
System ArchitectureSystem Architecture

17 Address Spaces17 Address Spaces

1© 2009 Universität Karlsruhe (TH), System Architecture Group

Address Space Management
Linking & Loading

Swapping

January 14 2009
Winter Term 2008/09

Gerd Liefländer

 Bacon, J.: Operating Systems (5)
 Bovet, D.: Understanding the Linux Kernel (7)
 Nehmer, J.: Grundlagen modener BS, (4)
 Silberschatz, A.: Operating System Concepts (7)

Recommended Reading

© 2009 Universität Karlsruhe (TH), System Architecture Group 2

 Stallings, W.: Operating Systems (7)

 Tanenbaum, A.: Modern Operating Systems (4)

Agenda
 Review on MM
 Motivation

 Protection & Sharing
 Basic Notions

 Address Scope
 Address Space

Introduction

© 2009 Universität Karlsruhe (TH), System Architecture Group 3

 Address Space
 Address Region

 Mapping of LAS → RAM
 Address Space Management

 Single-Programming
 Multi-Programming

 Fixed-Partition
 Variable-Sized Partition

 Linking & Loading

Address Space (AS) Concepts

 Physical AS (2N bytes, N = address width of
system/memory bus)
 non-linearly addressable set of I/O-interfaces and

RAM/ROM/… parts

 can contain holes

© 2009 Universität Karlsruhe (TH), System Architecture Group 4

 can contain holes

 Logical AS (2M bytes, M = address width of CPU)
 Linearly addressable

 Virtual AS (2K bytes)
 K > N with storage banking, overlay technique etc.

 K M

Basic Notions
 Physical address: reference of a specific RAM/ROM cell

 Logical address: program address used at run time to
denote a specific data/instruction cell within the LAS of
the executing program

R l ti dd l i l dd l t d t fi

Motivation

© 2009 Universität Karlsruhe (TH), System Architecture Group 5

 Relative address: logical address related to some fix
point within the LAS of the executing program, e.g.
 instruction pointer
 start address of program
 stack frame pointer

 Virtual address: mapped logical address into virtual AS
(in many cases this mapping is 1:1)*

*For simplification in our course logical address = virtual address

Why Address Spaces?

 In order to achieve the intended results, each
application runs in its own address LAS
 No unwanted interference with another application will

occur, i.e. each LAS executes within a “protected area”

 Each shared object & communication path (channel,

Motivation

© 2009 Universität Karlsruhe (TH), System Architecture Group 6

j p (,
mailbox etc.) with another LAS has an impact on
 robustness (e.g. due to race conditions)
 security (cooperation with untrusted software)

 Only, for efficiency reasons we offer explicit LAS
sharing, e.g. Linux or UNIX “shared memory”, i.e.
parts of n>2 LAS are identical

Why Sharing?

 Sharing when
 n>2 tasks/processes want to cooperate

 n>2 tasks want to use common code/data in
order to reduce load overhead

Motivation

© 2009 Universität Karlsruhe (TH), System Architecture Group 7

 Typical examples for shared objects:
 Libraries

 Code (e.g. C compiler)

 Common data (e.g. buffers)

Code P1

Data(P1)

Main Memory

Local
access

Sharing

Motivation

© 2009 Universität Karlsruhe (TH), System Architecture Group 8

Code P2

Data(P2)Local
access

Allowed accesses
to common data

Shared DataNot allowed

Protection and Sharing?

 Define logical entities with
 guarded borders and
 common address regions

Address Space

© 2009 Universität Karlsruhe (TH), System Architecture Group 9

2. Basic Abstraction of System Architecture:

Address Space
(Address) Region

HW Support for Runtime Protection

 Need two registers to run
task B
 Base register

 Limit register
Task A

limit

Relocation and Protection

© 2009 Universität Karlsruhe (TH), System Architecture Group 10

 Need to add an appropriate
offset to a logical address
 Achieves relocation

 Protects memory locations
lower than base

 Protects memory location higher
than base + limit

Task B

Task C

base

Base and Limit Register

Relocation and Protection

© 2009 Universität Karlsruhe (TH), System Architecture Group 11

Summary: Base & Limit Register

 Disadvantages
 Allocated memory must be contiguous, i.e. it can

be hard to find a fitting free memory partition

 Complete task/process must be in memory i e

Relocation and Protection

© 2009 Universität Karlsruhe (TH), System Architecture Group 12

 Complete task/process must be in memory, i.e.
if AS contains holes, i.e. the corresponding
mapped memory parts are not used

 No scalable support for partially sharing of ASes

Sharing Problem

Relocation and Protection

AS1 AS2 AS3

© 2009 Universität Karlsruhe (TH), System Architecture Group 13

Consequence:
 Shared AS regions should be mapped independently

of their ASes

 Each AS region can be mapped individually

Implementing Sharing efficiently?

 Whenever we are able to map parts of an AS
separately sharing is no longer a problem

 Solution is scalable (provide usage counter)

Sharing

© 2009 Universität Karlsruhe (TH), System Architecture Group 14

Programmers view towards software:

Sampling of
 code entities (thread, procedure etc.) and

 data entities (struct, array, module, object etc.)

Logical Organization

Address Space

© 2009 Universität Karlsruhe (TH), System Architecture Group 15

SW entities have different access characteristics, e.g.:
 Execute only (e.g. code)

 Read only (e.g. catalogue)

 Read-Write

 Standard HW supports this idea, however, some
commodity OSes don’t use this HW feature

Logical Organization

Definition: The Address Scope* limits the range
of addresses a compiler, linker, and
loader can give to an executable

Address Scope

© 2009 Universität Karlsruhe (TH), System Architecture Group 16

1KA specific

Some systems use only a small
part of the whole address scope,
e.g. current 64-bit machines
only use 40…48 address bits

Logical Address Scope
0x00…000

0x00…FFF

Address Scope

© 2009 Universität Karlsruhe (TH), System Architecture Group 17

0xFF…FFF

Currently
not used

0x00000000

Intel’s x86 Address Scope

Address Scope

© 2009 Universität Karlsruhe (TH), System Architecture Group 18

0xFFFFFFFF

4 GByte*

0x00000000

2 GB
- 128 KB
User-AS

Used for what else?

Splitting Address Scope (Win. NT)

Address Scope

© 2009 Universität Karlsruhe (TH), System Architecture Group 19

0xFFFFFFFF

4 GB

2 GB
OS-AS

This part is used to
establish and manage

applications and system tasks

Linux Address Space Layout

0x00000000

3 GB
- 128
KB

Libraries
Application Code
Initialized Data

Not Initialized Data

HEAP

© 2009 Universität Karlsruhe (TH), System Architecture Group 20

0xFFFFFFFF

4 GB

1 GB
OS-AS

KB
User-
AS

Never used by applications
(code, data or user stack)

Task Size

HEAP

Environment Variables

STACK

Logical Address Space (1)

Logically associated parts -mapped to available addresses of
the address scope- form another logical unit:

Definition: A (“logical”) address space LAS is
the range of addresses within the
address scope accessible for an

Address Space

© 2009 Universität Karlsruhe (TH), System Architecture Group 21

address scope accessible for an
“executable task”, i.e. either for a
process (= single-threaded task)
or for a multi-threaded task

Task or process can be an application or a
system server

Logical Address Space (2)

Question:
What will happen if a thread of a task tries to reference
a logical address not belonging to its LAS?

 Exception is raised: “address violation”

Address Space

© 2009 Universität Karlsruhe (TH), System Architecture Group 22

 Exception is raised: address violation

 Remember: Main purpose of a LAS is:

!!! !!! PROTECTIONPROTECTION !!!!!!

Address Space* (3)

2 implementation for AS:
 Contiguous AS
 Dispersed AS

2 h i i f AS

Address Space

© 2009 Universität Karlsruhe (TH), System Architecture Group 23

2 characteristics of AS:
 Fixed

 No changes of the AS size at run time

 Dynamic
 Growing and shrinking parts of AS a run time

*In the following slides AS = Logical Address Space

Contiguous Address Space

Data
Code0x00000000

Stack
0x00004711

AS

Address Space

© 2009 Universität Karlsruhe (TH), System Architecture Group 24

0xFFFFFFFF

¬ AS

Discuss pros and cons of this concept

0x00000000

Module 2

Module 1 (main)

Dispersed Address Space

Address Space

© 2009 Universität Karlsruhe (TH), System Architecture Group 25

0xFFFFFFFF
Stack

Module 3

Pros and cons of this concept?

Address Regions

Address spaces may overlap each other,
sharing common portions of their ASs

How to name private or shared contiguous portions

Regions

© 2009 Universität Karlsruhe (TH), System Architecture Group 26

of an AS?

Definition: A contiguous AS block is a region
(e.g. a segment)

Typical examples in Unix: code(text), data and stack

Mapping AS to RAM

Mapping can be done orthogonal to the layout of a
logical and of the physical address space:

 Complete AS (AS is either mapped or not at all)

 Portions of the AS

Mapping of LAS to RAM

© 2009 Universität Karlsruhe (TH), System Architecture Group 27

 Fixed sized logical portions (pages) or
 Variable sized logical portions (segments)

 Contiguous memory partition (MP) or

 Non contiguous memory partitions
 Fixed sized memory portions or
 Variable sized memory portions

Main Memory

Code

0x00000000

Data
Code

Stack

Logical Address Space

0x000000

Contiguous AS → Contiguous MP
Mapping of LAS to RAM

© 2009 Universität Karlsruhe (TH), System Architecture Group 28

Data

Stack

0xFFFFFFFF

Stack

0xFFFFFF

Main Memory

Code

0x00000000

Code

Logical Address Space

Non Contiguous AS → Contig. MP
Mapping of LAS to RAM

© 2009 Universität Karlsruhe (TH), System Architecture Group 29

Data

Stack

0xFFFFFFFF

Data

Stack

RAM-Partition

Main Memory

Code

00000000

C d

Logical Address Space

Contig. AS → Non Contiguous MP
Mapping of LAS to RAM

© 2009 Universität Karlsruhe (TH), System Architecture Group 30

Data

Stack

FFFFFFFF

Data

Code

Stack

Main Memory

Code 1

00000000
Code 1

Logical Address Space

Code 2

Currently not
mapped

Partially Non Cont. AS → Non Cont.
MP

Mapping of LAS to RAM

© 2009 Universität Karlsruhe (TH), System Architecture Group 31

Data

Stack

FFFFFFFF

Data

Stack

Principle of Segmentation

Main Memory
00000000

Logical Address Space

Fixed Parts of Non Cont. AS → Cont.
MP

Mapping of LAS to RAM

© 2009 Universität Karlsruhe (TH), System Architecture Group 32

FFFFFFFF Principle of Paging

SingleSingle-- & Multi& Multi--ProgrammingProgramming

33© 2009 Universität Karlsruhe (TH), System Architecture Group

Elementary AS Management

Basic AS Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 34

Three ways of organizing memory
- OS with 1 application, i.e. single-programming

Analysis of Single-Programming

 OK if
 Only one task
 Memory available ~ required memory

Otherwise

Single Programming

© 2009 Universität Karlsruhe (TH), System Architecture Group 35

 Otherwise
 Poor CPU utilization during blocking I/O
 Poor memory utilization with varying jobs

 Better idea:
 Subdivide memory in partitions and run

more than one task or process

Fast CPU & Slow I/O-Device

CPU

© 2009 Universität Karlsruhe (TH), System Architecture Group 36

Device

BLOCKUNBLOCK

These: The faster the CPU, the more it runs idle

How to divide Main Memory?
 Fixed Partition

 A process ≤ partition size can be loaded

 Fast Context Switch, only need to update base register

 Simple Find empty partition when loading a new task

Inte nal f agmentation

Multi Programming

© 2009 Universität Karlsruhe (TH), System Architecture Group 37

 Internal fragmentation

 Variable Partitions
 More complex, but still fast context switch possible,

only need to update base register and limit register

 Instead of internal we have external fragmentation

Fixed Partition

 Break main memory into fixed-size partitions
 Hardware requirement: base register
 Translation from logical address to physical address: simply

add base register to logic address

Multi Programming

Partition 0
0

1M

© 2009 Universität Karlsruhe (TH), System Architecture Group 38

MAIN MEMORY

Partition 1

Partition 2

Partition 3

Partition 4

Partition 5

Partition 6

1M

2M

3M

4M

5M

6M

Base register

Logial address

+

3 M

offset

Problem: safety?

Potential Structure of a Partition

 Heap
 Allocating at run-time
 For dynamic objects and

data structures
 Resources (code,

buffer,…)

Multi Programming

Global Variables

Code

high

© 2009 Universität Karlsruhe (TH) System Architecture Group
39

 Stack
 Parameter
 Local variables
 Return addresses,

nesting

 Global variables

 Code section

Stack

Heap
low

Fixed Sized

Partition 1

Fixed Sized Memory Partitions

Fixed Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 40

Partition 2

Code 1
Data 1

Stack 1

Fixed Sized

Fixed Sized Partitions

Fixed Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 41

Stack 1

Code 1
Data 1

Stack 1

Fixed Sized

Fixed Sized Partitions

Fragmentation 1 Unusable RAM

Fixed Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 42

Stack 1

Code 2
Data 2

Stack 2

Fragmentation 2

Pro: Easy to implement
Con: Internal fragmentation &number of tasks is limited

How to separate both processes?

2 MB
2 MB
4 MB

8 MB

Suitable

Sized

Flexible Fixed Partitions

Fixed Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 43

16 MB

Pro: For some dedicated systems less internal fragmentation
Con: More system overhead

Portions

Comments on Fixed Partitioning

Poor usage of memory, because each task,
no matter how small, needs an entire partition

 internal fragmentation
Suitable-sized partitions lessen this problem,

Fixed Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 44

p p ,
but internal fragmentation still holds

Equal-sized partitions used in early IBM’s OS/MFT
(Multiprogramming with a Fixed number of Tasks
 the maximal multi programming degree is fixed)

Implementing Fixed Partitions

Fixed Sized Partitions

© 2009 Universität Karlsruhe (TH) System Architecture Group
45

Fixed memory partitions
 separate input queues for each partition
 single input queue for all partitions

Variable SizedFixed Sized
Code 1
Data 1

Stack 1

Fragmentation 1

Code 1
Data 1

Stack 1
Partition 1

Code 2

Fixed & Variable Sized Partitions

Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 46

Stack 1

Code 2
Data 2

Stack 2

Fragmentation 2

Data 2

Stack 2
Partition 2

Code 3
Data 3

Stack 3 Partition 3
External Fragmentation

Pro: No internal fragmentation, better multiprogramming
Con: External fragmentation, more complicated

Variable Partitions

Partitions are of variable length and number:

Each task gets exactly as much memory as it requires

After a task terminates, “memory holes” may appear
 external fragmentation

Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 47

 external fragmentation

Must use compaction to shift tasks,
to get a larger block of free memory

Used in IBM’s OS/MVT (Multiprogramming
with a Variable number of Tasks)

Requirements of Variable Partitions

 Break memory in variable-sized partitions
 Hardware requirements: base register and limit register

Variable Sized Partitions

Partition 00

1M
Base registerLimit register

© 2009 Universität Karlsruhe (TH), System Architecture Group 48

MAIN MEMORY

Partition 1

Partition 2

Partition 3

Partition 4

1M

2M

3M

4M

5M

6M

Logial address

+

3 M

offset <?

Size of P3

yes

raise address
violation exception

Variable Partitions: Example (1a)

Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 49

A hole of 64K is left after loading 3 tasks: not enough room for another task

If each task is blocked, OS swaps out task2 in order to swap in task4

Variable Partitions: Example (1b)

Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 50

Another hole of 96K is created, if task4 is also blocked

OS swaps out task1, swaps in task 2 another hole of 96K

Danger of splitting up memory (compare to Swiss cheese pattern)

Analysis of Variable Partitions

 In previous slide
 We have 256 KB free in total, but if a new task

requires 100 KB, we cannot satisfy its request
 External fragmentation

Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 51

 We end up with lots of unusable memory holes

 We could use compaction
 Shuffle allocated memory contents to place all free

memory together in one large block
 Compaction is possible only if relocation is

dynamic, and is done at run time

Managing Variable Partitions

 Basic Requirements

 Find a fitting free partition as fast as possible

 Minimize external fragmentation

Managing Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 52

 Support eager reunification of neighbored free
partitions

Question: What memory manager would you use?

Bit Map/List for Tracing Partitions

Managing Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 53

 Part of memory with 5 processes, 3 holes
 tick marks show allocation units
 shaded regions are free

 Corresponding bit map
 Same information as a list

Linked Lists for Tracing Partitions

Managing Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 54

Four combinations for the terminating
process X if eager reunification is used

Overview on Allocation Policies

Used to decide which free block
to allocate to a requesting task
Goal:
Reduce usage of compaction
(being quite time consuming)

Possible algorithms:

Managing Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 55

Using information of
the last allocated block

Possible algorithms:
• First-fit: choose always very

first hole from beginning
• Best-fit: choose smallest hole
• Next-fit: choose first hole

from last placement
 Nearest-fit: choose nearest

hole from last placement

Mapping Variable Partitions

 First-fit
 Scan the list or bit map for the first entry that fits

 If larger in size, break it into an allocated and a free
part, iff free part is large enough to be used

Managing Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 56

 Many processes loaded into the front end of
memory that must be searched over and over
when trying to find a free block (~ inefficient)

 Can have some unusable holes at the beginning
 External fragmentation

Mapping Variable Partitions (2)

 Next fit
 Like first-fit, except it begins its search from that

point in the list or bit map where the previous
request had succeeded

Managing Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 57

 More often allocates a block of memory at the end
of memory where the largest block is found

 Largest block is broken up into smaller blocks
 Compaction is required to obtain a large block at

the end of memory
 Simulation show next-fit slightly slower than first-fit

Mapping Variable Partitions (3)

 Best-fit
 Choose that block that is closest in size to the

request
 Poor performance

Managing Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 58

 Often has to search the complete list or bit map
 Since smallest fitting block is chosen for a request,

the smallest amount of fragmentation is left in the
memory compaction must be done more often

Mapping Variable Partitions (4)

 Worst-fit
 Choose the block that is largest in size

 Idea is to leave a usable new free fragment over

 Poor performance

Managing Variable Sized Partitions

© 2009 Universität Karlsruhe (TH), System Architecture Group 59

 Often has to search complete list or bit map
 Simulations show only limited effects

Linking & LoadingLinking & Loading

60© 2009 Universität Karlsruhe (TH), System Architecture Group

Study for yourselves
Use slides from previous Proseminars

