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Scheduling

Classification of Multiprocessors

 Loosely coupled multiprocessing
 each CPU has its own memory and I/O channels, 

e.g. a cluster of workstations

 Tightly coupled multiprocessing
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Our topic

 Tightly coupled multiprocessing
 CPUs share main memory

 NUMA as well as UMA systems

 controlled by one OS
 Centralized or decentralized scheduling



Scheduling

Tightly Coupled Multiprocessors

 Asymmetric Multiprocessing
 Master/Slave relation
 Master handles scheduling, interrupt handling etc.
 Slaves are dedicated to application tasks
 Main drawback: if master fails  system fails
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Our topic

 Main drawback: if master fails  system fails

 Symmetric Multiprocessing (SMP)
 Each CPU can handle each task/thread/activity
 During its life-time a thread can run 

 on any CPU or
 always on the same CPU (strict processor affinity)

 Interrupts can be delivered to each CPU



Scheduling

Processor 1
L1 cache

L2 cache

Processor 2
L1 cache

L2 cache

Processor 3
L1 cache

L2 cache

Processor p
L1 cache

L2 cache
......

UMA Symmetric MultiprocessorN
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system bus

Controller Controller

Printer

Main Memory ......

DiskOften  multiple busses

NUMA



MotivationMotivation
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Additional Features
Anomalies

Requirements



Motivation
 On a single processor all CPU related activities run on the CPU 

 the only scheduling decision: 
when to run what KLT/Process on the CPU

Simple case:
At one instance of time at most 1 activity is running
Are there additional activities that need more attention from the

Motivation
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 Are there additional activities that need more attention from the 
scheduler(s) in a SMP?
 Application activities

 Related processes
 Threads of a multithreaded application

 System activities
 How to assign a client and its server?
 How to schedule a periodic system activity?

 Kernel activities
 How to prevent mutual interference of critical paths?



Motivation

 SMP Scheduling is more complicated because 

 it might pay off that a CPU remains idle even 
though an application thread is ready

  heterogeneous SMPs, i.e. we might have to

Motivation
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  heterogeneous SMPs, i.e. we might have to 
consider
 CPUs of different speed or 
 CPUs with different instruction sets

  some nice anomalies (see next slide)



SMP Anomalies (R. Graham1)

 One example with a set p>1 processors and t>1 
threads and precedence constraints. 

 Graham showed the following anomalies concerning 
the maximal turnaround time TTmax:

Adding another CPU increases TT

Scheduling Anomalies
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 Adding another CPU increases TTmax

 Removing precedence constraints “    “

 Reducing the execution times “    “

 …

1R.L. Graham: Bounds on Multiprocessor Timing Anomalies, 
SIAM, J. Applied Mathematics, 1969



Scheduling Parameters

Additional Scheduling Problems

 Which CPU should handle interrupts?

 When creating a new KLT (process) should it run on 
the same CPU or on another one?

 How to schedule threads of a multithreaded task?
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See diploma thesis and later work of Jan Stöß

 Should a thread (process) stay on its first CPU or can 
it run on another one?

 What are useful scheduling criteria for migrating or 
pinning threads?

 When to get this scheduling information and how to 
collect and store it?



Handling InterruptsHandling Interrupts
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Handling Interrupts on an SMP

CPUiDevice Start I/O at t0

I/O interrupt at t1

Handling Interrupts
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CPUj

CPUk



Scheduling Interrupt Handlers (1)

Five different scheduling policies:

0. Device is dedicated to a specific processor

1. Interrupt can be handled on every processor

Handling Interrupts
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2. Interrupt “should” be handled on the processor 
having initiated previous I/O-activity, because
 thread having initiated I/O is bound to this processor (see 

affinity in WinXP …) and still has some cache footprint on 
this processor

 thread is still running on that CPU in case of a previous 
asynchronous I/O ( no thread switch)



Scheduling Interrupts (2)

3.Interrupt can be handled on a CPU that is 
currently executing another interrupt handler
 can save one mode switch from user  kernel
 can postpone interrupt handling due to interrupt

Handling Interrupts
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 can postpone interrupt handling due to interrupt 
convoys (and furthermore the innocent current 
thread is punished multiple times) 

4. Interrupt can be handled on the processor 
with “lowest priority activity” (i.e. idle thread)



Handling New ThreadsHandling New Threads
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Running a New Thread

 Depending on the application it could be 
better to schedule the new thread

 on the CPU that has created this thread 
 because the creating thread and the creator might 

cooperate on common shared data (e g KLTs of the

Handling New Threads
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cooperate on common shared data (e.g. KLTs of the 
same task)

 on a specific CPU
 A nearby CPU to improve collaboration via a shared L3-

cache or on a NUMA
 To balance the load of system or of the application
 The application programmer knows about the special 

features of the CPU (in a heterogeneous SMP)

 on any other CPU just to improve parallelism



Scheduling Threads and Tasks

 Single-threaded tasks, i.e. processes
 scheduling processes sharing code or data to the same processor 

can reduce 
 cache loading time
 TLB loading time

 anonymous scheduling of processes can reduce turnaround times   

Scheduling Parameters
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 Multi-threaded tasks
 scheduling all threads of one task to the same CPU can save

 cache + TLB loading time in case you can switch within the AS,
 but also reduces concurrency completely

 scheduling threads of a task on as many CPUs as possible
supports concurrency, but may lengthen cache loading time

 scheduling threads of one task at the same time 
(gang-scheduling) can profit from their parallel execution



Suppose, you have to schedule the following multi-threaded application 
on an empty, tightly-coupled 4-processor multi-programming system.

T0
T1
T2

CPU 0

CPU 1

Additional Scheduling Parameters

Scheduling Parameters
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1. Number of processors to be involved
2. Precedence relation
3. Communication costs

?T2
T3
T4
T5

CPU 1

CPU 2

CPU 3



?

CPU 0

CPU 1

CPU 2

CPU 3

T0
T1
T2
T3
T4

Additional Scheduling Parameters

Scheduling Parameters
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CPU 3T4
T5

Discuss Pros and Cons of each of the above possibilities.

1. Scheduling parameter: Number of processors to be involved
 1 processor
 p’ < p processors 
 all p processors



T0
T1
T2
T3
T4

time0 105 15

Additional Scheduling Parameters

Scheduling Parameters
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T4
T5 Result: Theoretical schedule length = 17

1. Scheduling parameter: Number of processors to be involved:

1 processor (suppose CPU 0):
Pro: Identical to a solution on a single-processor system 

Unused processors may be reserved for other applications

Con: You do not use the offered parallelism of the hardware
thus your turnaround time is high.



T0
T1
T2
T3
T4

time0 105 15

Additional Scheduling Parameters

Scheduling Parameters
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T4
T5 Result: Theoretical schedule length = 9

1. Scheduling parameter: Number of processors to be involved:
p’ < p processors (suppose p’ = 2, CPU 0 and CPU 1):

Pro: Theoretically smaller maximal turnaround time 
due to the parallel execution of Tj

Con: Due to critical sections within these Tj
the individual turnaround times of the Tj may be larger



T0
T1
T2

time0 105 15

Busy 
waiting?

Additional Scheduling Parameters

Scheduling Parameters
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T2
T3
T4
T5

Are there further constraints leading to a longer schedule?

Result: Practical schedule length =12Busy 
waiting ?

1. Scheduling parameter: Number of processors to be involved
p’ < p processors (suppose CPU 0 and CPU 1):



T0
T1
T2
T3
T4

time0 105 15

Additional Scheduling Parameters

Scheduling Parameters
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T4
T5 Result: Theoretical schedule length =5

1. Scheduling parameter: Number of processors to be involved
p processors

Pro: Theoretically shortest maximal turnaround time 
due to the parallel execution of Tj

Con: Due to critical sections within these Tj

the individual turnaround times may be larger



?

CPU 0

CPU 1

CPU 2

CPU 3

T0
T1
T2
T3
T4

Additional Scheduling Parameters

Scheduling Parameters
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CPU 3T4
T5

Arrows indicate the precedence relation

2. Scheduling parameter: precedence constraints, i.e. a certain
Ti has to be finished before Tj may start to execute



T0
T1
T2
T3
T4

time0

R l Th i l h d l l h 13

105 15

Additional Scheduling Parameters

Scheduling Parameters
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T5 Result: Theoretical schedule length =13

How to solve this problem?
From the graph we know that at most two CPUs are required 
Determine the critical path
Assign to CPU0 according to precedence constraints
Assign to CPU1 whenever possible



Scheduling

T0
T1
T2
T3
T4
T5

Additional Scheduling Parameters

© 2008  Universität Karlsruhe (TH), System Architecture Group 26

5

3. Scheduling parameter: Communication costs between threads
Communication between threads on different processors has to be done
via main memory. Communication between threads on the same processor
could be done via caches or registers.

Conclusion:
What you might gain by real parallelism, you might lose due to
increased communication costs.  careful analysis is required



SMP Scheduling PoliciesSMP Scheduling Policies
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Scheduling of Multithreaded Tasks

 Anonymous (dynamic) thread scheduling
 assign KLT/process to next available CPU  threads will run 

on different CPUs during their life cycle

 Dedicated scheduling
 threads of the same application are assigned to a 

Scheduling Policies
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pp g
specific processor-subset (processor-affinity)

 Adaptive scheduling
 Scheduler maps threads (statically or dynamically) according 

to load etc. 

 User based scheduling
 User (programmer) can pin threads temporarily to dedicated 

processors



Scheduling

Scheduling Tasks
 Processes (Single threaded tasks)

 Fair Share Scheduling between processes = straightforward 

 Prefer tasks with partly shared address space (swap in/out)

 Multi threaded task
i Sh S h d li k h d b i
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Remark:
The VAX VMS OS supports another scheduling unit: 
“session” which is directly related to a user, thus 
you can establish fair share scheduling on session basis.

 Fair Share Scheduling on task or thread basis

 Swap in/out complete task 



Gang Scheduling

 Simultaneous scheduling of threads of a task

 Useful for applications where performance severely 
degrades when one part of the task is not running

 Threads often need to synchronize with each other

Scheduling Policies
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 Threads often need to synchronize with each other, 
e.g. after another iteration step for the solution of a 
difference equation (e.g. at a barrier synchronization)



SMP Ready Queue(s)SMP Ready Queue(s)
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Centralized  Decentralized Sched.

 Centralized SMP scheduling with
 1 global ready queue

Pro: easy to implement a consistent policy

Con: not that scalable for m >> 1 CPUs
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 Decentralized scheduling with 
 n>1 local ready queues

Pro: fewer access conflicts at each “local” ready queue
Con:  load balancing problem

 Problem: How to fill ready queues when new threads arrive 
(or come back after some waiting period)?



CPU 1

CPU 2?
T1,5 T1,4 T1,3 T1,2 T1,1

T2,4 T2,3 T2,2 T2,1

Dedicated & Anonymous Threads

Scheduling Policies

Should run on CPU1
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CPU 2

CPU 3

Find an efficient data structure for the ready queue(s)

?
T3,3 T3,2 T3,1

TA,1TA,2TA,3

Anonymous threads can be 
assigned to any available CPU 



CPU 1TA,1T1,5 T1,4T1,3 T1,2T1,1T2,4T3,3 T2,3 T2,2 T2,1T3,2 T3,1TA,2TA,3

Randomly Ordered Ready Queue 

Policy: Assign “first fitting thread” 

SMP Ready Queues
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CPU 2

CPU 3

Drawbacks:
1. You do not assign head of the ready queue, 

there is some additional overhead for looking up

2. You might assign an anonymous thread to CPUx,
even though there is a dedicated thread Tx for 
CPUx. Thus, one of the other CPUs can be idle 
next!



CPU 1

Randomly Ordered Ready Queue

SMP Ready Queues

TA,1T1,5 T1,4T1,3 T1,2T1,1T2,4T3,3 T2,3 T2,2 T2,1T3,2 T3,1TA,2TA,3
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CPU 2

CPU 3

Policy: Assign “best fitting thread” 
Drawback:
You may have to look through the entire ready queue,
i.e. O(n)-scheduler



CPU 1T1,5 T1,4 T1,3 T1,2 T1,1

TA,1TA,2TA,3

Anonymous Ready Queue

Anonym. & Dedic. Ready Queues

SMP Ready Queues

Dedicated Ready Queues
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CPU 2

CPU 3

T2,4 T2,3 T2,2 T2,1

T3,3 T3,2 T3,1

Policy: Prefer dedicated threads
First look up in appropriated 
dedicated queue.
When empty look up  
in the anonymous queue



CPU 1

SMP Ready Queues

Anonym. & Dedic. Ready Queues

T1,5 T1,4 T1,3 T1,2 T1,1

TA,1TA,2TA,3

Anonymous Ready Queue

Dedicated Ready Queues
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CPU 2

CPU 3

Policy: Strictly prefer threads with 
higher priority
Compare the head of the
appropriate dedicated queue
with the head of the 
anonymous queue
Pick the one with the higher priority

T2,4 T2,3 T2,2 T2,1

T3,3 T3,2 T3,1



RealReal--Time SchedulingTime Scheduling
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RT Scheduling

Real-Time Scheduling

 Correctness of the system may depend 
 not only on the logical result of the computation 
 but also on the time when these results are 

produced, e.g.
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 tasks attempt to control events or to react to events 
that take place in the outside world

 These external events occur in “real time” and 
processing must be able to keep up with them

 Processing must happen in a timely fashion, 
neither too late, nor too early.



Real Time System (RTS)

 RTS accepts an activity A and guarantees its  
requested (timely) behavior B if and only if
RTS finds a schedule that 
 includes all already accepted activities Ai and 

h

RT Scheduling
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the new activity A, 

 guarantees all requested timely behaviors Bi and B, and

 can be enforced by the RTS.

 Otherwise, RT system rejects the new activity A.



Typical Real Time Systems

 Control of laboratory experiments

 Robotics

 (Air) Traffic control

 Controlling Cars / Trains/ Planes

RT Scheduling
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Remark:
Some applications may have only soft real-time requirements,
but some have really hard real-time requirements

g / /

 Telecommunications

 Medical support (Remote Surgery, Emergency room)

 Multi-Media …



Hard Real-Time Systems
Requirements:

Must Must alwaysalways meet all deadlines meet all deadlines (time guarantees)

You must guarantee that these applications are done 
in time, otherwise a catastrophe might happen

RT Scheduling
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Examples:

1. If the automatic landing of a jet cannot react to sudden
side-winds within some ms a severe crash might occur. 

2. An airbag system or the ABS has to react within some ms

3. Remote scalpel in a surgical operation must immediately 
follow all movements of the surgeon



Soft Real-Time Systems

Requirements:

Must Must mostlymostly meet all deadlines, e.g. in 99.9%meet all deadlines, e.g. in 99.9%

Examples:

RT Scheduling
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 Multimedia: 100 frames per day might be dropped 
(late) 

 Car navigation: 5 late announcements per week are 
acceptable

 Washing machine: washing 10 sec over time might
occur once in 10 runs, 50 sec once in 1000 runs.



Examples of SchedulingExamples of Scheduling
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Linux 2.4 Scheduling

 Linux offers three scheduling policies

 A traditional scheduler SCHED_OTHER1

 Two soft-real-time scheduler (mandated by Posix.1b)

 SCHED FIFO
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 SCHED_FIFO

 SCHED_RR

 They give the CPU to a real-time process whenever such a 
real-time process become ready (except when already a 
real-time process is executing)

1These  three scheduling policies are an attribute of the TCB



Priorities

 Static “priority”
 Maximum size of the time slice a process should be allowed 

before being forced to allow other processes to compete for 
the CPU

 Dynamic priority
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y p y
 Amount of time remaining in this time slice; declines with 

time as long as the process runs on the CPU
 When its dynamic priority is 0, the process is marked for 

rescheduling

 Real-time priority
 Only real-time processes can get the real-time priority values
 Higher-real-time priority values always beat lower priorities, 

i.e. preempt the corresponding process



Related Entries in the TCB
long counter

long nice

unsigned long policy

struct mm struct *mm

Time remaining in the process’s
current quantum (~dyn. priority)
process’s nice value, -20 … +19 
(~ static prio)
SCHED_OTHER, …_FIFO. …_RR

points to the memory descriptor
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_

int processor

unsigned long cpus_runnable

unsigned long cpus_allowed

struct list_head run_list

unsigned long rt_priority

p y p

CPU ID on which process will run

CPUs allowed to run

head of the run_queue

real-time priority



Linux 2.4 Real-Time Scheduling

 SCHED_FIFO
 The corresponding real-time process runs until it either 

blocks on I/O, blocks to another waiting event, explicitly 
yields the CPU, or is preempted by another real-time process 
with a higher real-time priority
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 Acts as it has an unbounded time-slice

 SCHED_RR
 As above except that time-slice matters, i.e. when a 

SXCHED_RR process’s time-slices expires, its PCB is 
appended to the corresponding run-sub-queue to give other 
SCHED_RR processes with the same priority the chance to 
run instead of



Linux 2.4 Scheduling Quanta

 Linux gets a timer interrupt (or tick) once 
every 10 ms on a IA-32
 An ALPHA port of the Linux kernel issues 1024 

ticks per second
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 Linux wants the time slice to be ~ 50 ms



Linux 2.4 Epochs

 Linux scheduling works by dividing the CPU 
time into epochs
 In a single epoch, every process has a specific 

time quantum whose duration is computed when 
the epoch begins
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p g

 The epoch ends when all runnable processes have 
exhausted their time quanta

 The scheduler recomputes the time-quanta of all 
processes and a new epoch begins

 The base time quantum of a process is 
computed according to its nice value



Selecting the next Process to run

repeat_schedule:
next = idel_task(this_cpu);
c = -1000;
list_for_each(tmp,&runqueue_head({

p = list_entry(tmp, struct task_struct, run_list);
if ( h d l ( thi )){
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if (can_schedule(p, this_cpu)){
int weight = goodness(p, this_cpu,

prev->active_mm);
if (weight >c) c = weight, next =p;

}
}



Recalculating Counters

if(unlikely(!c) {  /new epoch begins …*/
struct task_struct *p;
spin_unlock_irq(&runqueue_lock);

read_lock(&tasklist_lock);
for each task(p)
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for_each_task(p)
p->counter =(p->counter >>1)+

NICE_TO_TICKS(p->nice);
read_unlock(&tasklist_lock);
spin_lock_irq(&runqueue_lock);
goto repeat_schedule);
}



Calculating goodness()

static inline int goodness(p, this_cpu, this_mm){
int weight = -1;
if (p->policy == SCHED_OTHER){

weight =p->counter;
if (!weight) goto out;
if (p->mm == this mm || !p->mm)
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(p _ || p )
weight += 1;

weight +=20 – p->nice;
goto out;

}
weight = 1000 + p->rt_priotity;

out: return weight;
weight = 0 i.e. p has 
exhausted its quantum
0 < weight < 1000
P is a conventional process
weight >= 1000
p is a real-time process



Linux 2.4 Scheduler NOT Scalable

 The  run_queue is protected by one run 
queue lock

 As the number of CPUs increases, lock contention 
also increases
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 It is expensive to recalculate goodness() for every 
process on every invocation of the scheduler
 A profile of the Linux 2.4 kernel during the VolanoMark 

benchmark runs showed that 37-55% of total time spent 
in the kernel is spent in the scheduler

 VolanoMark benchmark establishes a socket connection 
to a chat server for each simulated chat room user. For a 
5 to 25-chatroom simulation, the kernel must potentially 
live with 200 to 400 threads.



Linux 2.4 Scheduling Quanta

 with epochs and time-quanta
 The life of a process is subdivided into epochs
 Time-quanta are dependent on the processes 

and their epochs
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and their epochs
 Each process has a time-quanta base, i.e. nice 

value
 20 ticks ~ 210 ms
 Time-quanta decreases periodically with every tick
 quantum = quantum/2 +(20-nice)/4 +1



Linux 2.4

 Kernel distinguishes between 3 scheduling policies
 FCFS for  preemptable, cooperative real-time processes

 RR for time-sliced real-time processes

 Priority based  (+RR) for all other time-shared processes

 Process selection depends on a quality function c in O(n):
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c = -1000 if process is the init process

c = 0 if process has expired its time quantum

0 < c < 1000 if process has not expired its time quantum

c  1000 if process is a real-time process

 Processes (KLTs) can get a bonus (boost) if they share an AS 
with the process (KLT) that has been executing before on the 
same CPU

Hint: 
Study slides of the corresponding talks of previous Proseminars “Linux Internals”



Linux 2.5 Scheduler with O(1)

 Any scheduling is done with constant complexity
 There are two tables per processor: active and expired

 Priorities: 
 1 – 100 for real-time processes 

 101 – 140 for best-effort processes
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p

 Per priority level a double linked list per table

 Priorities of best effort processes depend on degree of their 
interactivity, i.e.
 bonus = -5 for interactive and bonus = +5 for compute bound

 New calculation at the end of a time-slice, i.e.: prio = MAX_RT_PRIO + 
nice + 20 + bonus

 Having expired its time quantum the PCB is handed over to the 
corresponding expired table

 If no element is left over in the active-table the role of both tables 
is switched, i.e. we have a change of epoch tables



Scheduling

14
15 If n>2 processors are available,

(n 1) are busy with the (n 1) highest

Windows NT Priority  

Windows supports fixed priorities [16, 31] for real-time applications.
Time-shared applications may change their priorities within [0,15]
according to their behavior concerning I/O bursts and CPU bursts.
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Process(task)
Priority

Thread’s Base
Priority

Thread’s Dynamic
Priority

0
1
2
3
4
5
6
7
8
9

10
11
12
13

base priority

highest
above normal

normal
below normal

lowest

(n-1) are busy with the (n-1) highest
priority threads whereas the remaining
processor executes all remaining
ready threads.
You have the ability to pin a task
or its threads to specific processors.



Scheduling

Priority Global Scheduling

UNIX SV”R4” Scheduling
Set of 160 priority levels divided into three priority classes
Because basic kernel is not preemptive some spots called 
preemption points have been added, allowing better reaction
times for real-time applications
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Class Value Sequence

Real-time

159

100

first

last

Kernel
99

60

0

59

Time-shared

.

..

.

.

.

.

.

.

.

A dispatching queue per priority is implemented,
processes on the same priority level are executed in RR.

Real-time processes have fixed priorities (and fixed time slices,) 
time-shared processes have dynamic priorities and varying
time slices in the range [10, 100] ms.



Unix 4.3 BSD

 MLFQ 32 ready queues, each per RR + dynamic 
priorities  [0,127]

 How to determine the dynamic priorities p_usrpri?

 After each 4th tick (~ 40 ms)
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 p_usrpri = PUSER+[ p_cpu/4]+2*p_nice
 with p_cpu = p_cpu +1 with each tick (10 ms)
 with weigth: -20  p_nice  20

 Smoothing of CPU utilization p_cpu per s
 p_cpu = 2*load/(2*load+1)*p_cpu+p_nice
 however, processes with sleep-time > 1 s
p_cpu = (2*load/(2*load+1))p_slptime * p_cpu



Unix 4.3 BSD Example

 Assumption 1: average load = 1 
p_cpu = (2*1)/(2*1+1)*P_cpu + p_nice 

= 0.66*p_cpu + p_nice

 Assumption2: process collects Ti ticks in time interval i 

 Assumption 3: p nice = 0
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 Assumption 3: p_nice = 0

 p_cpu = 0.66*T0
= 0.66*/T1+0.66*T0)= 0.66*T1 + 0.44*T0
= 0.66*T2 + 0.44*T1+ 0.3*T0
=0.66*T3 + …+ 0.20*T0
=0.66*T4 + … +0.13*T0

 After 5 s only 13% of the primary CPU load are counted to get a 
new p_cpu value



Summary: Scheduling Parameters

 Priority
 Static versus dynamic priority
 How to distinguish between I/O-bound and compute bound 

processes?
 When and how much to increase the priority of an I/O-

bound process
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bound process 
 How to perform aging to prevent starving

 Time slice (quantum)
 I/O bound processes do not need long time slices
 CPU bound processes prefer long time slices
 Short time slice: switching overhead
 Long time slices: poor response time for interactive 

processes?
 Higher priority means longer time slices?



Scheduling
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Scheduling

Agenda

 Classification of SMPs

 Motivation

 Handling Interrupts

 Handling New Threads
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 SMP Scheduling Policies

 SMP Ready Queues

 Real-Time Scheduling

 Examples
 Linux, Unix, Windows
 User Level Scheduling of L4-SMPs

Not examined

Not examined


