
ExampleExample SemaphoreSemaphore

UNIX/Linux

1© 2007 Universität Karlsruhe (TH), System Architecture Group

Two Semaphores in UNIX/Linux

 POSIX-semaphore:
 sem_init(),sem_wait(),sem_trywait(),
sem_post(),sem_getvalue(),sem_destroy()

 System-V-semaphorey p
 semget(),semop(),semctl()

 UNIX/Linux often implement both standards

 Often implemented as „weak semaphores“
 Use POSIX-semaphores to synchronize KLTs of the same task
 Use System-V-semaphores if you must synchronize across AS

boundaries, i.e. between 2 processes

© 2007 Universität Karlsruhe (TH), System Architecture Group 2

POSIX Semaphore (1)

#include <semaphore.h>
contains all needed deaclarations:

 Semaphore operations
 Semaphore datatyp sem tSemaphore datatyp sem_t

 A process wanting to synchronize via POSIX semaphore,
must use another variable of type sem_t

 Processes/KLTs that want to synchronize must use the
semaphore operations on a shared semaphore variable
of type sem_t

© 2007 Universität Karlsruhe (TH), System Architecture Group 3

POSIX Semaphore (2)

int sem_init(sem_t *sem,
int pshared, unsigned int value)
initializes a semaphore with return values:

0 if initialization was successful 0 if initialization was successful
 -1 in case of an error
 sem is a pointer to semaphore variable
 pshared is a flag

 If =0: can only be used by the calling activity
 If !=0 can be used by all activities

 value: is initial value of the semaphore counter

© 2007 Universität Karlsruhe (TH), System Architecture Group 4

POSIX Semaphore (3)

int sem_wait(sem_t *sem)
 return value always 0 (cannot fail)
 sem: pointer to semaphore variable, where the

„semaphore operation“ p() should take place

int sem_post(sem_t, sem)
 return value 0 if successful, -1 in case of an error
 sem: pointer to semaphore variable, where the

„semaphore operation“ v() should take place

© 2007 Universität Karlsruhe (TH), System Architecture Group 5

POSIX Semaphore (4)

int sem_destroy(sem_t *sem)
 releases all resources, that had been allocated during
sem_init

 return value 0 if successful, -1 in case of an error, e.g. when
there are still waiting threads at sem)

 sem: pointer to semaphore variable, where the „semaphore
operation“ p() should take place

int sem_trywait(sem_t, sem)
 only works when caller does not have to wait

int sem_getvalue(sem_t sem)
 Reads the counter value of the semaphore

© 2007 Universität Karlsruhe (TH), System Architecture Group 6

Example POSIX Semaphore (1)

#include <pthread.h>
#include <semaphore.h>
sem_t mutex; // declaration of mutex

void *my thread(void *arg){y_ (g){
while(1){

sem_wait(&mutex); // ~Dijkstras p()
//CS
sem_post(&mutex) // ~Dijkstras v()

}
}

© 2007 Universität Karlsruhe (TH), System Architecture Group 7

Example POSIX Semaphore (2)

int main(){
pthread_t thread1_id, thread2_id;
sem_init(&mutex, 0, 1); // initialize mutex
pthread_create(&thread1_id, NULL, &my_thread, NULL);
pthread_create(&thread2_id, NULL, &my_thread, NULL);
pthread_join(thread1_id, NULL);
pthread_join(thread2_id, NULL);

sem_destroy(&mutex);
}

© 2007 Universität Karlsruhe (TH), System Architecture Group 8

Review: POSIX Threads
int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,
void *(*start_routine)(void*),
void *arg);

 return value =0 if successful, otherwise -1, i.e. because
there are not enough resources to install a new thread or
b th li ti h l d t d tbecause the application has already created too many
threads or because the attributes in attr are invalid etc.

 thread will contain the ID of the new thread
 If attr = NULL, the default attributes are initialized
 start_routine is the function that will be executed if the

thread has been created with arg as its arguments
 The signal state of the new threads is initialized as follows:

 Signal mask is inherited from the caller
 Set of pending signals is empty

© 2007 Universität Karlsruhe (TH), System Architecture Group 9

