
System ArchitectureSystem Architecture

16 Memory Management16 Memory Management

1© 2009 Universität Karlsruhe (TH), System Architecture Group

RAM, Design Space, Examples

January 12 2009
Winter Term 2008/09

Gerd Liefländer

 Bacon, J.: Operating Systems (5)

 Bovet, D.: Understanding the Linux Kernel

 Knuth, D.: The Art of Computer Programming,
Vol. 1, Ch. “Dynamic Storage
Allocation”

Recommended Reading

© 2009 Universität Karlsruhe (TH), System Architecture Group 2

Allocation

 Nehmer, J.: Grundlagen modener BS, (4)

 Silberschatz, A.: Operating System Concepts (7)

 Stallings, W.: Operating Systems (7)

 Tanenbaum, A.: Modern Operating Systems (4)

Agenda

 Motivation

 Architecture of RAM Management

 Design Parameters

 Example Memory Managers

Introduction

© 2009 Universität Karlsruhe (TH), System Architecture Group 3

 Example Memory Managers
 Ring Buffer
 Stack
 Boundary Tag Systems
 Buddy System
 Slab Allocating
 Heap Management

Why Memory Management?
Motivation

1. Each application needs RAM to run on a CPU, 
we have to establish

 static address regions, e.g. code, global data
 dynamic address regions, e.g. heap or stack

2 Th k l d f it

© 2009 Universität Karlsruhe (TH), System Architecture Group 4

2. The kernel needs memory for its
 residentpart
 loadable kernel modules

3. Devices often only can use physically addressed
memory for their buffers etc.

 Every executable needs some RAM

Why Memory Management?

Entities of an “application” AS (address regions):

 Code (“text segment” in Unix jargon)

 Data ((un)initialized data segment)

 Heap

Motivation

© 2009 Universität Karlsruhe (TH), System Architecture Group 5

p

 Stack

Data types (entities) of the kernel AS*:

 Buffer

 TCB, page table, free list, bit map, …

*At the end of the course you should be able to
enumerate at least 10 different kernel data types

System Goals concerning Memory

Motivation

 Increase (maximize)
 memory utilization

 Sometimes we must reserve some RAM capacity for
 high priority applications or
 system emergency functions

© 2009 Universität Karlsruhe (TH), System Architecture Group 6

y g y u o

 Reduce (minimize)
 application’s response time

 application’s turnaround time

 memory manager’s overhead

What does a Memory Manager?

 Keeping track of memory that is currently

 allocated, i.e. in use or reserved for future use
 Pinning parts of memory for specific tasks

 free

Motivation

© 2009 Universität Karlsruhe (TH), System Architecture Group 7

 Looking for fitting free memory in case of a request
 If found, allocate free memory according to some policy

 Free memory in case of a release
 potentially look for free neighbors in order to reunify free

neighbored memory pieces

Memory Management (1)

 Programmers want memory being
 large & fast & non volatile

 Current technology does not support all of these at
once, but future technologies like MRAM* might do

Motivation

© 2009 Universität Karlsruhe (TH), System Architecture Group 8

 System architects offer a memory hierarchy
 small high-speed caches (expensive)

 medium sized fast main memory (RAM)

 flash memory

 Giga bytes of slow, cheap disk storage

 Terra bytes of very slow archive memory

*MRAM = Magnetic RAM

Motivation

Memory Management (2)

Two main goals:

1. Manage memory efficiently
 appropriate algorithms & data structures

© 2009 Universität Karlsruhe (TH), System Architecture Group 9

 program MMU (e.g. TLB)

2. Establish effective usability of memory
 maximize usage of (main) memory

 support low cache footprint

Activity

Logical World Physical World

Active Unit

Thread

active

CPU

Temporal Mapping

Access Access

Motivation

© 2009 Universität Karlsruhe (TH), System Architecture Group 10

passive

Data

Temporal Mapping

RAM

Content Container

Motivation

Why to bother about RAM?

Memory is large and cheap, and if not,
we’ll use virtual memory.

However, reality tells us:

1 M t d ‘t i t l t ll

© 2009 Universität Karlsruhe (TH), System Architecture Group 11

1. Many computers don‘t use virtual memory at all

2. Modern programs tend to be memory greedy &
virtual memory ≠ unlimited memory

3. Memory management has to be done anyway at
 system level
 application level

Architecture of RAM Architecture of RAM
ManagementManagement

12© 2009 Universität Karlsruhe (TH), System Architecture Group

Memory Management

allocate release

Memory Management Module
MMM-Interface

© 2009 Universität Karlsruhe (TH), System Architecture Group 13

Internal MMM Data Base

Note:
 several related and/or unrelated memory managers

MMM Data Base

We must solve the following problems when handling

Memory Management

MMMDB reflects what parts are allocated and what parts are free

© 2009 Universität Karlsruhe (TH) System Architecture Group
14

We must solve the following problems when handling
memory requests

 Efficiently select a fitting free memory block
 As fast as possible

 Try to utilize the memory efficiently
 Avoid unusable memory leaks

 Meet additional constraints
 Avoid unbounded waiting in front of MMM

Memory Management

MMM

allocate release

Smart System Architecture of a
MMM

Internal

MMM-Interface

© 2009 Universität Karlsruhe (TH), System Architecture Group 15

Internal
interface

MMM Data Base

is_memory_free? set_allocated set_free

Main advantage of the above architecture?

Design ParametersDesign Parameters

16© 2009 Universität Karlsruhe (TH), System Architecture Group

Real Memory Management

Orthogonal Parameters

• Sequence of allocate/release-operations

 Size of memory blocks

 Data structures

© 2009 Universität Karlsruhe (TH), System Architecture Group 17

Playground for
an innovative

system architect

 Fragmentation (not design parameter but result of a
design!!!!)

 Allocation policy

 Reunification of released blocks

 …?

MM Design Parameters (1a)

 Sequence of allocate/release-operations
 ~FIFO = queue

Real Memory Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 18

Head of
allocated
buffers

Head of
free

buffers

Real Memory Management

MM Design Parameters (1b)

 Sequence of allocate/release-operations
 FIFO, LIFO = stack

© 2009 Universität Karlsruhe (TH), System Architecture Group 19

Real Memory Management

MM Design Parameters (1c)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary = in general

© 2009 Universität Karlsruhe (TH), System Architecture Group 20

MM Design Parameters (2)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks

Real Memory Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 21

Real Memory Management

MM Design Parameters (2a)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Constant size = most buffering

© 2009 Universität Karlsruhe (TH), System Architecture Group 22

Real Memory Management

MM Design Parameters (2b)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Constant size, multiple of fixed size

© 2009 Universität Karlsruhe (TH), System Architecture Group 23

Real Memory Management

MM Design Parameters (2c)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Constant size, multiple size, fixed size = reservoir of

frequently used blocks

© 2009 Universität Karlsruhe (TH), System Architecture Group 24

Real Memory Management

MM Design Parameters (2d)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multiple size, fixed size, exponential size =

buddy system

© 2009 Universität Karlsruhe (TH), System Architecture Group 25

Real Memory Management

MM Design Parameters (2e)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of Memory blocks
 Identical size, multiple size fixed size, exponential size,

arbitrary

© 2009 Universität Karlsruhe (TH), System Architecture Group 26

Real Memory Management

MM Design Parameters (3a)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multiple size, fixed size, exponential size,

arbitrary

© 2009 Universität Karlsruhe (TH), System Architecture Group 27

 Data structures
 Integrated within memory block(s) = mostly with larger

blocks

Real Memory Management

MM Design Parameters (3b)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multiple size, fixed size, exponential size,

arbitrary

© 2009 Universität Karlsruhe (TH), System Architecture Group 28

 Data structures
 Integrated, special memory block(s) = stack

Real Memory Management

Result of Design (4)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multple size, fixed size, exponential size,

arbitrary

© 2009 Universität Karlsruhe (TH), System Architecture Group 29

 Data Structures
 Integrated, special memory block(s)

 Fragmentation
 With(out) in(ex)ternal fragmentation

Real Memory Management

MM Design Parameters (5a)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multiple size, fixed size, exponential size,

arbitrary

© 2009 Universität Karlsruhe (TH), System Architecture Group 30

 Data structures
 Integrated, special memory block(s)

 Fragmentation
 With(out) in(ex)ternal fragmentation

 Allocation policy
 First-Fit = take the first fitting block within an ordered

set of free blocks

Real Memory Management

MM Design Parameters (5b)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multiple size, fixed size, exponential sized,

arbitrary

© 2009 Universität Karlsruhe (TH), System Architecture Group 31

 Data structures
 Integrated, special memory block(s)

 Fragmentation
 With(out) in(ex)ternal fragmentation

 Allocation policy
 First-, Next-Fit = take the next fitting block within an

ordered set of free blocks

Real Memory Management

MM Design Parameters (5c)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multiple size, fixed size, exponential sized,

arbitrary

© 2009 Universität Karlsruhe (TH), System Architecture Group 32

 Data structures
 Integrated, special memory block(s)

 Fragmentation
 With(out) in(ex)ternal fragmentation

 Allocation policy
 First-, Next-, BestFit = take the best fitting block within an

ordered set of free blocks

Real Memory Management

MM Design Parameters (5d)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multiple size, fixed size, exponential sized,

arbitrary

© 2009 Universität Karlsruhe (TH), System Architecture Group 33

 Data structures
 Integrated, special memory block(s)

 Fragmentation
 With(out) in(ex)ternal fragmentation

 Allocation policy
 First-, Next-, Best-, Worst-Fit = take the largest fitting block

within an ordered set of free blocks

Real Memory Management

MM Design Parameters (5e)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multiple size, fixed size, exponential sized,

arbitrary

© 2009 Universität Karlsruhe (TH), System Architecture Group 34

 Data structures
 Integrated, special memory block(s)

 Fragmentation
 With(out) in(ex)ternal fragmentation

 Allocation policy
 First-, Next-, Best-, Worst-, Nearest-Fit, = take the fitting

block closest to the previous fitting block

Real Memory Management

MM Design Parameters (6a)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multiple size, fixed size, exponential size,

arbitrary
D t t t e

© 2009 Universität Karlsruhe (TH), System Architecture Group 35

 Data structures
 Integrated, special memory block(s)

 Fragmentation
 With(out) in(ex)ternal fragmentation

 Allocation policy
 First-, Next-, Best-, Worst-, Nearest-Fit

 Reunification of released blocks
 Eager reunification with neighbored free blocks (if any)

Real Memory Management

MM Design Parameters (6b)

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multiple size, fixed size, exponential size,

arbitrary
D t t t e

© 2009 Universität Karlsruhe (TH), System Architecture Group 36

 Data structures
 Integrated, special memory block(s)

 Fragmentation
 With(out) in(ex)ternal fragmentation

 Allocation policy
 First-, Next-, Best-, Worst-, …, Nearest-Fit

 Reunification of Released blocks
 Eager, lazy reunification = wait a while until you reunify

Summary of Designing MM

 Sequence of allocate/release-operations
 FIFO, LIFO, arbitrary

 Size of memory blocks
 Identical size, multiple size, fixed size, exponential size,

arbitrary
D t t t e

Real Memory Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 37

 Data structures
 Integrated, special memory block(s)

 Fragmentation
 With(out) internal or external fragmentation

 Allocation policy
 First-, Next-, Best-, Worst-, …, Nearest-Fit

 Reunification of Released blocks
 Immediate, lazy reunification

Data Structures

 Bit Map (for fixed sized units, e.g. pages)
 Extra data structure

 Integrated

Real Memory Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 38

 Table/List (for arbitrary sized units, e.g.
segments)
 Extra data structure

 Integrated

Bit Map Data Base

Real Memory Management

RAM

BITMAP1111010001110000Extra Bit Map:

© 2009 Universität Karlsruhe (TH), System Architecture Group 39

RAM
1 1 1 1 1 1 1 10 0 0 0 0 0 00

Integrated Bit Map:

Overhead per bit map:
The smaller the memory units, the larger the bit map

Table Data Base

Real Memory Management

Extra Tables (sorted according to addresses):

Free Table: Allocate Table:
Address Length Address Length

4 1 0 4

© 2009 Universität Karlsruhe (TH), System Architecture Group 40

RAM

6 3 5 1
12 4 9 3

 other useful sorting criteria?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

List oriented Data Base

Real Memory Management

Integrated List (sorted according to addresses):

Head of Allocated List

© 2009 Universität Karlsruhe (TH), System Architecture Group 41

RAM

Head of Free List

Fragmentation

Internal Fragmentation:
 allocated memory can be larger than requested memory
 memory management rounds up requested memory to the

next manageable memory block unit

Real Memory Management

waste

© 2009 Universität Karlsruhe (TH), System Architecture Group 42

External Fragmentation:
 Sum of total free memory space could satisfy a request, but

free memory is scattered and is not contiguous

loss

Allocation Policies

 First-Fit

 Next-Fit (Rotating First-Fit)

Best Fit

Real Memory Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 43

 Best-Fit

 Nearest-Fit

Analyze pros and cons of each of them

Reunification Policies

Real Memory Management

 Eager reunification (when releasing memory)

release

free free’’

© 2009 Universität Karlsruhe (TH), System Architecture Group 44

free

 Lazy reunification

free’free free’’

Additional Requirements

 With lazy reunification MM neighboring blocks can be
free. However, none of these can satisfy the current
memory request:

 Garbage Collection1

Real Memory Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 45

 With an arbitrary allocation scheme (e.g. pure
segmentation) we might get external fragmentation
with a lot of scattered free blocks (Swiss cheese)

 Compaction
1Garbage collection = releasing memory of no longer referenced objects

Free 1

Free 2

None of the 5 free blocks is large enough,
but there are some neighboring
free blocks



Garbage Collection (1)

Real Memory Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 46

Free 6

Free 3

Free 5

Free 4

New block to allocate

Can be reunified to become
a larger free block

Free 1’

Free 2’

Now 2 of the 3 free blocks
are large enough

Garbage Collection (2)

Real Memory Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 47

Free 3’

New block to allocate

Free 1

Free 2

Observation:
None of the 3 free blocks is large
enough, but  enough free memory

Compaction (1)

Real Memory Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 48

Free 3

New block to allocate

Idea:
Move the allocated blocks towards
a chosen memory boundary

Compaction (2)

Real Memory Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 49

Free 1

New block to allocate

 Ringbuffer
 Stack
 Boundary Tag System (“Randkennzeichnungsverfahren”)

 Operations in arbitrary order
 Arbitrary sized blocks
 Integrated management data structures
 Allocation according to xyz-Fit (best-fit is possible)

Examples: Memory Manager

Real Memory Management

Very specific
design parameters

© 2009 Universität Karlsruhe (TH), System Architecture Group 50

 Allocation according to xyz Fit (best fit is possible)
 External fragmentation
 Immediate reunification

 Buddy System (“Halbierungsverfahren”)
 Operations in arbitrary order
 Allocated blocks of 20, 21, 22, 23, ...
 Explicit management data structures
 Allocation according to “Best-Fit”
 Internal and external fragmentation
 Immediate (or lazy) reunification

 Linux Slab Allocator (“Stückchenzuteiler”) Very specific
design parameters

free freeallocateda l a l

Not Free
length

allocated

Real Memory Management

Boundary TagBoundary Tag

© 2009 Universität Karlsruhe (TH), System Architecture Group 51

freef l f lallocated allocated

Not Allocated

fpbp

pair of pointers
for the free list

free

freeallocateda l2 a l2

Release this Portion !!

freef l1 f l1fpbp f l3fpbp f l3

Real Memory Management

Reunification (1)Reunification (1)

© 2009 Universität Karlsruhe (TH), System Architecture Group 52

What to do?
Because length and status field are of fixed size 
we can easily get the length of the block to be released.
Furthermore we can look over both boundaries to get
necessary information about the neighboring blocks.

Release this block !!

freeallocateda l2 a l2freef l1 f l1fpbp f l3fpbp f l3

Real Memory Management

Reunification (2)Reunification (2)

© 2009 Universität Karlsruhe (TH), System Architecture Group 53

freereleasingf l2 f l2freef l1 f l1 fpbp f l3fpbp f l3fpbp

We can detect whether both (one or no) neighbor(s) are(is) free


Release this block !!

freeallocateda l2 a l2freef l1 f l1fpbp f l3fpbp f l3

freleasingf l2 f l2ff l1 f l1 fpbp f l3fpbp f l3fpbp

Real Memory Management

Reunification (3)Reunification (3)

© 2009 Universität Karlsruhe (TH), System Architecture Group 54

reunified new free blockf l1’ f l1’fpbp

Finally we have to adjust the new pointers in the free list
and the resulting length field (in this case: l1’ = l1 + l2 + l3)

freereleasingf l2 f l2freef l1 f l1 fpbp f l3fpbp f l3fpbp

220 Byte = 1 MB free

Suppose a client requests 100 KB

Memory to
be managed

Real Memory Management

Buddy System (1)Buddy System (1)

© 2009 Universität Karlsruhe (TH), System Architecture Group 55

1 MB free

512 KB

512 KB256 KB

512 KB256 KB128 KB

Dividing free memory until
an appropriate free block

Real Memory Management

Buddy System (2)Buddy System (2)

© 2009 Universität Karlsruhe (TH), System Architecture Group 56

512 KB 256 KB 128 KB 100 KB

512 KB256 KB 128 KB

Internal fragmentation

1 MB free

512 KB 256 KB 128 KB 100 KB

Suppose another 200 KB block is requested

Real Memory Management

Buddy System (3)Buddy System (3)

© 2009 Universität Karlsruhe (TH), System Architecture Group 57

1 MB free

512 KB 256 KB 128 KB 100 KB

512 KB 128 KB 100 KB 200 KB

Suppose another 200 KB block is requested

Real Memory Management

Buddy System (4)Buddy System (4)

© 2009 Universität Karlsruhe (TH), System Architecture Group 58

1 MB free

512 KB 256 KB 128 KB 100 KB

512 KB 128 KB 100 KB 200 KB

128 KB 100 KB 200 KB 200 KB 256 KB

Real Memory Management

Buddy System (5)Buddy System (5)

© 2009 Universität Karlsruhe (TH), System Architecture Group 59

Suppose another 130 KB block is requested

1 MB free

512 KB 256 KB 128 KB 100 KB

512 KB 128 KB 100 KB 200 KB

128 KB 100 KB 200 KB 200 KB 256 KB

Real Memory Management

Buddy System (6)Buddy System (6)

© 2009 Universität Karlsruhe (TH), System Architecture Group 60

Suppose we have to release the first 200 KB

128 KB 100 KB 200 KB 200 KB 130 KB

1 MB free

512 KB 256 KB 128 KB 100 KB

512 KB 128 KB 100 KB 200 KB

128 KB 100 KB 200 KB 200 KB 256 KB

Real Memory Management

Buddy System (7)Buddy System (7)

© 2009 Universität Karlsruhe (TH), System Architecture Group 61

Suppose we have to release the other 200 KB

128 KB 100 KB 200 KB 200 KB 130 KB

128 KB 100 KB 256 KB 200 KB 130 KB

1 MB free

512 KB 256 KB 128 KB 100 KB

512 KB 128 KB 100 KB 200 KB

128 KB 100 KB 200 KB 200 KB 256 KB

Real Memory Management

Buddy System (8)Buddy System (8)

© 2009 Universität Karlsruhe (TH), System Architecture Group 62

128 KB 100 KB 256 KB 256 KB 130 KB

128 KB 100 KB 256 KB 200 KB 130 KB

128 KB 100 KB 200 KB 200 KB 130 KB

Can we reunify these two blocks forming a 512 KB free block?

Not at all, they are not buddies! Only buddies belong with each other!

20

21

22

Nil

Nil

Nil

Data Structures for Buddy System

Real Memory Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 63

2k-1

2k

Array of heads pointing to free blocks of a certain size 2k

Nil

Nil

Allocating block of size s:
 Round up s to next power of 2, say 2i

( internal fragmentation)

 Access head of the list for the 2i pieces

Operations of Buddy System (1)

Real Memory Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 64

 Access head of the list for the 2i pieces

 If list is not empty get first element of list

 If list is empty (recursively) do:
 Access head of list for the 2i+1 pieces
 If list isn’t empty get first element of list
 cut element in halves
 take lower half, insert upper half into list for 2i pieces …

Operations of Buddy System (2)

Releasing a block of size 2i

 Determine its buddy

 if buddy is (partly) allocated
i t th bl k t b l d

Real Memory Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 65

Question:
How can we efficiently determine the appropriate buddy?

insert the block to be released
into the list of pieces of size 2i

 if buddy is free reunify both buddies

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X Y Z 1 0 0 0 0 0 0 0 0 0 0 0 0 address of a
piece of size 212

Determining the Buddy

Address calculation for a piece of size 212

Real Memory Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 66

Question: What’s the address of its buddy?

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X Y Z 0 0 0 0 0 0 0 0 0 0 0 0 0

Remark: Other pieces of size 212 differ only in the leading address bits.

Reunification of Buddies

Each block of size 2i of buddy system contains:

 State of the block (allocated or free)

 Length of the block

Real Memory Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 67

 Is there an alternative?

 Analyze the implementation of Linux

 Compare both implementations

xyz000 free, 2 xyz000 free, 2 xyz000 free, 2

Scenarios for Reunifications

Real Memory Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 68

xyz100 free, 2

reunification
buddy free

xyz100 allocated, 2

no reunification
buddy allocated

xyz100 free, 1
allocated, 1

no reunification
buddy partly allocated

Summary of Buddy System

On average, the internal fragmentation is about 25%
 each memory block is at least 50% occupied

Works efficiently if the size M of RAM is a power of 2

Real Memory Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 69

Slab Allocating (in Linux)

 Inside a kernel there are a few data types, e.g.
 TCB
 LAS descriptor
 Page table
 File handle …

Real Memory Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 70

 Kernel tend to request these data types over and
over again, e.g. to establish a new thread/task

 Slab allocation tries to support reusage of previously
used data types  install object type caches

 Following slides:
 Steffen Wolfer, Proseminar WS 2003 Linux Internals
 see also: Sven Krohlas, “ WS 2004

New approach (Sun Microsystems, 1994)

 regard a memory area as an „object container“

 collect objects of the same type in specific

Slab Allocating (1)

© 2009 Universität Karlsruhe (TH), System Architecture Group 71

“logical kernel caches”

 divide caches into slabs

 slab is part of a specific cache

 slab size = s*page frames, s ≥ 1

 Reuse already initialized objects

 Simplify complex allocation

 Take page frames from the buddy system

Slab Allocating (2)

© 2009 Universität Karlsruhe (TH), System Architecture Group 72

 Give back only if buddy system needs them

Cache 1

Slab Allocating (3)

Cache 2 Cache 3

© 2009 Universität Karlsruhe (TH), System Architecture Group 73

Slabs
Page frame Allocated object

Free object

Table for the caches:

Cache Descriptor

slabs_full

 doubled linked lists with slab
descriptors for

Slab Allocating (4)

© 2009 Universität Karlsruhe (TH), System Architecture Group 74

slabs_partial
slabs_free
next

 full

 partially full

 empty slabs

 pointer to next cache descriptor

 number of objects per slab,
size of object, flags, …

num
...

Slab Descriptor

inuse

Table for Slabs:

 number of currently allocated objects

Slab Allocating (5)

© 2009 Universität Karlsruhe (TH), System Architecture Group 75

inuse
s_mem
free

...
list

number of currently allocated objects

 pointer to 1. Object

 pointer to 1. free Object

 pointer to list of slab descriptors

Cache Descriptor Cache Descriptor

Sl b D i t

Allocate memory: kmem_cache_alloc()
Slab Allocator

Slab Allocating (6)

© 2009 Universität Karlsruhe (TH), System Architecture Group 76

Slab Descriptor

Slab Descriptor
full

part. full

empty
Page FramesSlab Descriptor

Cache Descriptor Cache Descriptor

Sl b D i t

Release memory: kmem_cache_free()
Slab Allocator

Slab Allocating (7)

© 2009 Universität Karlsruhe (TH), System Architecture Group 77

Slab Descriptor

Slab Descriptor
full

part. full

empty
Page FramesSlab Descriptor

Slab Allocator

Cache Descriptor Cache Descriptor

Sl b D i t

Free slabs: kmem_cache_destroy()

Slab Allocating (8)

© 2009 Universität Karlsruhe (TH), System Architecture Group 78

Page FramesSlab Descriptor

Slab Descriptor

Slab Descriptor
full

part. full

empty
Page FramesSlab DescriptorFree Page Frames

Summary of Slab Allocation

 Who is using slab allocation?

 What kernel data types are mapped to slabs?

 How much space in total is managed by slabs?

© 2009 Universität Karlsruhe (TH), System Architecture Group 79

 Do slabs have to be mapped to contiguous memory?
 ...

