System Architecture

17 Address Spaces

Address Space Management
Linking & Loading
Swapping

January 14 2009
Winter Term 2008/09
Gerd Lieflander

iversitat Karlsruhe (TH), System Architecture Group

Recommended Reading

Bacon, J.:
Bovet, D.:
Nehmer, J.:

Silberschatz, A.:

Stallings, W.:

Tanenbaum, A.:

i arlsruhe (TH), System Architecture Grou

Operating Systems (5)
Understanding the Linux Kernel (7)
Grundlagen modener BS, (4)
Operating System Concepts (7)
Operating Systems (7)

Modern Operating Systems (4)

D © 2009 universitat

Agenda

= Review on MM

= Motivation
= Protection & Sharing

= Basic Notions
= Address Scope
= Address Space
= Address Region

= Mapping of LAS — RAM

= Address Space Management
= Single-Programming
= Multi-Programming

= Fixed-Partition
= Variable-Sized Partition

Karlsruhe (TH), System Architecture Group

Introduction

Address Space (AS) Concepts

= Physical AS (2N bytes, N = address width of
system/memory bus)

= non-linearly addressable set of I/O-interfaces and
RAM/ROM/... parts

= can contain holes

= Logical AS (2M bytes, M = address width of CPU)
= Linearly addressable

= Virtual AS (2X bytes)
= K > N with storage banking, overlay technique etc.
= K<M

i arlsruhe (TH), System Architecture Grou

Motivation

[B) Basic Notions

= Physical address: reference of a specific RAM/ROM cell

= Logical address: program address used at run time to
denote a specific data/instruction cell within the LAS of
the executing program

= Relative address: logical address related to some fix
point within the LAS of the executing program, e.g.
= Instruction pointer
« start address of program
= stack frame pointer

= Virtual address: mapped logical address into virtual AS
(in many cases this mapping is 1:1)"

“For simplification in our course logical address = virtual address

Universitdt Karlsruhe (TH), System Architectur:

Motivation

Why Address Spaces?

= In order to achieve the intended results, each
application runs in its own address LAS =

= No unwanted interference with another application will
occur, i.e. each LAS executes within a “protected area”

= Each shared object & communication path (channel,
mailbox etc.) with another LAS has an impact on

= robustness (e.g. due to race conditions)
= Security (cooperation with untrusted software)

= Only, for efficiency reasons we offer explicit LAS

sharing, e.g. Linux or UNIX “shared memory”, i.e.
parts of n>2 LAS are identical

D © 2009 Universitit Karlsruhe (TH), System Architecture Group

Motivation

Why Sharing?

= Sharing when
= N>2 tasks/processes want to cooperate

= N>2 tasks want to use common code/data in
order to reduce load overhead

= Typical examples for shared objects:
« Libraries
= Code (e.g. C compiler)
= Common data (e.g. buffers)

i arlsruhe (TH), System Architecture Grou

Sharing

Main Memory

.............. Code P1

Local

access :
"= T = Data(P1)
I
! -

Not'allowed Shared Data

. <
I
i annnhunns >
: Local Data(P2)
: access
e e e e e e e e Code P2

D © 2009 Universitit Karlsruhe (TH), System Architecture Group

Motivation

Allowed accesses
to common data

Address Space

Protection and Sharing?

= Define logical entities with
= guarded borders and
= common address regions

—
2. Basic Abstraction of System Architecture:

Address Space
(Address) Region

Relocation and Protection

HW Support for Runtime Protection

= Need two registers to run
task B

= Base register
= Limit register

limit
4
= Need to add an appropriate
offset to a logical address Task B

base

= Achieves relocation

= Protects memory locations
lower than base

Task C

= Protects memory location higher
than base + limit

o © 2009 Universitat Karlsruhe (TH), System Architecture Group 10

Relocation and Protection

Base and Limit Register

Relative address

[Process Control Block
Base Register r——————-—-—-~"|-———————-——-—-——
L J
. Adder Program
l Absolute
Bounds Register |——»| Comparator |- — — -300ress
| ; :
[! I
[! I
| 1 === »
I ¥ Data
: Interrupt to
| operating system
|
e i Ll ol Ll P
Stack

0 © 2009 Universitat Karlsruhe (TH), System Architecture Gr....

Figure 7.8

Process image in
main memory

Hardware Support for Relocation

11

Relocation and Protection

Summary: Base & Limit Register

= Disadvantages

= Allocated memory must be contiguous, i.e. it can
be hard to find a fitting free memory partition

=« Complete task/process must be in memory, i.e.
if AS contains holes, i.e. the corresponding
mapped memory parts are not used

= No scalable support for partially sharing of ASes

i arlsruhe (TH), System Architecture Grou

Relocation and Protection

Sharing Problem

AS1

Conseguence:

— Shared AS regions should be mapped independently
of their ASes

— Each AS region can be mapped individually

i arlsruhe (TH), System Architecture Grou

Sharing

Implementing Sharing efficiently?

= Whenever we are able to map parts of an AS
separately sharing is no longer a problem

= Solution is scalable (provide usage counter)

Address Space

Logical Organization

Programmers view towards software:
Sampling of

= code entities (thread, procedure etc.) and
« data entities (struct, array, module, object etc.)

SW entities have different access characteristics, e.g.:
= Execute only (e.g. code)
= Read only (e.g. catalogue)
= Read-Write

= Standard HW supports this idea, however, some
commodity OSes don't use this HW feature

D © 2009 Universitiit Karlsruhe (TH), System Architecture Group 15

Address Scope

Logical Organization

Definition: The Address Scope™ limits the range
of addresses a compiler, linker, and
loader can give to an executable

IKA specific

i arlsruhe (TH), System Architecture Grou

OOOOOOOOOO

Address Scope
Logical Address Scope
0x00...000
Some systems use only a small
part of the whole address scope,
e.g. current 64-bit machines

/ Current/y%
/ not used %

/////////////

OxFF...FFF

Address Scope

Intel’s x86 Address Scope

0x00000000 \

> 4 GByte™

OXFFFFFFFF

0x00000000

This part is used to
establish and manage

Address Scope

Splitting Address Scope (Win. NT)

S

2 GB
- 128 KB
User-AS

: 4 GB

> 2 GB
OS-AS

OXFFFFFFFF

D © 2009 Universitit Karlsruhe (TH), System Architecture Group

19

O © 2009 Universitat

0x00000000

OXFFFFFFFF

Karlsruhe (TH), System Architecture Group

Libraries

Application Code

Initialized Data

Not Initialized Data

HEAP

Lo

a

STACK

Environment Variables

Neverused by apphcations
(code data oraser /stack)

Linux Address Space Layout

3 GB
- 128
KB

User-

AS 4 GB

Task Size
<

1GB
OS-AS

20

Logical Address Space (1)

Logically associated parts -mapped to available addresses of
the address scope- form another logical unit:

Definition: A (“logical”) address space LAS is
the range of addresses within the
address scope accessible for an
“executable task”, i.e. either for a_
process (= single-threaded task)

or for a multi-threaded task

Task or process can be an application or a
system server

i rlsruhe (TH), System Architecture Group 21

Address Space

Logical Address Space (2)

Question.
What will happen if a thread of a task tries to reference
a logical address not belonging to its LAS?

= Exception is raised: “address violation”

= Remember: Main purpose of a LAS is:

11 PROTECTION !

Address Space

Address Space™ (3)

2 implementation for AS:
= Contiguous AS
= Dispersed AS

2 characteristics of AS:
= Fixed
= No changes of the AS size at run time
= Dynamic
= Growing and shrinking parts of AS a run time

*In the following slides AS = Logical Address Space

2009 Universitat Karlsruhe (TH), System Architecture Grou

Contiguous Address Space

0x00000000 Code
R Data
0x00004711 -
70n©
\:ofb\dden

OXFFFFFFFF

Discuss pros and cons of this concept

0 © 2009 Universitat Karlsruhe (TH), System Architecture Grou

Address Space

- AS
3

> L AS
J

24

0 ©2009u

000000000 s ——
Module 1 (main)
—
Module 2
Module 3
Stack
OXFFFFFFFF

Dispersed Address Space

Pros and cons of this concept?

niversitdt Karlsruhe (TH), System Arc

hitecture Grou

p

Address Space

25

Regions

Address Regions

Address spaces may overlap each other,
sharing common portions of their ASs
—

How to name private or shared contiguous portions
of an AS?

Definition: A contiguous AS block is a region
(e.g. a segment)

Typical examples in Unix: code(text), data and stack

i arlsruhe (TH), System Architecture Grou

Mapping of LAS to RAM

Mapping AS to RAM

Mapping can be done orthogonal to the layout of a
logical and of the physical address space:

= Complete AS (AS is either mapped or not at all)

s Portions of the AS

= Fixed sized logical portions (pages) or
= Variable sized logical portions (segments)

= Contiguous memory partition (MP) or

= Non contiguous memory partitions
= Fixed sized memory portions or
= Variable sized memory portions

2009 Universitat Karlsruhe (TH), System Architecture Group

27

Logical Address Space

0x00000000

Code

Data

Stack

OXFFFFFFFF

D © 2009 Universitit Karlsruhe (TH), System Architecture Group

i

0x000000

OXFFFFFF

Mapping of LAS to RAM

Contiguous AS — Contiguous MP

Main Memory

Code

Data

Stack

28

Mapping of LAS to RAM

Non Contiguous AS — Contig. MP

Logical Address Space

0x00000000 .
Main Memory
Code
RAM-Partition
Data
I
Stack

OXFFFFFFFF

D © 2009 Universitiit Karlsruhe (TH), System Architecture Group 29

Logical Address Space

00000000

Mapping of LAS to RAM

Contig. AS — Non Contiguous MP

Main Memory

Code

Code

Data

Stack

Stack

Data

FFFFFFFF

D © 2009 Universitit Karlsruhe (TH), System Architecture Group

30

MP

Mapping of LAS to RAM

Partially Non Cont. AS — Non Cont.

. Currently not
Logical Address Spac .
J i ﬁ/_‘ mapped Main Memory

0000000 /

Data /&

Stack X%

FFFFFFFF Princip

i arlsruhe (TH), System Architecture Grou

Code 1 / /Z]
Code 2 // @ Code 1

Stack

Data

e of Segmentation

Mapping of LAS to RAM

Fixed Parts of Non Cont. AS — Cont.
MP

Logical Address Space

| Main Memory

|rr

piece
for
piece

FFFFFFFF Principle of Paging

i arlsruhe (TH), System Architecture Grou

Single- & Multi-Programming

Basic AS Management

Elementary AS Management

OxFFF ... -
Operating Device
system in drivers in ROM
ROM
User
program User
program
User
program
Operating Operating
system in system in
RAM RAM
0 0 0

(a) (b) ()

Three ways of organizing memory
- OS with 1 application, i.e. single-programming

D © 2009 Universitiit Karlsruhe (TH), System Architecture Group 34

Single Programming

Analysis of Single-Programming

 OKif
= Only one task
= Memory available ~ required memory

= Otherwise
= Poor CPU utilization during blocking I/O
= Poor memory utilization with varying jobs

= Better idea:

= Subdivide memory in partitions and run
more than one task or process

i arlsruhe (TH), System Architecture Grou

Fast CPU & Slow I/O-Device

=
-
-
.
”
7

.~ UNBLOCK BLOCK

These: The faster the CPU, the more it runs idle

Multi Programming

How to divide Main Memory?

= Fixed Partition
= A process < partition size can be loaded
= Fast Context Switch, only need to update base register
= Simple Find empty partition when loading a new task
= Internal fragmentation

= Variable Partitions

= More complex, but still fast context switch possible,
only need to update base register and limit register

= Instead of internal we have external fragmentation

Fixed Partition

Multi Programming

= Break main memory into fixed-size partitions
= Hardware requirement: base register

= Translation from logical address to physical address: simply
add base register to logic address

3M

Base register

offset

Logial address

Problem: safety?

D © 2009 Universitit Karlsruhe (TH), System Architecture Group

.

+

0

Partition 0
1M

Partition 1
2M

Partition 2
3M

Partition 3
4M

Partition 4
5M

Partition 5
6M

Partition 6

MAIN MEMORY

38

= For dynamic objects and
data structures

= Resources (code,
buffer,...)

Stack

= Parameter
= Local variables

= Return addresses,
nesting

Global variables
Code section

low

Multi Programming

Potential Structure of a Partition

= Allocating at run-time

Code

39

Fixed Sized Partitions

Fixed Sized Memory Partitions

Fixed Sized

Partition 1

Partition 2

iversitat Karlsruhe (TH), System Architecture Grou

Fixed Sized Partitions

Fixed Sized Partitions

Fixed Sized
Code 1
Data 1

Stack 1

itat Karlsruhe (TH), System Architecture Grou

Fixed Sized Partitions

Fixed Sized Partitions

Fixed Sized
Code 1
Data 1

Fragmentation 1 Unusable RAM

Stack 1

Code 2
Data 2

How to separate both processes?

Fragmentation 2

Stack 2

Pro: Easy to implement
Con: Internal fragmentation &number of tasks is limited

D © 2009 Universitiit Karlsruhe (TH), System Architecture Group 42

2 MB

2 MB

4 MB

8 MB

16 MB

Flexible Fixed Partitions

-

-

/

Fixed Sized Partitions

Suitable

Sized

Portions

Pro: For some dedicated systems less internal fragmentation

Con: More system overhead

0 © 2009 Universitat Karlsruhe (TH), System Architecture Group

43

Fixed Sized Partitions

Comments on Fixed Partitioning

Poor usage of memory, because each task,
no matter how small, needs an entire partition

= internal fragmentation

Suitable-sized partitions lessen this problem,
but internal fragmentation still holds

Equal-sized partitions used in early IBM’s OS/MFT
(Multiprogramming with a Fixed number of Tasks
= the maximal multi programming degree is fixed)

Fixed Sized Partitions

Implementing Fixed Partitions

Multiple
input queues 800K
[H - Partition 4 Partition 4
700K
Partition 3 ~ Single Partition 3
input queue
400K
|:|— Partition 2 Partition 2
200K
[H H - Partition 1 Partition 1
Operating Operating
system 0 system

(a) (b)

Fixed memory partitions
= Separate input queues for each partition
= Single input queue for all partitions

45

hitarkiira Cranm

Variable Sized Partitions

Fixed & Variable Sized Partitions

Fixed Sized Variable Sized
Code 1 Code 1)
Data 1 Data 1 y -
Fragmentatio Stack 1 Partition
Sl Code 2)
ae Data 2 »
Code 2 > Partition 2
Data 2 Stack 2
<
Fragmentati Code 3
Data 3 " Partition 3
Stack 2 Stack 3 _ J
External Fragmentation

Pro: No internal fragmentation, better multiprogramming
Con: External fragmentation, more complicated

D © 2009 Universitit Karlsruhe (TH), System Architecture Group

46

Variable Sized Partitions

Variable Partitions

Partitions are of variable length and number:

Each task gets exactly as much memory as it requires
After a task terminates, "memory holes” may appear
= external fragmentation

Must use compaction to shift tasks,
to get a larger block of free memory

Used in IBM’s OS/MVT (Multiprogramming
with a Variable number of Tasks)

i arlsruhe (TH), System Architecture Grou

Variable Sized Partitions

Requirements of Variable Partitions

= Break memory in variable-sized partitions
=« Hardware requirements: base register and limit register

0 Partition 0
Limit register Base register M
Size of P3 3M Partition 1
2M Partition 2
yes 3M —
offset <? Partition 3
Logial address | M
|
5M
\

raise address

6M Partition 4
violation exception

MAIN MEMORY

D © 2009 Universitiit Karlsruhe (TH), System Architecture Group 48

Variable Sized Partitions

Variable Partitions: Example (1a)

perating Operating Operating Operating
System 128K System System System
Process 1 320K Process 1 320K Process 1 320K
FHQE‘K Process 2 224K Process 2 224K
ATA kK
157K Process 3 2EEK
It 64K
(a) (b) (c) (d)

A hole of 64K is left after loading 3 tasks: not enough room for another task
If each task is blocked, OS swaps out task2 in order to swap in task4

D © 2009 Universitiit Karlsruhe (TH), System Architecture Group 49

Variable Sized Partitions

Variable Partitions: Example (1b)

Operating Operating Operating Operating
System System System System
Process 2 224K
Process 1 30K Process 1 A0 A0
1514
24K Process 4 128K Process 4 128K Process 4 128K
g6k DaE Qak
Process 3 JEEK Process 3 JHEK Process 3 JEEK Process 3 IEEK
K B e K ek
(e) () (2) (h)

Another hole of 96K is created, if task4 is also blocked =
OS swaps out taskl, swaps in task 2 = another hole of 96K =
Danger of splitting up memory (compare to Swiss cheese pattern)

D © 2009 Universitiit Karlsruhe (TH), System Architecture Group 50

Variable Sized Partitions

[B) Analysis of Variable Partitions

= In previous slide

= We have 256 KB free in total, but if a new task
requires 100 KB, we cannot satisfy its request

« External fragmentation
= We end up with lots of unusable memory holes

= We could use compaction

= Shuffle allocated memory contents to place all free
memory together in one large block

= Compaction is possible only if relocation is
dynamic, and is done at run time

Managing Variable Sized Partitions

Managing Variable Partitions

s Basic Requirements
= Find a fitting free partition as fast as possible
= Minimize external fragmentation

= Support eager reunification of neighbored free
partitions

Question.: What memory manager would you use?

i arlsruhe (TH), System Architecture Grou

D © 2009 universitat

Managing Variable Sized Partitions

Bit Map/List for Tracing Partitions

Ao, 8 . s A R LBV

11111000 PlO]|5 H|[5|3| —+—>|P|8]6 | P 14| 4 | —
11111111)
11001111 (

H|18| 2 | P (20| 6| ——| P [26] 3 | H |29 3 | X
11111000 / f \ 1‘
E x Hole Starts Length Process

at 18 2

(b) (c)

= Part of memory with 5 processes, 3 holes
= tick marks show allocation units
= Shaded regions are free

= Corresponding bit map

= Same information as a list

Karlsruhe (TH), System Architecture Group 53

Managing Variable Sized Partitions

Linked Lists for Tracing Partitions

Before X terminates After X terminates

@| A | x | B becomes A s
o A] x V7] becomes NNk
(c) W X | B becomes /] B
& V4 x /) becomes /////////////////é

Four combinations for the terminating
process X if eager reunification is used

Used to decide which free block
to allocate to a requesting task

Goal:

Reduce usage of compaction
(being quite time consuming)
Possible algorithms:

e First-fit: choose always very
first hole from beginning

e Best-fit: choose smallest hole

e Next-fit: choose first hole
from last placement

= Nearest-fit: choose nearest
hole from last placement

Using information of
the last allocated block

D © 2009 Universitit Karlsruhe (TH), System Architecture Group

12K

22K

Last 18K
allocated
block (14K)

SK

6K

14K

36K

Managing Variable Sized Partitions

Overview on Allocation

(a) Before

Policies

First Fit

——

Best Fit

——

2K

SK

I:l Free block 14K

——

20K

(b) After

Example Memory Configuration Before

and After Allocation of 16 Kbyte Block

55

Managing Variable Sized Partitions

Mapping Variable Partitions

n First-fit
= Scan the list or bit map for the first entry that fits

=« If larger in size, break it into an allocated and a free
part, iff free part is large enough to be used

= Many processes loaded into the front end of
memory that must be searched over and over
when trying to find a free block (~ inefficient)

= Can have some unusable holes at the beginning
= External fragmentation

itat Karlsruhe (TH), System Architecture Grou 56

Managing Variable Sized Partitions

Mapping Variable Partitions (2)

s Next fit

= Like first-fit, except it begins its search from that
point in the list or bit map where the previous
request had succeeded

= More often allocates a block of memory at the end
of memory where the largest block is found

= Largest block is broken up into smaller blocks

= Compaction is required to obtain a large block at
the end of memory

= Simulation show next-fit slightly slower than first-fit

itat Karlsruhe (TH), System Architecture Group 57

Managing Variable Sized Partitions

Mapping Variable Partitions (3)

s Best-fit

= Choose that block that is closest in size to the
request
= Poor performance
= Often has to search the complete list or bit map

= Since smallest fitting block is chosen for a request,
the smallest amount of fragmentation is left in the
memory = compaction must be done more often

58

Managing Variable Sized Partitions

Mapping Variable Partitions (4)

s Worst-fit

= Choose the block that is largest in size

= Idea is to leave a usable new free fragment over
= Poor performance

= Often has to search complete list or bit map

= Simulations show only limited effects

Linking & Loading

Study for yourselves
Use slides from previous Proseminars

