
19 Virtual Memory (2)19 Virtual Memory (2)

1© 2009 Universität Karlsruhe (TH), System Architecture Group

Paging Policies, Load control,
Page Fault Handling, Case studies

January 21 2009
WT 2008/09

Introduction

Roadmap of Today
 Introduction
 Orthogonal Paging Policies

 Page Replacement Policies

 Special Features
Page Frame Buffering

© 2009 Universität Karlsruhe (TH), System Architecture Group 2

 Page Frame Buffering

 Segmentation (+ Paging)

 Resident Set

 Replacement Scope

 Load Control

 Swap Area

 Page Fault Handling

Virtual Memory

VM Management Software

 VM management software depends on whether HW
supports paging, segmentation or both

 only few pure segmentation systems (MCP)

© 2009 Universität Karlsruhe (TH), System Architecture Group 3

 Segments are usually broken into pages

 We’ll focus on issues associated with pure paging

Goal of each paging policy:
 Performance, i.e. we must achieve a “low page-fault rate”

 Each page fault slows down an application

Orthogonal PoliciesOrthogonal Policies

4© 2009 Universität Karlsruhe (TH), System Architecture Group

Paging Policies

Policies around Paging

 Fetch policy
 When to transfer a page from disk to RAM

(page_in)

 Placement policy
Where to map a page (especially parts of

© 2009 Universität Karlsruhe (TH), System Architecture Group 5

 Where to map a page (especially parts of superpages)

 Replacement policy
 Which pair <page/page frame> to evict to be

used for replacement in order to map a new page

 Clean policy
 When to transfer a dirty page back to disk

(page_out)

Fetch Policy

 2 policies:
 Demand paging transfers a page to RAM iff a

reference to that page has raised a page fault
 CON: “Many” initial page faults when a task starts
 PRO: You only transfer what you really need

Paging Policies

© 2009 Universität Karlsruhe (TH), System Architecture Group 6

 Pre-Paging transfers more pages from disk to RAM
additionally to the demanded page
 CON: Pre-paging is highly speculative

 improves disk I/O throughput by reading chunks
 wastes I/O bandwidth if page will never be used
 can destroy the working set of another task in

case of page stealing

Placement Policy

 For pure segmentation systems:
 first-fit, next fit... are possible choices
 (real issue, this can be quite complicated)

 For paging systems:

Paging Policies

© 2009 Universität Karlsruhe (TH), System Architecture Group 7

 For paging systems:
 frame location often irrelevant

 as long as all page frames are equivalent
 except for some reserved or pinned memory locations for

special purpose, interrupt vector, DMA etc.

 frame location is relevant for variable sized pages
 see transparent super pages

Replacement Policy

 If there is no free page frame, select most fitting pair
<page/page frame> for replacement

 Occurs whenever

 the memory is completely exhausted in case of

Paging Policies

© 2009 Universität Karlsruhe (TH), System Architecture Group 8

 the memory is completely exhausted in case of
global replacement

 the reserved memory per AS is exhausted in case
of local replacement

Replacement Policy

 Page fault on page 5, but
physical memory is

Paging Policies

15

14

13

12

11

10

9

8

7 7

© 2009 Universität Karlsruhe (TH), System Architecture Group 9

physical memory is
completely allocated

 Which pair
<page/page frame>
should we evict?

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

5

LAS RAM

Replacement Policy

 Not all page frames in memory can be replaced
 Some pages are pinned to specific page frames:

 Most of the kernel is resident, i.e. pinned
 some DMA can only access physical addresses, i.e. their

buffers must be pinned, too

Paging Policies

© 2009 Universität Karlsruhe (TH), System Architecture Group 10

 A real-time task might have to pin some/all of its pages
(otherwise no one can guarantee its deadline)

 OS might decide that set of pages considered for next
replacement should be:
 Limited to frames of the task having initiated page fault
 local page replacement

 Unlimited, i.e. also frames belonging to other tasks
 global page replacement

Replacement Policy (2)

 Decision for set of pages to be considered for
replacement is related to the resident set policy:

 Number of page frames allocated to one task is either

 limited (easier performance guarantees) or

l d

Paging Policies

© 2009 Universität Karlsruhe (TH), System Architecture Group 11

 unlimited (adaptable to strange reference patterns)

 No matter which set of page frames is considered for
replacement, its policy tries to choose the
 most promising pair <page,page frame>

 However, what is the most promising pair?

 Replacement algorithms

Cleaning Policy

When should we page-out a “dirty” page?

 Demand Cleaning
 a page is transferred to disk only when its hosting page frame

has been selected for replacement by the replacement policy

Paging Policies

© 2009 Universität Karlsruhe (TH), System Architecture Group 12

 page faulting activity must wait for 2 page transfers (out and
in)

 Pre-Cleaning
 dirty pages are transferred to disk before their page frames

are needed

 transferring large clusters can improve disk throughput, but it
makes few sense to transfer pages to disk if most of them will
be modified again before they will be replaced

Cleaning Policy

 Good compromise achieved with page buffering

 Recall that pages chosen for replacement are
maintained either in a free (unmodified) list or in a
modified list

Paging Policies

© 2009 Universität Karlsruhe (TH), System Architecture Group 13

 Pages of the modified list can be transferred to
disk periodically

 A good compromise since:
 not all dirty pages are transferred to disk, only those that

have been chosen for next replacement
 transferring pages is done in batch (improving disk I/O)

Replacement AlgorithmsReplacement Algorithms

14© 2009 Universität Karlsruhe (TH), System Architecture Group

Theoretical Policies
Practical Policies

Replacement Algorithms

 Observing the past may help to predict the future
 Observe the reference string and try to predict:
 “Very recently referenced pages will also be

referenced in the near future”

Replacement Policies

© 2009 Universität Karlsruhe (TH), System Architecture Group 15

Problem: 1. Which system-behavior can we observe easily?

2. Which information can we maintain efficiently?

time

ri+1 ri+2 ri+3 ri+4 ri+5 ...… ri-5 ri-4 ri-3 ri-2 ri-1 ri

current reference

Observable Data for Replacement

 “Nice to have” the following data for an
appropriate decision:

 time when the page has been transferred
f di k RAM

Replacement Policies

© 2009 Universität Karlsruhe (TH), System Architecture Group 16

from disk to RAM

 time of latest reference to the page

 number of references to that page
 Absolute number

 Weighted number with aging

 Time stamp when the page has been transferred to RAM

 This info ~ the age of a page, very easy to implement.

 FIFO replacement policy is based on the age of a page.

Replacement Criteria (1)

Replacement Policies

© 2009 Universität Karlsruhe (TH), System Architecture Group 17

 Replacement problem solved?

No, this policy offers some anomalies (see exercises)

Replacement Criteria (2)

 Latest reference time of the page

 A page that has not been referenced for a long
period of time is a good candidate for replacement.

LRU* b ed poli ie & NRU poli e thi ite i

Replacement Policies

© 2009 Universität Karlsruhe (TH), System Architecture Group 18

 LRU*-based policies & NRU policy use this criteria.

 However, you won’t implement an exact LRU-based
algorithm, because overwriting the reference date
with every reference is far too much overhead.

*LRU = least recently used

Replacement Criteria (3)

 Number of references to that page

 Idea: Pages that have been referenced a lot should
remain in main memory.

Th the le t f eq entl ed p ge i the ndid te

Replacement Policies

© 2009 Universität Karlsruhe (TH), System Architecture Group 19

 Thus the least frequently used page is the candidate
for the next replacement.

 As well as the fact that you need a reference counter
per page to be incremented with every reference,
this replacement policy tends to some anomalous
behavior without a proper aging mechanism.

Overview: Replacement Algorithms
 Belady-Algorithm (optimal algorithm)

 Random (low end performance)

 Not recently used (NRU)

 First-in, first-out (FIFO)
 (enhanced) FIFO with second chance

Replacement Policies

To compare with

© 2009 Universität Karlsruhe (TH), System Architecture Group 20

 (enhanced) FIFO with second chance

 Least recently used (LRU)

 Clock
 Aging: Recently Not Used (RNU)

 Least frequently used (LFU)

 Working Set
 WSClock

Belady Algorithm

 Select the pair <page/page frame> for which
the time till the next reference is maximal, i.e.
that won’t be used for the longest time (if ever)

 Pros

© 2009 Universität Karlsruhe (TH), System Architecture Group 21

 Minimal number of page faults
 Off-line algorithm for comparison analysis

 Cons
 impossible (or very hard) to implement

 need to know the future (or measure reference string
in a test environment)

 only clairvoyants believe to see future events

Not Recently used (NRU)

 Randomly select a <page/page frame> from the
following list (in this order)
 Not referenced and not modified

 Not referenced and modified

 Referenced and not modified

Replacement Policies

© 2009 Universität Karlsruhe (TH), System Architecture Group 22

 Referenced and not modified

 Referenced and modified

 Pros
 Easy to implement?

 Cons
 Far from optimal
 Huge overhead for maintaining the above lists

FIFO Policy

 Manage mapped page frames as a circular buffer
 When buffer is full, the oldest page is replaced
 Hence: first-in, first-out, although …

 old pages have been referenced in the very past
 old pages have been referenced very frequently

Replacement Policies

© 2009 Universität Karlsruhe (TH), System Architecture Group 23

 old pages have been referenced very frequently

 Comment: Easy to implement
 requires only a pointer that circles through the page

frames of the task (local replacement)
 requires only a pointer circling through the page

frames of all tasks (global replacement)

FIFO Policy with Second Chance*

 Algorithm
 Check R-Bit of oldest page/page frame
 If it is 0, replace it
 If it is 1, reset R-Bit, put page/page frame to the end

of the FIFO list, and continue searching

Replacement Policies

© 2009 Universität Karlsruhe (TH), System Architecture Group 24

 Pros
 Relatively fast and do not replace heavily used page

 Cons
 The worst case may take a long time, i.e. search

the complete FIFO-list

*FIFO with second chance is similar to the clock algorithm

Clock Policy

Replacement Policies

 Set of page frames to be replaced is considered as a
circular buffer

 R(eference)-bit for each frame is set to 1 whenever
the corresponding page is referenced (also upon
loading in case of demand paging)

© 2009 Universität Karlsruhe (TH), System Architecture Group 25

g p g g)

 During search for replacement, in all controlled page
frames the R-bit with value 1 is changed to 0,
indicating that this page gets a second chance to be
referenced again before the next replacement step

 Replace first frame that has the R-bit = 0

 Whenever a page frame has been replaced, a pointer
is set to point to the next page frame in the buffer

1. A page fault occurs, because page 727
is currently not in main memory.

2. Look for a candidate to be replaced

3. In a previous replacement step page 45
on page frame 2 had been replaced

4. Starting from next frame pointer we
are looking through the following page
frames, resetting their reference bits.

The Clock Policy

Replacement Policies

© 2009 Universität Karlsruhe (TH), System Architecture Group 26

0

a es, esett g t e e e e ce b ts

5. Continue this resetting until we find the
first page frame with reference bit = 0.
Its page frame number is 4, containing
page 556 which has to be replaced,
because in the past it was not
referenced any more: it didn’t
use its second chance.

4

The Clock Policy

Replacement Policies

© 2009 Universität Karlsruhe (TH), System Architecture Group 27

LRU Policy

 Replaces page that has not been referenced for the
longest period of time
 By the principle of locality, this should be the page

least likely to be referenced in the near future
 performs “nearly as well as the OPT”

Replacement Policies

© 2009 Universität Karlsruhe (TH), System Architecture Group 28

reference string

 performs nearly as well as the OPT

F F F

F F F

LRU Policy

 Algorithm
 Replace page/page frame that hasn‘t been used for the

longest time

 How to implement?
 Order the pages/page frames by time of reference

Replacement Policies

© 2009 Universität Karlsruhe (TH), System Architecture Group 29

 Order the pages/page frames by time of reference
 Need timestamp (per page or) per page frame

 Pros
 Quite good to approximate the optimal policy, because it

follows the idea of locality

 Cons
 Difficult to implement

Implementation of LRU Policy

 Each page table entry could be enhanced with a time
stamp of the current memory reference.

 LRU page is the page with the minimum time value

 Expensive hardware is needed, implying a great deal

Replacement Policies

© 2009 Universität Karlsruhe (TH), System Architecture Group 30

p , p y g g
of avoidable overhead.

Never implemented that way!

Implementation of LRU Policy

 Upon a reference, each referenced page is deleted
from LRU stack and then pushed on the LRU stack.

 The LRU page is the page at the LRU stack bottom.

 Expensive hardware, significant overhead.

Replacement Policies

© 2009 Universität Karlsruhe (TH), System Architecture Group 31

Not implemented per reference

 “Approximate LRU algorithms” are used instead

Approximation of LRU

 Use CPU ticks
 For each memory reference, store the ticks in its PTE
 Replace the page/page frame with the minimal tick value

 Use a smaller counter (e.g. 8 bit)
 Divide the set of page /page frames according to their behavior

since the last page fault

© 2009 Universität Karlsruhe (TH), System Architecture Group 32

 Replace a page/page frame from the list of not referenced
pages since the (n-1) last page faults, n>2

Pages reference since
the last page fault

Pages not reference since
the last page fault

Aging: Recently Not Used (RNU)*

 Algorithm
 Shift reference bits into counters (when?)
 Select the page/page frame with the smallest counter

 Main difference between LRU and NFU?
 NFU hast a shorter history (only counter length)
 How many bits are enough?

 In practice 8 bits are sufficient

© 2009 Universität Karlsruhe (TH), System Architecture Group 33

p
 Pros:

 Requires only a reference bit
 Cons

 Requires looking at all counters

0000 0000
0000 0000
1000 0000
0000 0000

0000 0000
1000 0000
1100 0000
0000 0000

1000 0000
0100 0000
1110 0000
0000 0000

pf0
pf1
pf2
pf3

0100 0000
1010 0000
0111 0000
1000 0000

1010 0000
0101 0000
0011 1000
0100 0000

*some claim this NFU (evaluate this notion)

Working Set Page Replacement

 On a page fault, scan through all page/page frames
of the faulting task, i.e. local replacement

 If R-Bit is set, record current time t for the
page/page frame (and reset R-Bit)

© 2009 Universität Karlsruhe (TH), System Architecture Group 34

 If the R-Bit is not set, check time of latest use
 If this page has not been referenced within time units, it

no longer belongs to the WS and is a candidate for page-
replacement

 Replace the oldest non WS page

 Add the faulting page to the working set W(t,)

Details of WS Replacement

 If R-Bit was not set, check time of last reference

 If page has been referenced within , go to the next

 If page has not been referenced within and if dirty-
bit is set, schedule page for page out and go to next

© 2009 Universität Karlsruhe (TH), System Architecture Group 35

page/frame

 If page has not been referenced within and dirty-
bit is not set, page is a candidate for replacement

Special FeaturesSpecial Features

36© 2009 Universität Karlsruhe (TH), System Architecture Group

Page Frame Buffering
Segmentation
Resident Set

Replacement Scope

Page Frame Buffering (1)

 Pages to be replaced soon are kept in main memory

 Two lists are maintained to support replacement

 a free page list for frames having not been modified
since they have been brought in (no need to transfer to

Page Frame Buffering

© 2009 Universität Karlsruhe (TH), System Architecture Group 37

disk)

 a modified page list for frames having been modified
(need to transfer to disk before replacing)

 Page selected for lazy replacement is inserted into one
list and it is unmapped (i.e. its valid bit is reset)

Page Frame Buffering (2)

 If a page of these 2 lists is referenced again
(light page fault), page only has to be
removed from list and has to be remapped

N i f f di k

Page Frame Buffering

© 2009 Universität Karlsruhe (TH), System Architecture Group 38

 No expensive transfer from disk or even
additional transfer to disk is necessary

 The list of modified pages enables that dirty
pages are transferred together, i.e. in a cluster

Segmentation

Virtual Segmentation

Similarly to paging a segment table entry STE contains

© 2009 Universität Karlsruhe (TH), System Architecture Group 39

Similarly to paging, a segment table entry STE contains
a present bit and a modified bit

If the segment is in main memory, the entry contains
the starting address and the length of the segment

Other control bits may be present if protection and sharing
is managed at segment level

Logical to physical address translation ~ to paging except that
the offset has to be added to the starting address.

Address Translation with
Segmentation

Segmentation

+

© 2009 Universität Karlsruhe (TH), System Architecture Group 40

Comments on Segmentation

 Each STE contains starting address and length of the
segment
 segment can thus dynamically grow or shrink as needed
 address validity easily checked with length field
 partial overlapping of segments is easily done

Segmentation

© 2009 Universität Karlsruhe (TH), System Architecture Group 41

 partial overlapping of segments is easily done

 Segments may lead to external fragmentation, and
swapping segments in and out is more complicated

 Protection and sharing at segment level is visible to
programmers (pages are artificial entities)

Sharing and Segmentation

 Segments are as easily shared as pages are

 Example: code of a text editor shared by many users
 only one copy is kept in main memory

 but each task needs to have its own private data segment

Segmentation

© 2009 Universität Karlsruhe (TH), System Architecture Group 42

p g

 Remark:
Some system architects also call the “superior pages”
of a two-level paging system “segments.”

 Review:
Burroughs’ MCP (written in Espol) supported only segments

Sharing of Segments

Segmentation

© 2009 Universität Karlsruhe (TH), System Architecture Group 43

Combined Segmentation and Paging

 Some OSes offer a combination of both address-
translation methods: segmentation and paging

 Each task has:
 one segment table
 several page tables: one (variable-sized) page table per segment

Segmentation and Paging

© 2009 Universität Karlsruhe (TH), System Architecture Group 44

 several page tables: one (variable sized) page table per segment

 Virtual address consist of:
 Segment number: used to index the segment table who’s entry

gives the starting address of the page table for that segment
 Page number: used to index that page table to obtain the

corresponding frame number
 An offset or displacement d: used to locate the cell in the frame

Address Translation in a
Segmentation/Paging System

Segmentation and Paging

© 2009 Universität Karlsruhe (TH), System Architecture Group 45

Resident Set

Resident Set Size

 OS controls maximum number of page
frames that a task or a process might get

 If a task/process has a high page fault rate, may
be too few frames are currently allocated to it

© 2009 Universität Karlsruhe (TH), System Architecture Group 46

y

 If the system has a high page fault rate, perhaps
too many tasks/processes have been activated

 Complete the case:
 “If the page fault rate in the system is very low, …”

Resident-Set Size

 Fixed-allocation policy
 Fixed number of frames remaining over run time

 Determined at load time
 Depending on type of application

Resident Set

© 2009 Universität Karlsruhe (TH), System Architecture Group 47

 Variable-allocation policy
 Number of frames of a task may vary over time

 May increase if page fault rate is high
 May decrease if page fault rate is low

 Requires more overhead to observe and to control the
behavior of an activated task

Replacement Scope

Replacement Scope

 Local replacement policy
 chooses among only those frames that are

allocated to the task having issued the page fault

 Global replacement policy

© 2009 Universität Karlsruhe (TH), System Architecture Group 48

 Global replacement policy
 each unlocked frame in the whole system

might be a candidate for page replacement

 Analyze the following 3 design alternatives

Fixed Alloc./Local Replacement Scope

 When a page fault occurs: page frames considered
for replacement are local to the page-faulting task
 Number of allocated frames remains constant

 Any replacement algorithm can be used, however, restricted
to the resident set of task

Replacement Scope

© 2009 Universität Karlsruhe (TH), System Architecture Group 49

to the resident set of task

 Problem: difficult to estimate correct number of page
frames
 if too small page fault rate too high

 if too large some page-frames not really used, could
decrease multiprogramming level

Variable Alloc./Global Replac. Scope

 Simple to implement--adopted by some commercial
OS (like Unix SVR4)

 List of free frames is maintained
 When a task issues a page fault, a free frame (from

Replacement Scope

© 2009 Universität Karlsruhe (TH), System Architecture Group 50

this list) is allocated to it

 Hence the number of frames allocated to a page-
faulting task can increase

 The choice for the task that will lose a frame is
arbitrary: that’s why this is far from optimal

 Page buffering alleviates this problem since a page
may be reclaimed if it is referenced again in time

Variable Alloc./Local Replac. Scope

 “Good combination” (according to Stallings, e.g.
Windows NT)

 At load time, allocate a certain number of frames to a
new task, based on the application type or measured
in earlier runs

Replacement Scope

© 2009 Universität Karlsruhe (TH), System Architecture Group 51

in earlier runs
 use either pre paging or demand paging
 to fill up the allocation

 When page fault select page to be replaced from
resident set of the “page-faulting task”

 Periodically reevaluate the allocation provided and
increase or decrease it to improve load situation, thus
increasing overall performance

Load ControlLoad Control

Replacement Scope

52© 2009 Universität Karlsruhe (TH), System Architecture Group

Working-Set Model
Page Fault Frequency Model

Load Control

Too few tasks/processes
all tasks may be blocked
and CPU will be idle

If too many tasks

Load Control

© 2009 Universität Karlsruhe (TH), System Architecture Group 53

If too many tasks
resident size of each task/
process will be too small and
flurries of page faults will result:

Thrashing

Load Control (2)

 A working set or page fault frequency algorithm
implicitly incorporates load control

 only those tasks whose “resident sets” are
sufficiently large are allowed to execute

Load Control

© 2009 Universität Karlsruhe (TH), System Architecture Group 54

?
 Another approach is to explicitly adjust the multi-

programming level so that the mean time between
page faults equals the time to handle a page fault

 performance studies indicate that this is the
point where processor usage is at a maximum

Task Suspension
 Load control swap out tasks.
Selection criteria to deactivate a task:

 Page faulting task
 this task obviously does not have its working set in

main memory, thus it will be blocked anyway

Load Control

© 2009 Universität Karlsruhe (TH), System Architecture Group 55

 Last task activated
 this task is least likely to have its working set already

resident (at least with pure demand paging)

 Task with smallest resident set
 this task requires the least future effort to reload

 Task with largest resident set
 this task will deliver the most free frames

Load Control with Working Set Policy

 WSP is a variable-allocation method with local scope
based on the principle of locality

 Notion:
Working set of task T at time t WT(Δ, t), is the set of
pages that have been referenced in the last Δ virtual

Working Set Model

© 2009 Universität Karlsruhe (TH), System Architecture Group 56

pages that have been referenced in the last Δ virtual
time units
 virtual time = time elapsed while the task was in

execution (e.g: ~ number of instructions executed)
 Δ is a window of time
 For any fixed t, | W(Δ, t) | is a non decreasing function

of Δ
 WT(Δ, t) is an approximation of the program’s locality

The Working Set Policy

 WT(,t) first grows when T starts executing and then
tends to stabilize due to the principle of locality

 It may grow again when the task enters a new phase
(transition period, e.g. procedure) up to a point

Working Set Model

© 2009 Universität Karlsruhe (TH), System Architecture Group 57

where working set contains pages from two phases

 It then decreases again, spending some time in the
new phase

Working Set Policy

 Working set concept suggests the following policy to
determine size of the resident set:

 Monitor the working set for each task

 Periodically remove from the task’s resident set those

Working Set Model

© 2009 Universität Karlsruhe (TH), System Architecture Group 58

pages that are no longer in its working set

 When the resident set of a task is smaller than its
working set, allocate more frames to it

 If not enough frames are available, suspend task (until
more frames are available), i.e. a task may execute
only if its working set fits into the main memory

Implementing Working Set Policy

 Problems implementing a pure working set policy
 measurement of the working set for each task is

impractical
 need to time stamp a referenced page per

reference

Working Set Model

© 2009 Universität Karlsruhe (TH), System Architecture Group 59

reference
 need to maintain a time-ordered queue of

referenced pages for each task
 the optimal value for Δ is unknown and time-varying

due to transient and stable execution phases

 Solution: monitor the “page fault rate” instead of the
working set

Add frames

Page Fault Frequency Model

Define an upper bound U and lower
bound L for page fault rates

Allocate more frames to a task if
its fault rate is higher than U

Allocate fewer frames if its fault rate

Page Fault Frequency Model

© 2009 Universität Karlsruhe (TH), System Architecture Group 60

Remark: A variant of this policy is used in Linux

Remove frames

is < L

The resident set size should be close
to the working set size W

We suspend the task if PFF > U and
no more free frames are available

Swap AreaSwap Area

61© 2009 Universität Karlsruhe (TH), System Architecture Group

Study of your own

Page Fault HandlingPage Fault Handling

62© 2009 Universität Karlsruhe (TH), System Architecture Group

Organization of a Swap Area

 Study this battle field as a KIT student

 Assume n ≥ 1 disks to keep the swap area

Definition:
S h f d k bl k

Swap Area

© 2009 Universität Karlsruhe (TH), System Architecture Group 63

Swap area is the sum of extra disk blocks
used to hold unmapped pages

Questions:

1. Which disk units to use to install the swap area?

2. Which memory management to store AS regions?

3. Do we need swap space for code regions?

Page Fault Handling

Automatic Replacement

Assumption:
T1 runs & tries to access a data item and/or fetch
an instruction currently not mapped, but belonging to
its address space page fault exception

© 2007 Universität Karlsruhe (TH), System Architecture Group
64

SVC(procedure1, ...)

Thread T1

Page Fault Exception

?

Page Fault Exception

Free page frame in main memory available?
no

Select a page frame that fits the missing page

Was selected page frame modified?
yes

yes

no

Page Fault Handling

© 2007 Universität Karlsruhe (TH), System Architecture Group
65

Swap out modified page frame to the swap device

Swap in missing page from swap device to main memory

Adapt memory-management and address-translation
data structures to new situation

y

Swap Out

Page Fault Exception

Free page frame in main memory available?
no

Select a page frame that fits the missing page

Was selected page frame modified?

Swap out modified page frame to the swap device

yes

yes

no

time
consuming

policy

Page Fault Handling

© 2007 Universität Karlsruhe (TH), System Architecture Group
66

Swap In

p p g p

Swap in missing page from swap device to main memory

Adapt memory-management and address-translation
data structures to new situation

consuming

time
consuming

Remark: You cannot handle all above activities in one exception handler!
(Contradicts main characteristics of short exception handling)!

Cutoff between short page fault interrupt handling
routine and long-term page fault handling thread(s).

page fault exception

send(“my pager”, <pno, my TID>)

pager

receive(“anonymous”,<pno,TID>)

Conclusion

Page Fault Handling

© 2007 Universität Karlsruhe (TH), System Architecture Group
67

send(my pager , pno, my_TID)
receive(from my page, “page frame”)

ece e(a o y ous , p o,)

swap_out(page frame)

swap_in(pno)

decide(page frame)

send(TID,”page frame”)

Remark:
We can further enhance page fault handling,
if we can assure that there are always some
free page frames.
We need another periodic thread (see Unix
page daemon) freeing page frames in advance
(see exercises).

Further Enhancement

 You can use the producer/consumer template
for further enhancement:

 Periodically a page daemon produces
f f b i th t li t

Page Fault Handling

© 2007 Universität Karlsruhe (TH), System Architecture Group
68

free page frames by managing the two lists:
 Free list containing unmodified or clean pages
 Modified list containing modified or dirty pages

Pinning

 When do we need pinning?

 When DMA is active, we don’t want to page out
pages that DMA is using directly

© 2007 Universität Karlsruhe (TH), System Architecture Group
69

 How to implement pinning?
 Data structure to remember all pinned pages
 Page replacement only replaces other page/page frames
 Special calls for pinning and unpinning

 If entire kernel is in physical memory, do we
still need pinning?

Shared Pages (1)
 Two or more PTEs from

different tasks share the same
physical page frame

 Special virtual memory calls to
implement shared pages

 How to delete an address

memory

task1

© 2007 Universität Karlsruhe (TH), System Architecture Group
70

 How to delete an address
space that shares pages?

 How to page in and out
shared pages?

 How to pin and unpin shared
pages?

 How to calculate working sets
for shared pages?

task1

Shared Pages (2)

 Replacement algorithm wants to replace a shared
page, always possible?
 No, if otherwise used then this decision might be wrong

 With local replacement we do not know the replacement
characteristic of the other task(s) concerning this shared
page

© 2007 Universität Karlsruhe (TH), System Architecture Group
71

 May be another task is heavily using this page
 Don’t replace shared pages all frames contain shared

pages?
 With global replacement we are able to collect all

necessary information around that shared page we
need an extra data structure containing info on shared
pages (task counter)

 LFU replacement without aging will favor shared pages
 You can age the usage counter of a shared page

differently

Copy-On-Write

 Child uses same mapping
as parent

 Make all pages read-only
 Make child ready
 On a read nothing

happens

memory

task1

© 2007 Universität Karlsruhe (TH), System Architecture Group
72

happens
 On a write, generate an

access fault
 Map to a new page

frame, if page was
previously a read/write
(otherwise we have a
normal access fault)

 Make a copy
 Restart instruction

task1

