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 Example Memory Managers 
 Ring Buffer
 Stack
 Boundary Tag Systems
 Buddy System
 Slab Allocating
 Heap Management



Why Memory Management?
Motivation

1. Each application needs RAM to run on a CPU, 
we have to establish

 static address regions, e.g. code, global data
 dynamic address regions, e.g. heap or stack

2 Th k l d f it
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2. The kernel needs memory for its
 residentpart
 loadable kernel modules

3. Devices often only can use physically addressed 
memory for their buffers etc.

 Every executable needs some RAM



Why Memory Management?

Entities of an “application” AS (address regions):

 Code (“text segment” in Unix jargon)

 Data ((un)initialized data segment)

 Heap

Motivation
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p

 Stack

Data types (entities) of the kernel AS*:

 Buffer

 TCB, page table, free list, bit map, …

*At the end of the course you should be able to 
enumerate at least 10 different kernel data types



System Goals concerning Memory

Motivation

 Increase (maximize)
 memory utilization

 Sometimes we must reserve some RAM capacity for 
 high priority applications or 
 system emergency functions
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y g y u o

 Reduce (minimize) 
 application’s response time

 application’s turnaround time 

 memory manager’s overhead 



What does a Memory Manager?

 Keeping track of memory that is currently

 allocated, i.e. in use or reserved for future use
 Pinning parts of memory for specific tasks

 free

Motivation
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 Looking for fitting free memory in case of a request
 If found, allocate free memory according to some policy

 Free memory in case of a release
 potentially look for free neighbors in order to reunify free 

neighbored memory pieces 



Memory Management (1)

 Programmers want memory being
 large & fast & non volatile

 Current technology does not support all of these at 
once, but future technologies like MRAM* might do 

Motivation
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 System architects offer a memory hierarchy
 small high-speed caches (expensive) 

 medium sized fast main memory (RAM)

 flash memory

 Giga bytes of slow, cheap disk storage

 Terra bytes of very slow archive memory

*MRAM = Magnetic RAM



Motivation

Memory Management (2)

Two main goals:

1. Manage memory efficiently
 appropriate algorithms & data structures
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 program MMU (e.g. TLB)

2. Establish effective usability of memory
 maximize usage of (main) memory

 support low cache footprint



Activity

Logical World Physical World

Active Unit

Thread

active

CPU

Temporal Mapping

Access Access

Motivation
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passive

Data

Temporal Mapping

RAM

Content Container



Motivation

Why to bother about RAM?

Memory is large and cheap, and if not,
we’ll use virtual memory.

However, reality tells us:

1 M t d ‘t i t l t ll

© 2009 Universität Karlsruhe (TH), System Architecture Group 11

1. Many computers don‘t use virtual memory at all 

2. Modern programs tend to be memory greedy &
virtual memory ≠ unlimited memory

3. Memory management has to be done anyway at 
 system level 
 application level



Architecture of RAM Architecture of RAM 
ManagementManagement
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Memory Management

allocate release

Memory Management Module
MMM-Interface
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Internal MMM Data Base

Note:
 several related and/or unrelated memory managers



MMM Data Base

We must solve the following problems when handling

Memory Management

MMMDB reflects what parts are allocated and what parts are free
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We must solve the following problems when handling
memory requests

 Efficiently select a fitting free memory block
 As fast as possible

 Try to utilize the memory efficiently
 Avoid unusable memory leaks

 Meet additional constraints
 Avoid unbounded waiting in front of MMM



Memory Management

MMM

allocate release

Smart System Architecture of a 
MMM

Internal

MMM-Interface
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Internal
interface

MMM Data Base

is_memory_free? set_allocated set_free

Main advantage of the above architecture?



Design ParametersDesign Parameters
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Real Memory Management

Orthogonal Parameters

• Sequence of allocate/release-operations

 Size of memory blocks      

 Data structures
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Playground for 
an innovative 

system architect

 Fragmentation (not design parameter but result of a 
design!!!!)

 Allocation policy

 Reunification of released blocks

 …?



MM Design Parameters (1a)

 Sequence of allocate/release-operations
 ~FIFO = queue

Real Memory Management
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Head of
allocated
buffers

Head of
free

buffers



Real Memory Management

MM Design Parameters (1b)

 Sequence of allocate/release-operations
 FIFO, LIFO = stack
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Real Memory Management

MM Design Parameters (1c)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary = in general
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MM Design Parameters (2)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks

Real Memory Management
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Real Memory Management

MM Design Parameters (2a)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Constant size = most buffering
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Real Memory Management

MM Design Parameters (2b)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Constant size, multiple of fixed size
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Real Memory Management

MM Design Parameters (2c)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Constant size, multiple size, fixed size = reservoir of 

frequently used blocks
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Real Memory Management

MM Design Parameters (2d)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multiple size, fixed size, exponential size = 

buddy system
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Real Memory Management

MM Design Parameters (2e)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of Memory blocks
 Identical size, multiple size fixed size, exponential size,

arbitrary
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Real Memory Management

MM Design Parameters (3a)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multiple size, fixed size, exponential size, 

arbitrary
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 Data structures
 Integrated within memory block(s) = mostly with larger 

blocks



Real Memory Management

MM Design Parameters (3b)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multiple size, fixed size, exponential size, 

arbitrary
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 Data structures
 Integrated, special memory block(s) = stack



Real Memory Management

Result of Design (4)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multple size, fixed size, exponential size, 

arbitrary
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 Data Structures
 Integrated, special memory block(s)

 Fragmentation
 With(out) in(ex)ternal fragmentation 



Real Memory Management

MM Design Parameters (5a)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multiple size, fixed size, exponential size, 

arbitrary
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 Data structures
 Integrated, special memory block(s)

 Fragmentation
 With(out) in(ex)ternal fragmentation

 Allocation policy
 First-Fit = take the first fitting block within an ordered 

set of free blocks



Real Memory Management

MM Design Parameters (5b)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multiple size, fixed size, exponential sized, 

arbitrary
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 Data structures
 Integrated, special memory block(s) 

 Fragmentation
 With(out) in(ex)ternal fragmentation

 Allocation policy
 First-, Next-Fit = take the next fitting block within an 

ordered set of free blocks



Real Memory Management

MM Design Parameters (5c)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multiple size, fixed size, exponential sized, 

arbitrary
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 Data structures
 Integrated, special memory block(s) 

 Fragmentation
 With(out) in(ex)ternal fragmentation

 Allocation policy
 First-, Next-, BestFit = take the best fitting block within an 

ordered set of free blocks



Real Memory Management

MM Design Parameters (5d)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multiple size, fixed size, exponential sized, 

arbitrary
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 Data structures
 Integrated, special memory block(s) 

 Fragmentation
 With(out) in(ex)ternal fragmentation

 Allocation policy
 First-, Next-, Best-, Worst-Fit = take the largest fitting block 

within an ordered set of free blocks



Real Memory Management

MM Design Parameters (5e)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multiple size, fixed size, exponential sized, 

arbitrary
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 Data structures
 Integrated, special memory block(s) 

 Fragmentation
 With(out) in(ex)ternal fragmentation

 Allocation policy
 First-, Next-, Best-, Worst-, Nearest-Fit, = take the fitting 

block closest to the previous fitting block



Real Memory Management

MM Design Parameters (6a)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multiple size, fixed size, exponential size, 

arbitrary
D t t t e
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 Data structures
 Integrated, special memory block(s) 

 Fragmentation
 With(out) in(ex)ternal fragmentation

 Allocation policy
 First-, Next-, Best-, Worst-, Nearest-Fit

 Reunification of released blocks
 Eager reunification with neighbored free blocks (if any)



Real Memory Management

MM Design Parameters (6b)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multiple size, fixed size, exponential size, 

arbitrary
D t t t e
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 Data structures
 Integrated, special memory block(s)

 Fragmentation
 With(out) in(ex)ternal fragmentation

 Allocation policy
 First-, Next-, Best-, Worst-, …, Nearest-Fit

 Reunification of Released blocks
 Eager, lazy reunification = wait a while until you reunify



Summary of Designing MM

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multiple size, fixed size, exponential size, 

arbitrary
D t t t e

Real Memory Management
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 Data structures
 Integrated, special memory block(s) 

 Fragmentation
 With(out) internal or external fragmentation

 Allocation policy
 First-, Next-, Best-, Worst-, …, Nearest-Fit

 Reunification of Released blocks
 Immediate, lazy reunification



Data Structures

 Bit Map (for fixed sized units, e.g. pages) 
 Extra data structure

 Integrated 

Real Memory Management
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 Table/List (for arbitrary sized units, e.g. 
segments)
 Extra data structure

 Integrated



Bit Map Data Base

Real Memory Management

RAM

BITMAP1111010001110000Extra Bit Map:
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RAM
1 1 1 1 1 1 1 10 0 0 0 0 0 00

Integrated Bit Map:

Overhead per bit map:
The smaller the memory units, the larger the bit map 



Table Data Base

Real Memory Management

Extra Tables (sorted according to addresses):

Free Table: Allocate Table:
Address    Length Address    Length

4 1 0 4
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RAM

6        3 5 1
12            4   9         3

 other useful sorting criteria?

0     1     2 3     4     5     6     7     8     9     10    11   12   13   14   15    



List oriented Data Base

Real Memory Management

Integrated List (sorted according to addresses):

Head of Allocated List
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RAM

Head of Free List



Fragmentation

Internal Fragmentation:
 allocated memory can be larger than requested memory
 memory management rounds up requested memory to the 

next manageable memory block unit

Real Memory Management

waste
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External Fragmentation:
 Sum of total free memory space could satisfy a request, but 

free memory is scattered and is not contiguous

loss



Allocation Policies

 First-Fit

 Next-Fit (Rotating First-Fit)

Best Fit

Real Memory Management
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 Best-Fit

 Nearest-Fit

Analyze pros and cons of each of them



Reunification Policies

Real Memory Management

 Eager reunification (when releasing memory)

release

free free’’
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free

 Lazy reunification

free’free free’’



Additional Requirements

 With lazy reunification MM neighboring blocks can be 
free. However, none of these can satisfy the current 
memory request:

 Garbage Collection1

Real Memory Management
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 With an arbitrary allocation scheme (e.g. pure 
segmentation) we might get external fragmentation 
with a lot of  scattered free blocks (Swiss cheese)

 Compaction
1Garbage collection = releasing memory of no longer referenced objects



Free 1

Free 2

None of the 5 free blocks is large enough,
but there are some neighboring
free blocks



Garbage Collection (1)

Real Memory Management
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Free 6

Free 3

Free 5

Free 4

New block to allocate

Can be reunified to become
a larger free block



Free 1’

Free 2’

Now 2 of the 3 free blocks 
are large enough

Garbage Collection (2)

Real Memory Management
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Free 3’

New block to allocate



Free 1

Free 2

Observation:
None of the 3 free blocks is large
enough, but  enough free memory

Compaction (1)

Real Memory Management
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Free 3

New block to allocate

Idea: 
Move the allocated blocks towards 
a chosen memory boundary



Compaction (2)

Real Memory Management
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Free 1

New block to allocate



 Ringbuffer
 Stack
 Boundary Tag System (“Randkennzeichnungsverfahren”)

 Operations in arbitrary order
 Arbitrary sized blocks
 Integrated management data structures
 Allocation according to xyz-Fit (best-fit is possible)

Examples: Memory Manager

Real Memory Management

Very specific 
design parameters
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 Allocation according to xyz Fit (best fit is possible)
 External fragmentation
 Immediate reunification

 Buddy System (“Halbierungsverfahren”)
 Operations in arbitrary order
 Allocated blocks of 20, 21, 22, 23, ...
 Explicit management data structures
 Allocation according to “Best-Fit”
 Internal and external fragmentation
 Immediate (or lazy) reunification

 Linux Slab Allocator (“Stückchenzuteiler”) Very specific 
design parameters



free freeallocateda l a l

Not Free
length

allocated 

Real Memory Management

Boundary TagBoundary Tag
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freef l f lallocated allocated

Not Allocated

fpbp

pair of pointers 
for the free list

free



freeallocateda l2 a l2

Release this Portion !!

freef l1 f l1fpbp f l3fpbp f l3

Real Memory Management

Reunification (1)Reunification (1)
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What to do?
Because length and status field are of fixed size 
we can easily get the length of the block to be released.
Furthermore we can look over both boundaries to get
necessary information about the neighboring blocks.



Release this block !!

freeallocateda l2 a l2freef l1 f l1fpbp f l3fpbp f l3

Real Memory Management

Reunification (2)Reunification (2)
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freereleasingf l2 f l2freef l1 f l1 fpbp f l3fpbp f l3fpbp

We can detect whether both (one or no) neighbor(s) are(is) free




Release this block !!

freeallocateda l2 a l2freef l1 f l1fpbp f l3fpbp f l3

freleasingf l2 f l2ff l1 f l1 fpbp f l3fpbp f l3fpbp

Real Memory Management

Reunification (3)Reunification (3)
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reunified new free blockf l1’ f l1’fpbp

Finally we have to adjust the new pointers in the free list 
and the resulting length field (in this case: l1’ = l1 + l2 + l3)

freereleasingf l2 f l2freef l1 f l1 fpbp f l3fpbp f l3fpbp



220 Byte = 1 MB free

Suppose a client requests 100 KB

Memory to 
be managed

Real Memory Management

Buddy System (1)Buddy System (1)
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1 MB free

512 KB

512 KB256 KB 

512 KB256 KB128 KB

Dividing free memory until 
an appropriate free block

Real Memory Management

Buddy System (2)Buddy System (2)
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512 KB 256 KB 128 KB 100 KB

512 KB256 KB 128 KB

Internal fragmentation



1 MB free

512 KB 256 KB 128 KB 100 KB

Suppose another 200 KB block is requested

Real Memory Management

Buddy System (3)Buddy System (3)
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1 MB free

512 KB 256 KB 128 KB 100 KB

512 KB 128 KB 100 KB 200 KB

Suppose another 200 KB block is requested

Real Memory Management

Buddy System (4)Buddy System (4)
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1 MB free

512 KB 256 KB 128 KB 100 KB

512 KB 128 KB 100 KB 200 KB 

128 KB 100 KB 200 KB 200 KB 256 KB 

Real Memory Management

Buddy System (5)Buddy System (5)
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Suppose another 130 KB block is requested



1 MB free

512 KB 256 KB 128 KB 100 KB

512 KB 128 KB 100 KB 200 KB 

128 KB 100 KB 200 KB 200 KB 256 KB 

Real Memory Management

Buddy System (6)Buddy System (6)
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Suppose we have to release the first 200 KB 

128 KB 100 KB 200 KB 200 KB 130 KB



1 MB free

512 KB 256 KB 128 KB 100 KB

512 KB 128 KB 100 KB 200 KB

128 KB 100 KB 200 KB 200 KB 256 KB 

Real Memory Management

Buddy System (7)Buddy System (7)
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Suppose we have to release the other 200 KB

128 KB 100 KB 200 KB 200 KB 130 KB

128 KB 100 KB 256 KB 200 KB 130 KB



1 MB free

512 KB 256 KB 128 KB 100 KB

512 KB 128 KB 100 KB 200 KB 

128 KB 100 KB 200 KB 200 KB 256 KB 

Real Memory Management

Buddy System (8)Buddy System (8)
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128 KB 100 KB 256 KB 256 KB 130 KB

128 KB 100 KB 256 KB 200 KB 130 KB

128 KB 100 KB 200 KB 200 KB 130 KB

Can we reunify these two blocks forming a 512 KB free block?

Not at all, they are not buddies! Only buddies belong with each other!



20

21

22

Nil

Nil

Nil

Data Structures for Buddy System

Real Memory Management
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2k-1

2k

Array of heads pointing to free blocks of a certain size 2k

Nil

Nil



Allocating block of size s:
 Round up s to next power of 2, say 2i

( internal fragmentation)

 Access head of the list for the 2i pieces

Operations of Buddy System (1)

Real Memory Management
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 Access head of the list for the 2i pieces

 If list is not empty get first element of list

 If list is empty (recursively) do:
 Access head of list for the 2i+1 pieces
 If list isn’t empty get first element of list
 cut element in halves
 take lower half, insert upper half into list for 2i pieces …



Operations of Buddy System (2)

Releasing a block of size 2i

 Determine its buddy 

 if buddy is (partly) allocated 
i t th bl k t b l d

Real Memory Management
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Question:
How can we efficiently determine the appropriate buddy?

insert the block to be released 
into the list of pieces of size 2i

 if buddy is free reunify both buddies



15  14  13  12  11  10   9    8    7    6    5    4   3     2    1    0

X   Y   Z    1 0   0   0    0    0   0   0    0   0   0    0    0 address of a
piece of size 212

Determining the Buddy

Address calculation for a piece of size 212

Real Memory Management
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Question: What’s the address of its buddy?

15  14  13  12  11  10   9    8    7    6    5    4   3     2    1    0

X   Y   Z    0 0   0   0    0    0   0   0    0   0   0    0    0 

Remark: Other pieces of size 212 differ only in the leading address bits.



Reunification of Buddies

Each block of size 2i of buddy system contains:

 State of the block (allocated or free)

 Length of the block

Real Memory Management
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 Is there an alternative?

 Analyze the implementation of Linux

 Compare both implementations



xyz000 free, 2 xyz000 free, 2 xyz000 free, 2

Scenarios for Reunifications

Real Memory Management
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xyz100 free, 2

reunification
buddy free

xyz100 allocated, 2

no reunification
buddy allocated

xyz100 free, 1
allocated, 1

no reunification
buddy partly allocated



Summary of Buddy System

On average, the internal fragmentation is about 25%
 each memory block is at least 50% occupied

Works efficiently if the size M of RAM is a power of 2

Real Memory Management
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Slab Allocating (in Linux)

 Inside a kernel there are a few data types, e.g.
 TCB
 LAS descriptor
 Page table
 File handle … 

Real Memory Management
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 Kernel tend to request these data types over and 
over again, e.g. to establish a new thread/task

 Slab allocation tries to support reusage of previously 
used data types  install object type caches

 Following slides: 
 Steffen Wolfer, Proseminar WS 2003 Linux Internals 
 see also: Sven Krohlas,          “         WS 2004



New approach (Sun Microsystems, 1994)

 regard a memory area as an „object container“

 collect objects of the same type in specific 

Slab Allocating (1)
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“logical kernel caches” 

 divide caches into slabs  

 slab is part of a specific cache

 slab size = s*page frames, s ≥ 1



 Reuse already initialized objects

 Simplify complex allocation

 Take page frames from the buddy system

Slab Allocating (2)
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 Give back only if buddy system needs them 



Cache 1

Slab Allocating (3)

Cache 2 Cache 3
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Slabs
Page frame Allocated object

Free object



Table for the caches:

Cache Descriptor

slabs_full

 doubled linked lists with slab 
descriptors for

Slab Allocating (4)
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slabs_partial
slabs_free
next

 full

 partially full

 empty slabs

 pointer to next cache descriptor

 number of objects per slab, 
size of object, flags, …

num
...



Slab Descriptor

inuse

Table for Slabs:

 number of currently allocated objects

Slab Allocating (5)
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inuse
s_mem
free

...
list

number of currently allocated objects

 pointer to 1. Object

 pointer to 1. free Object

 pointer to list of slab descriptors



Cache Descriptor Cache Descriptor

Sl b D i t

Allocate memory: kmem_cache_alloc()
Slab Allocator

Slab Allocating (6)
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Slab Descriptor

Slab Descriptor
full

part. full

empty
Page FramesSlab Descriptor



Cache Descriptor Cache Descriptor

Sl b D i t

Release memory: kmem_cache_free()
Slab Allocator

Slab Allocating (7)
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Slab Descriptor

Slab Descriptor
full

part. full

empty
Page FramesSlab Descriptor



Slab Allocator

Cache Descriptor Cache Descriptor

Sl b D i t

Free slabs: kmem_cache_destroy()

Slab Allocating (8)
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Page FramesSlab Descriptor

Slab Descriptor

Slab Descriptor
full

part. full

empty
Page FramesSlab DescriptorFree Page Frames



Summary of Slab Allocation

 Who is using slab allocation?

 What kernel data types are mapped to slabs?

 How much space in total is managed by slabs?
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 Do slabs have to be mapped to contiguous memory?
 ...


