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Scheduling?

 Any scheduling is correlated to some policy
 A scheduling policy can depend on:

 kind of usage of the HW/SW resource
 CPU versus I/O scheduling

 operating mode of system
b t h i t ti l ti
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 batch, interactive, real-time

 instant of time when scheduling takes place
 online versus offline

 predictability of process/thread behavior
 deterministic or probabilistic

 symmetric versus asymmetric scheduling
 With symmetric scheduling each CPU is assumed to can execute each 

process/KLT

 computer architecture (UP versus MP)
 duration of scheduling (long-, medium, short-term scheduling) 



CPU Scheduling Environment
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 Earlier, we talked about the life-cycle of a process/thread
 Activated threads work their way from ready queue to running (queue)

to various waiting queues.

 How does OS decide which of several threads to take off of a queue?
 Most interesting queue to worry about is the ready queue
 However, the other queues can be scheduled as well

 Scheduling: deciding which activities (e.g. processes/KLTs) are given 
the chance to use the resources (e.g. CPU, …) 



Scheduling

General* Scheduling Problem

When to assign executable units (processes, KLTs) 
to executing units (e.g. CPUs)?

 general criteria for scheduling?

ll t l
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*Simplification: Focus only on the resource CPU

 overall system goals

 specific constraints
 time-critical processes/KLTs should meet their 

“deadlines”, i.e. they must execute in time, 
neither too early, nor too late



Scheduling

Classes of Scheduling Problems

Levels of scheduling:

 Scheduled Unit (SU) = task, i.e. application, 
e.g. which task should be admitted next (and for how 
long) and/or which task must wait until  enough 
system capacity
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system capacity

 SU = process/KLT (of multi-threaded application), e.g. 
which admitted process/KLT should run on which CPU 
and/or which threads should stay in the ready state 
even if some CPUs are available again

 SU = sequence of operations of a thread on a 
pipelined or superscalar CPU



Scheduling

Concrete Scheduling Problems

 Assume: in a multi-programming system 
n ≥ 1 KLTs are ready

 Which of these ready KLTs should run next?

’ h b
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 On your PC you’re watching a YouTube 
video 
 How to manage that all the network software, 

decoding, output to screen and audio is well 
done even though in the background you have 
initiated a heavily compute-bound process



Scheduling

Duration of Scheduling
Admission 

control
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Long-term     [s – min] which process to admit
Medium-term [ms - s] which process to swap in/out
Short-term     [µs –ms] which process to run next

Swapper CPU 
Scheduling



Scheduling

Goals of Long-Term Scheduling

Good mixture1 & high population of admitted tasks
 application tasks (and system tasks) 

 degree of “multiprogramming” (as high as possible?)

Consequences when more processes/tasks are admitted
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 It is less likely that all tasks will be blocked awaiting some 
event
 better CPU usage (at least some times)

 Each task has less fraction of the CPU
 longer turnaround/response time

1To find a good mixture you must be able to predict the 
behavior of all applications and system processes/tasks



Scheduling

Medium-Term Scheduling

Swapping decisions based on the need to
manage the multiprogramming degree

Done in context with memory management
software e g swapping policy
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software, e.g. swapping policy
 (discussed in later chapters) 

 or by some specialized regulating module

 see load control in VM
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Short-Term or CPU Scheduling

The short term scheduler selecting a new KLT/process
from the ready queue(s) can be invoked on one of
the following events:

 interrupt
 clock or I/O or ?
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 clock or I/O or …?

 exception
 page fault or …?

 system call
 yield() or exit() or …?

 notification from another KLT/process
 signal, send_message  or …? 



Scheduling

?

CPU 1

CPU 2

T1
T2
T3
T4

T5

Abstract Scheduling Problem
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How to assign these 6 threads to 3 CPUs?
Is there an optimal schedule?

As long as there is no scheduling criterion or an 
accepted performance measure, we can neither 
produce a good, nor a bad schedule

CPU 3
T5
T6



Scheduling

?

CPU 1

CPU 2

4

1

T1
T2
T3
T4

T5

5

3

2

Abstract Scheduling Problem
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CPU 3
T5
T6

3
2

Maximal turnaround time

time0

CPU1

CPU2

CPU3

6

Gantt 
chart

Result:
Quite a good schedule 
if we try to minimize 
max. turnaround time
Scheduling policy = LPT
(Longest Processing Time First)
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Scheduling Criterions

 User oriented
 Response time

 Turnaround time

 Meeting the deadlines

Predictability
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 Predictability

 System oriented
 Throughput

 CPU utilization

 Fairness

 Priorities

 Load balance



 High processor utilization
 ~ percentage a processor is not idle

 High throughput
 number of threads completed per unit of time

L d i

Scheduling

Quantitative Metrics
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 Low turnaround time
 time elapsed from the submission of a request (activation 

of a thread) to its completion

 Low response time
 time elapsed from the submission of a request to the 

beginning of a response activity

 Low waiting time
 Time spent in waiting and ready queues(s)



What influences Waiting Times?

 Contributions to the waiting time?

1. Time a process is blocked, i.e. due to
 a missing message

 missing input data
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 missing input data, …

2. Time a process spends in the ready queue



Scheduling

Major Qualitative Metrics

 No (or low) deadline violation
 meeting all deadlines (if possible)

 High predictability
 low variance in turnaround times and/or response times of a 

specific task
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 High fairness
 few starving applications
 In MULTICS, shutting down the machine, they found a “10 

year old job”

 High robustness
 (Few) NO system crashes 



Scheduling Batch Systems

 Fairness
 Often first come first served 

 Load balancing

M i i th h t
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 Maximize throughput
 Maximize income of computer service

 Turnaround time
 Minimize maximal turnaround time

 CPU utilization



Scheduling Interactive Systems1

 Minimize average response time

 Time between waiting & next I/O

 Provide output to user as quickly as possible

Scheduling
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 Process input as soon as received

 Minimize variance of response time
 To enhance predictability 

 Even a higher average can be better than a lower 
one, iff you can guarantee a low variance

1This & next slide from: Emery Berger, Univ. of Mass., Amherst



Scheduling Servers

 Maximize throughput
 Minimize OS overhead, context switching

 Make efficient use of CPU & I/O devices
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 Minimize waiting time
 Give each process same time on CPU

 Might increase average response time



Scheduling

Priorities
Problems:
Who is allowed to determine priorities?

 Either user itself or a user-specific medium-term scheduler

High priority value  high or low priority?
 Differs from system to system (Unix = Linux it’ s inverse)
 In KIT: high priority value = high priority
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g p y g p y

Scheduler always prefers threads of “higher priority”
 low-priority threads may suffer from starvation

To reduce starvation a potentially starving thread
should be able to improve its priority value based upon

 its age (see privileges of a senior pass) or  
 its (non) execution history, i.e. its waiting time



Scheduling

Components of Scheduling Policy

 Selection function determines which ready thread will 
run next, i.e. 
 it selects the next running thread amongst the ready set(s)

 Decision mode specifies the events when the selection 
function will be executed
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function will be executed
 Non preemptive

Once a thread is running, it will continue until it terminates, 
or yields, or blocks (e.g. due to I/O, page fault etc.)

 Preemptive
Running thread is preempted (put back → ready 
queue)

a) when more urgent work has to be done or 
b) when it has expired its time slice



Scheduling

The CPU- I/O-Cycle

 Threads require alternate usage of CPU and 
synchronous I/O* and other causes for waiting times

 Each cycle: CPU burst followed by an I/O burst**

 Thread either terminates voluntarily during a CPU
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 Thread either terminates voluntarily during a CPU 
burst or it is preempted during an I/O or CPU burst 
by another thread (process)

 Typically CPU-bound threads have longer CPU bursts 
than I/O-bound threads

* Any advantages with asynchronous I/O?
** Each I/O burst is much longer than a typical CPU burst



Scheduling

frequency
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Many short 
CPU bursts

Histogram of CPU-Bursts
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Remark: Above histogram is taken from Silberschatz 
Don’t rely anymore on the absolute values of time 

burst duration (ms)
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Scheduling

Thread Arrival Time Service Time

1
2
3

0
2
4

3
6
4

Example Scheduling Problem*
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4

5

6

8

5

2

Service time = total processor time needed 

“Jobs” with “long service time” are CPU-bound jobs 
~ “long jobs” (see thread 2 above)

*Example is used to analyze effects of various scheduling policies



Scheduling

First Come First Served Policy 
(FCFS)

Selection function: select the oldest ready thread
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Remark: Many things in daily life are scheduled 
according to FCFS. It’s fair & quite simple

Selection function: select the oldest ready thread
Decision mode: non preemptive, thread runs until it  

 cooperates (e.g. yields) or
 blocks itself (e.g. initiates an I/O) or
 does an exception (being killed) or
 terminates



How to implement effective FCFS?

 Admitting a new process/KLT is quite easy, i.e. just 
append it to the ready queue
 All the other ready activities must be older
 Assume: your admission control had not swapped out

How to deal with a process/KLT when it is unblocked
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 How to deal with a process/KLT, when it is unblocked, 
i.e. when it enters the ready queue again?
 It has been waiting for a while,  simple appending does not 

help, because in the ready queue might be younger ones

 Use a time stamp when the process/task has been 
created (or admitted for the first time)
 Sufficient for an effective FCFS?



Scheduling

Analysis of Non Preemptive FCFS

Convoy effect: a couple of short runners behind 
a long runner

Processes with few I/O can cause a tailback in
front of the CPU thus monopolizing the CPU
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front of the CPU, thus monopolizing the CPU

FCFS implicitly favors CPU-bound processes/KLTs:

 I/O-bound threads have to wait after each I/O 
until the current running thread leaves the CPU 

 Low usage of I/O devices



Scheduling

Round Robin (Time Slicing)

S l ti f ti l t fi t th d i d
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Selection function: select first thread in ready queue

Decision mode: (“time”) preemptive
 A process/KLT is allowed to run until its time slice TS 

ends  (TS  [1, 100]* ms)

 When a timer interrupt occurs, the running 
process/KLT is appended to the ready queue

*Depends on application and HW system



Scheduling

Size of Time Slice

Turnaround time
of CPU burst
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Recommendation (initially Unix TS = 1 s):
1. TS larger than time required to handle clock interrupt + 

dispatching, otherwise inefficient
2. TS larger than execution time of a typical interaction CPU burst

(but not too large to avoid penalizing I/O bound jobs),
otherwise ineffective and more and more like FCFS



FCFS versus RR
 Assuming zero-cost switch-time, is RR always better than FCFS?
 Simple example: 10 KLTs, each take 100s of CPU time

RR scheduler quantum of 1s
All KLTs start at the same time

 Completion Times:
Job # FIFO RR

1 100 991

2 200 992

© 2008 Universität Karlsruhe (TH) System Architecture Group
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 Both RR and FCFS finish at the same time, i.e max. TT is identical
 Average turnaraound time is much worse under RR!

 Bad when all KLTs have same pure execution time
 Also: Cache state must be shared between all jobs with RR but 

can be devoted to each job with FIFO
 Total time for RR much longer even for zero-cost switch!

2 200 992

… … …

9 900 999

10 1000 1000



Scheduling

Analysis of Round Robin

 Inherently favors CPU-bound threads
I/O bound thread doesn’t use up its TS, it is blocked 
waiting for I/O. CPU-bound thread uses its TS, is put 
back to ready queue  it can overtake an I/O-bound 
thread several times (failed box stop in formula 1)
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 Haldar’s “approach”: Virtual Round Robin
When I/O has completed, blocked KLT is moved to an 
auxiliary queue (preference over main ready queue)
“Such a thread being dispatched from the auxiliary queue, runs 
no longer than the basic time quantum “minus” the time it was 
running in its previous TS

How to improve this approach?



Scheduling

Queuing Model: Virtual RR

How to order auxiliary queue?
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Problem with 1 or 2 Queues

CPU

ready queue

auxiliary queue
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T3T1

blocked set

End of I/O for T2T2

T2



Problem with 1 or 2 Queues

CPU

ready queue

T2append new or
time sliced threads

insert previous 
blocked threads
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T3T1

blocked set

End of I/O for T2T2



Scheduling

Terminate

Terminate

Multilevel Feedback*

P
R
I
O
R
I
T
y
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Terminate

Selection function: first thread in highest ready queue

Decision mode: Preemptive (at least due to time slices)
However, you may also add priority 
preemption

y

1CTSS started in 1961 at MIT (reused in MULTICS)



Scheduling

Time Quanta: Multilevel Feedback 
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With fixed time quanta turnaround times of long threads can stretch
out alarmingly, i.e. average turnaround time of long runners increase

increase time quanta according to level of the queue

Example: time quantum of RQi = 2i-1



If we would know the Future?

 Shortest Job First (SJF):
 Run whatever job has the least amount of 

computation to do
 Sometimes called “Shortest Time to 

Completion First” (STCF)
 Shortest Remaining Time First (SRTF):

P ti i f SJF if j b i d h h t ti t

© 2008 Universität Karlsruhe (TH), System Architecture Group 41

 Preemptive version of SJF: if job arrives and has a shorter time to 
completion than the remaining time of the current job, immediately 
preempt CPU

 Sometimes called “Shortest Remaining Time to Completion First” 
(SRTCF)

 These can be applied either to a whole program or to the 
current CPU burst of each program
 Idea is to get short jobs out of the system
 Big effect on short jobs, only small effect on long ones
 Result is better average turnaround & response time



Scheduling

Estimating next CPU Burst

 Let T[i] be execution time for i-th instance of this thread, 
i.e. the actual duration of the i-th CPU burst of this thread

 Let S[i] be the predicted value for the i-th CPU burst of 
this thread. The simplest choice is:
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p
S[n+1] = (1/n) {i=1 to n} T[i]

 To avoid recalculating entire sum we can rewrite this as:

S[n+1] = (1/n) T[n] + ((n-1)/n) S[n]

This convex combination gives equal weight to each instance



Scheduling

Estimating next CPU Burst

Recent instances are more likely to reflect future behavior,
 use exponential averaging 

S[n+1] =  T[n] + (1- ) S[n]  ;    0 <  < 1

more weight is put on recent instances whenever  > 1/n
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more weight is put on recent instances whenever  > 1/n

 weights of past instances are decreasing exponentially

S[n+1] = T[n] + (1-)T[n-1] + ... + (1-)T[n-i] + ... 
+ (1-)nS[1]

predicted value of 1st instance S[1] is not calculated; 
usually set to 0 to give a standard priority to new threads



Scheduling

Exponentially Decreasing Averaging 
Coefficients
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Scheduling

Use of Exponential Averaging 
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Here S[1] = 0 to give high priority to new threads. Exponential averaging 
tracks changes in threads behavior much faster than simple averaging



Scheduling

Analysis of (R)SJN 

 Starvation for long processes/KLTs as long as 
there is a steady supply of short ones

 Without preemption  not suited in time sharing 
systems, CPU bound KLT gets lower preference, but 
a thread doing no I/O still can monopolize the CPU 
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 (R)SJN implicitly incorporates priorities: shorter jobs 
are given preferences, but RSJN is not fair

 Somehow need to predict the future
 How can we do this? 
 Some systems ask the user

 When you submit a job, have to say how long it will take
 To stop cheating, system kills job if takes too long

 But: Even non-malicious users have trouble predicting 
runtime of their jobs



Scheduling

Highest Response Ratio Next*

Response Ratio (~ inherent a dynamic priority):
r := (waiting-time + processing-time) / processing-time

Selection function: thread with highest response ratio 
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Decision mode: non preemptive

Comment: Shorter jobs are favored, however, 
longer jobs do not have to wait 
forever, because their response 
ratio increases the longer they wait.

*Tanenbaum’s Guaranteed Scheduling



Lottery Scheduling

Scheduling

 Give each process/KLT some lottery tickets 

 On each TS, randomly pick a ticket, ticket owner gets 
CPU (~lottery)

 Scheduling behavior is dependent on number of
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 Scheduling behavior is dependent on number of 
tickets a process/KLT owns

 How to assign tickets?
 To approximate SRTF, short runners get more, long runners 

get fewer

 To avoid starvation, every job gets at least one ticket 
(everyone makes progress)



Lottery Scheduling

Scheduling

 Advantage over strict priority scheduling: 
behaves gracefully as load changes
 Adding or deleting a process/KLT affects all others 

proportionally, independent of how many tickets 
each one possesses
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each one possesses

 Task can hand over ticket to other tasks, e.g. 
a client to a server (called “ticket donation”)

 How to implement tickets and ticket picking?



Example: Lottery Scheduling

 Assume short jobs get 10 tickets, long jobs get 
1 ticket

# short jobs/ % of CPU each % of CPU each 
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j /
# long jobs

o U a
short jobs gets

o U a
long jobs gets

1/1 91% 9%

0/2 N/A 50%

2/0 50% N/A

10/1 9.9% 0.99%

1/10 50% 5%
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Fair Share Scheduling

In a multi-user system, each user can run several tasks
concurrently, each one consisting of some threads

Users may belong to user groups and each user group
should have its fair share of the CPU

This is the basic philosophy of fair share scheduling

© 2008 Universität Karlsruhe (TH), System Architecture Group 51

This is the basic philosophy of fair share scheduling

Example: 
If there are 4 equally important departments (groups)
and one department has more threads than the others,
degradation of response time or turnaround time
should be more pronounced for that department
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The Fair Share Scheduler

Has been implemented on some Unix OSes.  Processes (tasks) are
divided into groups, group k gets a fraction Wk of the CPU-capacity

The priority Pj[i] of process j (belonging to group k) at time interval i 
is given by:

P [i] B + (1/2) CPU [i 1] + GCPU [i 1]/(4W )
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Pj[i] = Bj + (1/2) CPUj [i-1] + GCPUk[i-1]/(4Wk)

A high value means a low priority
Process with smallest Pj[i] is executed next
Bj = base priority of process j

CPUj[i] = Exponentially weighted average of processor usage by 
process j in time interval i

GCPUk[i] = Exponentially weighted average processor usage by 
group k in time interval i



Scheduling

The Fair Share Scheduler

The exponentially weighted averages use a = 1/2:

CPUj[i] = (1/2) Uj [i-1] + (1/2) CPUj[i-1]

GCPUk[i] = (1/2) GUk [i-1] + (1/2) GCPUk [i-1]
where
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where
 Uj[i] = processor usage by process j in interval i
 GUk[i] = processor usage by group k in interval i 

Recall that

Pj[i] = Bj + (1/2) CPUj [i-1] + GCPUk[i-1]/(4Wk)

Priority decreases as the process and its group use 
the processor



Scheduling

Priority Scheduling

Selection function: ready thread with highest priority

Decision mode: preemptive (more complicated) or 
non preemptive

Drawbacks of non preemptive: Danger of
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Remark: Most PC-OSes offer priority based scheduling 
(with preemption and dynamic priorities.) + 
some sort of time slicing

Drawbacks of non preemptive: Danger of 
 starvation and/or
 priority inversion
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Analysis of Scheduling Policies

Which scheduling policy is the best one?

Answer may depend on:
 system workload (extremely variable)
 hardware support for dispatcher
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pp p
 relative weighting of performance criteria 
 (response time, CPU utilization, throughput...)
 evaluation method used (each has its limitations)

 Hence answer depends on too many factors 
to give a conclusive and satisfying answer



Evaluation of Scheduling Policies

 Deterministic models
 take a predetermined workload and compute the performance of 

each algorithm  for that workload

 Queueing models
 approach for handling stochastic workloads
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 Implementation/Simulation:
 Build system which allows actual algorithms to be run against real 

workloads/benchmarks
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Concluding Remarks
 Some scheduling gurus: “You can do all with priorities”

 Others: “Don’t use priorities at all”
 When do details of a scheduling policy  really matter?

 When there aren’t enough resources to go around

 When should you simply buy a faster computer?
 One approach: Buy it when it will pay 
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for itself in better turnaround times
 Might think that you should buy a 

faster X when X is utilized 100%, 
but usually, response time goes 
to infinity as utilization100%

 An interesting implication of this curve:
 Most scheduling algorithms work fine in the “linear” portion of the 

load curve and fail otherwise
  buy a faster CPU when you hit “knee” of curve

Utilization

Response
tim

e 100%
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Common Scheduling Policies

OSes supporting interactive applications often schedule 
with preemption

Commercial systems often use a combination of
 time slice mechanisms (i.e. preemption by time) and
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( p p y )
 priorities (classifying different task classes)

Priorities are often a combination of
 static part (classifying the task type)
 dynamic part mirroring the behavior of 

the task and/or overall load of the system
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