usually blocks

Device Driver
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 processes request and the driver usually blocks 
waiting for an I/O (complete) interrupt signal

 Drivers are reentrant as they can be called by 
another process while a process is already 
blocked in the driver
 Reentrant: code that can be executed by more 

than one thread (or CPU) at the same time
 Manages concurrency using synch primitives



Device Drivers upon Micro-Kernels

 Single threaded 
 Accepting user request
 Preparing  device (controller)
 Reacting on interrupt

Device Driver
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 Multi-threaded
 Repeated single-threaded
 Pipe-lining



Device-Independent I/O Software (1)

 There is some commonality between drivers 
of similar classes 

 Divide I/O software into device-dependent and 
device independent I/O software, e.g.

Device Independent Software
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 Buffer or buffer-cache management, i.e. 
provide a device-independent block size

 Allocating and releasing dedicate devices

 Error reporting to upper levels, i.e. all errors 
the driver cannot resolve



Device-Independent I/O Software (2)

Device Independent Software
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(a) Without a standard driver interface
(b) With a standard driver interface



Device-Independent I/O Software (3)

Driver   Kernel Interface
 Uniform interface to devices and kernel

 Uniform device interface for kernel code
 Allows different devices to be used in the same way, e.g. 

Device Independent Software
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no need to rewrite your file-system when you are 
switching from IDE to SCSI or even to RAM disks

 Allows internal changes of drivers without fearing of 
breaking kernel code

 Uniform kernel interface for device code
 Drivers use a defined interface to kernel service, e.g. 

kmalloc, install IRQ handler, etc.
 Allows kernels to evolve without breaking device drivers



Device Independent Software (4)

Device Independent Software
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(a) Unbuffered input
(b) Buffering in user space
(c) Buffering in the kernel followed by copying to user space
(d) Double buffering in the kernel

Buffering on later Slides



I/O Software Summary

Device Independent Software
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Layers of I/O system and main functions of each layer



Application
Task

Logical
I/O

Application
Task

Communication
Architecture

Application
Task

Directory
Management

File
System

I/O Management

Quite a lot 
of tasks 
involved

Examples of I/O-Organization
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Local peripheral device

Scheduling
& Control

Hardware

Device
I/O

Scheduling
& Control

Communications port

Device
I/O

Hardware

Scheduling
& Control

File System

Device
I/O

Hardware

Physical
Organization



I/O Buffering*

 Reasons for buffering
 Otherwise threads must wait for I/O to complete before 

proceeding
 Pages must remain in main memory during physical I/O

 Block-oriented

I/O Buffering
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 information is stored in fixed sized blocks
 transfers are made a block at a time
 used for disks and tapes

 Stream-oriented
 transfer information as a stream of bytes
 used for terminals, printers, communication ports, mouse, and 

most other devices that are not secondary storage

*Principle of buffering was invented because of I/O



No Buffering

 Process reads/writes a device a byte/word at 
a time
 Each individual system call adds significant 

overhead

I/O Buffering
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 Process must wait until every I/O is complete
 Blocking/interrupt handling/deblocking adds to 

overhead
 Many short CPU phases are inefficient, because 

 overhead induced by thread_switch (or even worse 
address_space_switch)

 poor cache and TLB usage



Operating System User Process

I/O Device
In

User Level Buffering

I/O Buffering
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No buffering in OS

 Task specifies a memory buffer that incoming data is 
placed in until it fills
 Filling can be done by interrupt service routine
 Only one system_call and block/deblock per data buffer

 More efficient than “NO BUFFERING”



User Level Buffering

 Issues
 What happens if buffer is currently paged out to 

disk?
 You may loose data while buffer is paged in

I/O Buffering
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 You could lock/pin this buffer (needed for DMA), 
however, you have to trust the application 
programmer, that sheThe is not starting a denial of 
service attack

 Additional problems with writing?
 When is the buffer available for re-use?



Operating System User Process

Single buffering

I/O Device In Move

Single Buffer

I/O Buffering
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 User Process can process one block of data while 
next block is read in

 Swapping can occur since input is taking place in 
system memory, not user memory

 OS keeps track of assignment of system buffers 
to user processes



Single Buffer

 Stream-oriented
 Buffer is an input line at time with carriage return 

signaling the end of the line

 Block-oriented

I/O Buffering

© 2009 Universität Karlsruhe, System Architecture Group 25

 Block-oriented
 Input transfers made to system buffer
 Buffer moved to user space when needed
 Another block is read into system buffer



Single Buffer Speed Up

 Assumption:
 T = transfer time from device
 C = copying time from system- to user-buffer
 P = processing time of complete buffer content

I/O Buffering
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 Processing and transfer can be done in parallel
 Potential speed up with single buffering:

T + P
max{T, P} + C



Single Buffer Problem

 What happens if system buffer is full, user buffer is 
swapped out, and more data is received?

 Loose characters or drop network packets

I/O Buffering
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I/O Device In Move

Operating System User Process

Double Buffer

I/O Buffering
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Double buffering

 Use 2 system buffers instead of 1 (per user process)

 User process can write to or read from one buffer 
while the OS empties or fills the other buffer



time

CPU

Timing Diagram for Double Buffering 

I/O Buffering
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I/O

Analysis: The slower I/O-device is busy the whole input-period, 
thus additional buffers are not needed (in this case).



Double Buffer Speed Up

 Processing and memory copying in parallel 
with data transfer 

 Speed up with double buffering:
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T + P
max{T, P+C}

 Usually C << than 



Circular Buffering

I/O Buffering

 Double buffering may be insufficient for really 
bursty traffic situations:
 Many writes between long periods of 

computations
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 Long periods of computations while receiving data
 Might want to read ahead more than just a single 

block from disk

 Circular buffering with n>1 system buffers



Circular Buffering

I/O Device
In Move

Operating System User Task

.

.

I/O Buffering
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 More than two buffers are used to face I/O-bursts
 Each individual buffer is one unit in a circular buffer

Circular buffering



How to implement Buffering?

 Remember: 
Single-, double-,and circular-buffering are all

Bounded-Buffer 
d / bl
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Producer-/Consumer Problems

 Is buffering always a good idea?
 Analyze carefully



Buffering in Fast networks

Device Independent Software
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 Networking may involve many copies
 Copying reduces overall performance
 Super-fast networks put significant effort into 

achieving zero-copying
 Buffering may also increase latency 



Disk Management

 Management of disk accesses is important

 Huge speed gap between main memory and disk

 Disk throughput is sensitive to
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 Request order  Disk Scheduling

 Placement of data on the disk 

 File System Design and Implementation

 Swap Area Design

 Disk scheduler must be aware of disk geometry



Inter-sector gap

Sectors Tracks

Inter-track gap

Data block if sector
is large enough

Same track on each 
platter of a disk
form the cylinder

Disk Hardware

Disk Data Layout
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Remark: 
Typical sector size 0.5 KB, typical block size [0.5, 8] KB

How would you map blocks
larger than a sector?



Disk Management

Partitioning a Disk

 Set of consecutive cylinders form a “disk partition”

 FFS divides a partition into c cylinder groups:
Storing “related data” into one 
cylinder group may help to 
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spindle

minimize head movements

 Contiguous blocks of a file 
are located within a 
cylinder-group using 
interleaving



Modern Disk Geometry

Disk Hardware
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 Physical geometry of a disk with two zones
 A possible virtual geometry for this disk



Disk Hardware

Disk Hardware
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Disk parameters for the original IBM PC floppy disk 
and a Western Digital WD 18300 hard disk



Low Level Disk Formatting (1)

Disk Management
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A disk sector



Low Level Disk Formatting (2)

Disk Management
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An illustration of cylinder skew



Low Level Disk Formatting (3)

Disk Management
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 No interleaving
 Single interleaving
 Double interleaving
 Modern drives overcome interleaving by simply reading 

the entire track into the on-disk-controllers cache



Disk Performance Parameters (1)

 To read or write from or to a disk, the disk 
head must be positioned at the desired track 
(and at the beginning of the desired sector)

 Seek time

Disk Parameters
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 Seek time
 time it takes to position head at the desired track

 Rotational delay or rotational latency
 time its takes until the desired sector has been 

rotated to line up with read/write-head



Disk Performance Parameters (2)

 Access time
 sum of seek time and rotational delay
 the time it takes to get in position to read or write

 Data transfer occurs as the sector moves

Disk Parameters
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 Data transfer occurs as the sector moves 
under the head

 Data transfer for an entire file is faster when 
the file is stored in the same cylinder and in 
adjacent sectors



Performance Charactersitic of Disks

 Time required to read or write a disk block 
determined by 3 factors
 Seek time
 Rotational delay

Disk Scheduling
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 Actual transfer time

 Seek time dominates 

 For a single disk, there will be a number of disk-I/O 
requests  processing them in random order leads 
to worst possible disk performance

 Error checking is done by controllers



Disk Disk SchedulingScheduling

No longer needed
Most of Disk scheduling is done 

by the Disk Controller

46© 2009 Universität Karlsruhe, System Architecture Group 



 Random (no real policy at all)
 First come, first served (FCFS)
 Priority (???)
 SCAN
 C-SCAN

Overview: Disk Scheduling Policies

Disk Scheduling
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 N-Step SCAN
 Minimal Seek Time First 

(Stalling’s Shortest Service Time First!)
 Antcipatory Disk Scheduling
 Shortest Service Time First
 Proportional-share scheduling

Seek time 
reducing
disk schedulers



First come, first served (FCFS)

 Manage disk requests as they come

 Fair to all “disk clients” ( no starvation)

 Good for just a few concurrent 
processes/tasks with clustered requests

Disk Scheduling
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processes/tasks with clustered requests

 Performs ~ random scheduling” 
if there are many concurrent “disk clients”

Remark: Already a single “copy file” may lead to a
“ping-pong effect” on the disk surface 



Priority

 Goal is not to optimize disk usage, but to meet other 
objectives, e.g. favor special applications

 Short batch jobs may have higher priority

 May improve turnaround times of these high priority 
jobs but ??

Disk Scheduling
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jobs, but ….??



SCAN (~Elevator)

 Disk arm moves in one direction
 satisfying all pending requests until it reaches the 

last track in that direction

 Direction of arm movement is reversed 

Disk Scheduling
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afterwards, …

 Better than FCFS, usually worse than SSTF

 Makes poor use of sequential reads on down-
scan



Example: SCAN

Disk Scheduling
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C(ircular)-SCAN

 Like elevator, but restricts scanning to one 
direction only
 when last track has been visited, move arm at 

full speed to first track 

Disk Scheduling
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 Better locality on sequential reads

 Better use of read ahead cache on controller

 Reduce maximal delay to read a particular 
sector 



N-step-SCAN

 segments the disk request queue into sub-
queues of length N

 sub-queues are processed one at a time, 
using SCAN

What‘s the optimal N?
How to initialize?

Disk Scheduling
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using SCAN

 new requests added to another queue



FSCAN

 (no limit on queue-length)
 two queues

i t f t

Disk Scheduling
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 one queue is empty for new request



Shortest Seek Time First (SSTF)

 Select the disk I/O request that requires the 
least movement of the disk arm from its 
current position

 Each request on the most neighbored track is

Disk Scheduling
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 Each request on the most neighbored track is 
serviced regardless of its potential delay due 
to rotational time

Remark:
Requests on the most outer/inner tracks may starve, 
if we have huge traffic in the midst or at the 
opposite side of the disk



Example: SSTF

Disk Scheduling
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Shortest Service Time First (SSvTF)

 Select disk I/O request that is serviced with  
minimal sum of seek and rotational time

Analysis: Algorithmic drawback (comparable to chess novice)

Disk Scheduling
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Just looking for 1 minimal request,
don‘t reflecting a sequence of requests!!

Counterargument: 
Too much overhead and possible changes due to new
arrivals of disk requests.



Proportional-Share Scheduler

 Offers a usage ratio to the current 
active competing tasks

 Enables to give quality of service 

Disk Scheduling
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guarantees to disk-clients



Anticipatory Disk Scheduling*

 See slides of “HotSystem WT 200172002” and
http://cs.nmu.edu/~randy/research/speaches/1
on topic: Dusk Scheduling in Linux

 Idea: 
Even though there is another request wait a bit may
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Even though there is another request, wait a bit, may 
be a better one will arrive soon

 Having waited long enough, use SCAN
 Goal:

Having at least two different request sources, i.e. 
different application- or system-pocesses/tasks, next 
request = nearby 

*Another famous proposal by P. Druschel’s team at Rice



Error Handling

Error Handling
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 A disk track with a bad sector (and 2 spares)
 Substituting a spare for the bad sector
 Shifting all the sectors to bypass the bad one
 Bad sectors are handled transparently by on-

disk-controller



Stable Storage

Error Handling
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 Use 2 disks to implement stable storage
 Problem is when a write(update) corrupts old 

version, without completing write of new version
 Solution: First write to disk 1, then write to disk 2
 Analysis of the influences of crashes on stable 

writes 



RAID TechnologyRAID Technology
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RAID Management

Further Improvements for Disk-I/O

 Analysis:
data rate of a disk << data rate of CPU or RAM

 Idea:
 Use multiple disks to parallelize disk-I/O
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 RAID = redundant array of independent disks
(originally: redundant array of inexpensive disks)

 Use multiple disks to parallelize disk I/O 
 provide a better disk availability
 Instead of 1 single large expensive disk (SLED) use



strip 0
strip 1
strip 2
strip 3

Logical disk

Array
Mapping
Software

strip 0
strip 2
strip 4
strip6

strip 1
strip 3
strip 5
strip 7

Physical 
disk 1

Physical 
disk 2

RAID Management

RAID Levels: Mapping Logical Disk(s) to 
Phsyical Disk(s)
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strip 3

strip 4
strip 5

strip6 st p

Remark:  
A strip is either a physical block, e.g. a sector or a multiple of it



strip 0

strip 4

strip 8

strip 1

strip 5

strip 9

strip 2

strip 6

strip 10

strip 3

strip 7

strip 11

stripe 0

RAID 0 (without any redundancy)

RAID Management

© 2009 Universität Karlsruhe System Architecture Group
65

strip 12 strip 13 strip 14 strip 15

 Decreased availability compared to the SLED
 Increased bandwidth to/from logical disk
 Analyze applications which may profit from RAID0



strip 0

strip 4

strip 8
strip 12

strip 1

strip 5
strip 9

strip 13

strip 2

strip 6

strip 10

strip 14

strip 3

strip 7

strip 11
strip 15

RAID 1 (just mirrored)

RAID Management
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strip 0

strip 4

strip 8
strip 12

strip 1

strip 5
strip 9

strip 13

strip 2

strip 6

strip 10

strip 14

strip 3

strip 7

strip 11
strip 15

Remark: Discuss the pros and cons of RAID 1.  How to start with? 



f0(b)b2b1b0 b2
f1(b) f2(b)

RAID 2 (redundancy through Hamming code)

RAID Management
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Rough analysis:
RAID 2 is an overkill and never implemented
Hamming code used for f(b), b are very small strips,
still a remarkable disk overhead compared to RAID 0



data disks parity disk

RAID 3 (bit-interleaved parity)

RAID Management
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P(b)b2b1b0 b2



block 0

block 4

block 8

block 12

block 1

block 5

block 9

block 13

block 2

block 6

block 10

block 14

block 3

block 7

block 11

block 15

P(0-3)

P(4-7)

P(8-11)

P(12 15)

RAID 4 (block-level parity)

RAID Management
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block 12 block 13 block 14 block 15 P(12-15)

Parity computation: P(0..3) = block0  block1  block2 block3

Result:
Small updates require 2 reads (old block + parity) and 
2 writes (new block + parity) to update a single disk block
Parity disk may be a bottleneck



block 0

block 4

block 8

block 12

block 1

block 5

block 9

P(12-15)

block 2

block 6

P(8-11)
block 13

block 3

P(4-7)
block 10

block 14

P(0-3)

block 7

block 11

block 15

RAID 5 (block-level distributed parity)

RAID Management
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P(16-19) block 16 block 17 block 18 block 19

 Like RAID4, but we distribute parity block on all disks 
no longer a “bottleneck disk”

 Update performance still less than on a SLED
 Reconstruction after a failure is a bit tricky



Raid Summary

 RAID0 provides performance improvements, but no 
additional availability

 RAID1 provides performance and availability 
improvements, but expensive to implement

RAID Management
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 RAID5 is cheaper (only 1 single additional disk 
compared to RAID0), but has a poor write update 
performance

 Others are not used



Example: HP AutoRAID

 Uses RAID1 and RAID5 at the same time

 Hot data uses RAID1 for good performance

 When disk space is tight, it transparently migrates 

RAID Management
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some of the data into RAID5

 Goal is to provide best of both approaches:
 Good performance
 Compact, available stable storage



Disk Caches

 Buffer in main memory for disk sectors (blocks)

 Contains a copy of some sector on the disk

 From time to time “cache contents” have to be 

Disk Caches
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“swapped out to” disk to keep the memory blocks 
consistent with the disk blocks

 If cache is full buffers have to be replaced according to 
some replacement policy (see paging)



Least Recently Used

 Block that has been in the cache the longest with no 
reference in the very past will be used for 
replacement

 Cache consists of a “stack of blocks”
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 Most recently referenced block is on the top of the 
stack

 Whenever a block is referenced or brought into 
cache, it is placed on top of LRU-stack



Least Recently Used

 The block on the bottom of the stack is removed 
when the cache is full, if a new block has to be 
swapped in

 Blocks don’t actually move around in main memory
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y y

 Pointers within some block-headers are used to 
establish the LRU-stack



Least Frequently Used

 The block that has experienced the fewest references 
is replaced

 A counter is associated with each block
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 Counter is incremented each time block accessed

 Some blocks may be referenced many times in a 
short period of time and then not needed any more



CD-ROM

CD-ROM Hardware
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Recording structure of a CD or CD-ROM



CD-Rom (2)
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Logical data layout on a CD-ROM



CD-ROM (3)
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 Cross section of a CD-R disk and laser (not to scale)
 Silver CD-ROM has similar structure

 without dye layer
 with pitted aluminum layer instead of gold



DVD-Disk

CD-ROM Hardware
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A double sided, dual layer DVD disk



Clocks

Clock DevicesClock Devices
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A programmable clock



Clock Software (1)

Clock DevicesClock Devices
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Three ways to maintain the time of day



Clock Software (2)

Clock DevicesClock Devices

© 2009 Universität Karlsruhe, System Architecture Group 83

Simulating multiple timers with a single clock



Soft Timers

 A second clock available for timer interrupts
 specified by applications
 no problems if interrupt frequency is low
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 Soft timers avoid interrupts
 kernel always checks for soft timer expiration 

before kernel exits to user mode
 how well this works depends on rate of kernel 

entries



Additional ReadingAdditional Reading
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