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= Basic Example
s Resource Contention

= Resource Allocation Protocols
= Non-preemptive critical sections (NPCS)
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= Stacked priority-ceiling protocol (SPCP)
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Introduction

Real-Time Processes

= Process = unit of work being scheduled and
executed on the system.

= Processes have:
= Release time or available time
s Worst-case execution time
= (Relative) Deadline
= Sporadic or periodic characteristic

s Processes are scheduled such that deadlines
are always met (hard real time).
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Introduction

Scheduling

= Common scheduling policy

» Priority driven preemptive scheauling

= High priority process is always scheduled in preference
to low priority process

= High priority value = high priority

= Priorities can be assigned according to some
algorithm
= Rate monotonic
= Earliest deadline first

= We will focus on static priorities
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Basic Example

Example

= 5 processes
= process number equals priority
s Priority 1 < priority 5
P = Release and execution
times as shown
= No deadlines (only an example
for later comparison)

= Priority-driven scheduler
with preemption

0 2 4 6 8 10 12 14 16 18 20
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Motivating Problem

Reality is more complex

= Usually processes are not independent

= They compete for resources or rely on
each other’s intermediate results
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Motivating Problem

Real-Time Traffic Scheduling

= [WO process
streams

= A high priority
& a low priority




Resource Contention

Priorities and Resource
Contention

Main Reference
Pane W. S. Liu “"Real-time Systems”, Chapter 8



Resource Contention

Resources

= Processes require resources in order to
execute (e.g. locks, ports, memory, ...)

s Resource characteristics
n serially reusable
n mutually exclusive

— We ignore resources that
» are infinitely available or exceed demand
= Or can be pre-allocated
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Resource Contention

Resource Contention Problem

= Priority inversion, given 3 processes, and a
resource R1

= We need to, at least, bound Ps @

the length of priority inversion RO
p, @ R1
= Preferably minimize the
length of priority inversion 5 Allocates at t0
1

Famous example of priority inversion:

Mars Path-Finder 1997
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Resource Contention

Mars Pathfinder

Mars Path Finder and ...

Read the following papers:
Mick Jones: What really happened on the Mars?

http://www.research.microsoft.com/~mbj/ and
http://www.research.microsoft.com/~mbj/Mars_Pathfinder/Authoritative_Account.html

by Glenn Reeves, chief of the software team of Mars-Pathfinder software

32
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Resource Contention

Resource Contention Problems

= [iming anomaly (e.g. convoy problem)
= Deadlock




Resource Contention

One Class of Solutions

= Use a resource allocation protocol that

1. bounds priority inversion
>. avoids deadlock

= Estimate worst-case blocking time due to
resource contention

= Combine blocking time and execution time
« Use in admission control
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Resource Contention

Major Assumption

» Single processor system



Example with Resources

Our Example + 2 Resources

[ ] B Resource 1

D Resource 2

/Nested usage of
resources, I.e. nested

 BAIN | critical sections’

P

0 2 4 6 8 10 12 14 16 18 20
“P2 first needs R1 and then later additionally R2
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SPD Scheduling

Simple Priority Driven Scheduling
(PPD)
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SPD Scheduling

Result

= High priority processes P5, P4 heavily delayed

= P3 is almost not delayed due to its
characteristic, it does not need any resource

— Find a better solution



Resource Allocation Protocols

4 Resource Allocation Protocols

= Non Preemptive Critical Sections (NVPCS)
= Priority Inheritance (/~))

= Priority-Ceiling Protocol (PCP)

= Stacked Priority-Ceiling Protocol (SPCP)

= ... and some others
= See text book (Liu)



NPCS Scheduling

Nonpreemptive Critical Sections

= As soon as a process holds
a resource it is no longer 3
preemptable”

s Prevents deadlock P2 @

cannot
happen at t1

R1

m Bounds priority inversion Allocate at t0

= Max blocking time is the
maximum execution time of 3
the critical sections of all max prio
lower priority processes

P1

“This process gets highest priority in system
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NPCS Scheduling

Non-Preemptive Critical Sections
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NPCS Scheduling
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NPCS Scheduling
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NPCS Scheduling
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NPCS Scheduling
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NPCS Scheduling
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NPCS Scheduling

Example
| |
P

o © 2008 Universitat Karlsruhe

20

12 14 16

10

78

(TH



NPCS Scheduling
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NPCS Scheduling

Comparison with SPD-Scheduling




NPCS Scheduling

Analysis: Nonpreemptive Critical
Sections

s Pros
= Simple
= No prior knowledge of resource requirements
needed
= Prevents deadlock

s Cons

= Low priority process blocks high priority process
even when there are no resource conflicts

= Protocol only suitable for trusted software
= Usually implemented by /nterrupt disabling

= In CS there is no system calls otherwise CPU

wasting in case of a "blocking”system call

i arlsruhe (TH), System Architecture Group



NPCS Scheduling

Worst-Case Blocking Time

= Longest lower-priority critical section:

bt(rc) = max {cst,}

i+1<k<n
bt = blocking time
cst = critical section time




PI Scheduling

Priority Inheritance (PI)

= When a hAigh-priority
process (P3) blocks, the

low-priority process (P1) "

inherits the current priority

of the blocking process > @ "
P1 3

= PI bounds priority inversion



PI Scheduling

Example with Priority Inheritance
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PI Scheduling

Example with Priority Inheritance
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PI Scheduling
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Comparison with SPD Rule
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PI Scheduling

Analysis: Priority Inheritance

s Pros
= Prevents uncontrolled priority inversion.
= Needs no knowledge of resource requirements.

s Cons
» Does not prevent dead/ock.

= Does not minimise blocking times.

= With chained blocking, worst-case blocking time is
min(n,m) critical sections
n = number of lower priority processes that can block P
m = number of resources that can be used to block P

= Some overhead in a release or acquire operation
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PI Scheduling

Chained Blocking

= 4 lower priority processes

T ] = 4 potentially conflicting

resources

= Worst-case blocking time

B N
T = 16 units!
B [ =

Priority ———

IAssume lower priority process
Time — allocates its first resource just
before higher priority process runs

D © 2008 Universitét Karlsruhe (TH), System Architecture Group 110



Priority Ceiling Protocol

= Avoids deadlock by defining an order of
resource acquisition

= Prevents transitive (chained) blocking
= Worst-case blocking time = single critical section

Description how to implement PCP, see:
http://www.awprofessional.com/articles/article.asp?p=30188&seqNum=5&rI=1

PCP Scheduling

111



PCP Scheduling

Priority Ceilings

= Resources required by all processes are
Known a prioti

= Similar approach as with deadlock avoidance

s Priority ceiling of resource R;is equal to the
highest priority of all processes that use R,

m Priority ceiling of system is highest priority
celling of all resources currently in use

D © 2008 Universitét Karlsruhe (TH), System Architecture Group 112



PCP Scheduling

Priority Ceilings of Our Example

. Priority Cellings of Ri
p M -

=4




PCP Scheduling

Priority Ceiling Protocol Rules

= Priority inheritance applies as before.

= When a process (P) requests a resource (R)
either:

» If Ris allocated = P blocks (+ priority inheritance)

« If Ris free,
« If P's current priority > system’s priority ceiling =
R is allocated to process P
= If P’s current priority < system’s priority ceiling =
P blocks — except if:

P already holds a resource whose priority ceiling is
equal to the systems priority ceiling

D © 2008 Universitét Karlsruhe (TH), System Architecture Group 114
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PCP Scheduling
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Example

PCP Scheduling

Prio(P2) < CurrSPC = no allocation
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PCP Scheduling

Example

P 2 ... but P1 inherits prio(P2) = 2
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PCP Scheduling

Comparison to Previous Example

B




PCP Scheduling

Analysis: Priority Ceiling Protocol

m Pros
= Avoids deadlocks

« If a process doesn’t self suspend, a process is
blocked at most once during execution
= Processes cannot be transitively blocked

= =Mminimizes blocking time to the longest lower-priority
conflicting critical section (+ context switches)

= Processes only receive their first resource when all
required resources are not held by lower priority
processes

= Cons
= A priori knowledge of resource needs is required

D © 2008 Universitét Karlsruhe (TH), System Architecture Group 137



SPCP Scheduling

Stack-Based Priority Ceiling
Protocol

= The motivation is to share a single stack
for all processes

= Saves stack space.

= Restriction: processes cannot self-
suspend.



SPCP Scheduling

[B) Rules

= Scheduling:

= After a process is released, it is blocked from
starting until its assigned priority is higher than
the current system priority ceiling.

= Unblocked processes are preemptively priority
scheduled according to their assigned priority.

s Resource allocation:

= Whenever a process requests a resource it
receives the resource.

i risruhe (TH), System Architecture Group 139
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SPCP Scheduling
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P1

SPCP Scheduling

Comparison with Priority Ceiling
Protocol




SPCP Scheduling

Analysis: Stack-Based Priority
Ceiling
m Pros

= Simple to implement.

= Slightly better worst-case when compared
to normal PCP — two less context switches.

= No priority inheritance needed.

= Cons
=« Threads cannot self suspend.



Summary

Summary

= 4 protocols controlling resource access
in priority driven preemptive systems

= NPCS
= PI

= PCP
= SPCP
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Summary

Summary

= NPCS and PI do not require a priori
knowledge of resource requirements

= PI neither prevents deadlocks nor avoids
deadlocks

= All protocols -except PI- ensure that
processes are blocked at most once*
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