Example Semaphore

UNIX/LIinux



Two Semaphores in UNIX/Linux

= POSIX-semaphore:
= seminit(),semwait(),semtrywait(),
sem post (), sem getval ue(), sem destroy()

= System-V-semaphore
= senget (), sermop(), senctl ()

= UNIX/Linux often implement both standards

= Often implemented as ,weak semaphores*
= Use POSIX-semaphores to synchronize KLTs of the same task

= Use System-V-semaphores if you must synchronize across AS
boundaries, i.e. between 2 processes



POSIX Semaphore (1)

#1 ncl ude <semaphore. h>

contains all needed deaclarations:

= Semaphore operations
= Semaphore datatyp sem t

= A process wanting to synchronize via POSIX semaphore,
must use another variable of type sem t

= Processes/KLTs that want to synchronize must use the

semaphore operations on a shared semaphore variable
of type sem t

D © 2007 Universitat Karlsruhe (TH), System Architecture Group



POSIX Semaphore (2)

Nt seminit(semt *sem
| nt pshared, unsigned I nt val ue)

Initializes a semaphore with return values:
= O if initialization was successful
= -1 in case of an error
= Semis a pointer to semaphore variable

= psharedis a flag

= If =0: can only be used by the calling activity
= If 1=0 can be used by all activities

= val ue: is initial value of the semaphore counter



POSIX Semaphore (3)

| Nt

semwalt(semt *sem
return value always 0 (cannot fail)

sem pointer to semaphore variable, where the
~Semaphore operation* p() should take place

sem post(semt, sem

return value O If successful, -1 In case of an error

sem pointer to semaphore variable, where the
~Semaphore operation* v() should take place



POSIX Semaphore (4)

Il nt sem destroy(semt *semn

= releases all resources, that had been allocated during
seminit

= return value O if successful, -1 in case of an error, e.g. when
there are still waiting threads at sem)

= Sem pointer to semaphore variable, where the ,semaphore
operation* p() should take place

Int semtrywait(semt, semnm
= only works when caller does not have to wait

I nt sem getval ue(semt sem
= Reads the counter value of the semaphore

D © 2007 Universitat Karlsruhe (TH), System Architecture Group



Example POSIX Semaphore (1)

#i ncl ude <pt hread. h>
#i ncl ude <senmaphore. h>
semt nutex; /| declaration of nutex

void *ny _thread(void *arg){
whi | e(1){
semwait(&mutex); [/ ~Djkstras p()
/1 CS
sem post ( &rut ex) /|l ~Dijkstras v()



Example POSIX Semaphore (2)

I nt mai n(){
pthread t threadl id, thread2_ id,
seminit(&mutex, 0, 1); [l initiallze nutex

pt hread create(& hreadl id, NULL, &y thread, NULL);
pt hread create(& hread2 id, NULL, &y thread, NULL);
pthread join(threadl id, NULL);
pthread join(thread2 id, NULL);

sem dest r oy( &rut ex) ;

D © 2007 Universitat Karlsruhe (TH), System Architecture Group



Review: POSIX Threads

Int pthread create(pthread t *thread,
const pthread attr_t *attr,
void *(*start _routine)(void*),
void *arg);

= return value =0 if successful, otherwise -1, i.e. because

there are not enough resources to install a new thread or

because the application has already created too many
threads or because the attributes in att r are invalid etc.

= t hread will contain the ID of the new thread
= Ifattr = NULL, the default attributes are initialized

= Start _routine is the function that will be executed if the
thread has been created with ar g as its arguments

= The signal state of the new threads is initialized as follows:
= Signal mask is inherited from the caller
= Set of pending signals is empty

D © 2007 Universitat Karlsruhe (TH), System Architecture Group



