
System ArchitectureSystem Architecture

18 Virtual Memory (1)18 Virtual Memory (1)

1© 2008 Universität Karlsruhe (TH), System Architecture Group

Motivation, Concept, Paging
January 19 2009

Winter Term 2008/09
Gerd Liefländer



Agenda

 Review Address Space

 Motivation 

 Concept and Implication 

 Paging

© 2008 Universität Karlsruhe (TH), System Architecture Group 2

 Address Space Layout
 Page Tables

 Linear
 Multi-level
 Inverted
 Virtual

 Transaction Look-Aside Buffer (TLB)
 Super Pages



Review Address Space (AS)

 Program is executed within a logical AS (LAS)
 global and local data have (logical) addresses

 instructions have (logical) addresses, e.g. the target 
address of a jump is a logical address

Review

© 2008 Universität Karlsruhe (TH), System Architecture Group 3

 Multiprogramming implies n ≥ 1 LAS
 each application program has its own LAS

 ... implemented via software and

 ... supported additionally by HW (MMU)

 OS kernel has its own KAS



Review: Valid & Invalid Addresses

 Most LAS are only sparsely filled, i.e. they 
have many “address space holes”

 Accessing an invalid logical address → 
exception

Review

© 2008 Universität Karlsruhe (TH), System Architecture Group 4

exception

 A valid logical address references a valid 
program entity, e.g.   
 instruction: MOVE, ADDI, … 

 simple data: byte, word, pointer, … 

 compound data: struct, union, array, object, …



Addres Space & Address Region

AS is unit of protection at a coarse granularity
 Threads of AS1 can not corrupt data in another 

AS2 (unless sharing is explicitly allowed)

AR is unit of protection at a finer granularity

Review

© 2008 Universität Karlsruhe (TH), System Architecture Group 5

focus

 An AR has specific access rights

How does the HW help to implement ARs?
 explicitly via the segment concept
 implicitly via an extra kernel data structure 

mapping a set of pages, called a region 



Address-Space Management

Traditional kernels establish and manage ASes 
and do their bookkeeping

Where?

Review

© 2008 Universität Karlsruhe (TH), System Architecture Group 6

Analogous to bookkeeping of threads the 
kernel holds an ASCB (or PCB or TaskCB) to 
establish an AS (or process or task)

Typical content of an ASCB?



ASCB Entries*

 Base and limit register 
of region R1

 Base and limit register 
of region R2

 …

Region R1

main memory (RAM)

Review

© 2008 Universität Karlsruhe (TH), System Architecture Group 7

ASCB
Region R2

*In Linux  mm_struct with vm_areas

1

1

0



Motivation VMMotivation VM

8© 2008 Universität Karlsruhe (TH), System Architecture Group

Any time you see the term “virtual” 
think of an additional level of indirection
Program uses virtual (logical) addresses

Virtual addresses are converted to physical addresses
Physical address indicate real location of program entity
Physical location can be RAM or disk



Shortcomings of non-virtual memory:
1. Completely mapped ASs lower the degree of

multiprogramming  system inefficiency

2. What to do with ASs even larger 
than the physical memory?

Motivation

Task 3

To resolve this 
we must move 
Task 3 

Motivation for VM*

© 2008 Universität Karlsruhe (TH), System Architecture Group 9

3. Partly mapped ASs are difficult to 
handle for an application programmer 
(see overlay technique)

Goal: Replace automatically parts of AS:
the needed parts are swapped in, 
others are swapped out if necessary

OS

Task 1

Task 2

Task 4

Physical
Memory

Task 2 
terminates



Virtual Memory Principle

Key idea: 
Instead of swapping a complete AS, in a VM system 
the OS automatically maps 

 the currently needed LAS units (e.g. pages)

Motivation

© 2008 Universität Karlsruhe (TH), System Architecture Group 10

to fitting memory units (e.g. page frames).



Application programmers are no longer involved in 
overlaying, a concept that was really cumbersome, 
error-prone, and thus hard to maintain



Program:

....

MOV AX, [0xA0F4]

....
0xA0F4

0xC0F4Mapping(Logical)

Mapping Table
(one per AS)

Motivation

Virtual Memory?

© 2008 Universität Karlsruhe (TH), System Architecture Group 11

Unit
(MMU)

Virtual Memory

Physical Memory

Virtual 
Address

Physical 
Address

Page of Virtual 
Memory

Page frame of 
Physical Memory

Open Question: How can we tell the HW that the blue page has been
mapped to the green page frame?

Note: In many cases it does not matter where a page of VM is mapped to.



Virtual Memory Concept

Mapping Process in Principle
Not every page of VM has to be present in memory:

 Pages may be loaded (paged-in or swapped in) from disk 
when they are referenced

 No longer used or rarely used pages can be discarded (over-
paged) or written out to disk (paged-out or swapped out) 
( paging or swapping)

Usually every task has its own “mapping table” 
 a virtual address space per task (LAS per task)

© 2008 Universität Karlsruhe (TH), System Architecture Group 12

MMU

virtual
address

page
in physical
memory?

memory
access fault

OS brings
page in

from disc

physical
address

OS adjusts
mapping

table

translate
address

yes

check using mapping table

 a virtual address space per task (LAS per task)



Memory Management Unit (MMU)

Address
Width of

Virtual Memory Concept

© 2008 Universität Karlsruhe (TH), System Architecture Group 13

Location and function of the MMU

Width of
CPU

Address 
Width of 
Bus

System bus or
Memory bus



lack of
memory, i.e.
page fault

find a rarely
used page

adjust
mapping table

page
modified?

discard
page

no

yes

Policy Mechanism

Principle of Paging 

Virtual Memory Implication

© 2008 Universität Karlsruhe (TH), System Architecture Group 14

swap out
page to 

disk

write page
out to disk

yes
no need to swap out 

complete task

swap in 
new page 
from disk

adjust
mapping table

new page
in memory



Virtual Memory Concept

Terms of Virtual Memory (1)

 Virtual Memory (VM)  
 Not a physical device but an abstract concept
 Comprises all current virtual address spaces 

© 2008 Universität Karlsruhe (TH), System Architecture Group 15

 Virtual Address Space (VAS) (per task)
 Set of valid (defined or predefined) virtual 

addresses

 (Single Address Space Systems (see Mungi at 
UNSW) use a single VAS for all tasks)



Virtual Memory Concept

Terms of Virtual Memory (2)

 Resident Set (RS)
 Set of pages of a task that are currently mapped 

to physical memory

W ki S t (WS)

© 2008 Universität Karlsruhe (TH), System Architecture Group 16

 Working Set (WS)
 Set of pages that a task currently really needs, 

i.e. those pages „should“ be in main memory 
(precise definition later)



Principle of Locality 

Memory references of a running activity tend to cluster.
Working set should be part of the resident set  
to operate efficiently (otherwise: frequent page faults)

 honor the principle of locality to achieve this

Virtual Memory Implication

© 2008 Universität Karlsruhe (TH), System Architecture Group 17

repeated references:

single jumps:

working set:

initialization
data

initialization
code

early phase of 
task life time

code 1 code 2 data

main phase of 
task life time

finalization
code

final phase of 
task life time



Terms of Paging

Definition:

Page = 2i sized block* of 
virtual address space

P f 2i i d bl k f

Paging

© 2008 Universität Karlsruhe (TH), System Architecture Group 18

Page frame = 2i sized block of 
physical address space (=RAM)

typically i  [10, 16]

*Modern systems offer more than one page size. Why?



Gap between AS and Memory

0x0000 0000

0x0…00x0000 4711 0x0…0

0x00 0000

0x01 0815?

Paging

© 2008 Universität Karlsruhe (TH), System Architecture Group 19

0xFFFF FFFF

0xFF FFFF

Problem:
CPU only knows virtual (logical addresses) 
e.g. 0x00004711
However, the desired information “0x0…0”
is located at the physical address, 
0x01 0815, i.e. somewhere in RAM (or on disk)



MMU contains Mapping Info

Observation:
Inside the MMU we need information how to map 

a logical (virtual) address of the LAS 
to a physical address of RAM, 

Paging

© 2008 Universität Karlsruhe (TH), System Architecture Group 20

where the desired information 
 code instruction 
 stack entity 
 global data entity 

is actually located



Mapping
Virtual Memory
 Divided into equal sized 

pages
 Mapping is a translation 

between
 Page and page frame
 Page and Null

Paging

Physical Memory
 Divided into equal 

sized page frames
 Some page 

frames can be 
reserved for 

15

14

13

12

11

10

9

8

7 7

© 2008 Universität Karlsruhe (TH), System Architecture Group 21

 Page and Null
 Mappings are defined at 

run time
 they can change

 AS can have holes
 Task/process does not 

have to be contiguous in 
physical memory

 Task might be mapped 
only partially 

special purpose7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0



Page Table

 Page table contains at least 
the page frame numbers for 
all mapped pages to support 
address translation

Paging

15

14

13

12

11

10

9

8

5

7

6

© 2008 Universität Karlsruhe (TH), System Architecture Group 22

 Page table can contain 
additional control information

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

2

4

1

0

Page Table



Sharing Pages

Paging

 Private data/code
 Each task has its 

own copy of data 
and code

 Shared code
 Single copy of code 

shared between all tasks 
executing the same code

© 2008 Universität Karlsruhe (TH), System Architecture Group 23

 Data and code can 
appear anywhere in 
the address space

 Code must be reentrant, 
i.e. not self modifying

 Code must appear at the 
same address in all tasks



Paging

15

14

13

12

11

10

9

8

15

14

13

12

11

10

9

8

5

7

6

3
Private Data 

Region

© 2008 Universität Karlsruhe (TH), System Architecture Group 24

4

7

6

5

4

3

2

1

0

7

6

5

3

2

1

0

8

7

6

5

4

3

2

1

0

2

4

1

0

PT(T1)

2

4

1

0

PT(T2)Shared RegionAS(T1) AS(T2)



Paging

Address Translation

 Every (virtual) address issued by the CPU must be 
translated to a physical address of main memory

 Every load & store instruction

 Every operand of an xyz-operation

© 2008 Universität Karlsruhe (TH), System Architecture Group 25

 Every instruction fetch

 needs HW support, otherwise too slow

 Address translation involves replacing page no by 
page frame no (in paging systems)



Paging

Easy: Page Number Substitution

1 0 0 1 1 0 0 1 1 1
16-bit

virtual address

offset of a 1 KB page6 bit page number

© 2008 Universität Karlsruhe (TH), System Architecture Group 26

1 0 0 1 1 0 0 1 1 120-bit
physical address

Potential mapping of a 16-bit virtual address 
to a 20-Bit physical address

Hint: Typically the virtual AS is larger than the physical AS.
However, some early control systems used the above scheme

10 bit page frame number



Page 2
Page 1
Page 0

0x00

Page 2
Page 1
Page 0

vframe 1 v

Usual Paging via Page Tables

Frame 0
0x00

Address Translation

frame number

presence or
valid control bit

© 2008 Universität Karlsruhe (TH), System Architecture Group 27

Page 7

Page 5
Page 4
Page 3
Page 2

Page 6

Virtual Address Space
(divided into equal 

size pages)

Page Table
(per task , process),
one entry per page 
maintained by OS)

Page 7

Page 5
Page 4
Page 3
Page 2

Page 6

v

v

v

frame 0

frame 1

frame 3

v

v

v

free

Frame 0
Frame 1
Frame 2
Frame 3

Physical memory
(divided into equal 
size page frames)



Page Table Structure

 Page table = array of PTEs

 Hint: Adapt page table size to standard page size

 PTE often contains additional control bits

Page Table

© 2008 Universität Karlsruhe (TH), System Architecture Group 28

 Page table of current running task must be in main 
memory (~ role as the base register did in a non-
virtual memory system) 

 A single register holds the physical starting address of 
the page table of the currently running task 



Control Bits of Page Table (1)

 Valid* bit: whether the page is mapped or not

 If it is in main memory, the PTE holds the frame 
number of this page in main memory

 If it is not in main memory the PTE contains

Page Table

© 2008 Universität Karlsruhe (TH), System Architecture Group 29

 If it is not in main memory, the PTE contains 
 either the “background" address of that page on disk, e.g. 

offset

 in executable file or

 in swap area

 or nothing, because this information is stored somewhere 
else (where?)

*Again not the best term (mapped or presence bit)



Control Bits (2)

 Modified bit (dirty bit): whether the page has been 
modified since the page has been swapped in
 If no changes have been made, this page is still identical 

with the corresponding image on the disk

D fi d bit h th b l t LAS

Page Table

© 2008 Universität Karlsruhe (TH), System Architecture Group 30

 Defined bit: whether page belongs to LAS 

 Pinned bit: whether page is resident 

 Read-only/read-write bit: how to access the page

 Protection level bit: kernel or user page



Role of Defined Bit

Possible reaction to a reference on a non-defined page:

1.) Abort thread and/or task due to address violation

2.) Extend the surrounding region if the surrounding 
region has been specified as “extensible”

Page Table

© 2008 Universität Karlsruhe (TH), System Architecture Group 31

g p



Page Frame #

t
writew
readr

r w xr w x vv rere m

shareds

m s

don’t cachec

s cc susu pidtid p othertid

Example: Page Table Entry

Page Table

© 2008 Universität Karlsruhe (TH), System Architecture Group 32

executex
validv
referencedre
modified/dirtym/d

super-pagesu
task/thread idtid

p pinned

Questions: Who is authorized to access these control bits?
What is done by hardware, what is done by software?



Implementation of Page Tables

 Assume we have
 32-bit virtual address (→ 4 GB AS)
 Page size = 4 KB 
 220 PTEs !!!!

P bl

Page Table

© 2008 Universität Karlsruhe (TH), System Architecture Group 33

 Problems 
 Size

 Page table can be too large
 Speed

 Access must be fast, lookup for every memory reference

 How and where to implement page table
 HW (e.g. part of MMU) or SW (as data structure in RAM)



Hardware Page Table

Relation between virtual and
physical addresses is given by
a HW page table.
HW page table as part of
MMU has to be saved and

t d ith t t

not mapped

Page Table

© 2008 Universität Karlsruhe (TH), System Architecture Group 34

restored with every context
switch between tasks or
processes.

How to translate?

MOV R1, 1000
 MOV R1, 8292

page frame number
2



Address Translation Scheme

page table address*

f b

page table main memoryprocessor register

Address Translation

© 2008 Universität Karlsruhe (TH), System Architecture Group 35

Offset
virtual address

page no.

frame number+

c

physical 
page frame

Note: c = concatenation

physical address in page frame



HW Page Tables Analysis

Drawbacks of a contiguous HW page table

In a multi-programming system we need per
activated task/process a page table in RAM 

Only the PT of current running process/task

Page Tables

© 2008 Universität Karlsruhe (TH), System Architecture Group 36

Only the PT of current running process/task
is mapped into the MMU

 Very expensive  

 Not suited for large and sparsely occupied AS

 Huge overhead per task-/process switch, i.e. each 
time 2 copies between MMU and RAM



SW Page Tables Analysis

 Can slow down address translation too much
 Has to be accessed per reference, i.e. suppose you 

have an instruction with 2 operands

 How many accesses to the page able do you need?

Page Tables

© 2008 Universität Karlsruhe (TH), System Architecture Group 37

 How many accesses to the page able do you need?

 In HW you only need 1 register containing the 
start address of the current page table

 Task/process switch is much faster

Conclusion: Take the SW page table and try to speed up 
its slow address transformation 



Page Tables for 32 Bit Machines

 Many tasks do not use the full a3 GB AS, e.g.
 0.1 – 1 MB code, 0.1 – 10 MB data, 0.1 MB stack

 We need a compact representation of this 
mapping situation that does not waste kernel

Page Tables

© 2008 Universität Karlsruhe (TH), System Architecture Group 38

mapping situation that does not waste kernel 
space, but still guarantees fast lookups

 Three basic schemes:
 Data structures reflecting the sparsity of a LAS
 Data structures only representing resident pages
 Use VM techniques for page tables



Implementation of Page Tables

 Multi-level Page Tables
 Two-level
 Three-level 

Page Tables

© 2008 Universität Karlsruhe (TH), System Architecture Group 39

 …

 Inverted Page table

 Virtual Linear Page Table



0x140x2

Virtual address
Page # Offset

Page Table Base
Register (PTBR)

Page Table

0x8

0x0 * L
0x1 * L
0x2 * L

Review: Linear Page Table

Page Tables

© 2008 Universität Karlsruhe (TH), System Architecture Group 40

Physical address

0x14
Offset

0x8
Frame #

Problem:
Page tables can get very large, e.g. with a 32 bit AS & 4KB pages 
 220 entries per task  4MB (if one PTE needs 4 bytes)

0x8

...
L : size of 

entry

one entry per page
one table per task



Multilevel Page Tables

Linear page table requires n pages to be stored
 use a tree in order to 

 cut down space requirements of the needed page 
tables of an AS (in case of a sparse AS)

Page Tables

© 2008 Universität Karlsruhe (TH), System Architecture Group 41

p1 p2 d
d is the displacement (offset)
within the page

( p )

 p1 ~ an index to a page directory
 p2 ~ an index to a page



2-Level Page Tables

Page Tables

© 2008 Universität Karlsruhe (TH), System Architecture Group 42

 32-bit address with 2 page table fields



OffsetPage #1 Page #2 Page #3

Page Frame # Offset

table size can 

Address Translation: 3-Level PT

Page Tables

© 2008 Universität Karlsruhe (TH), System Architecture Group 43

Page Directory

Page Middle
Directory

Saves “memory” and 
improves speed, why?

be restricted 
to one page

Page Table

v=0

V=0
not all need 

to be present

OffsetFrame #
Super-Page*

s



Analysis of Large AS

1. The larger the potential AS, the more levels are 
needed 
 the slower the address translation
 further HW support needed ( TLB) 

Page Tables

© 2008 Universität Karlsruhe (TH), System Architecture Group 44

2. New concepts for implementing page tables
(see: Talluri et al: “A New Page Table for 
64- Bit Address Spaces”, SOSP 1995 and
Jan Oberländer: Seminar Talk on this Topic)



Inverted Page Table (1) 

Instead of maintaining large page tables some
machines  (i.d. PowerPC, IBM Risk 6000) use  

an Inverted Page Table (IPT)

Length of IPT depends on the number of page frames

Page Tables

© 2008 Universität Karlsruhe (TH), System Architecture Group 45

Length of IPT depends on the number of page frames,
i.e. space needed for the IPT is fixed

Question: 
How to map virtual to physical addresses, i.e. how to find the
appropriate pair of page number and page frame number?



Inverted Hashed Page Table (2)

Page Tables

© 2008 Universität Karlsruhe (TH), System Architecture Group 46



TID page # offset

Inverted Hashed Page Table (3) 

Page Tables

© 2008 Universität Karlsruhe (TH), System Architecture Group 47

frame # offset

hash

tag-field frame # pointer

TID+page# frame #



Inverted Hashed Page Table (4)

Task ID + virtual page number is used 
to look up in IPT to get desired frame number

For better performance, hashing is used to obtain a 
hash table entry which points to an IPT entry  

Page Tables

© 2008 Universität Karlsruhe (TH), System Architecture Group 48

Problem:
Where and how to place information about pages 
currently not mapped?

 A page fault occurs if no match is found 
 Chaining is used to manage hashing conflicts

Used in some IBM and HP work stations



Virtual Linear Page Table

 Assume a two-level page table structure
 Assume 2nd-level PT nodes in virtual memory
 Assume all 2nd-level PT nodes are allocated  2nd-

level PT nodes form a contiguous array indexed by 
b

Page Tables

© 2008 Universität Karlsruhe (TH), System Architecture Group 49

page numbers

Contiguous array of 2nd level page tables

Part of the 
pageable KAS

Directory table
is resident in KAS



Virtual Linear Page Table (2)

 Unused parts of 2nd-level page table unmapped

 Index into 2nd level page table without referring to 
page directory table

 Simply use full page number as PT index

Page Tables

© 2008 Universität Karlsruhe (TH), System Architecture Group 50

 Simply use full page number as PT index

 If reference is made to unmapped part of 2nd

level page table, a secondary page fault is 
triggered
To load the missing 2nd level page table, 

use information of page directory table



Virtual Linear Page Table (3)

 Observation:
 Each virtual memory reference can cause two 

physical memory accesses
 1 to fetch the page table entry

Page Tables

© 2008 Universität Karlsruhe (TH), System Architecture Group 51

 1 to fetch/store the data

 Solution (also used for MLPT and IPT):
 Use a high-speed cache for currently used 

mapping info

 Associative cache, called TLB



Translation Look Aside Buffer (1)

Given a virtual address va’, the MMU examines the TLB

If corresponding PTE’ is in TLB =TLB HIT, its frame
number is retrieved  construct physical address pa 

Hardware Support

© 2008 Universität Karlsruhe (TH), System Architecture Group 52

If PTE’ is not found in the TLB =TLB MISS
 lookup the related PT and fill TLB with required PTE 

iff page is mapped, otherwise raise a page fault
 therefore TLB always contains the

“hottest” page table entries



Translation Look Aside Buffer (2)

 Page table = array of page frame numbers

 TLB holds a (recently used) subset of PTEs
 Each TLB entry is identified (tagged) by the page number

 Access is by associative lookup:

Hardware Support

© 2008 Universität Karlsruhe (TH), System Architecture Group 53

 All TLB entries’ tags are compared with page number

 TLB is associative (or content-addressable) memory

 TLB entry additionally contains some control bits

page number frame number v w

… … … …

… … … …

… … … …



Example: TLB-Entries 

Hardware Support

code

d

data

data
data

© 2008 Universität Karlsruhe (TH), System Architecture Group 54

Besides the above necessary control bits a TLB entry can contain:
• TID or PID as a tag (so called tagged TLB)
• Reference-Bit (set by MMU)
• Dirty-Bit (set by MMU)
• Cache Disabled Bit 

code

code

stack
stack



Implementation of a TLB 

Hardware Support

 TLB size: typically 64 – 128 entries

 Separate TLBs for instruction and data 

 TLB needed for 

© 2008 Universität Karlsruhe (TH), System Architecture Group 55

 Multi level PTs (especially for 64 Bit machines)

 Inverted page tables

 2 TLB organizations:
 Hardware-controlled TLB

 Software-controlled TLB



HW-Controlled TLB
 On a TLB miss MMU scans the PT ( fast)

 MMU loads new TLB if page is mapped
 Need to write TLB entries back if TLB is full
 PT layout is fixed (e.g. Pentium)

 MMU generates a page fault if page is not mapped

Hardware Support

faster, but 
inflexible

© 2008 Universität Karlsruhe (TH), System Architecture Group 56

 MMU generates a page fault if page is not mapped
 Software performs page fault handling …
 Restart the faulting instruction of page faulting KLT

 On a TLB hit MMU checks control bits
 If valid & allowed, it performs address translation

 If V-Bit is not set or if access is not allowed, MMU 
generates an exception



SW-Controlled TLB

 On a TLB miss, HW raises an exception

 Exception handler scans the PT and loads 
corresponding TLB from PT if page is mapped 
 Need to write back if TLB is full

Hardware Support

Slower but

© 2008 Universität Karlsruhe (TH), System Architecture Group 57

 PT layout is free (e.g. MIPS)

 If page not mapped call page fault handler, i.e. 
 Software performs page fault handling …
 Restart the faulting instruction of page faulting KLT

 On a TLB hit MMU checks the control bits …

Slower, but 
more flexible



Base of Directory Table

Frame 

+

Main Memory

Page Table 

+

Directory Table

Page Table

2-Level Address Translation & TLB

Hardware Support

© 2008 Universität Karlsruhe (TH), System Architecture Group 58

Offset

Logical Address

Page

c
Physical Address

within Frame

Directory

TLB(associative memory)
TLB
Miss



Base of Directory Table

Frame 

+

Main Memory

Page Table 

+

Directory Table

Page Table

Hardware Support

2-Level Address Translation & TLB

© 2008 Universität Karlsruhe (TH), System Architecture Group 59

Offset
Logical Address

Page

c Physical Address
within Frame

Directory

TLB(Associative memory)
FramePageDirectory



Base of Directory Table

Frame 

+

Main Memory

Page Table 

+

Directory Table

Page Table

Hardware Support

2-Level Address Translation & TLB

© 2008 Universität Karlsruhe (TH), System Architecture Group 60

Offset
Logical Address

Page

c Physical Address
within Frame

Directory

TLB Hit

TLB(Associative memory)
FramePageDirectory



Hardware Support

HW versus SW Controlled TLB

 HW Controlled TLB
 Efficient (i.e. fast)

 Inflexible

Need more space for page table

© 2008 Universität Karlsruhe (TH), System Architecture Group 61

 Need more space for page table

 SW Controlled TLB
 Not as fast as HW

 Flexible

 Can deal with large virtual address spaces



Cache versus TLB

Hardware Support

address page number offset

cache TLB

miss

data

hit

miss frame number

hit

offset

© 2008 Universität Karlsruhe (TH), System Architecture Group 62

memory memory

• Similarities
• cache a portion of 
memory hierarchy

• write back on a miss

• Differences
• Associativity
• Consistency

miss miss frame number offset



Consistency Issues

 “Snoopy” cache protocols can maintain consistency 
with memory, even when DMA happens

 No hardware maintains consistency between memory 
and TLBs, you need to flush related TLBs whenever 
changing a page table entry in memory

Hardware Support

© 2008 Universität Karlsruhe (TH), System Architecture Group 63

changing a page table entry in memory

 On multiprocessors, when you modify a page table 
entry, you might need to do “TLB shoot-down” to 
flush all related TLB entries on all processors



TLB and Thread Switch 

 TLB is a shared HW object 

 Page tables are per address space, i.e. either 
per task or per process 
 TLB must be flushed each time a thread of another 

Hardware Support

© 2008 Universität Karlsruhe (TH), System Architecture Group 64

task/process has to run next
 High context switching overhead (x86) or we use

 Tagged TLBs, i.e. ASID (or TaskID or PID) is 
part of TLB entry
 Used in some modern architectures
 TLB entry: ASID, page number, frame number, ….



TLB Effect

 Without TLB (and linear PT)
 Average number of physical memory 

references per virtual reference = 2

Hardware Support

© 2008 Universität Karlsruhe (TH), System Architecture Group 65

 With TLB (assuming 99% hit ratio)
 Average number of physical memory 

references per virtual reference
= .99 * 1 + 0.01*2 = 1.01



t (1 ) * t + * t

Given: ppf = page fault probability
atm = access time to main memory
etpf = execution time for a page fault

What is the average access time eat to virtual memory?

Performance Analysis of Paging

Hardware Support

© 2008 Universität Karlsruhe (TH), System Architecture Group 66

Example: ppf = 0.001, atm = 20 nsec 
then etpf = 20 msec

 eatvm ~ 106 atm
Conclusion: Minimize number of  page faults, 

i.e. replace very carefully, 
i.e. use sophisticated replacement policy (see later)

eatvm = (1 - ppf) * atm + ppf * etpf



Page Size Issue?
Base page size = 2size may be dictated by hardware

Which size to use is an open question?

 Advantages of large pages:
 Short page tables (decreases # of PTEs)

Hardware Support

© 2008 Universität Karlsruhe (TH), System Architecture Group 67

 Increases TLB coverage
 Few TLB entries  increases TLB hit ratio
 Increases swapping throughput (disk and RAM)

 Advantage of small pages:
 Reduces “internal fragmentation”
 Decreases page fault latency (but only a little bit)



Page Size Issue  

 Multiple page sizes provide flexibility to 
improve usage of a TLB, e.g. some suggest

 Large pages for code (especially if shared)

Smaller pages for thread stacks

Hardware Support

© 2008 Universität Karlsruhe (TH), System Architecture Group 68

 Smaller pages for thread stacks

 OSes often support only 1 page size



Page Sizes in Practice

Hardware Support

Computer Page Sizes

Atlas 0.5 K 48-bit words

Honeywell-Bull/Multics 1 K 36-bit words

IBM 370/XA 4 KB

DEC VAX 0.5 KB

IBM AS/400 0 5 KB

© 2008 Universität Karlsruhe (TH), System Architecture Group 69

IBM AS/400 0.5 KB

Intel Pentium 4 MB, 4 KB

ARM 64 KB, 4 KB

MIPS R4000 16 MB – 4 KB in powers of 4

DEC Alpha 4 MB – 8KB in powers of 8

Ultra Sparc 4 MB – 8KB in powers of 8

PowerPC 4 KB

Intel IA-64 256MB – 4KB in powers of 4



Page Fault Behavior as a f(RS)

Hardware Support

WS too small

© 2008 Universität Karlsruhe (TH), System Architecture Group 70

Desired
pf rate
range

= number of all pages


