
System ArchitectureSystem Architecture

12 Deadlocks 12 Deadlocks

1© 2009 Universität Karlsruhe (TH), System Architecture Group

Resource Management
Deadlock Conditions

Dealing with potential Deadlocks

January 7 2009
Winter Term 2008/09

Gerd Liefländer

Literature

 Bacon, J.: Operating Systems (11, 18)

 Nehmer, J.: Grundlagen moderner BS (6, 7, 8)

 Silberschatz, A.: Operating System Concepts (7)

© 2009 Universität Karlsruhe (TH), System Architecture Group 2

 Stallings, W.: Operating Systems, 6

 Tanenbaum, A.: Modern Operating Systems (3)

Overview

Agenda

 Motivation & Introduction
 Examples
 Resource Management
 Visualization of Deadlocks

© 2009 Universität Karlsruhe (TH), System Architecture Group 3

 Necessary Deadlock Conditions
 Policies against Deadlocks

 Ostrich Algorithm
 Detection
 Avoidance
 Prevention
 Approach in the practice

 Two-Phase Locking (next ST in the data base course)

Motivation & IntroductionMotivation & Introduction

4© 2009 Universität Karlsruhe (TH), System Architecture Group

Deadlocks? First View

Mutual blocking of a “set of threads” either competing
for resources or interacting with each other
(via synchronization, cooperation or communication)

C fli b l 2 th d /

Overview

© 2009 Universität Karlsruhe (TH), System Architecture Group 5

 Conflicts by at least 2 threads/processes

State of the art::
No satisfying solution in all cases

Some commodity OSes don‘t bother with deadlocks at
all, e.g. the designer of SUN OS argued:

deadlocks will occur so scarcely

Starvation versus Deadlock

 Starvation: thread/process waits indefinitely
 Example, low-priority thread waiting for resources constantly

in use by high-priority threads
 Deadlock: circular waiting for resources

 Thread A holds resource R1 and is waiting for R2
Thread B holds resource R2 and is waiting for R1g

 Deadlock  Starvation but not vice versa
 Starvation can end (but doesn’t have to)
 Deadlock can’t end without external intervention

© 2009 Universität Karlsruhe (TH), System Architecture Group 6

R2R1

Thread B

Thread A wait for

wait for held by

held by

Example System DeadlockExample System Deadlock

7© 2009 Universität Karlsruhe (TH), System Architecture Group

Example 1: Nested CS

Thread T1 {
…
p(s1); /* outer CS */
…

/ /

Thread T2 {
…
p(s2); /* outer CS */
…

/ /

Examples

semaphore s1 = 1, s2 = 1;

© 2009 Universität Karlsruhe (TH), System Architecture Group 8

p(s2); /* inner CS */
…
…
…
v(s2);

v(s1);
}

p(s1); /* inner CS */
…
…
…
v(s1);

v(s2);
}

Some authors: “Nested CSs are severe design errors”

Wait(S1) Wait(S2)

Signal(S1)Signal(S2)

Thread1 Thread2

Allocate(R1)

Allocate(R)Allocate(R2)

Thread1 Thread2

Allocate(R2)

Example 2: Signals & Resources

Examples

© 2009 Universität Karlsruhe (TH), System Architecture Group 9

This is a program error

g (1)2 Allocate(R1)Allocate(R2)

Is this also a program error?

Yes, this timing may lead to deadlock
However, if T1 and T2 belong

to different applications?

Allocate(R)

Allocate(R1)

Allocate(R2)

Thread1

Thread2

Allocate(R2)Nevertheless, that
program is incorrect

What will
happen?

Example 2

Examples

© 2009 Universität Karlsruhe (TH), System Architecture Group 10

Allocate(R1)

Is this also a program error?

Can also run without a deadlock!

p g
because it can result

in a deadlock.

Deadlock analysis always requires “worst case” scenario.

Allocate(5)

Thread1 Thread2

Allocate(5)

Example 3: Limited Resources

Suppose, system offers 10 memory frames

Examples

© 2009 Universität Karlsruhe (TH), System Architecture Group 11

Allocate(5)

Allocate(1)Allocate(1)

Allocate(5)

Remark: Again, the system can result in an deadlock,
but does not run into a deadlock in any case

Resource ManagementResource Management

12© 2009 Universität Karlsruhe (TH), System Architecture Group

Resources Types

 Logical Resources
 Lock, Mutex, Semaphore. Buffer
 Container
 File
 Directory

Resource Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 13

y
 ...

 Physical Resources
 Memory (Cache, Main, Disk, …)
 Network
 Printer
 Display
 Keyboard
 ...

Resource Types

 Resources – passive entities needed by threads to do their work
 CPU time, disk space, memory, …

 Two types of resources:
 Preemptible – can take it away

 CPU, Embedded security chip, y p
 Non-preemptible – must leave it with the thread

 Disk space, plotter, chunk of virtual address space
 Mutual exclusion – the right to enter a critical section

 Resources may require exclusive access or may be sharable
 Read-only files are typically sharable
 Printers are not sharable during time of printing

 One of the major tasks of an OS is to manage resources

© 2009 Universität Karlsruhe (TH), System Architecture Group 14

allocate releaseuse use use use

Utilization Protocol (1)

Resource Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 15

Remark:
Utilization of an exclusive resource ~ handling a CS
i.e. allocate() ~ enter_CS(), e.g. p() and

release() ~ leaveCS(), e.g. v()

time

allocate releaseuse use use use

thread T1

Utilization Protocol (2)

Resource Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 16

thread T2

allocate

T1 should notify T2

T2 has to wait until T1
releases the resource

Resources

 Deadlocks can occur when …
 processes are granted exclusive access to devices

(resources)

 non preemptible resources

Resource Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 17

 non preemptible resources
 will cause the process to fail if they are taken away

 preemptible resources
 can be taken away from a previous resource holder

with no side effects

Resource Usage

 Protocol required to use a resource
1. allocate(R) resource //request for resource R

2. use(R) resource (… several times)

3. release(R) resource

Resource Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 18

 Caller must wait if request can not be fulfilled

 How to wait?
 In an active loop consuming CPU time?
 No, the requesting process should be blocked or
 it gets the bad news, that the resource is currently

held by someone else, so it can do something else
in the mean time (trying request)

Resource Management

Standalone Resource

A resource manager is some type of a monitor with the
following interface operations (methods):

1. allocate(r: resource)
release(r: resource)

© 2009 Universität Karlsruhe (TH), System Architecture Group 19

release(r: resource)

if resource r is of mutual exclusive resource type

Remark:
There are obvious similarities between the topics:
resource management and critical sections

Contiguous Resource

2. allocate(r:resource, p:integer, a:
address)
release(r:resource, p:integer,

Resource Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 20

a:address)

if the resource can be allocated piece by piece,
e.g. frames of RAM or block,

p specifies the number of contiguous frames etc.,

a specifies the address of the first entity.

Pool Resource

3. allocate(r:resource, p:integer,
a: address vector)

release(r:resource, p:integer,

Resource Management

© 2009 Universität Karlsruhe (TH), System Architecture Group 21

a:address vector)

if the resource can be allocated piece by piece,
e.g. frames of main memory,

p specifies the number of needed resources,

a specifies the vector of start addresses (RIDs) of the
p resources

~ exit_CS~ enter_CS

Kernel based Resource Management

Resource Management

application

© 2009 Universität Karlsruhe (TH), System Architecture Group 22

Data structures for
resource management

allocate_resource release_resource

Microkernel based RM

application

allocate release

abstract view

© 2009 Universität Karlsruhe (TH), System Architecture Group 23

Resource Manager

implementation

Deadlock &Deadlock &
Deadlock ConditionsDeadlock Conditions

24© 2009 Universität Karlsruhe (TH), System Architecture Group

Necessary Conditions

Do not mix up with the four
requirements of a valid solution
for the critical section problem

Formal Definition

Formal Definition:
A set S of processes (KLTs) is deadlocked if each
process (KLT) in the set S is waiting for an awaking
event that only another process (KLT) of the same
set S can cause

Deadlock Notions

© 2009 Universität Karlsruhe (TH), System Architecture Group 25

 Usually these “awaking events” , the blocked
processes (KLTs) are waiting for, are

 a release() notification of a held resource or

 a v() operation when exiting a CS or …

 …

1. Exclusiveness Only one process can use a resource
 a resource is either assigned to 1 process or is available

2. Hold and Wait Allocating/releasing of individual
resources occur at random (however, always allocate
before release)

h ld dd l

Conditions for Resource Deadlock

Deadlock Notions

© 2009 Universität Karlsruhe (TH), System Architecture Group 26

 process holding resources can request additional resources

3. No Preemption …from exclusive resources
 previously granted resources cannot forcibly taken away

4. Circular Wait Circular dependency
 must be a circular chain of at least 2 or more processes
 each waiting for resource held by the next member in the chain

Note: These conditions are necessary, they are not sufficient

Exclusiveness

In the system at least one resource must be
held in a non sharable mode, i.e. only a single
KLT (process) at a time can use this resource

Deadlock Notions

© 2009 Universität Karlsruhe (TH), System Architecture Group 27

If another KLT (process) requests the resource,
the requesting KLT (process) must be delayed
(e.g. blocked) until that resource is released by
the current resource holder

Hold and Wait

 KLT (process) holding at least one resource &
waiting to acquire additional resources
currently held by another KLT (process)

Deadlock Notions

© 2009 Universität Karlsruhe (TH), System Architecture Group 28

No Preemption

Resources cannot be preempted;
a resource can be released only voluntarily
by the KLT (process) currently holding it.

Deadlock Notions

© 2009 Universität Karlsruhe (TH), System Architecture Group 29

Circular Wait

There must exist a closed chain
of KLTs (processes) {T1,T2, …Tk},
such that each KLT (process) Ti holds at least
one exclusive resource needed by T

Deadlock Notions

© 2009 Universität Karlsruhe (TH), System Architecture Group 30

one exclusive resource needed by Ti+1,
the next KLT (process) in this chain!

VisualizationVisualization of of DeadlocksDeadlocks

31© 2009 Universität Karlsruhe (TH), System Architecture Group

PP

P requests
one of the two
objects of R2

Type R2Type R1

Resource Allocation Graph*

P holds R1

Deadlock Notions

© 2009 Universität Karlsruhe (TH), System Architecture Group 32

Remark: RAG = “means” to illustrate deadlocks —
or situations without a deadlock

* Peterson, Silberschatz

P2P2

R1

P2 holds R1

P1P1

P1 requests R1

Circular Wait Condition

Deadlock Notions

© 2009 Universität Karlsruhe (TH), System Architecture Group 33

P2P2P1P1
P1 holds R2

R2

P2 requests R2

The circular wait condition is sufficient for the existence of a deadlock
iff  only one object per resource type (one exemplar systems)

P R3

Specific Situations

Deadlock Notions

© 2009 Universität Karlsruhe (TH), System Architecture Group 34

Question:
Can a deadlock occur due to requests from threads P or Q?

Q
R1 R2

PP R3

Specific Situations

Deadlock Notions

© 2009 Universität Karlsruhe (TH), System Architecture Group 35

QQ
R1 R2

Yes, if R2 is given to P, then an
unsolvable circular wait exists. QQ

PP

R1 R2

R3

PP R3

T

Specific Situations

Deadlock Notions

© 2009 Universität Karlsruhe (TH), System Architecture Group 36

QQ
R1 2xR2

T

 a deadlock due to circle in resource allocation graph?
(Type R2 has 2 objects. One used by P, one by T)

Not necessarily, you can run T, then Q, and finally P.

Dealing with DeadlocksDealing with Deadlocks

37© 2009 Universität Karlsruhe (TH), System Architecture Group

Managing Deadlocks

Dealing with Deadlocks

 Ignoring ~ ostrich algorithmostrich algorithm

 Detection and Repair
 Allow a deadlock, but detect it and recover from it

 Avoidance

© 2009 Universität Karlsruhe (TH), System Architecture Group 38

 System dynamically considers every request and decides
whether it is safe to grant it at that time

 Maximum requirements of each resource must be stated in
advance by each process

 Prevention
 Preventing deadlocks by constraining how requests for

resources can be made in the system and how they are
handled (system design)

 Eliminate one of the four necessary deadlock conditions

Deadlock Detection

 The system may enter a deadlock state
 System needs a deadlock detection algorithm

 Periodically, e.g. every t time units
 However, what is the optimal period length? However, what is the optimal period length?

 If t too small, then huge overhead
 If t too long, then bad resource usage

 Is there a better way to find the “usual suspects?

 There are two algorithms
 One resource instance per resource type
 Multiple resource instances per resource type

© 2009 Universität Karlsruhe (TH), System Architecture Group 39

Deadlock Detection Algorithm (1)

 One instance per resource type

 Maintain a resource-allocation graph:
 search for cycles in this resource-allocation grap
 Complexity?

Example: 7 processes A … G, 6 resources R …W
Current state: A holds R and requests S

B holds nothing and requests T
C holds nothing and requests S
D holds U and requests S and T
E holds T and requests V
F holds W and requests S
G holds V and requests U

© 2009 Universität Karlsruhe (TH), System Architecture Group 40

Deadlock Detection Algorithm (2)

Deadlock Detection

© 2009 Universität Karlsruhe (TH), System Architecture Group 41

(a) Example resource allocation graph
(b) Cycle found within the graph → deadlock

Detection N>1 Instances per R-Type

Needed data structures:
n processes T1, T2, … Tn and
m resource types R1, R2, … Rm

R = (r1, r2, … rm) total amount of each resource type
V = (v1, v2, … vm) total amount of each available resource type (1, 2, m) yp

© 2009 Universität Karlsruhe (TH), System Architecture Group 42

Currently allocated resources
of each process per resource type

A =



















nmnn

m

m

AAA

AAA
AAA

...
......

...

...

21

22221

11211



















nmnn

m

m

CRCRCR

CRCRCR
CRCRCR

...
......

...

...

21

22221

11211

CR =

Currently requested resources
of each process per resource type

Deadlock Detection Algorithm (3)
type state = record

R,V: array[0..m-1] of integer //current values

A,CR: array[o,n-1,0…m-1]of integer
T: {set of threads}
end

procedure deadlock_detection
(var answer:state DT:set of threads) {(var answer:state, DT:set of threads) {
answer := undefined // initialization
DT := T // all threads deadlocked
while answer = undefined do
if T[i]  DT: CR[i] - A[i] ≤ V // comment 1
then {

DT := DT \ {T[i]} // reduce DT
V := V + A[i] // comment 2

if DT = {} then answer := safe // no deadlock
}

else answer := unsafe; //DT ={deadlocked processes}
od
}© 2009 Universität Karlsruhe (TH), System Architecture Group 43

Detection Algorithm (3)

Comment 1:
Look for a process Ti DT with a current request vector which

is smaller or equal the available vector per resource type

Comment 2:
If such a process exists, add its row Ai to the available vector
(we just assume, that this process might execute, whether it
will produce a deadlock in the future does not count)

Conclusion:
If no such process exists or if there are some processes in DT
left, terminate the algorithm and DT is exactly the set of
processes that are currently deadlocked.

© 2009 Universität Karlsruhe (TH), System Architecture Group 44

Example

R V

?

© 2009 Universität Karlsruhe (TH), System Architecture Group 45

A CR

Current
?

Is there at least one process that can potentially terminate with the available resources?
If you find such a process (i.e. T3), assume that T3 will execute for a while, it may even
terminate. If it terminates, it will release additional resources, i.e. the vector v can be
incremented by the corresponding row of matrix A, i.e. A3.
Now you try to find another process that can execute, under the assumption that T3 has
already terminated etc. (see algorithm)

Deadlock Immunity

 Enabling systems to defend against deadlocks
 Nice paper and talk on OSDI 2008 in San Diego
 H. Jula, D. Tralamazza, C. Zamfir, G. Candea
 Dependable Systems Laboratory, EPFLp y y,

 Basic idea:
 Learn executions that lead to deadlock
 Save fingerprints of encountered deadlock patterns

into a persistent history
 Avoid executions patterns that have led to deadlock

in the past

© 2009 Universität Karlsruhe (TH), System Architecture Group 46

http://dimmunix.epfl.ch/

Deadlock Recovery (1)

 Recovery via resource preemption
 take a resource from some other process
 depends on nature of the resource

Deadlock Recovery

© 2009 Universität Karlsruhe (TH), System Architecture Group 47

 Recovery through rollback
 checkpoint a process periodically
 use this saved state
 restart/resume process at checkpoint

Recovery from Deadlock

What can athesystem do after it has detected a deadlock?
 Process termination

 Abort all deadlocked processes:
 Quite fast (as long as #deadlocked processes is not too big
 That’s simple, but a lot of process work has been wasted

Deadlock Recovery

© 2009 Universität Karlsruhe (TH), System Architecture Group 48

 Abort one deadlocked process at a time and check for
deadlock again
 More work to resolve a deadlock
 Better in terms of process’ work
 But in which order to abort the processes, i.e. which one to

abort first?

 Resource preemption
 What is a good way to select a victim thread to be aborted?
 How can we rollback and recover from preemption?
 How can we protect from starvation?

Recovery (2)

 Recovery through aborting processes

 crude but simple way to break a deadlock

 kill one of the processes in the deadlock cycle until
the other processes get their resources

Deadlock Recovery

© 2009 Universität Karlsruhe (TH), System Architecture Group 49

the other processes get their resources

 choose a process that can be rerun from the
beginning

Deadlock Recovery (3)

What possibilities for aborting processes?

 Some criteria for aborting processes:
 Size of pending request
 Amount of allocated resources

Deadlock Recovery

© 2009 Universität Karlsruhe (TH), System Architecture Group 50

 Amount of allocated resources
 Priority
 Application-/system-process
 Expected duration of abortion
 Accumulated execution time
 Expected remaining execution time
 ...

Deadlock Avoidance

 We must know the maximum requirements of each
resource type per process before starting the process

 Two approaches:
 Do not start a process if its maximum requirement

might lead to deadlock.
 Do not grant an incremental resource request if

this allocation might lead to deadlock
 Two algorithms:

 One instance per resource type, the resource allocation
graph algorithm

 Multiple instances per resource type: Banker algorithm

© 2009 Universität Karlsruhe (TH), System Architecture Group 51

Deadlock Avoidance (1)

Some formal description of the system

Given:

n processes T1, T2, … Tn and

Deadlock Avoidance

© 2009 Universität Karlsruhe (TH), System Architecture Group 52

m resource types R1, R2, … Rm

R = (r1, r2, … rm) total amount of each resource type

V = (v1, v2, … vm) total amount of each available
resource type, i.e. currently not
allocated to one of the n processes



















nmnn

m

m

CCC

CCC
CCC

...
......

...

...

21

22221

11211

C = Maximally claimed resources per
resource type of each process

Deadlock Avoidance (3)

Deadlock Avoidance

© 2009 Universität Karlsruhe (TH), System Architecture Group 53

 nmnn CCC ...21

Currently allocated resources
of each process per resource typeA =



















nmnn

m

m

AAA

AAA
AAA

...
......

...

...

21

22221

11211

Ri = Vi + 


n

k
kiA

1

Invariants and Constraints

for all i: All resources of a resource
type Ri are either available or allocated

no process claims more than the total

Deadlock Avoidance

© 2009 Universität Karlsruhe (TH), System Architecture Group 54

Cki

Ak,I

:,, ikallforRi

:,,, ikallforC ik

no process claims more than the total
amount of resources in the system

no process tries to allocate more
resources than initially claimed




  n

k
kiini CCR

1
,1

Deadlock Avoidance: Deferred Start

Start a new process Tn+1 iff

for all i

Policy is quite pessimistic assuming that all threads

Deadlock Avoidance

© 2009 Universität Karlsruhe (TH), System Architecture Group 55

Policy is quite pessimistic assuming that all threads
will request all their claimed resources at the same time.

In practice, however, the following often holds:
 Some of the claimed resources are never requested
 Few threads need all resources at the same time

 we need a better, i.e. more optimistic algorithm

progress of thread 2

Allocate R1

Release R2

Release R1 Smart
passage

Deadlock Avoidance

© 2009 Universität Karlsruhe (TH), System Architecture Group 56

progress of
thread 1

Allocate R1 Allocate R2

Allocate R1

Allocate R2

Release R1 Release R2

progress of thread 2

Allocate R1

Release R2

Release R1

Deadlock
Region

Titanic
crash

Deadlock Avoidance

© 2009 Universität Karlsruhe (TH), System Architecture Group 57

progress of
thread 1

Allocate R1 Allocate R2

Allocate R1

Allocate R2

Release R1 Release R1

Is this a region
we should avoid?

progress of thread 2

Allocate R1

Release R2

Release R1

Deadlock

Entering an unsafe region
 potential deadlock

Deadlock Avoidance

© 2009 Universität Karlsruhe (TH), System Architecture Group 58

progress of
thread 1

Allocate R1 Allocate R2

Allocate R1

Allocate R2

Release R1 Release R1

Unsafe
Region

progress of thread 2

Allocate R1

Release R2

Release R1

Deadlock Avoidance

© 2009 Universität Karlsruhe (TH), System Architecture Group 59

progress of
thread 1

Allocate R1 Allocate R2

Allocate R1

Allocate R2

Release R1 Release R1

unsafe
region

More formally:

Definition: The state of a system of n threads is safe
as long as there is at least one execution
sequence allowing all threads to complete.

Safe State

Deadlock Avoidance

© 2009 Universität Karlsruhe (TH), System Architecture Group 60

System state = safe 
 permutation <Tk1,Tk2, … Tkn> within {T1, T2, …,Tn} :

for all i  {1,2, …n}:

or

for all i  {1,2, …n}:







1

1

i

s
kkk sii AVAC





n

is
kkk sii ARAC

Properties of „Safe State“

 If a system is in safe state, there is no deadlock

 If system is deadlocked, it is in an unsafe state

 If a system is in unsafe state, there is a y ,
possibility for a deadlock

 Avoidance:

Make sure the system will not enter an
unsafe state

© 2009 Universität Karlsruhe (TH), System Architecture Group 61

type state = record
R,V: array[0..m-1] of integer
C,A: array[o,n-1,0…m-1]of integer
T: {set of threads}
end

procedure deadlock_avoidance
(var answer:state, DT:set of threads) {
answer := undefined /* initialization */

Banker Algorithm with O(n2m)

Deadlock Avoidance

© 2009 Universität Karlsruhe (TH), System Architecture Group 62

DT := T /* all threads deadlocked */
while answer = undefined do
if T[i]  DT: C[i] - A[i] ≤ V
then {

DT := DT \ {T[i]}
V := V + A[i]
if DT = {} then answer := safe

}
else answer := unsafe /* n≥1 thread deadlocked */

od
} O(n2m) with n = # of threads and m = # of resource types

Reduktion der Threadmenge T
bzw. Aufbau der Sequence

Deadlock Prevention

Deadlock Prevention (1)

Construct a system that prevents deadlocks, i.e. it has
to guarantee that deadlocks can never arise. How?
 Ensure that at least one of the necessary conditions

for deadlocks can not occur

© 2009 Universität Karlsruhe (TH), System Architecture Group 63

• Attacking the mutual-exclusion condition?
 Some physical and logical resources require

mutual exclusion, e.g. keyboard, stack etc.

 We have to admit mutual exclusion

 However, other resources like …..

Spooling or Multiplexing

 Some devices can be spooled
 Applications do not access the printer directly, but

a substitute resource, the application specific
output file

Deadlock Prevention

© 2009 Universität Karlsruhe (TH), System Architecture Group 64

 The printer daemon is the only activity that is
allowed to access the real printer

 No resource conflicts with a “spooled” printer

 Other devices can be virtualized, e.g.
 multiplexing the CPU

Deadlock Prevention (2)
 Attacking the hold-and-wait condition?

 Requires that each thread requests all resources
by one combined atomic request

Consequence: Thread must wait for a long time
until all requests can be granted at the same time

Deadlock Prevention

© 2009 Universität Karlsruhe (TH), System Architecture Group 65

until all requests can be granted at the same time

 Disadvantages:
 Thread has waited for a long time to get all its resources,

even though it might not use all of them in the next run

 Allocated resources can remain unused for a long period.
Others threads could use them in the meantime.

Deadlock Prevention (3)

 Attacking the no-preemption condition?
 Preemption: if a resource request is denied, the calling

thread should release all resources that it already holds

 Alternatively you could preempt the current resource holder
to release its resources

Deadlock Prevention

© 2009 Universität Karlsruhe (TH), System Architecture Group 66

to release its resources.

 The state of the preempted resource has to be saved for
later resumption
 It should be easy to save/restore the state of a resource

 Resource preemption can lead to starvation

Preemptive Printer?

 This is not a viable option
 Consider a process given the printer

 halfway through its job

Deadlock Prevention

© 2009 Universität Karlsruhe (TH), System Architecture Group 67

 now forcibly take away printer
 !!??

Hint: Try to find a solution for preempting a printer,
even though Andy Tanenbaum does not like it

Deadlock Prevention (4)

 Attacking the no-circular-wait condition?
 Define a strictly increasing linear ordering OR(RT)

for resource types, e.g.
 R1: tape drives: OR(R1) = 2
 R2: disk drives: OR(R2) = 4

Deadlock Prevention

© 2009 Universität Karlsruhe (TH), System Architecture Group 68

()
 R3: printers: OR(R3) = 7

 A process initially requests a number of instances
of a resource type, say Ri

 A single request must be issued to obtain several
instances of the same resource type

 After that, this process can request instances for
resource types Rj if and only if OR(Rj)>OR(Ri)

Summary: Deadlock Prevention

In general, this principle is either far too restrictive
(you only request resources in some predefined

ordering)

or the usage of the resources is far too low
(allocating all resources at the start is quite wasteful)

Deadlock Prevention

© 2009 Universität Karlsruhe (TH), System Architecture Group 69

(allocating all resources at the start is quite wasteful)

or too much overhead is involved
(e.g. a preemption costs time and requires additional
containers for saving and restoring the resource states)



commercial systems do not use prevention

ApproachesApproaches in in thethe PracticePractice

Additional problems

70© 2009 Universität Karlsruhe (TH), System Architecture Group

Deadlock Management

Combined Deadlock Policy

We can combine some previous approaches
in the following way:

Group resources into a number of different classes
and order them, e.g.:

Swappable space (secondary memory)

© 2009 Universität Karlsruhe (TH), System Architecture Group 71

Swappable space (secondary memory)
Task resources (I/O devices, files...)
Main memory...

Use prevention of circular wait to prevent deadlock
between these resource classes

Use the most appropriate approach against deadlocks
within each class

TwoTwo Phase Phase LockingLocking &&
Non Non ResourceResource DeadlocksDeadlocks

See related Course in ST 2009
„Kommunikation und Datenhaltung“

72© 2009 Universität Karlsruhe (TH), System Architecture Group

Two-Phase Locking
 Phase One

 process tries to lock all records it needs, one at a time
 if needed record found locked, start over
 (no real work done in phase one)

 If phase one succeeds, it starts second phase,

73

p , p ,
 performing updates
 releasing locks

 Note similarity to requesting all resources at once

 Algorithm works where programmer can arrange
 program can be stopped, restarted

© 2009 Universität Karlsruhe (TH), System Architecture Group

Non Resource Deadlocks

 Possible for two processes to deadlock
 each is waiting for the other to do some task

 Can happen with semaphores
 each process required to do a p() on two semaphores

(mutex and another)

Deadlock Prevention

© 2009 Universität Karlsruhe (TH), System Architecture Group 74

(mutex and another)
 if done in wrong order, deadlock still results

 Can happen with nested monitors

 An ordering on semaphores and monitors within one
application can be useful, see nested critical sections

Starvation

 Algorithm to allocate a resource
 may be to give to shortest job first

 Works great for multiple short jobs in a system

 May cause long job to be postponed indefinitely

75

 May cause long job to be postponed indefinitely
 even though not blocked

 Solution:
 First-come, first-serve policy

© 2009 Universität Karlsruhe (TH), System Architecture Group

