
System ArchitectureSystem Architecture

17 Address Spaces17 Address Spaces

1© 2009 Universität Karlsruhe (TH), System Architecture Group

Address Space Management
Linking & Loading

Swapping

January 14 2009
Winter Term 2008/09

Gerd Liefländer

 Bacon, J.: Operating Systems (5)
 Bovet, D.: Understanding the Linux Kernel (7)
 Nehmer, J.: Grundlagen modener BS, (4)
 Silberschatz, A.: Operating System Concepts (7)

Recommended Reading

© 2009 Universität Karlsruhe (TH), System Architecture Group 2

 Stallings, W.: Operating Systems (7)

 Tanenbaum, A.: Modern Operating Systems (4)

Agenda
 Review on MM
 Motivation

 Protection & Sharing
 Basic Notions

 Address Scope
 Address Space

Introduction

© 2009 Universität Karlsruhe (TH), System Architecture Group 3

 Address Space
 Address Region

 Mapping of LAS → RAM
 Address Space Management

 Single-Programming
 Multi-Programming

 Fixed-Partition
 Variable-Sized Partition

 Linking & Loading

Address Space (AS) Concepts

 Physical AS (2N bytes, N = address width of
system/memory bus)
 non-linearly addressable set of I/O-interfaces and

RAM/ROM/… parts

 can contain holes

© 2009 Universität Karlsruhe (TH), System Architecture Group 4

 can contain holes

 Logical AS (2M bytes, M = address width of CPU)
 Linearly addressable

 Virtual AS (2K bytes)
 K > N with storage banking, overlay technique etc.

 K  M

Basic Notions
 Physical address: reference of a specific RAM/ROM cell

 Logical address: program address used at run time to
denote a specific data/instruction cell within the LAS of
the executing program

R l ti dd l i l dd l t d t fi

Motivation

© 2009 Universität Karlsruhe (TH), System Architecture Group 5

 Relative address: logical address related to some fix
point within the LAS of the executing program, e.g.
 instruction pointer
 start address of program
 stack frame pointer

 Virtual address: mapped logical address into virtual AS
(in many cases this mapping is 1:1)*

*For simplification in our course logical address = virtual address

Why Address Spaces?

 In order to achieve the intended results, each
application runs in its own address LAS 
 No unwanted interference with another application will

occur, i.e. each LAS executes within a “protected area”

 Each shared object & communication path (channel,

Motivation

© 2009 Universität Karlsruhe (TH), System Architecture Group 6

j p (,
mailbox etc.) with another LAS has an impact on
 robustness (e.g. due to race conditions)
 security (cooperation with untrusted software)

 Only, for efficiency reasons we offer explicit LAS
sharing, e.g. Linux or UNIX “shared memory”, i.e.
parts of n>2 LAS are identical

Why Sharing?

 Sharing when
 n>2 tasks/processes want to cooperate

 n>2 tasks want to use common code/data in
order to reduce load overhead

Motivation

© 2009 Universität Karlsruhe (TH), System Architecture Group 7

 Typical examples for shared objects:
 Libraries

 Code (e.g. C compiler)

 Common data (e.g. buffers)

Code P1

Data(P1)

Main Memory

Local
access

Sharing

Motivation

© 2009 Universität Karlsruhe (TH), System Architecture Group 8

Code P2

Data(P2)Local
access

Allowed accesses
to common data

Shared DataNot allowed

Protection and Sharing?

 Define logical entities with
 guarded borders and
 common address regions



Address Space

© 2009 Universität Karlsruhe (TH), System Architecture Group 9


2. Basic Abstraction of System Architecture:

Address Space
(Address) Region

HW Support for Runtime Protection

 Need two registers to run
task B
 Base register

 Limit register
Task A

limit

Relocation and Protection

© 2009 Universität Karlsruhe (TH), System Architecture Group 10

 Need to add an appropriate
offset to a logical address
 Achieves relocation

 Protects memory locations
lower than base

 Protects memory location higher
than base + limit

Task B

Task C

base

Base and Limit Register

Relocation and Protection

© 2009 Universität Karlsruhe (TH), System Architecture Group 11

Summary: Base & Limit Register

 Disadvantages
 Allocated memory must be contiguous, i.e. it can

be hard to find a fitting free memory partition

 Complete task/process must be in memory i e

Relocation and Protection

© 2009 Universität Karlsruhe (TH), System Architecture Group 12

 Complete task/process must be in memory, i.e.
if AS contains holes, i.e. the corresponding
mapped memory parts are not used

 No scalable support for partially sharing of ASes

Sharing Problem

Relocation and Protection

AS1 AS2 AS3

© 2009 Universität Karlsruhe (TH), System Architecture Group 13

Consequence:
 Shared AS regions should be mapped independently

of their ASes

 Each AS region can be mapped individually

Implementing Sharing efficiently?

 Whenever we are able to map parts of an AS
separately sharing is no longer a problem

 Solution is scalable (provide usage counter)

Sharing

© 2009 Universität Karlsruhe (TH), System Architecture Group 14

Programmers view towards software:

Sampling of
 code entities (thread, procedure etc.) and

 data entities (struct, array, module, object etc.)

Logical Organization

Address Space

© 2009 Universität Karlsruhe (TH), System Architecture Group 15

SW entities have different access characteristics, e.g.:
 Execute only (e.g. code)

 Read only (e.g. catalogue)

 Read-Write

 Standard HW supports this idea, however, some
commodity OSes don’t use this HW feature

Logical Organization

Definition: The Address Scope* limits the range
of addresses a compiler, linker, and
loader can give to an executable

Address Scope

© 2009 Universität Karlsruhe (TH), System Architecture Group 16

1KA specific

Some systems use only a small
part of the whole address scope,
e.g. current 64-bit machines
only use 40…48 address bits

Logical Address Scope
0x00…000

0x00…FFF

Address Scope

© 2009 Universität Karlsruhe (TH), System Architecture Group 17

0xFF…FFF

Currently
not used

0x00000000

Intel’s x86 Address Scope

Address Scope

© 2009 Universität Karlsruhe (TH), System Architecture Group 18

0xFFFFFFFF

4 GByte*

0x00000000

2 GB
- 128 KB
User-AS

Used for what else?

Splitting Address Scope (Win. NT)

Address Scope

© 2009 Universität Karlsruhe (TH), System Architecture Group 19

0xFFFFFFFF

4 GB

2 GB
OS-AS

This part is used to
establish and manage

applications and system tasks

Linux Address Space Layout

0x00000000

3 GB
- 128
KB

Libraries
Application Code
Initialized Data

Not Initialized Data

HEAP

© 2009 Universität Karlsruhe (TH), System Architecture Group 20

0xFFFFFFFF

4 GB

1 GB
OS-AS

KB
User-
AS

Never used by applications
(code, data or user stack)

Task Size

HEAP

Environment Variables

STACK

Logical Address Space (1)

Logically associated parts -mapped to available addresses of
the address scope- form another logical unit:

Definition: A (“logical”) address space LAS is
the range of addresses within the
address scope accessible for an

Address Space

© 2009 Universität Karlsruhe (TH), System Architecture Group 21

address scope accessible for an
“executable task”, i.e. either for a
process (= single-threaded task)
or for a multi-threaded task

Task or process can be an application or a
system server

Logical Address Space (2)

Question:
What will happen if a thread of a task tries to reference
a logical address not belonging to its LAS?

 Exception is raised: “address violation”

Address Space

© 2009 Universität Karlsruhe (TH), System Architecture Group 22

 Exception is raised: address violation

 Remember: Main purpose of a LAS is:

!!! !!! PROTECTIONPROTECTION !!!!!!

Address Space* (3)

2 implementation for AS:
 Contiguous AS
 Dispersed AS

2 h i i f AS

Address Space

© 2009 Universität Karlsruhe (TH), System Architecture Group 23

2 characteristics of AS:
 Fixed

 No changes of the AS size at run time

 Dynamic
 Growing and shrinking parts of AS a run time

*In the following slides AS = Logical Address Space

Contiguous Address Space

Data
Code0x00000000

Stack
0x00004711

AS

Address Space

© 2009 Universität Karlsruhe (TH), System Architecture Group 24

0xFFFFFFFF

¬ AS

Discuss pros and cons of this concept

0x00000000

Module 2

Module 1 (main)

Dispersed Address Space

Address Space

© 2009 Universität Karlsruhe (TH), System Architecture Group 25

0xFFFFFFFF
Stack

Module 3

Pros and cons of this concept?

Address Regions

Address spaces may overlap each other,
sharing common portions of their ASs

How to name private or shared contiguous portions

Regions

© 2009 Universität Karlsruhe (TH), System Architecture Group 26

of an AS?

Definition: A contiguous AS block is a region
(e.g. a segment)

Typical examples in Unix: code(text), data and stack

Mapping AS to RAM

Mapping can be done orthogonal to the layout of a
logical and of the physical address space:

 Complete AS (AS is either mapped or not at all)

 Portions of the AS

Mapping of LAS to RAM

© 2009 Universität Karlsruhe (TH), System Architecture Group 27

 Fixed sized logical portions (pages) or
 Variable sized logical portions (segments)

 Contiguous memory partition (MP) or

 Non contiguous memory partitions
 Fixed sized memory portions or
 Variable sized memory portions

Main Memory

Code

0x00000000

Data
Code

Stack

Logical Address Space

0x000000

Contiguous AS → Contiguous MP
Mapping of LAS to RAM

© 2009 Universität Karlsruhe (TH), System Architecture Group 28

Data

Stack

0xFFFFFFFF

Stack

0xFFFFFF

Main Memory

Code

0x00000000

Code

Logical Address Space

Non Contiguous AS → Contig. MP
Mapping of LAS to RAM

© 2009 Universität Karlsruhe (TH), System Architecture Group 29

Data

Stack

0xFFFFFFFF

Data

Stack

RAM-Partition

Main Memory

Code

00000000

C d

Logical Address Space

Contig. AS → Non Contiguous MP
Mapping of LAS to RAM

© 2009 Universität Karlsruhe (TH), System Architecture Group 30

Data

Stack

FFFFFFFF

Data

Code

Stack

Main Memory

Code 1

00000000
Code 1

Logical Address Space

Code 2

Currently not
mapped

Partially Non Cont. AS → Non Cont.
MP

Mapping of LAS to RAM

© 2009 Universität Karlsruhe (TH), System Architecture Group 31

Data

Stack

FFFFFFFF

Data

Stack

Principle of Segmentation

Main Memory
00000000

Logical Address Space

Fixed Parts of Non Cont. AS → Cont.
MP

Mapping of LAS to RAM

© 2009 Universität Karlsruhe (TH), System Architecture Group 32

FFFFFFFF Principle of Paging

SingleSingle-- & Multi& Multi--ProgrammingProgramming

33© 2009 Universität Karlsruhe (TH), System Architecture Group

Elementary AS Management

Basic AS Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 34

Three ways of organizing memory
- OS with 1 application, i.e. single-programming

Analysis of Single-Programming

 OK if
 Only one task
 Memory available ~ required memory

Otherwise

Single Programming

© 2009 Universität Karlsruhe (TH), System Architecture Group 35

 Otherwise
 Poor CPU utilization during blocking I/O
 Poor memory utilization with varying jobs

 Better idea:
 Subdivide memory in partitions and run

more than one task or process

Fast CPU & Slow I/O-Device

CPU

© 2009 Universität Karlsruhe (TH), System Architecture Group 36

Device

BLOCKUNBLOCK

These: The faster the CPU, the more it runs idle

How to divide Main Memory?
 Fixed Partition

 A process ≤ partition size can be loaded

 Fast Context Switch, only need to update base register

 Simple Find empty partition when loading a new task

Inte nal f agmentation

Multi Programming

© 2009 Universität Karlsruhe (TH), System Architecture Group 37

 Internal fragmentation

 Variable Partitions
 More complex, but still fast context switch possible,

only need to update base register and limit register

 Instead of internal we have external fragmentation

Fixed Partition

 Break main memory into fixed-size partitions
 Hardware requirement: base register
 Translation from logical address to physical address: simply

add base register to logic address

Multi Programming

Partition 0
0

1M

© 2009 Universität Karlsruhe (TH), System Architecture Group 38

MAIN MEMORY

Partition 1

Partition 2

Partition 3

Partition 4

Partition 5

Partition 6

1M

2M

3M

4M

5M

6M

Base register

Logial address

+

3 M

offset

Problem: safety?

Potential Structure of a Partition

 Heap
 Allocating at run-time
 For dynamic objects and

data structures
 Resources (code,

buffer,…)

Multi Programming

Global Variables

Code

high

© 2009 Universität Karlsruhe (TH) System Architecture Group
39

 Stack
 Parameter
 Local variables
 Return addresses,

nesting

 Global variables

 Code section

Stack

Heap
low

Fixed Sized

Partition 1

Fixed Sized Memory Partitions

Fixed Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 40

Partition 2

Code 1
Data 1

Stack 1

Fixed Sized

Fixed Sized Partitions

Fixed Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 41

Stack 1

Code 1
Data 1

Stack 1

Fixed Sized

Fixed Sized Partitions

Fragmentation 1 Unusable RAM

Fixed Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 42

Stack 1

Code 2
Data 2

Stack 2

Fragmentation 2

Pro: Easy to implement
Con: Internal fragmentation &number of tasks is limited

How to separate both processes?

2 MB
2 MB
4 MB

8 MB

Suitable

Sized

Flexible Fixed Partitions

Fixed Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 43

16 MB

Pro: For some dedicated systems less internal fragmentation
Con: More system overhead

Portions

Comments on Fixed Partitioning

Poor usage of memory, because each task,
no matter how small, needs an entire partition

 internal fragmentation
Suitable-sized partitions lessen this problem,

Fixed Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 44

p p ,
but internal fragmentation still holds

Equal-sized partitions used in early IBM’s OS/MFT
(Multiprogramming with a Fixed number of Tasks
 the maximal multi programming degree is fixed)

Implementing Fixed Partitions

Fixed Sized Partitions

© 2009 Universität Karlsruhe (TH) System Architecture Group
45

Fixed memory partitions
 separate input queues for each partition
 single input queue for all partitions

Variable SizedFixed Sized
Code 1
Data 1

Stack 1

Fragmentation 1

Code 1
Data 1

Stack 1
Partition 1

Code 2

Fixed & Variable Sized Partitions

Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 46

Stack 1

Code 2
Data 2

Stack 2

Fragmentation 2

Data 2

Stack 2
Partition 2

Code 3
Data 3

Stack 3 Partition 3
External Fragmentation

Pro: No internal fragmentation, better multiprogramming
Con: External fragmentation, more complicated

Variable Partitions

Partitions are of variable length and number:

Each task gets exactly as much memory as it requires

After a task terminates, “memory holes” may appear
 external fragmentation

Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 47

 external fragmentation

Must use compaction to shift tasks,
to get a larger block of free memory

Used in IBM’s OS/MVT (Multiprogramming
with a Variable number of Tasks)

Requirements of Variable Partitions

 Break memory in variable-sized partitions
 Hardware requirements: base register and limit register

Variable Sized Partitions

Partition 00

1M
Base registerLimit register

© 2009 Universität Karlsruhe (TH), System Architecture Group 48

MAIN MEMORY

Partition 1

Partition 2

Partition 3

Partition 4

1M

2M

3M

4M

5M

6M

Logial address

+

3 M

offset <?

Size of P3

yes

raise address
violation exception

Variable Partitions: Example (1a)

Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 49

A hole of 64K is left after loading 3 tasks: not enough room for another task

If each task is blocked, OS swaps out task2 in order to swap in task4

Variable Partitions: Example (1b)

Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 50

Another hole of 96K is created, if task4 is also blocked 

OS swaps out task1, swaps in task 2  another hole of 96K 

Danger of splitting up memory (compare to Swiss cheese pattern)

Analysis of Variable Partitions

 In previous slide
 We have 256 KB free in total, but if a new task

requires 100 KB, we cannot satisfy its request
 External fragmentation

Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 51

 We end up with lots of unusable memory holes

 We could use compaction
 Shuffle allocated memory contents to place all free

memory together in one large block
 Compaction is possible only if relocation is

dynamic, and is done at run time

Managing Variable Partitions

 Basic Requirements

 Find a fitting free partition as fast as possible

 Minimize external fragmentation

Managing Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 52

 Support eager reunification of neighbored free
partitions

Question: What memory manager would you use?

Bit Map/List for Tracing Partitions

Managing Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 53

 Part of memory with 5 processes, 3 holes
 tick marks show allocation units
 shaded regions are free

 Corresponding bit map
 Same information as a list

Linked Lists for Tracing Partitions

Managing Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 54

Four combinations for the terminating
process X if eager reunification is used

Overview on Allocation Policies

Used to decide which free block
to allocate to a requesting task
Goal:
Reduce usage of compaction
(being quite time consuming)

Possible algorithms:

Managing Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 55

Using information of
the last allocated block

Possible algorithms:
• First-fit: choose always very

first hole from beginning
• Best-fit: choose smallest hole
• Next-fit: choose first hole

from last placement
 Nearest-fit: choose nearest

hole from last placement

Mapping Variable Partitions

 First-fit
 Scan the list or bit map for the first entry that fits

 If larger in size, break it into an allocated and a free
part, iff free part is large enough to be used

Managing Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 56

 Many processes loaded into the front end of
memory that must be searched over and over
when trying to find a free block (~ inefficient)

 Can have some unusable holes at the beginning
 External fragmentation

Mapping Variable Partitions (2)

 Next fit
 Like first-fit, except it begins its search from that

point in the list or bit map where the previous
request had succeeded

Managing Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 57

 More often allocates a block of memory at the end
of memory where the largest block is found

 Largest block is broken up into smaller blocks
 Compaction is required to obtain a large block at

the end of memory
 Simulation show next-fit slightly slower than first-fit

Mapping Variable Partitions (3)

 Best-fit
 Choose that block that is closest in size to the

request
 Poor performance

Managing Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 58

 Often has to search the complete list or bit map
 Since smallest fitting block is chosen for a request,

the smallest amount of fragmentation is left in the
memory  compaction must be done more often

Mapping Variable Partitions (4)

 Worst-fit
 Choose the block that is largest in size

 Idea is to leave a usable new free fragment over

 Poor performance

Managing Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 59

 Often has to search complete list or bit map
 Simulations show only limited effects

Linking & LoadingLinking & Loading

60© 2009 Universität Karlsruhe (TH), System Architecture Group

Study for yourselves
Use slides from previous Proseminars

