
System ArchitectureSystem Architecture

10 Message Passing10 Message Passing

12008 Universität Karlsruhe (TH), System Architecture Group

IPC Design & Implementation,
IPC Application, IPC Examples

December 01 2008
Winter Term 2008/09

Gerd Liefländer

Agenda

Introduction

 Motivation/Introduction

 Message Passing Model

 Elementary IPC

 Design Parameters for IPC

2008 Universität Karlsruhe (TH), System Architecture Group 2

 Synchronization
 Addressing Modes
 Lifetime
 Data Transfer
 Types of Activations (your work)

 High Level IPC

 IPC Applications

 IPC Examples

MotivationMotivation

32008 Universität Karlsruhe (TH), System Architecture Group

Motivation

Yet another Concept?
1. Previous mechanisms relied on shared memory

all these solutions do not work in distributed systems

2. Threads of different applications need protection
even in systems with a common RAM, because
you do not want to open your protected AS for another
cooperating non trusted piece of software

2008 Universität Karlsruhe (TH), System Architecture Group 4

cooperating non trusted piece of software

3. To minimize kernels some architects only offer IPC to
solve

 communication problems as well as all
 synchronization problems

4. However, the opposite way also works, i.e. you can use
semaphores to implement a message passing system

Message Passing

 Used for Inter-“Process” Communication (IPC)
 Interacting threads within a distributed system
 Interacting threads within the same computer
 Interacting threads within the same address space

W t d i l it d i

Motivation

2008 Universität Karlsruhe (TH), System Architecture Group 5

 We expect a decreasing complexity and vice versa
an increasing speedup when implementing IPC

 Application:
 Exchange information in form of messages

 At least two primitives:
 send (destination, message)
 receive (source, message)

IPC ModelIPC Model

62008 Universität Karlsruhe (TH), System Architecture Group

IPC Model

send

Basic Principle of Message Passing
Thread T1 Thread T2

receive

2008 Universität Karlsruhe (TH), System Architecture Group 7

Explicit Data Transfer

IPC Model

Problems with Message Passing
 Data inconsistency still a problem?

 Yes, because messages can be
 out of order even if each message is consistent, the

sequence of messages is not

 incomplete because receiver has not enough buffer space

2008 Universität Karlsruhe (TH), System Architecture Group 8

 incomplete, because receiver has not enough buffer space

 lost
 outdated, i.e. they no longer reflect the current state of the

sender

 Each message can be an information leak, that’s why
we must control whether messages should be
transferred or not

Elementary IPCElementary IPC

92008 Universität Karlsruhe (TH), System Architecture Group

IPC Model

Design of Message Passing

 Elementary communication (two threads)
 1 Sender and 1 Receiver

 Later on:
Hi h i ti l l

2008 Universität Karlsruhe (TH), System Architecture Group 10

 Higher communication level

 Typical applications

 IPC examples of current operating systems

Design Parameters

Orthogonal Design Parameters

 Connection of communicators
 Synchronization
 Addressing
 Docking of IPC objects

2008 Universität Karlsruhe (TH), System Architecture Group 11

g j
 Ownership
 Organization of data transfer

 Ordering of messages
 Format of messages (size)
 Buffering
 Internal scheduling

 …

Connection

 Connection oriented
openConnection(address)

Tests whether receiver exists and whether he/she
wants a connection with the caller

Connection

2008 Universität Karlsruhe (TH), System Architecture Group 12

wants a connection with the caller

send(message)

receive(message)

closeConnection()
Empties message buffer and deletes connection

Connection

 Connectionless
send(target_address, message)

receive(source address, message)

Connection

2008 Universität Karlsruhe (TH), System Architecture Group 13

_ g

 Target is often a server

 Source is often a client

Synchronization of Sender

 Unsynchronized Send If receiver does not wait for message,
(Non Blocking) skip message, continue

 Asynchronous Send If receiver does not wait for message,
(Non Blocking) deposit message (if enough buffer

l) ti

Synchronization

2008 Universität Karlsruhe (TH), System Architecture Group 14

place), continue

 Synchronous Send If no receiver waits for a message,
(Blocking) deposit message, wait for receiver

In all cases: If receiver already waits for message,
transfer message, continue

Synchronization of Receiver

 Non-Blocking Receive Void if there is no message
(test for arrival)

 Blocking Receive Waits if there is no message
il bl

Synchronization

2008 Universität Karlsruhe (TH), System Architecture Group 15

available

 In both cases, if message has been buffered, transfer
message to receiver’s AS, continue

Combinations of Senders/Receivers

Non-blocking Receive Blocking Receive

Unsynchronized Send

As nch ono s Send

- bogus - Sender polling

R i lli Asynchronous

Synchronization

2008 Universität Karlsruhe (TH), System Architecture Group 16

Asynchronous Send

Synchronous Send

Receiver polling

Receiver polling

Asynchronous
communication

Rendezvous

Observation:
As long as asynchronous sending is used we have to
provide message buffers (in the communication link)

Enhanced Message Passing

Sender S synchronously sends message to receiver R

What might happen to S due to many reasons?

Receiver R can be down or has already finished

Synchronization

2008 Universität Karlsruhe (TH), System Architecture Group 17

Enhance communication with a timeout mechanism

y
 Sender S would wait forever

(another example for starvation ≠ deadlock)

What to do?

Timeout

With a timeout you specify how long you want to wait
until a certain event should have taken place.

Assume: Even under heavy load your partner thread should have
accepted your messages within xyz ms.

Synchronization

2008 Universität Karlsruhe (TH), System Architecture Group 18

Enhance your synchronous send operation as follows:

syncSend(receiver’, message, xyz, result)

If receiver does not receive message within xyz ms,
sender can be informed via result: “missing receiver”.
So it’s up to the sender how to proceed (if after all).

IPC Addressing

Addressing the Communication

 Direct Addressing
 send (TID, message)
 send(filter{TID}, message)
 receive(TID, message)

i (filt {TID })

2008 Universität Karlsruhe (TH), System Architecture Group 19

 receive(filter{TIDs}, message)

 Indirect Addressing
 send (channel identifier, message)
 send (port identifier, message)
 ...

Direct Addressing
 caller names partner thread explicitly or per wildcard:

 send(T, message) send message to T

 receive(Q, message) receive message
from Q

IPC Addressing

2008 Universität Karlsruhe (TH), System Architecture Group 20

different semantics

from Q

 send(T1T2, message)

 send(T1T2, message)

 receive(*, message) receives message
from any thread

Direct Addressing
 Properties of temporary communication link

 Links are established automatically

 Link is associated with exactly one pair of
communicating threads

IPC Addressing

2008 Universität Karlsruhe (TH), System Architecture Group 21

g

 Link can be unidirectional or bi-directional
depending on the communication pattern:
 Notification
 Request

Notification

 Notification is a one way message from
sender to receiver

 Message transaction ends with message
d li i

IPC Addressing

2008 Universität Karlsruhe (TH), System Architecture Group 22

delivery to receiver

 Interpreting of the message in the receiver
does no longer belong to IPC

Request

 Request is a two way message from sender
to receiver

 It starts by sending the request to the
i d d i h k l d (

IPC Addressing

2008 Universität Karlsruhe (TH), System Architecture Group 23

receiver and ends with an acknowledge (+
result of service) from receiver to sender

 In the mean time receiver (~server) has
delivered the required service

T1

s_receive(T1)

T2
Problem with Asynchronous Send

a_send(T2)

IPC Examples

2008 Universität Karlsruhe (TH), System Architecture Group 24

message queue within the kernel
(e.g. as part of a mailbox)

kernel

user

Start denial of
service attack

s send(T1 i, ind)

T1

s_receive(T1,i, ind)

T2T1,1

s_receive(T1, ind)

Message
deliverer(s)

Asynchronous via Synchronous Send

IPC Examples

deposit(ind)

2008 Universität Karlsruhe (TH), System Architecture Group 25

_ (1,i,)

„message queue“ within the user
address space

kernel

user

s_send(T2, ind)
take(ind)

Question: Is there a correlation between # buffer slots
and # of message deliverers?

Indirect Addressing

 Messages are sent to (and received from)
mailboxes, ports, channels
 Each mailbox has a unique id (e.g. MBID)
 Threads can communicate only if sharing a

mailbox

IPC Addressing

2008 Universität Karlsruhe (TH), System Architecture Group 26

 Properties of communication link
 A link established only if threads share a common

mailbox
 A link can be associated with many threads
 Each thread can share several communication

links
 A link can be both unidirectional or bi-directional.

Indirect Addressing

 Operations
 create a new mailbox
 send and receive messages through mailbox
 attach and detach mailbox members
 delete a mailbox

IPC Addressing

2008 Universität Karlsruhe (TH), System Architecture Group 27

You can enhance attach by additional access rights etc.

 Interface primitives
send(MB,message) : sends message to mailbox MB
receive(MB,message): receives message from MB
attach(MB,T): attaches thread T to MB
detach(MB,T): detaches T from MB

Indirect Addressing

 Mailbox sharing
 T1, T2, and T3 can share a mailbox A.
 Suppose: T1, sends; T2 and T3 have previously invoked

a receive at A.
 Who will get the message?

IPC Addressing

2008 Universität Karlsruhe (TH), System Architecture Group 28

g g

 Possible Solutions
 Type the message with an additional thread ID
 Allow the system to select arbitrarily the receiver.

Sender can be notified to which receiver the message
has been delivered

 High level communication patterns often build upon
mailboxes

Advantages:

Still easy to understand, but more
flexible than direct addressing

Suited for arbitrary partnerships
(s≥1 sender, r≥1 receiver)

Disadvantages:

More spatial overhead due
to extra data structure

Potentially one additional copy
f th

Summary: Indirect Addressing

IPC Addressing

2008 Universität Karlsruhe (TH), System Architecture Group 29

(s≥1 sender, r≥1 receiver)

Each mailbox may provide
an individual security policy

Mailboxes can survive threads

of the message

What to do with attached threads
if mailbox owner deletes it?
(Dangling thread problem)

If a thread currently attached to
a mailbox has to be aborted
problem of dangling messages

IPC Lifetime

Docking IPC Objects

Docking = relationship of the communicating threads
with the communication facility, i.e. IPC-object:

 Dynamically, i.e. a thread can
C t ilb

2008 Universität Karlsruhe (TH), System Architecture Group 30

 Create a new mailbox
 Attach to and detach from a mailbox
 Delete its mailbox

 Statically, i.e. thread has its IPC-object (e.g. port)
only during its life

IPC Data Transfer

thread 1 thread 2

Organization of Data Transfer

2008 Universität Karlsruhe (TH), System Architecture Group 31

data transfer

Question: Do we need to copy the message in each case?

Data Transfer of Messages

 Register (short messages, 0 copy)
 Implications how to synchronize

 Shared memory (long message 0 copy)
Implications how to synchronize

IPC Data Transfer

2008 Universität Karlsruhe (TH), System Architecture Group 32

 Implications how to synchronize
 Registers or kernel memory only used to

transmit address(es) of message(s)

 Temporal mapping of message (1 copy)
 Implications …???

 Kernel Buffer (2 copies)

O
V
E
R
H
E
A
D

send()

receive()Register R0

Data Transfer via Register

IPC Data Transfer

Register R1

Register Rc

…

2008 Universität Karlsruhe (TH), System Architecture Group 33

CPUT1 T2

Hint: Discuss this proposal
Does it work for all variations?
Main advantages?
Main constraints?

Data Transfer via Shared Memory

sender
thread 1

receiver
thread 2

IPC Data Transfer

2008 Universität Karlsruhe (TH), System Architecture Group 34

Message

Only transfer the start address

Data Transfer via Mapping

thread 1 thread 2

IPC Data Transfer

2008 Universität Karlsruhe (TH), System Architecture Group 35

reserved kernel region

copy
map

Data Transfer Via Kernel Buffer

thread 1 thread 2

IPC Data Transfer

send receive

2008 Universität Karlsruhe (TH), System Architecture Group 36

Kernel Buffer

copy_in copy_out

Message ID

Message Type

Message Length
Message Header

Potential Formats of Messages

IPC Data Transfer

2008 Universität Karlsruhe (TH), System Architecture Group 37

Control Information

Sender and/or Source ID

Receiver and/or Destination ID

Message Message Body

Message Header
• buffer overflow reaction
• sequence numbers
• priorities
• queueing discipline: usually FCFS
• ...

Non Contiguous Messages

m2

Problem:
Message to be sent is scattered

Approach 1:
b ff

a2

Message Types

2008 Universität Karlsruhe (TH), System Architecture Group 38

m1

m3

m4

copy m1 … m4 into a buffer
send buffer to target R

Solution:
send(R,<a1,a2,a3,a4>)

a1

a3

a4

Types of Communicating Types of Communicating
ActivitiesActivities

Homogeneous Communication
Heterogeneous Communication

Evaluate for your own

392008 Universität Karlsruhe (TH), System Architecture Group

High Level IPCHigh Level IPC

402008 Universität Karlsruhe (TH), System Architecture Group

Local Systems
Distributed Systems (see ST 2008)

Client Server Communication

 Local server

 Sockets

Remote Procedure Calls

Client Server

Topic of the
DS

2008 Universität Karlsruhe (TH), System Architecture Group 41

 Remote Procedure Calls

 Remote Method Invocation (Java)

course DS

.

.

.

Request a service from a server
SynchSend(server, request)
SynchReceive(server, result)

Synchronous IPC with a Server
Client

Client Server

2008 Universität Karlsruhe (TH), System Architecture Group 42

.

.

.

Pro: No additional feature
Con: 2 system calls more overhead

If dispatching takes place between these calls
server cannot deliver its result, it is delayed

.

.

.

Request a service from a server

.

RPC(Server, Request)

Remote Procedure Call (RPC)*

Client

Client Server

2008 Universität Karlsruhe (TH), System Architecture Group 43

.

.

Pro: Only 1 system call, requesting sender has to wait,
needed in distributed systems anyway

Con: Additional feature

*In local systems this IPC is called LPC

Mailbox

T1

T2

Different Semantics can be implemented: T5

T6

Indirect Communication

IPC Addressing

2008 Universität Karlsruhe (TH), System Architecture Group 44

T4

T3

Sender Receiver

T7

 via mailbox, channel, port

Mailbox

T1

T2

T5

T6

Indirect Communication (2)

1. Arbitrary Sender and Receiver

IPC Addressing

2008 Universität Karlsruhe (TH), System Architecture Group 45

T4

Mailbox

T3

Sender Receiver

T6

T7

Mailbox

T1

T2

T5

T6

Indirect Communication

IPC Addressing

2. Arbitrary Sender, all Receiver
(Broadcasting)

2008 Universität Karlsruhe (TH), System Architecture Group 46

T4

Mailbox

T3

Sender Receiver

T6

T7

Mailbox

T1

T2

T5

T6

Indirect Communication

IPC Addressing

3. All Sender, arbitrary Receiver
(combined message)

2008 Universität Karlsruhe (TH), System Architecture Group 47

T4

Mailbox

T3

Sender Receiver

T6

T7

Mailbox

T1

T2

T5

T6

Indirect Communication

IPC Addressing

4. All Sender, all Receiver
(Broadcasting combined message)

2008 Universität Karlsruhe (TH), System Architecture Group 48

T4

Mailbox

T3

Sender Receiver

T6

T7

IPC ApplicationsIPC Applications

492008 Universität Karlsruhe (TH), System Architecture Group

IPC Applications

Trick: Use a specific thread to execute the critical section!

Client Ti:
var msg: message;
repeat

CSthread:
repeat
client := receive(any);

Mutual Exclusion with RPC

2008 Universität Karlsruhe (TH), System Architecture Group 50

repeat
rpc(CSthread);
RS

forever.

client := receive(any);
CS;
send (client, “done”)

forever.

Hint: Discuss the pros and cons of this solution

Producer:
repeat
rpc (Buffer, produce())

forever.

Consumer:
repeat
msg = rpc(Buffer);
consume(msg)

forever.

Producer/Consumer with RPC

IPC Applications

2008 Universität Karlsruhe (TH), System Architecture Group 51

Buffer
Producer Consumer

Buffer:
state = normal:
repeat
(client, msg) = receive(any);
if (client == Producer)

then put
elif client = Consumer

then get
fi

get:
if BufferNotEmpty()

then msg := delete();
send (client,msg);
if state = ProducerPending

then send (Producer,“ok”)
state := normal;

fi

Producer/Consumer with RPC

IPC Applications

2008 Universität Karlsruhe (TH), System Architecture Group 52

fi
forever.

else state := ConsumerPending
fi .

put:
insert (msg) ;
if BufferFull()

then state := ProducerPending
else send (client,“ok”);

if state = ConsumerPending
then send (Consumer, msg);

dummy := delete();
state := normal

fi
fi .

thread Ti:
var msg: message;
repeat
receive(mutex,msg);

Mutex Emulation with IPC

create a mailbox mutex
shared by n threads

receive() blocks if mutex empty

send() is non blocking

Initialization: send(mutex “go”)

IPC Applications

2008 Universität Karlsruhe (TH), System Architecture Group 53

receive(mutex,msg);
CSi
send(mutex,msg);
RSi

forever

Initialization: send(mutex, go)

The first Ti executing receive()
will enter its CS.

Others will be blocked
until Ti sends back msg.

IPC ExamplesIPC Examples

542008 Universität Karlsruhe (TH), System Architecture Group

Unix V IPC Mechanisms

To communicate data across tasks(processes):

 Pipes
 Anonymous pipe
 Named pipe

IPC Examples

2008 Universität Karlsruhe (TH), System Architecture Group 55

p p

 Messages
 Shared memory

To trigger actions by other tasks(processes):

 Signals
 Semaphores

Pipes

 Two processes can transfer a byte stream in FCFS order
 Pipes are “kernel objects” of size 4KB or 64 KB (cyclic

buffer) depending on the Linux Version
 Pipes can be used at the

 kernel API within application programs kernel API within application programs
 user interface level via the “|” pipe operator

 Implicit synchronization is done in case of a full
respectively empty pipe, i.e. the producer will automatically
stop writing to the pipe, when the pipe has become full

 Writing into a pipe without any reader raises an exception

2008 Universität Karlsruhe (TH), System Architecture Group 56

producer consumer0111 01001111

write() read()

Anonymous Pipes

 Can only be used by processes of the same
family (e.g. parent and child)

 Typically they are used only in a uni-
directional wayd o a ay

2008 Universität Karlsruhe (TH), System Architecture Group 57

Example Pipe

Pipe operator at CLI:
$ more test.txt | lpr -kycera

The content of file test.txt is sent via a pipe to
the printer that will print out using printer kycerap p g p y

$ set | grep PATH
The output of the set command will act as the input
of the command grep. In this case all lines of the
environment containing the character string PATH will
be printed to standard output

2008 Universität Karlsruhe (TH), System Architecture Group 58

Example Pipe at Kernel API (1)

main(){
char buffer[5]; // buffer for received data
int pp[2]; // descriptor for write end

// versus read-end of the pipe
pipe(pp); // create a new pipe ppp p (pp) p p pp
if (fork()==0) {// child process as writer
close(pp[0]); // close the read end of pp
write(pp[1], „TEST“, 5); // write to pp
…
exit(0); // end of child process

}

2008 Universität Karlsruhe (TH), System Architecture Group 59

Example Pipe Kernel API (2)

// now within the parent process
// acting as the reader

close(pp[1]); // close write end of pp

read(pp[0], buffer, 5);(pp[], ,)
printf(„ having read an item from pp: %s\n,
buffer);
…

}

2008 Universität Karlsruhe (TH), System Architecture Group 60

Remark:
The close system calls are not necessary, but very helpful to
prevent a consumer from writing to the pipe and vice versa

Named Pipes

 Can be used by non related process and in a
bidirectional way (full duplex)

 Usual pipes are not persistent, i.e. they are deleted
as soon as the last reader or writer is terminating
A d i i bj t f th fil t d A named pipe is an object of the file system and
remains persistent, however its content is lost
whenever the last writer terminates and there is no
reader

 It can be reused in the future by any process that is
authorized to access this named pipe

2008 Universität Karlsruhe (TH), System Architecture Group 61

Example Named Pipe

For example, one can create a pipe my_npipe and
set up gzip to compress things piped to it:

$ mkfifo my_npipe
$ gzip -9 –c < my_npipe > out.gz
$ rm rm my_npipe

In a separate process shell, independently, one could
send the data to be compressed:

$ cat file > my_npipe
 Name pipes are often used to establish client-server

relations

2008 Universität Karlsruhe (TH), System Architecture Group 62

See: http://developers.sun.com/solaris/articles/named_pipes.html

Named Pipe at Kernel API

int mkinfo(const char *path, mode_t mode)
The system call function thakes the pathname to
establish at the related directory a „pipe file object“
with all the access rights that can be defined
according to mode taccording to mode_t

A named pipe is used as a usual file, i.e. after having
opende you can read or write to the named pipe.

Every write and read to a named pipe is atomic

2008 Universität Karlsruhe (TH), System Architecture Group 63

Overview: System V IPC Resource

 Processes request IPC Resources that will

 be created dynamically

 be persistent

 be used by any process (who knows the key)

 have a 32-bit IPC key that can be selected by the
programmer

 be identified unambiguously by a 32-bit IPC
identifier determined by the kernel

2008 Universität Karlsruhe (TH), System Architecture Group 64

Semantics IPC

 IPC messages are sent asynchronously
 No FCFS order within a message queue
 IPC messages are deleted, once they have been

received, i.e. only one process can read a message

2008 Universität Karlsruhe (TH), System Architecture Group 65

Send & Receive

 msgsnd()
 IPC identifier of the target message queue
 Size of message
 Address of a user mode buffer

 msgrcv()
 IPC indentifier of the source queue
 Pointer to a user mode buffer as the target
 Size of buffer
 Type t determines the message type, the caller is

interested in

2008 Universität Karlsruhe (TH), System Architecture Group 66

MSGGET

msgget()

Resource with key
associated?

create new
resource

yes

no

IPC Key

2008 Universität Karlsruhe (TH), System Architecture Group 67

all ok? no

yes

error codeIPC
identifier

How to share a Message Queue?

1. Fixed, predefined IPC key
• Simple case, works also for complicated applications
• IPC key might be used by any process

Process 1 IPC Key Process 2

2008 Universität Karlsruhe (TH), System Architecture Group 68

Process 1 IPC Key Process 2

2. Set IPC key = IPC_PRIVATE
• IPC resource can not be used by another process
• IPC identfier has to be sent to another process before it can

use the IPC resource

Prozess 2IPC KeyProzess 1

System V IPC

 Kernel manages a message queue
 Sender processes can send messages to it
 Receiver processes can receive messages from it
int msgget(key_t key, int msgflag)

key is used to identify unambiguously the related
message queue

The return value is either -1 in case of n error, or the
message queue id

msgflag is used to specify what to do in case the
message queue already exists

2008 Universität Karlsruhe (TH), System Architecture Group 69

MSGflags

 IPC_CREAT
resource msgqueue must be created, if not yet
done
if not set msgget simply returns the msg identifier

 IPC_EXCL
typeget() schlägt fehl, wenn die Resource
bereits existiert und IPC_CREAT gesetzt ist.

2008 Universität Karlsruhe (TH), System Architecture Group 70

Implementing Message Queues

msg_ids.entries

2008 Universität Karlsruhe (TH), System Architecture Group 71

struct
msg_queue

struct
msg_msgseg

Message text

next

struct
msg_msg

Message text

n_liststruct
msg_msg

Message text

q_messages

Unix Typed Messages

 In receive() receiver specifies that it is only
interested in a message of specific type

 The message type is either defined in the message at
a specific location or it is a parameter of send()

Message Types

2008 Universität Karlsruhe (TH), System Architecture Group 72

p p

mailbox mb1

message list

Example: receive(mb1, blue_letter)

IPC of L4*

Characteristics of L4 IPCs:

 Synchronous

 Direct addressing

IPC Examples

2008 Universität Karlsruhe (TH), System Architecture Group 73

 send(tid, message)

 receive(tid, message)

 receive(from any, message)

 call(tid, request)

 reply&wait(tid, answer)
*see http://www.l4ka.org/projects/pistachio/

