
System ArchitectureSystem Architecture

14 Scheduling (2)14 Scheduling (2)
SMP Scheduling

1© 2008 Universität Karlsruhe (TH), System Architecture Group

SMP Scheduling
RT Scheduling

Examples

December 17 2008
Winter Term 2008/09

Gerd Liefländer

SMP ClassificationSMP Classification

2© 2008 Universität Karlsruhe (TH), System Architecture Group

Scheduling

Classification of Multiprocessors

 Loosely coupled multiprocessing
 each CPU has its own memory and I/O channels,

e.g. a cluster of workstations

 Tightly coupled multiprocessing

© 2008 Universität Karlsruhe (TH), System Architecture Group 3

Our topic

 Tightly coupled multiprocessing
 CPUs share main memory

 NUMA as well as UMA systems

 controlled by one OS
 Centralized or decentralized scheduling

Scheduling

Tightly Coupled Multiprocessors

 Asymmetric Multiprocessing
 Master/Slave relation
 Master handles scheduling, interrupt handling etc.
 Slaves are dedicated to application tasks
 Main drawback: if master fails  system fails

© 2008 Universität Karlsruhe (TH), System Architecture Group 4

Our topic

 Main drawback: if master fails  system fails

 Symmetric Multiprocessing (SMP)
 Each CPU can handle each task/thread/activity
 During its life-time a thread can run

 on any CPU or
 always on the same CPU (strict processor affinity)

 Interrupts can be delivered to each CPU

Scheduling

Processor 1
L1 cache

L2 cache

Processor 2
L1 cache

L2 cache

Processor 3
L1 cache

L2 cache

Processor p
L1 cache

L2 cache
......

UMA Symmetric MultiprocessorN

© 2008 Universität Karlsruhe (TH), System Architecture Group 5

system bus

Controller Controller

Printer

Main Memory

DiskOften  multiple busses

NUMA

MotivationMotivation

6© 2008 Universität Karlsruhe (TH), System Architecture Group

Additional Features
Anomalies

Requirements

Motivation
 On a single processor all CPU related activities run on the CPU

 the only scheduling decision:
when to run what KLT/Process on the CPU

Simple case:
At one instance of time at most 1 activity is running
Are there additional activities that need more attention from the

Motivation

© 2008 Universität Karlsruhe (TH), System Architecture Group 7

 Are there additional activities that need more attention from the
scheduler(s) in a SMP?
 Application activities

 Related processes
 Threads of a multithreaded application

 System activities
 How to assign a client and its server?
 How to schedule a periodic system activity?

 Kernel activities
 How to prevent mutual interference of critical paths?

Motivation

 SMP Scheduling is more complicated because

 it might pay off that a CPU remains idle even
though an application thread is ready

  heterogeneous SMPs, i.e. we might have to

Motivation

© 2008 Universität Karlsruhe (TH), System Architecture Group 8

  heterogeneous SMPs, i.e. we might have to
consider
 CPUs of different speed or
 CPUs with different instruction sets

  some nice anomalies (see next slide)

SMP Anomalies (R. Graham1)

 One example with a set p>1 processors and t>1
threads and precedence constraints.

 Graham showed the following anomalies concerning
the maximal turnaround time TTmax:

Adding another CPU increases TT

Scheduling Anomalies

© 2008 Universität Karlsruhe (TH), System Architecture Group 9

 Adding another CPU increases TTmax

 Removing precedence constraints “ “

 Reducing the execution times “ “

 …

1R.L. Graham: Bounds on Multiprocessor Timing Anomalies,
SIAM, J. Applied Mathematics, 1969

Scheduling Parameters

Additional Scheduling Problems

 Which CPU should handle interrupts?

 When creating a new KLT (process) should it run on
the same CPU or on another one?

 How to schedule threads of a multithreaded task?

© 2008 Universität Karlsruhe (TH), System Architecture Group 10

See diploma thesis and later work of Jan Stöß

 Should a thread (process) stay on its first CPU or can
it run on another one?

 What are useful scheduling criteria for migrating or
pinning threads?

 When to get this scheduling information and how to
collect and store it?

Handling InterruptsHandling Interrupts

11© 2008 Universität Karlsruhe (TH), System Architecture Group

Handling Interrupts on an SMP

CPUiDevice Start I/O at t0

I/O interrupt at t1

Handling Interrupts

© 2008 Universität Karlsruhe (TH), System Architecture Group 12

CPUj

CPUk

Scheduling Interrupt Handlers (1)

Five different scheduling policies:

0. Device is dedicated to a specific processor

1. Interrupt can be handled on every processor

Handling Interrupts

© 2008 Universität Karlsruhe (TH), System Architecture Group 13

2. Interrupt “should” be handled on the processor
having initiated previous I/O-activity, because
 thread having initiated I/O is bound to this processor (see

affinity in WinXP …) and still has some cache footprint on
this processor

 thread is still running on that CPU in case of a previous
asynchronous I/O ( no thread switch)

Scheduling Interrupts (2)

3.Interrupt can be handled on a CPU that is
currently executing another interrupt handler
 can save one mode switch from user  kernel
 can postpone interrupt handling due to interrupt

Handling Interrupts

© 2008 Universität Karlsruhe (TH), System Architecture Group 14

 can postpone interrupt handling due to interrupt
convoys (and furthermore the innocent current
thread is punished multiple times)

4. Interrupt can be handled on the processor
with “lowest priority activity” (i.e. idle thread)

Handling New ThreadsHandling New Threads

15© 2008 Universität Karlsruhe (TH), System Architecture Group

Running a New Thread

 Depending on the application it could be
better to schedule the new thread

 on the CPU that has created this thread
 because the creating thread and the creator might

cooperate on common shared data (e g KLTs of the

Handling New Threads

© 2008 Universität Karlsruhe (TH), System Architecture Group 16

cooperate on common shared data (e.g. KLTs of the
same task)

 on a specific CPU
 A nearby CPU to improve collaboration via a shared L3-

cache or on a NUMA
 To balance the load of system or of the application
 The application programmer knows about the special

features of the CPU (in a heterogeneous SMP)

 on any other CPU just to improve parallelism

Scheduling Threads and Tasks

 Single-threaded tasks, i.e. processes
 scheduling processes sharing code or data to the same processor

can reduce
 cache loading time
 TLB loading time

 anonymous scheduling of processes can reduce turnaround times

Scheduling Parameters

© 2008 Universität Karlsruhe (TH), System Architecture Group 17

 Multi-threaded tasks
 scheduling all threads of one task to the same CPU can save

 cache + TLB loading time in case you can switch within the AS,
 but also reduces concurrency completely

 scheduling threads of a task on as many CPUs as possible
supports concurrency, but may lengthen cache loading time

 scheduling threads of one task at the same time
(gang-scheduling) can profit from their parallel execution

Suppose, you have to schedule the following multi-threaded application
on an empty, tightly-coupled 4-processor multi-programming system.

T0
T1
T2

CPU 0

CPU 1

Additional Scheduling Parameters

Scheduling Parameters

© 2008 Universität Karlsruhe (TH), System Architecture Group 18

1. Number of processors to be involved
2. Precedence relation
3. Communication costs

?T2
T3
T4
T5

CPU 1

CPU 2

CPU 3

?

CPU 0

CPU 1

CPU 2

CPU 3

T0
T1
T2
T3
T4

Additional Scheduling Parameters

Scheduling Parameters

© 2008 Universität Karlsruhe (TH), System Architecture Group 19

CPU 3T4
T5

Discuss Pros and Cons of each of the above possibilities.

1. Scheduling parameter: Number of processors to be involved
 1 processor
 p’ < p processors
 all p processors

T0
T1
T2
T3
T4

time0 105 15

Additional Scheduling Parameters

Scheduling Parameters

© 2008 Universität Karlsruhe (TH), System Architecture Group 20

T4
T5 Result: Theoretical schedule length = 17

1. Scheduling parameter: Number of processors to be involved:

1 processor (suppose CPU 0):
Pro: Identical to a solution on a single-processor system

Unused processors may be reserved for other applications

Con: You do not use the offered parallelism of the hardware
thus your turnaround time is high.

T0
T1
T2
T3
T4

time0 105 15

Additional Scheduling Parameters

Scheduling Parameters

© 2008 Universität Karlsruhe (TH), System Architecture Group 21

T4
T5 Result: Theoretical schedule length = 9

1. Scheduling parameter: Number of processors to be involved:
p’ < p processors (suppose p’ = 2, CPU 0 and CPU 1):

Pro: Theoretically smaller maximal turnaround time
due to the parallel execution of Tj

Con: Due to critical sections within these Tj
the individual turnaround times of the Tj may be larger

T0
T1
T2

time0 105 15

Busy
waiting?

Additional Scheduling Parameters

Scheduling Parameters

© 2008 Universität Karlsruhe (TH), System Architecture Group 22

T2
T3
T4
T5

Are there further constraints leading to a longer schedule?

Result: Practical schedule length =12Busy
waiting ?

1. Scheduling parameter: Number of processors to be involved
p’ < p processors (suppose CPU 0 and CPU 1):

T0
T1
T2
T3
T4

time0 105 15

Additional Scheduling Parameters

Scheduling Parameters

© 2008 Universität Karlsruhe (TH), System Architecture Group 23

T4
T5 Result: Theoretical schedule length =5

1. Scheduling parameter: Number of processors to be involved
p processors

Pro: Theoretically shortest maximal turnaround time
due to the parallel execution of Tj

Con: Due to critical sections within these Tj

the individual turnaround times may be larger

?

CPU 0

CPU 1

CPU 2

CPU 3

T0
T1
T2
T3
T4

Additional Scheduling Parameters

Scheduling Parameters

© 2008 Universität Karlsruhe (TH), System Architecture Group 24

CPU 3T4
T5

Arrows indicate the precedence relation

2. Scheduling parameter: precedence constraints, i.e. a certain
Ti has to be finished before Tj may start to execute

T0
T1
T2
T3
T4

time0

R l Th i l h d l l h 13

105 15

Additional Scheduling Parameters

Scheduling Parameters

© 2008 Universität Karlsruhe (TH) System Architecture Group
25

T5 Result: Theoretical schedule length =13

How to solve this problem?
From the graph we know that at most two CPUs are required 
Determine the critical path
Assign to CPU0 according to precedence constraints
Assign to CPU1 whenever possible

Scheduling

T0
T1
T2
T3
T4
T5

Additional Scheduling Parameters

© 2008 Universität Karlsruhe (TH), System Architecture Group 26

5

3. Scheduling parameter: Communication costs between threads
Communication between threads on different processors has to be done
via main memory. Communication between threads on the same processor
could be done via caches or registers.

Conclusion:
What you might gain by real parallelism, you might lose due to
increased communication costs.  careful analysis is required

SMP Scheduling PoliciesSMP Scheduling Policies

27© 2008 Universität Karlsruhe (TH), System Architecture Group

Scheduling of Multithreaded Tasks

 Anonymous (dynamic) thread scheduling
 assign KLT/process to next available CPU  threads will run

on different CPUs during their life cycle

 Dedicated scheduling
 threads of the same application are assigned to a

Scheduling Policies

© 2008 Universität Karlsruhe (TH), System Architecture Group 28

pp g
specific processor-subset (processor-affinity)

 Adaptive scheduling
 Scheduler maps threads (statically or dynamically) according

to load etc.

 User based scheduling
 User (programmer) can pin threads temporarily to dedicated

processors

Scheduling

Scheduling Tasks
 Processes (Single threaded tasks)

 Fair Share Scheduling between processes = straightforward

 Prefer tasks with partly shared address space (swap in/out)

 Multi threaded task
i Sh S h d li k h d b i

© 2008 Universität Karlsruhe (TH), System Architecture Group 29

Remark:
The VAX VMS OS supports another scheduling unit:
“session” which is directly related to a user, thus
you can establish fair share scheduling on session basis.

 Fair Share Scheduling on task or thread basis

 Swap in/out complete task

Gang Scheduling

 Simultaneous scheduling of threads of a task

 Useful for applications where performance severely
degrades when one part of the task is not running

 Threads often need to synchronize with each other

Scheduling Policies

© 2008 Universität Karlsruhe (TH), System Architecture Group 30

 Threads often need to synchronize with each other,
e.g. after another iteration step for the solution of a
difference equation (e.g. at a barrier synchronization)

SMP Ready Queue(s)SMP Ready Queue(s)

31© 2008 Universität Karlsruhe (TH), System Architecture Group

Centralized  Decentralized Sched.

 Centralized SMP scheduling with
 1 global ready queue

Pro: easy to implement a consistent policy

Con: not that scalable for m >> 1 CPUs

© 2008 Universität Karlsruhe (TH), System Architecture Group 32

 Decentralized scheduling with
 n>1 local ready queues

Pro: fewer access conflicts at each “local” ready queue
Con:  load balancing problem

 Problem: How to fill ready queues when new threads arrive
(or come back after some waiting period)?

CPU 1

CPU 2?
T1,5 T1,4 T1,3 T1,2 T1,1

T2,4 T2,3 T2,2 T2,1

Dedicated & Anonymous Threads

Scheduling Policies

Should run on CPU1

© 2008 Universität Karlsruhe (TH) System Architecture Group
33

CPU 2

CPU 3

Find an efficient data structure for the ready queue(s)

?
T3,3 T3,2 T3,1

TA,1TA,2TA,3

Anonymous threads can be
assigned to any available CPU

CPU 1TA,1T1,5 T1,4T1,3 T1,2T1,1T2,4T3,3 T2,3 T2,2 T2,1T3,2 T3,1TA,2TA,3

Randomly Ordered Ready Queue

Policy: Assign “first fitting thread”

SMP Ready Queues

© 2008 Universität Karlsruhe (TH), System Architecture Group 34

CPU 2

CPU 3

Drawbacks:
1. You do not assign head of the ready queue, 

there is some additional overhead for looking up

2. You might assign an anonymous thread to CPUx,
even though there is a dedicated thread Tx for
CPUx. Thus, one of the other CPUs can be idle
next!

CPU 1

Randomly Ordered Ready Queue

SMP Ready Queues

TA,1T1,5 T1,4T1,3 T1,2T1,1T2,4T3,3 T2,3 T2,2 T2,1T3,2 T3,1TA,2TA,3

© 2008 Universität Karlsruhe (TH), System Architecture Group 35

CPU 2

CPU 3

Policy: Assign “best fitting thread”
Drawback:
You may have to look through the entire ready queue,
i.e. O(n)-scheduler

CPU 1T1,5 T1,4 T1,3 T1,2 T1,1

TA,1TA,2TA,3

Anonymous Ready Queue

Anonym. & Dedic. Ready Queues

SMP Ready Queues

Dedicated Ready Queues

© 2008 Universität Karlsruhe (TH), System Architecture Group 36

CPU 2

CPU 3

T2,4 T2,3 T2,2 T2,1

T3,3 T3,2 T3,1

Policy: Prefer dedicated threads
First look up in appropriated
dedicated queue.
When empty look up
in the anonymous queue

CPU 1

SMP Ready Queues

Anonym. & Dedic. Ready Queues

T1,5 T1,4 T1,3 T1,2 T1,1

TA,1TA,2TA,3

Anonymous Ready Queue

Dedicated Ready Queues

© 2008 Universität Karlsruhe (TH), System Architecture Group 37

CPU 2

CPU 3

Policy: Strictly prefer threads with
higher priority
Compare the head of the
appropriate dedicated queue
with the head of the
anonymous queue
Pick the one with the higher priority

T2,4 T2,3 T2,2 T2,1

T3,3 T3,2 T3,1

RealReal--Time SchedulingTime Scheduling

38© 2008 Universität Karlsruhe (TH), System Architecture Group

RT Scheduling

Real-Time Scheduling

 Correctness of the system may depend
 not only on the logical result of the computation
 but also on the time when these results are

produced, e.g.

© 2008 Universität Karlsruhe (TH), System Architecture Group 39

 tasks attempt to control events or to react to events
that take place in the outside world

 These external events occur in “real time” and
processing must be able to keep up with them

 Processing must happen in a timely fashion,
neither too late, nor too early.

Real Time System (RTS)

 RTS accepts an activity A and guarantees its
requested (timely) behavior B if and only if
RTS finds a schedule that
 includes all already accepted activities Ai and

h

RT Scheduling

© 2008 Universität Karlsruhe (TH), System Architecture Group 40

the new activity A,

 guarantees all requested timely behaviors Bi and B, and

 can be enforced by the RTS.

 Otherwise, RT system rejects the new activity A.

Typical Real Time Systems

 Control of laboratory experiments

 Robotics

 (Air) Traffic control

 Controlling Cars / Trains/ Planes

RT Scheduling

© 2008 Universität Karlsruhe (TH), System Architecture Group 41

Remark:
Some applications may have only soft real-time requirements,
but some have really hard real-time requirements

g / /

 Telecommunications

 Medical support (Remote Surgery, Emergency room)

 Multi-Media …

Hard Real-Time Systems
Requirements:

Must Must alwaysalways meet all deadlines meet all deadlines (time guarantees)

You must guarantee that these applications are done
in time, otherwise a catastrophe might happen

RT Scheduling

© 2008 Universität Karlsruhe (TH), System Architecture Group 42

Examples:

1. If the automatic landing of a jet cannot react to sudden
side-winds within some ms a severe crash might occur.

2. An airbag system or the ABS has to react within some ms

3. Remote scalpel in a surgical operation must immediately
follow all movements of the surgeon

Soft Real-Time Systems

Requirements:

Must Must mostlymostly meet all deadlines, e.g. in 99.9%meet all deadlines, e.g. in 99.9%

Examples:

RT Scheduling

© 2008 Universität Karlsruhe (TH), System Architecture Group 43

 Multimedia: 100 frames per day might be dropped
(late)

 Car navigation: 5 late announcements per week are
acceptable

 Washing machine: washing 10 sec over time might
occur once in 10 runs, 50 sec once in 1000 runs.

Examples of SchedulingExamples of Scheduling

44© 2008 Universität Karlsruhe (TH), System Architecture Group

Linux 2.4 Scheduling

 Linux offers three scheduling policies

 A traditional scheduler SCHED_OTHER1

 Two soft-real-time scheduler (mandated by Posix.1b)

 SCHED FIFO

© 2008 Universität Karlsruhe (TH), System Architecture Group 45

 SCHED_FIFO

 SCHED_RR

 They give the CPU to a real-time process whenever such a
real-time process become ready (except when already a
real-time process is executing)

1These three scheduling policies are an attribute of the TCB

Priorities

 Static “priority”
 Maximum size of the time slice a process should be allowed

before being forced to allow other processes to compete for
the CPU

 Dynamic priority

© 2008 Universität Karlsruhe (TH), System Architecture Group 46

y p y
 Amount of time remaining in this time slice; declines with

time as long as the process runs on the CPU
 When its dynamic priority is 0, the process is marked for

rescheduling

 Real-time priority
 Only real-time processes can get the real-time priority values
 Higher-real-time priority values always beat lower priorities,

i.e. preempt the corresponding process

Related Entries in the TCB
long counter

long nice

unsigned long policy

struct mm struct *mm

Time remaining in the process’s
current quantum (~dyn. priority)
process’s nice value, -20 … +19
(~ static prio)
SCHED_OTHER, …_FIFO. …_RR

points to the memory descriptor

© 2008 Universität Karlsruhe (TH), System Architecture Group 47

_

int processor

unsigned long cpus_runnable

unsigned long cpus_allowed

struct list_head run_list

unsigned long rt_priority

p y p

CPU ID on which process will run

CPUs allowed to run

head of the run_queue

real-time priority

Linux 2.4 Real-Time Scheduling

 SCHED_FIFO
 The corresponding real-time process runs until it either

blocks on I/O, blocks to another waiting event, explicitly
yields the CPU, or is preempted by another real-time process
with a higher real-time priority

© 2008 Universität Karlsruhe (TH), System Architecture Group 48

 Acts as it has an unbounded time-slice

 SCHED_RR
 As above except that time-slice matters, i.e. when a

SXCHED_RR process’s time-slices expires, its PCB is
appended to the corresponding run-sub-queue to give other
SCHED_RR processes with the same priority the chance to
run instead of

Linux 2.4 Scheduling Quanta

 Linux gets a timer interrupt (or tick) once
every 10 ms on a IA-32
 An ALPHA port of the Linux kernel issues 1024

ticks per second

© 2008 Universität Karlsruhe (TH), System Architecture Group 49

 Linux wants the time slice to be ~ 50 ms

Linux 2.4 Epochs

 Linux scheduling works by dividing the CPU
time into epochs
 In a single epoch, every process has a specific

time quantum whose duration is computed when
the epoch begins

© 2008 Universität Karlsruhe (TH), System Architecture Group 50

p g

 The epoch ends when all runnable processes have
exhausted their time quanta

 The scheduler recomputes the time-quanta of all
processes and a new epoch begins

 The base time quantum of a process is
computed according to its nice value

Selecting the next Process to run

repeat_schedule:
next = idel_task(this_cpu);
c = -1000;
list_for_each(tmp,&runqueue_head({

p = list_entry(tmp, struct task_struct, run_list);
if (h d l (thi)){

© 2008 Universität Karlsruhe (TH), System Architecture Group 51

if (can_schedule(p, this_cpu)){
int weight = goodness(p, this_cpu,

prev->active_mm);
if (weight >c) c = weight, next =p;

}
}

Recalculating Counters

if(unlikely(!c) { /new epoch begins …*/
struct task_struct *p;
spin_unlock_irq(&runqueue_lock);

read_lock(&tasklist_lock);
for each task(p)

© 2008 Universität Karlsruhe (TH), System Architecture Group 52

for_each_task(p)
p->counter =(p->counter >>1)+

NICE_TO_TICKS(p->nice);
read_unlock(&tasklist_lock);
spin_lock_irq(&runqueue_lock);
goto repeat_schedule);
}

Calculating goodness()

static inline int goodness(p, this_cpu, this_mm){
int weight = -1;
if (p->policy == SCHED_OTHER){

weight =p->counter;
if (!weight) goto out;
if (p->mm == this mm || !p->mm)

© 2008 Universität Karlsruhe (TH), System Architecture Group 53

(p _ || p)
weight += 1;

weight +=20 – p->nice;
goto out;

}
weight = 1000 + p->rt_priotity;

out: return weight;
weight = 0 i.e. p has
exhausted its quantum
0 < weight < 1000
P is a conventional process
weight >= 1000
p is a real-time process

Linux 2.4 Scheduler NOT Scalable

 The run_queue is protected by one run
queue lock

 As the number of CPUs increases, lock contention
also increases

© 2008 Universität Karlsruhe (TH), System Architecture Group 54

 It is expensive to recalculate goodness() for every
process on every invocation of the scheduler
 A profile of the Linux 2.4 kernel during the VolanoMark

benchmark runs showed that 37-55% of total time spent
in the kernel is spent in the scheduler

 VolanoMark benchmark establishes a socket connection
to a chat server for each simulated chat room user. For a
5 to 25-chatroom simulation, the kernel must potentially
live with 200 to 400 threads.

Linux 2.4 Scheduling Quanta

 with epochs and time-quanta
 The life of a process is subdivided into epochs
 Time-quanta are dependent on the processes

and their epochs

© 2008 Universität Karlsruhe (TH), System Architecture Group 55

and their epochs
 Each process has a time-quanta base, i.e. nice

value
 20 ticks ~ 210 ms
 Time-quanta decreases periodically with every tick
 quantum = quantum/2 +(20-nice)/4 +1

Linux 2.4

 Kernel distinguishes between 3 scheduling policies
 FCFS for preemptable, cooperative real-time processes

 RR for time-sliced real-time processes

 Priority based (+RR) for all other time-shared processes

 Process selection depends on a quality function c in O(n):

© 2008 Universität Karlsruhe (TH), System Architecture Group 56

c = -1000 if process is the init process

c = 0 if process has expired its time quantum

0 < c < 1000 if process has not expired its time quantum

c  1000 if process is a real-time process

 Processes (KLTs) can get a bonus (boost) if they share an AS
with the process (KLT) that has been executing before on the
same CPU

Hint:
Study slides of the corresponding talks of previous Proseminars “Linux Internals”

Linux 2.5 Scheduler with O(1)

 Any scheduling is done with constant complexity
 There are two tables per processor: active and expired

 Priorities:
 1 – 100 for real-time processes

 101 – 140 for best-effort processes

© 2008 Universität Karlsruhe (TH), System Architecture Group 57

p

 Per priority level a double linked list per table

 Priorities of best effort processes depend on degree of their
interactivity, i.e.
 bonus = -5 for interactive and bonus = +5 for compute bound

 New calculation at the end of a time-slice, i.e.: prio = MAX_RT_PRIO +
nice + 20 + bonus

 Having expired its time quantum the PCB is handed over to the
corresponding expired table

 If no element is left over in the active-table the role of both tables
is switched, i.e. we have a change of epoch tables

Scheduling

14
15 If n>2 processors are available,

(n 1) are busy with the (n 1) highest

Windows NT Priority

Windows supports fixed priorities [16, 31] for real-time applications.
Time-shared applications may change their priorities within [0,15]
according to their behavior concerning I/O bursts and CPU bursts.

© 2008 Universität Karlsruhe (TH), System Architecture Group 58

Process(task)
Priority

Thread’s Base
Priority

Thread’s Dynamic
Priority

0
1
2
3
4
5
6
7
8
9

10
11
12
13

base priority

highest
above normal

normal
below normal

lowest

(n-1) are busy with the (n-1) highest
priority threads whereas the remaining
processor executes all remaining
ready threads.
You have the ability to pin a task
or its threads to specific processors.

Scheduling

Priority Global Scheduling

UNIX SV”R4” Scheduling
Set of 160 priority levels divided into three priority classes
Because basic kernel is not preemptive some spots called
preemption points have been added, allowing better reaction
times for real-time applications

© 2008 Universität Karlsruhe (TH), System Architecture Group 59

Class Value Sequence

Real-time

159

100

first

last

Kernel
99

60

0

59

Time-shared

.

..

.

.

.

.

.

.

.

A dispatching queue per priority is implemented,
processes on the same priority level are executed in RR.

Real-time processes have fixed priorities (and fixed time slices,)
time-shared processes have dynamic priorities and varying
time slices in the range [10, 100] ms.

Unix 4.3 BSD

 MLFQ 32 ready queues, each per RR + dynamic
priorities  [0,127]

 How to determine the dynamic priorities p_usrpri?

 After each 4th tick (~ 40 ms)

© 2008 Universität Karlsruhe (TH), System Architecture Group 60

 p_usrpri = PUSER+[p_cpu/4]+2*p_nice
 with p_cpu = p_cpu +1 with each tick (10 ms)
 with weigth: -20  p_nice  20

 Smoothing of CPU utilization p_cpu per s
 p_cpu = 2*load/(2*load+1)*p_cpu+p_nice
 however, processes with sleep-time > 1 s
p_cpu = (2*load/(2*load+1))p_slptime * p_cpu

Unix 4.3 BSD Example

 Assumption 1: average load = 1 
p_cpu = (2*1)/(2*1+1)*P_cpu + p_nice

= 0.66*p_cpu + p_nice

 Assumption2: process collects Ti ticks in time interval i

 Assumption 3: p nice = 0

© 2008 Universität Karlsruhe (TH), System Architecture Group 61

 Assumption 3: p_nice = 0

 p_cpu = 0.66*T0
= 0.66*/T1+0.66*T0)= 0.66*T1 + 0.44*T0
= 0.66*T2 + 0.44*T1+ 0.3*T0
=0.66*T3 + …+ 0.20*T0
=0.66*T4 + … +0.13*T0

 After 5 s only 13% of the primary CPU load are counted to get a
new p_cpu value

Summary: Scheduling Parameters

 Priority
 Static versus dynamic priority
 How to distinguish between I/O-bound and compute bound

processes?
 When and how much to increase the priority of an I/O-

bound process

© 2008 Universität Karlsruhe (TH), System Architecture Group 62

bound process
 How to perform aging to prevent starving

 Time slice (quantum)
 I/O bound processes do not need long time slices
 CPU bound processes prefer long time slices
 Short time slice: switching overhead
 Long time slices: poor response time for interactive

processes?
 Higher priority means longer time slices?

Scheduling

Recommended Reading
 J. Apoovo et al.: “Scheduling in K 42”
 Bacon, J.: Operating Systems (6)
 Nehmer, J.: Grundlagen moderner BS (5)
 Stallings, W.: Operating Systems (9,10)
 Silberschatz, A.: Operating System Concepts (5)

© 2008 Universität Karlsruhe (TH), System Architecture Group 63

 Tanenbaum, A.: Modern Operating Systems (2, 8)
 Wettstein, H.: Systemarchitektur (9)
 Stöß, J.: Using OS Instrumentation and Event

Logging to Support User-Level Multi-
processor Schedulers, Diplomarbeit 2005

 Stöß, J. et. Al.: Flexible, Low-Overhead Logging to
support Resource Scheduling,
ICPADS 06, Minneapolis, July 2006

Scheduling

Recommended Reading

 Nussbaum, D. et al.: Chip Multithreading Systems need a New
OS Scheduler”, SIGOPS, 2004

 T. Anderson et al.: The Performance Implications of Thread
Management Alternatives for SMP”, SIGMETRICS, 1989

 T. Anderson et al.: “Scheduler Activations: Effective Kernel

© 2008 Universität Karlsruhe (TH), System Architecture Group 64

 T. Anderson et al.: Scheduler Activations: Effective Kernel
Support for the User-Level Management of Parallelism”, SOSP,
1991

 J. Barton et al.: “A Scalable Multi-Discipline Multiple-Processor
Scheduling Framework for IRIX”, IPPS, 1995

Scheduling

Recommended Reading
 F. Bellosa: “Follow-on Scheduling: Using TLB Information to

Reduce Cache Misses”, SOSP 1997

 F. Bellosa et al.: The Performance Implications of Locality
Information Usage in SMPs”, Journal of Parallel and Distrnbuted
Computing, 1996

 D. Black: “Scheduling Support for Concurrency and Parallelism
in the Mach OS” IEEE Computer 1990

© 2008 Universität Karlsruhe (TH), System Architecture Group 65

in the Mach OS , IEEE Computer, 1990

 Casavant,T.L.; Kuhl,J.G.: A Taxonomy of Scheduling in General-
Purpose Distribute Computing Systems”, IEEE Trans. O.
Software Engineering, 1998

 G. Feitelson. "Job Scheduling in Multiprogrammed Parallel
Systems". IBM Research Report RC 1979.

 H. Franke et al.: PMQS: Scalable Linux Scheduling for High End
Servers”, 5. Annual Linux Showcase and Conference, 2001

Scheduling

Additional Reading

 D. Ghosal et al.: “The Processor Working Set and its Use in
Scheduling SMPs”, IEEE Transactions on Software Engineering,
1991

 A. Gupta et al.: The Impact of OS Scheduling Policies and
Synchronization Methods of Performance on Parallel
Applications”, SIGMETRICS, 1991

© 2008 Universität Karlsruhe (TH), System Architecture Group 66

 L. Kontothanassis te al.: Scheduler-Conscious Synchronization”,
ACM Transactions on Computer Systems, 1995

 S. Leutenegger et al.: The Performance of Multiprogrammed
SMP Scheduling Policies”, SIGMETRIVCS, 1990

 B. Marsh et al.: First-Class User Level Threads, SOSP, 1991

Scheduling

Recommended Reading

 J. Ousterhout: “Scheduling Techniques for Concurrent Systems”,
ICDCS, 1982

 K. Sevcik: “Characterizations of Parallelism in Applications and
their Use in Scheduling”, SIGMETRICS, 1989

 M. Squillante et al.: “Using Processor Cache Affinity Information
in SMP Scheduling” IEEE on Parallel and Distr Systems 1993

© 2008 Universität Karlsruhe (TH), System Architecture Group 67

in SMP Scheduling , IEEE on Parallel and Distr. Systems, 1993

 A. Tucker et al.: “Process Control and Scheduling Issues for
Multiprogrammed SMPs”, SOSP, 1989

 S. Zhou et al.: “Processor-Pool Based Scheduling for Large-Scale
Numa Multiprocessors”, SIGMETRCS, 1991

Scheduling

Agenda

 Classification of SMPs

 Motivation

 Handling Interrupts

 Handling New Threads

© 2007 Universität Karlsruhe (TH), System Architecture Group
68

 SMP Scheduling Policies

 SMP Ready Queues

 Real-Time Scheduling

 Examples
 Linux, Unix, Windows
 User Level Scheduling of L4-SMPs

Not examined

Not examined

