System Architecture

15 Priority Inversion

Gerd Lieflander
December 22 2008
Winter Term 2008/09

Slides made by Kevin Elphinstone
EMail: kevine@cse.unsw.edu.au

Introduction

Agenda

= Introduction
= Basic Example
s Resource Contention

= Resource Allocation Protocols
= Non-preemptive critical sections (NPCS)
= Priority Inheritance (PI)
= Priority-ceiling protocol (PCP)
= Stacked priority-ceiling protocol (SPCP)

= Summary

D © 2008 Universitét Karlsruhe (TH), System Architecture Group 2

Introduction

Real-Time Processes

= Process = unit of work being scheduled and
executed on the system.

= Processes have:
= Release time or available time
s Worst-case execution time
= (Relative) Deadline
= Sporadic or periodic characteristic

s Processes are scheduled such that deadlines
are always met (hard real time).

i arlsruhe (TH), System Architecture Group

Introduction

Scheduling

= Common scheduling policy

» Priority driven preemptive scheauling

= High priority process is always scheduled in preference
to low priority process

= High priority value = high priority

= Priorities can be assigned according to some
algorithm
= Rate monotonic
= Earliest deadline first

= We will focus on static priorities

D © 2008 Universitét Karlsruhe (TH), System Architecture Group

Basic Example

Example

= 5 processes
= process number equals priority
s Priority 1 < priority 5
P = Release and execution
times as shown
= No deadlines (only an example
for later comparison)

= Priority-driven scheduler
with preemption

0 2 4 6 8 10 12 14 16 18 20

D © 2008 Universitét Karlsruhe (TH), System Architecture Group

Example

Basic Example

10

12

14

16

18 20

Basic Example

12 14 16 18 20

10

(TH

O © 2008 Universitat Karlsruhe

Basic Example

12 14 16 18 20

10

(TH

O © 2008 Universitat Karlsruhe

Basic Example

12 14 16 18 20

10

(TH

O © 2008 Universitat Karlsruhe

Example

Basic Example

10

12

14

16

18

20

10

Exampl

R)

Basic Example

10

12

14

16

18 20

11

Example

Basic Example

10

12

14

16

18

20

12

Example

Basic Example

10

12

14

16

18 20

13

Example

Basic Example

10

12

14

16

18 20

14

Example

Basic Example

10

12

14

16

18 20

15

Example

Basic Example

12

14

16

18 20

16

Example

Basic Example

10

12

14

16

18 20

17

Basic Example

Example

0O 2 4 6 8 10 12 14 16 18 20

Basic Example

12' 14 16 18 20

10

19

(TH

O © 2008 Universitat Karlsruhe

Basic Example

12 14 16 18 20

10

20

(TH

O © 2008 Universitat Karlsruhe

Basic Example

12 14 16 18 20

10

21

(TH

O © 2008 Universitat Karlsruhe

Basic Example

12 14 16 18 20

10

22

(TH

O © 2008 Universitat Karlsruhe

23

20

Basic Example

18

16 '

14

12

10

(TH

O © 2008 Universitat Karlsruhe

Q N
o
)
£ ~
05
O
wn
& o ____ 1 &
©
—
4
-~
N
—
o
—
0
©
v
Q. <
LL] 3
o
e T T o

O © 2008 Universitat Karlsruhe

Q 9
o
o
= ~
05
L TTTTTTTTTTTTTT T T T T T T T T T T T T T T e
wn
8 3
©
—
4
—~
N
—
o
—
0
©
D
Q. <
LL] £
o
e T v v ow

O © 2008 Universitat Karlsruhe

Q g
o
o
e 1 &
05
O
wn
8 3
©
—
4
—~
N
—
o
—
0
©
D
Q. <
LL] £
o
e T v v ow

O © 2008 Universitat Karlsruhe

Motivating Problem

Reality is more complex

= Usually processes are not independent

= They compete for resources or rely on
each other’s intermediate results

i arlsruhe (TH), System Architecture Group

Motivating Problem

Real-Time Traffic Scheduling

= [WO process
streams

= A high priority
& a low priority

Resource Contention

Priorities and Resource
Contention

Main Reference
Pane W. S. Liu “"Real-time Systems”, Chapter 8

Resource Contention

Resources

= Processes require resources in order to
execute (e.g. locks, ports, memory, ...)

s Resource characteristics
n serially reusable
n mutually exclusive

— We ignore resources that
» are infinitely available or exceed demand
= Or can be pre-allocated

i arlsruhe (TH), System Architecture Group

Resource Contention

Resource Contention Problem

= Priority inversion, given 3 processes, and a
resource R1

= We need to, at least, bound Ps @

the length of priority inversion RO
p, @ R1
= Preferably minimize the
length of priority inversion 5 Allocates at t0
1

Famous example of priority inversion:

Mars Path-Finder 1997

i arlsruhe (TH), System Architecture Group

Resource Contention

Mars Pathfinder

Mars Path Finder and ...

Read the following papers:
Mick Jones: What really happened on the Mars?

http://www.research.microsoft.com/~mbj/ and
http://www.research.microsoft.com/~mbj/Mars_Pathfinder/Authoritative_Account.html

by Glenn Reeves, chief of the software team of Mars-Pathfinder software

32

N\ Cuckam Avrhitackiea Crann

Resource Contention

Resource Contention Problems

= [iming anomaly (e.g. convoy problem)
= Deadlock

Resource Contention

One Class of Solutions

= Use a resource allocation protocol that

1. bounds priority inversion
>. avoids deadlock

= Estimate worst-case blocking time due to
resource contention

= Combine blocking time and execution time
« Use in admission control

i rlsruhe (TH), System Architecture Group 34

Resource Contention

Major Assumption

» Single processor system

Example with Resources

Our Example + 2 Resources

[] B Resource 1

D Resource 2

/Nested usage of
resources, I.e. nested

 BAIN | critical sections’

P

0 2 4 6 8 10 12 14 16 18 20
“P2 first needs R1 and then later additionally R2

D © 2008 Universitét Karlsruhe (TH), System Architecture Group 36

SPD Scheduling

Simple Priority Driven Scheduling
(PPD)

SPD Scheduling

12 14 16 18 20

10

38

(TH

o © 2008 Universitat Karlsruhe

SPD Scheduling

12 14 16 18 20

10

39

(TH

o © 2008 Universitat Karlsruhe

SPD Scheduling

Example

SPD Scheduling

Example

SPD Scheduling

12 14 16 18 20

10

(TH

SPD Scheduling

Example

SPD Scheduling

Example

SPD Scheduling

Example

10 12 14 16 18 20

SPD Scheduling

14 16 18 20

12

(TH

SPD Scheduling

12 14 16 18 20

10

SPD Scheduling

Example

SPD Scheduling

12" 14 16 18 20

10

SPD Scheduling

Example

SPD Scheduling

Example
[

12 14" 16 18 20

10

(TH

SPD Scheduling

Example

20

18

12 14

10

(TH

SPD Scheduling

Example
[

12 14 16' 18 20

10

(TH

SPD Scheduling

Example
[

20

12 14 16

10

(TH

SPD Scheduling

Example
[

12 14 16 18' 20

10

(TH

SPD Scheduling

Example
[

12 14 16 18

10

(TH

SPD Scheduling

Result

= High priority processes P5, P4 heavily delayed

= P3 is almost not delayed due to its
characteristic, it does not need any resource

— Find a better solution

Resource Allocation Protocols

4 Resource Allocation Protocols

= Non Preemptive Critical Sections (NVPCS)
= Priority Inheritance (/~))

= Priority-Ceiling Protocol (PCP)

= Stacked Priority-Ceiling Protocol (SPCP)

= ... and some others
= See text book (Liu)

NPCS Scheduling

Nonpreemptive Critical Sections

= As soon as a process holds
a resource it is no longer 3
preemptable”

s Prevents deadlock P2 @

cannot
happen at t1

R1

m Bounds priority inversion Allocate at t0

= Max blocking time is the
maximum execution time of 3
the critical sections of all max prio
lower priority processes

P1

“This process gets highest priority in system

D © 2008 Universitét Karlsruhe (TH), System Architecture Group 59

NPCS Scheduling

Non-Preemptive Critical Sections

NPCS Scheduling

12 14 16 18 20

10

61

(TH

o © 2008 Universitat Karlsruhe

NPCS Scheduling

12 14 16 18 20

10

62

(TH

o © 2008 Universitat Karlsruhe

NPCS Scheduling

12 14 16 18 20

10

63

(TH

o © 2008 Universitat Karlsruhe

NPCS Scheduling

Example

NPCS Scheduling

Example
[
P
H VN
P
O 2 4'6 8 10 12 14 16 18 20

NPCS Scheduling

Example

Example

NPCS Scheduling

10

12

14

16

18 20

67

NPCS Scheduling

Example

Example

NPCS Scheduling

10

12

14

16

18 20

69

NPCS Scheduling

Example

Example

NPCS Scheduling

14

16

18 20

71

NPCS Scheduling

16 18 20

14

72

(TH

o © 2008 Universitat Karlsruhe

NPCS Scheduling

12' 14 16 18 20

10

73

(TH

o © 2008 Universitat Karlsruhe

NPCS Scheduling

18 20

16

12

10

74

(TH

o © 2008 Universitat Karlsruhe

NPCS Scheduling

12 14' 16 18 20

10

75

(TH

o © 2008 Universitat Karlsruhe

NPCS Scheduling

20

18

12 14

10

76

(TH

o © 2008 Universitat Karlsruhe

NPCS Scheduling

12 14 16' 18 20

10

77

(TH

o © 2008 Universitat Karlsruhe

NPCS Scheduling

Example
| |
P

o © 2008 Universitat Karlsruhe

20

12 14 16

10

78

(TH

NPCS Scheduling
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Example
| |
P

o © 2008 Universitat Karlsruhe

12 14 16 18' 20

10

79

(TH

NPCS Scheduling

Example
| |
P

o © 2008 Universitat Karlsruhe

12 14 16 18

10

80

(TH

NPCS Scheduling

Comparison with SPD-Scheduling

NPCS Scheduling

Analysis: Nonpreemptive Critical
Sections

s Pros
= Simple
= No prior knowledge of resource requirements
needed
= Prevents deadlock

s Cons

= Low priority process blocks high priority process
even when there are no resource conflicts

= Protocol only suitable for trusted software
= Usually implemented by /nterrupt disabling

= In CS there is no system calls otherwise CPU

wasting in case of a "blocking”system call

i arlsruhe (TH), System Architecture Group

NPCS Scheduling

Worst-Case Blocking Time

= Longest lower-priority critical section:

bt(rc) = max {cst,}

i+1<k<n
bt = blocking time
cst = critical section time

PI Scheduling

Priority Inheritance (PI)

= When a hAigh-priority
process (P3) blocks, the

low-priority process (P1) "

inherits the current priority

of the blocking process > @ "
P1 3

= PI bounds priority inversion

PI Scheduling

Example with Priority Inheritance

PI Scheduling

Example with Priority Inheritance

PI Scheduling

Example with Priority Inheritance

PI Scheduling

Example with Priority Inheritance

AN

PI Scheduling

Example with Priority Inheritance

PI Scheduling

Example with Priority Inheritance

6 8 10 12 14 16 18 20

PI Scheduling

Example with Priority Inheritance

PI Scheduling

Example with Priority Inheritance

PI Scheduling

Example with Priority Inheritance

PI Scheduling

Example with Priority Inheritance

PI Scheduling

Example with Priority Inheritance

PI Scheduling

Example with Priority Inheritance

14 16 18 20

PI Scheduling

Example with Priority Inheritance

O 2 4 6 8 10' 12 14 16 18 20

PI Scheduling

Example with Priority Inheritance

PI Scheduling

Example with Priority Inheritance

O 2 4 6 8 10 12' 14 16 18 20

PI Scheduling

Example with Priority Inheritance

_
P .
W = kN
P 4 S 1

O 2 4 6 8 10 12' 14 16 18 20

PI Scheduling

Example with Priority Inheritance

P
1 B AN 2
P 4 S 1

O 2 4 6 8 10 12 14 16 18 20

PI Scheduling

Example with Priority Inheritance

_

16 18 20

PI Scheduling

Example with Priority Inheritance

_

0O 2 4 6 8 10 12 14 16 18 20

PI Scheduling

Example with Priority Inheritance

o

PI Scheduling

Example with Priority Inheritance

i

PI Scheduling

Example with Priority Inheritance

_

PI Scheduling

Example with Priority Inheritance

_

PI Scheduling

Comparison with SPD Rule

_ |

P |

PI Scheduling

Analysis: Priority Inheritance

s Pros
= Prevents uncontrolled priority inversion.
= Needs no knowledge of resource requirements.

s Cons
» Does not prevent dead/ock.

= Does not minimise blocking times.

= With chained blocking, worst-case blocking time is
min(n,m) critical sections
n = number of lower priority processes that can block P
m = number of resources that can be used to block P

= Some overhead in a release or acquire operation

D © 2008 Universitét Karlsruhe (TH), System Architecture Group 109

PI Scheduling

Chained Blocking

= 4 lower priority processes

T] = 4 potentially conflicting

resources

= Worst-case blocking time

B N
T = 16 units!
B [=

Priority ———

IAssume lower priority process
Time — allocates its first resource just
before higher priority process runs

D © 2008 Universitét Karlsruhe (TH), System Architecture Group 110

Priority Ceiling Protocol

= Avoids deadlock by defining an order of
resource acquisition

= Prevents transitive (chained) blocking
= Worst-case blocking time = single critical section

Description how to implement PCP, see:
http://www.awprofessional.com/articles/article.asp?p=30188&seqNum=5&rI=1

PCP Scheduling

111

PCP Scheduling

Priority Ceilings

= Resources required by all processes are
Known a prioti

= Similar approach as with deadlock avoidance

s Priority ceiling of resource R;is equal to the
highest priority of all processes that use R,

m Priority ceiling of system is highest priority
celling of all resources currently in use

D © 2008 Universitét Karlsruhe (TH), System Architecture Group 112

PCP Scheduling

Priority Ceilings of Our Example

. Priority Cellings of Ri
p M -

=4

PCP Scheduling

Priority Ceiling Protocol Rules

= Priority inheritance applies as before.

= When a process (P) requests a resource (R)
either:

» If Ris allocated = P blocks (+ priority inheritance)

« If Ris free,
« If P's current priority > system’s priority ceiling =
R is allocated to process P
= If P’s current priority < system’s priority ceiling =
P blocks — except if:

P already holds a resource whose priority ceiling is
equal to the systems priority ceiling

D © 2008 Universitét Karlsruhe (TH), System Architecture Group 114

PCP Scheduling

Example

max

PCP Scheduling

12 14 16 18 20

10

116

(TH

o © 2008 Universitat Karlsruhe

PCP Scheduling

curr

12 14 16 18 20

10

117

(TH

o © 2008 Universitat Karlsruhe

Example

PCP Scheduling

Prio(P2) < CurrSPC = no allocation

10 12 14 16 18 20

118

PCP Scheduling

Example

P 2 ... but P1 inherits prio(P2) = 2

© © 2008 Universitst Karlsruhe (TH), System Architecture Group 119

PCP Scheduling

Example

© © 2008 Universitst Karlsruhe (TH), System Architecture Group 120

PCP Scheduling

Example

© © 2008 Universitst Karlsruhe (TH), System Architecture Group 121

PCP Scheduling

Example

8 10 12 14 16 18 20

© © 2008 Universitst Karlsruhe (TH), System Architecture Group 122

Example

PCP Scheduling

123

PCP Scheduling

Example

10 12 14 16 18 20

© © 2008 Universitst Karlsruhe (TH), System Architecture Group 124

Example

PCP Scheduling

125

PCP Scheduling

Example

o © 2008 Universitat Karlsruhe (TH), System Architecture Group 126

PCP Scheduling

Example

© © 2008 Universitst Karlsruhe (TH), System Architecture Group 127

PCP Scheduling

Example

o © 2008 Universitat Karlsruhe (TH), System Architecture Group 128

PCP Scheduling

Example

o © 2008 Universitat Karlsruhe (TH), System Architecture Group 129

PCP Scheduling

Example

© © 2008 Universitst Karlsruhe (TH), System Architecture Group 130

PCP Scheduling

Example

PCP Scheduling

Example

© © 2008 Universitst Karlsruhe (TH), System Architecture Group 132

PCP Scheduling

Example

o © 2008 Universitat Karlsruhe (TH), System Architecture Group 133

PCP Scheduling

Example

© © 2008 Universitst Karlsruhe (TH), System Architecture Group 134

PCP Scheduling

Example
| |
P

o © 2008 Universitat Karlsruhe

12 14 16 18 20

10

135

(TH

PCP Scheduling

Comparison to Previous Example

B

PCP Scheduling

Analysis: Priority Ceiling Protocol

m Pros
= Avoids deadlocks

« If a process doesn’t self suspend, a process is
blocked at most once during execution
= Processes cannot be transitively blocked

= =Mminimizes blocking time to the longest lower-priority
conflicting critical section (+ context switches)

= Processes only receive their first resource when all
required resources are not held by lower priority
processes

= Cons
= A priori knowledge of resource needs is required

D © 2008 Universitét Karlsruhe (TH), System Architecture Group 137

SPCP Scheduling

Stack-Based Priority Ceiling
Protocol

= The motivation is to share a single stack
for all processes

= Saves stack space.

= Restriction: processes cannot self-
suspend.

SPCP Scheduling

[B) Rules

= Scheduling:

= After a process is released, it is blocked from
starting until its assigned priority is higher than
the current system priority ceiling.

= Unblocked processes are preemptively priority
scheduled according to their assigned priority.

s Resource allocation:

= Whenever a process requests a resource it
receives the resource.

i risruhe (TH), System Architecture Group 139

P1

SPCP Scheduling

Example
H N B
]
b 2 4 10 12 14 16 18 20

140

SPCP Scheduling

12 14 16 18 20

10

141

(TH

o © 2008 Universitat Karlsruhe

SPCP Scheduling

12 14 16 18 20

10

P1

142

(TH

o © 2008 Universitat Karlsruhe

SPCP Scheduling

P1

12 14 16 18 20

10

143

(TH

o © 2008 Universitat Karlsruhe

Example

SPCP Scheduling

144

P1

Example

SPCP Scheduling

10

12

14

16

18

145

Example

SPCP Scheduling

146

P1

Example

SPCP Scheduling

10

12

14

16

18

147

Example

SPCP Scheduling

148

P1

Example

SPCP Scheduling

10

12

14

16

18

149

Example

SPCP Scheduling

150

P1

Example

SPCP Scheduling

14

16

18

151

P1

Example

SPCP Scheduling

152

P1

Example

SPCP Scheduling

153

SPCP Scheduling

20

18

16

12

10

P4
P3

P1

154

(TH

o © 2008 Universitat Karlsruhe

SPCP Scheduling

P4
P3

P1

12 14' 16 18 20

10

155

(TH

o © 2008 Universitat Karlsruhe

SPCP Scheduling

20

18

12 14

10

P4
P3

P1

156

(TH

o © 2008 Universitat Karlsruhe

SPCP Scheduling

P4
P3
P2
P1

12 14 16' 18 20

10

157

(TH

o © 2008 Universitat Karlsruhe

SPCP Scheduling

12 14 16

10

1 Example

| |
P4
P3

P1

158

(TH

o © 2008 Universitat Karlsruhe

SPCP Scheduling

1 Example

| |
P4
P3

P1

12 14 16

10

159

(TH

o © 2008 Universitat Karlsruhe

SPCP Scheduling

1 Example
| |
P4
P3
P2

P1

12 14 16 18 20

10

160

(TH

o © 2008 Universitat Karlsruhe

P1

SPCP Scheduling

Comparison with Priority Ceiling
Protocol

SPCP Scheduling

Analysis: Stack-Based Priority
Ceiling
m Pros

= Simple to implement.

= Slightly better worst-case when compared
to normal PCP — two less context switches.

= No priority inheritance needed.

= Cons
=« Threads cannot self suspend.

Summary

Summary

= 4 protocols controlling resource access
in priority driven preemptive systems

= NPCS
= PI

= PCP
= SPCP

i arlsruhe (TH), System Architecture Group

Summary

Summary

= NPCS and PI do not require a priori
knowledge of resource requirements

= PI neither prevents deadlocks nor avoids
deadlocks

= All protocols -except PI- ensure that
processes are blocked at most once*

164

