
System ArchitectureSystem Architecture

9 Mutual Exclusion9 Mutual Exclusion

1© 2008 Universität Karlsruhe (TH), System Architecture Group

Critical Section & Critical Region
Busy-Waiting versus Blocking

Lock, Semaphore, Monitor

November 24 2008
Winter Term 2008/09

Gerd Liefländer

Agenda

Overview

 HW Precondition
 Mutual Exclusion

 Problem
 Critical Regions
 Critical Sections

 Requirements for valid solutions

© 2008 Universität Karlsruhe (TH), System Architecture Group 2

 Requirements for valid solutions
 Implementation levels

 User-level approaches
 HW support
 Kernel support

 Semaphores
 Monitors

Literature

 Bacon, J.: Operating Systems (9, 10, 11)

 Nehmer,J.: Grundlagen moderner BS (6, 7, 8)

 Silberschatz, A.: Operating System Concepts (4, 6, 7)

Overview

© 2008 Universität Karlsruhe (TH), System Architecture Group 3

 Stallings, W.: Operating Systems (5, 6)

 Tanenbaum, A.: Modern Operating Systems (2)

 Research papers on various locks

Atomic Instructions
 To understand concurrency, we need to know what

the underlying indivisible HW instructions are

 Atomic instructions run to completion or not at all
 It is indivisible: it cannot be stopped in the middle and its

state cannot be modified by someone else in the middle

© 2008 Universität Karlsruhe (TH), System Architecture Group 4

state cannot be modified by someone else in the middle

 Fundamental building block: without atomic instructions 
we have no way for threads to work together properly

 load, store of words are usually atomic

 However, some instructions are not atomic
 VAX and IBM 360 had an instruction to copy a whole

array

Mutual Exclusion Mutual Exclusion

5© 2008 Universität Karlsruhe (TH), System Architecture Group

Mutual Exclusion Problem

Assume at least two concurrent activities

1. Access to a physical or to a logical resource or to shared
data has to be done exclusively

2. A program section of an activity, that has to be executed

© 2008 Universität Karlsruhe (TH), System Architecture Group 6

indivisibly and exclusively is called critical section CS1

3. We have to establish a specific execution protocol in
front and after each CS in order to provide its mutual
exclusive execution

4. Activities executing a CS are either threads or processes2

1Some textbooks require atomic critical sections
2In the kernel exception/interrupt handlers also have CSs

{Thread 1}
while true do

a = a + 1;
b = b + 1;

integer a, b =1; {shared data}
{Thread 2}
while true do

b = b + 2;
a = a + 2;

Example: Critical Section

Motivation

© 2008 Universität Karlsruhe (TH), System Architecture Group 7

b = b + 1;

{do something else}
od

a = a + 2;

{do something else}
od

Both Threads read (and write to) shared global data a, b
 data inconsistency, a !=b after some time

Critical Regions

 All related CSs in the threads of a multi-
threaded application form a critical region

 A CS is related to another one iff both CSs
should not run concurrently e g in case they

© 2008 Universität Karlsruhe (TH), System Architecture Group 8

should not run concurrently, e.g. in case they
access
 an exclusive resource

 the same global data

 Non related CSs can be executed concurrently
at will

Example: Critical Regions

T T T T T T

Suppose: All Ti are KLTs of the same application task
the IP of T1 is in its “red CS”

All red CSs build up the red critical region CR
All blue CSs build up another CR
Question: What other IPi are valid at the same time?

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 9

T1 T2 T3 T4 T5 T6

IP1

IP2

IP3 IP4

IP7

IP6

CS1
CS2

CS3

CS4

Framework of Critical Sections

Sections of code implementing this protocol:
 enter_section

 critical section (CS)

exit section

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 10

 exit_section

The remaining code (outside of a CS):

 remainder section (RS)

We need a serialization protocol:
Results of involved threads no longer depend on
arbitrary interleaving of their execution phases

2 Mutual Exclusion Protocols

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 11

 Mutual exclusion of two related critical sections
 The solution space depends on the design of the

 waiting function in case of a locked CS
 enter_function & exit_function

or
busy waiting

Implementation LevelsImplementation Levels

12© 2008 Universität Karlsruhe (TH), System Architecture Group

Implementation Levels1

User-level
 Relies neither on HW instructions nor on

specific kernel features
HW-supported

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 13

 Relies on special HW instructions

Kernel-supported
 Low-level

 High-level

1Compare with signal objects

Applications of Solution Levels

 A multi-threaded application consisting of CSs in its
p>1 threads can be solved with
 Coordination-objects provided by a thread library (e.g. user-

level monitor) in case of PULTs

 Kernel-lock in case of KLTs

© 2008 Universität Karlsruhe (TH), System Architecture Group 14

 Kernel lock in case of KLTs

 Specific HW instructions (portability problem?)

 An application consisting of CSs in different
processes/tasks must be solved with
 Kernel-locks or kernel-monitors or

 Specific HW instructions (portability problem?)

 Shared memory concept

Requirements forRequirements for
Valid SolutionsValid Solutions

15© 2008 Universität Karlsruhe (TH), System Architecture Group

Note:
In many textbooks only three
requirements are postulated

Four Necessary CS Requirements
 Exclusiveness

 At most one activity is in the related CS

 Portability
 Make no assumptions about

 speed
number of CPUs

Mutual Exclusion

KIT specific

© 2008 Universität Karlsruhe (TH), System Architecture Group 16

 number of CPUs
 scheduling policy
 …

 Progress
 No activity running outside the related CS prevents another

activity from entering its related CS

 Bounded Waiting (no starvation)
 Waiting time of an activity in front of a CS must be limited

p

Analysis: Necessary Requirements

 Exclusiveness
 If not fulfilled the approach is incorrect

 Portability
 Some approaches heavily depend on whether we have a

single o a m lti p ocesso

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 17

 single- or a multi-processor
 time-slice based preemptive scheduling

 Progress
 Often violated by too simple approaches

 Bounded Waiting
 Often violated by busy waiting and static priority scheduling

Desirable Properties of CS

 Performance1

 Overhead of entering and exiting a CS is small with respect
to the execution time of the CS

 Nevertheless, avoid busy waiting whenever it’s possible

 Adaptability

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 18

Adaptability
 Depending on the current load

 Scalability
 Does it still work well with t>>1 threads

 Simplicity2

 Should be easy to use
1One of the major goals in our research group
2very hard to decide (“do not use a sledgehammer to kill a fly”),
however, that’s exactly what we expect from you in the future

UserUser--Level SolutionsLevel Solutions

19© 2008 Universität Karlsruhe (TH), System Architecture Group

Study these approaches
and “solutions” very carefully

There are many published approaches
that do not fulfill all KIT criteria

User-Level Approaches/Solutions

 Simplification:
We first only discuss problems with either two processes or with
two KLTs of the same task or with two PULTs of the same task

 Synchronization is done via global variables

 User-level “solutions” work with busy-waiting

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 20

 User-level solutions work with busy-waiting
 Waiting for an event to occur, by polling a condition

variable, e.g.

while(condition!=true); //just spin

 Busy-waiting consume CPU-time, it is pure overhead, thus in
many cases it is inefficient

Approach 1

Mutual Exclusion

Use global variable turn to denote who can enter CS

© 2008 Universität Karlsruhe (TH), System Architecture Group 21

Proposed solution to critical section problem
(a) Thread 0. (b) Thread 1

Shared variable turn initialized.
Ti’s CS executed iff turn = i
Ti is busy waiting if Tj is in CS 
mutual exclusion satisfied.
Progress not satisfied since strict
alternation of both CSs is presumed

turn = 0; /*shared*/
thread Ti:
repeat while(turn≠i){};

CSi
turn=j;

RSi
forever

Analysis of Approach 1

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 22

Analysis:
Suppose: long RS0, short RS1. If turn=0, T0 may enter CS0,
leaves it (turn=1), then is executing its very long RS0.
Meanwhile T1 in CS1, leaves it (turn=0), executes its short RS1.
If T1 tries to enter CS1 soon after again, it must wait until T0
leaves its long RS0 and its following CS0

Template for future Analysis
Requirement Valid Reason
Mutual Exclusion yes Due to turn either thread is in ist CS

No. or speed of
CPUs

yes Threads are alternating in their CS

Scheduling policy NO On a single processor and static priority

© 2008 Universität Karlsruhe (TH), System Architecture Group 23

scheme none of the threads might
enter their CS, lifelock

Progress NO A long RS prohibits, that the other
thread can enter twice in a row

Bounded Waiting yes In case of a fitting scheduling policy, no
if one thread terminates earlier

Performance NO Busy waiting induces CPU overhead

Scalability NO The disadvantages increase with more
threads

Approach 21

 What was the major problem of the first approach?
 Yes, it is very simple, thus it is robust, but the TID of the

PULTs/KLTs have been stored in the synchronization
variable, to decide who is allowed to enter and who has to
wait

 Next idea:
 Every PULT/KLT has its own key for its critical section, thus

we can achieve, that in case one thread terminates, the
other one is still capable to enter its critical section CS

 No every of the two PULTs/KLTs can compete independently
from the other

© 2008 Universität Karlsruhe (TH), System Architecture Group 24

1the Chinese politness protocol

Approach 2

enum boolean {false =0, true =1};
boolean flag[2]={false, false};
//indicating: no thread is initially in ist CS

Thread T0: Thread T1:
while(true){ while(true){

while(flag[1])//waiting; while(flag[0]);
flag[0]=true; flag[1]=true;
CS; CS;
flag[0]=false; flag[1]=false;
RS; RS;

} }

© 2008 Universität Karlsruhe (TH), System Architecture Group 25

Analysis of Approach 2
Requirement Valid Reason
Mutual Exclusion

No. or speed of
CPUs

Scheduling policy

© 2008 Universität Karlsruhe (TH), System Architecture Group 26

Scheduling policy

Progress

Bounded Waiting

Performance

Scalability

Analyze carefully and compare your analysis with the one in your textbook

Keep boolean variables for each
KLT: flag[0] and flag[1]
Ti signals that it is ready to enter
CS by setting: flag[i]=true
Mutual exclusion is satisfied but
not the progress requirement

flag[2]={false,false};
thread Ti:
repeat
flag[i]=true;

while(flag[j]){};
CS

flag[i]=false;
RS

Approach3

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 27

forever

What will happen?

Result: Both threads will wait forever, neither
will ever enter its CS  classical deadlock

Analysis: Suppose following execution sequence holds:
T0: flag[0]=true
T1: flag[1]=true

Analysis of Approach 3
Requirement Valid Reason
Mutual Exclusion

No. or speed of
CPUs

Scheduling policy

© 2008 Universität Karlsruhe (TH), System Architecture Group 28

Scheduling policy

Progress

Bounded Waiting

Performance

Scalability

Analyze carefully and compare your analysis with the one in your textbook

Approach 4

 One problem of approach 3 is, that the PULTs/KLTs
set their state related to their CS without bothering
the state of the other thread

 If both threads insist of being allowd to enter their
CS the result is a deadlockCS, the result is a deadlock

 Idea:
Every thread sets its flag, indicating, that it wants to
enter its CS, but it is willing to rest this flag, in order
to give the other thread to enter first

© 2008 Universität Karlsruhe (TH), System Architecture Group 29

Approach 4
enum boolean {false=0, true=1};
boolean flag[2]={false, false}; //no one in CS
Thread T0: thread T1:
while(true){ while(true){

flag[0]=true; flag[1]=true;
while(flag[1]){ while(flag[0]{while(flag[1]){ while(flag[0]{
flag[0]=false; flag[1]=false
//some delay //some delay
flag[0]=true; flag[1]=true;
} }
CS; CS;
flag[0]=false; flag[1]=false;
RS; RS;

}; };
© 2008 Universität Karlsruhe (TH), System Architecture Group 30

Analysis of Approach 4
Requirement Valid Reason
Mutual Exclusion

No. or speed of
CPUs

Scheduling policy

© 2008 Universität Karlsruhe (TH), System Architecture Group 31

Scheduling policy

Progress

Bounded Waiting

Performance

Scalability

Analyze carefully and compare your analysis with the one in your textbook

Approach 5: Dekker-Algorithm1

enum boolean {false=0, true=1};
boolean flag[2]={false, false}; //no one in CS
int turn = 1; // signals what thread is to be preferred
Thread T0: Thread T1:
while(true){ while(true){

flag[0]=true; flag[1]=true;
while(flag[1]){ while(flag[0]{

© 2008 Universität Karlsruhe (TH), System Architecture Group 32

1Published by Dutch mathematician T. Dekker 1965

if (turn==1){ if [turn==0){
flag[0]=false; flag[1]=false;
while(turn==1); while(turn==0);
flag[0]=true; flag[1]=true;

}} }}
CS; CS;
turn=1; turn=0;
flag[0]=false; flag[1]=false;
RS; RS;

}; };

Analysis of Dekker Algorithm
Requirement Valid Reason
Mutual Exclusion

No. or speed of
CPUs

Scheduling policy

© 2008 Universität Karlsruhe (TH), System Architecture Group 33

Scheduling policy

Progress

Bounded Waiting

Performance

Scalability

Analyze carefully and compare your analysis with the one in your textbook

Initialization:
flag[0]=flag[1]=false,
and turn= 0

Willingness to enter CS specified
by flag[i]=true

thread Ti:
repeat
flag[i]=true;
turn=j;
do {} while
(fl [j] d j)

Approach 6: Peterson Algorithm

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 34

y g

If both threads attempt to enter
their CS simultaneously, the turn
value decides which one will win

(flag[j]and turn==j);

CS
flag[i]=false;

RS
forever

*Stallings’ notation slightly different from Tanenbaum’s template

“Proof” of Algorithm 3

 To prove that mutual exclusion is preserved:
 T0 and T1 are both in their CS only if flag[0] = flag[1] = true

and only if turn = i for each Ti (which is impossible by definition)

 To prove that the progress and bounded waiting requirements
are satisfied:

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 35

are satisfied:
 Ti prevented from entering CS only if stuck in ‘while()..’ with condition
 ‘flag[j] ’

and ‘turn = j ’.
 If Tj is not ready to enter CS then ‘ ! flag[j] ’ and Ti can enter its CS
 If Tj has set ‘flag[j]’ and is in its ‘while()..’, then either turn=i or turn=j
 If turn=i, then Ti enters CS. If turn=j then Tj enters CS, but it will

reset flag[j] on exit: allowing Ti to enter CS
 but if Tj has time to set flag[j], it must also set turn=I
 since Ti does not change value of turn while stuck in ‘while()..’,

Ti will enter CS after at most one CS entry by Tj (bounded waiting)

Analysis of Peterson’s Algorithm
Requirement Valid Reason
Mutual Exclusion

No. or speed of
CPUs

Scheduling policy

© 2008 Universität Karlsruhe (TH), System Architecture Group 36

Scheduling policy

Progress

Bounded Waiting

Performance

Scalability

Analyze carefully and compare your analysis with the one in your textbook

If all four necessary criteria (mutual exclusion, progress,
portability, bounded waiting) are satisfied, a valid
solution will provide robustness against bugs in the RSi of
a KLT. Bugs within RS do not affect the other KLTs.

Problems with Faulty Threads

Mutual Exclusion

© 2008 Universität Karlsruhe (TH) System Architecture Group
37

However, no valid solution can ever provide robustness,
if a KLT fails within its critical section

A KLT failing within its CS might never perform
exit_section , i.e. no other KLT related to that
CS can ever perform enter_section successfully!

Before entering their CS, each Ti receives a number. The
holder of the smallest number enters its CS

If Ti and Tj receive the same number:
if i < j then Ti is served first, else Tj is served first

Bakery Algorithm for n Threads

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 38

Ti resets its number to 0 in its exit section

Notation: (a,b) < (c,d) if a < c or if a = c and b < d
max(a0,...ak) is a number b such that: b >= ai for i=0,..k

Shared data: choosing: array[0..n-1] of boolean; initialized to false
number: array[0..n-1] of integer; initialized to 0

Correctness relies on the following fact:
If Ti is in CS and Tk has already chosen its number[k] != 0,

then (number[i],i) < (number[k],k)

thread Pi:
repeat

choosing[i]=true;
number[i]=max(number[0]..number[n-1])+1;
choosing[i]=false;
for j=0 to n-1 do {

Bakery Algorithm

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 39

j {
while (choosing[j]) {};
while (number[j]≠0

and (number[j],j)<(number[i],i)){};
}
CS
number[i]=0;
RS

forever

Summary: User-Level Approaches

 Activities trying to enter a locked critical section
are busy waiting ( wasting processor time)

 If the critical section CS has a long execution
phase it is more efficient to block the activity

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 40

phase it is more efficient to block the activity

 On a single processor with static priority
scheduling, busy waiting can always lead to
starvation, i.e. to a life lock

HWHW--Support Support forfor CSCS

Interrupt Locking
Test And Set Instruction

41© 2008 Universität Karlsruhe (TH), System Architecture Group

How to implement Atomic Operations?

We need additional HW support:

 Disabling interrupts
 Why can this prevent a thread switch?

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 42

 For all systems?

 Atomic instructions
 CPU and bus guarantee entire action will execute

atomically
 Test And Set (TAS instruction)
 Compare And Swap
 …

Interrupt Locking

 It is a quite primitive mechanism, only valid for single processor
systems
 Portability requirement not fulfilled
 Disabling interrupts for CPU0 does not prevent that on another CPU

a conflicting CS is exectuted
However for specific “very short CS” inside the kernel this However, for specific very short CS inside the kernel this
approach can be a solution for ingle-processors

 Before an activity Ai enters its CS, this Ai disables all interrupts
 Especially the time-slice interrupt, thus there is no possibility that a

thread switch might be induced
 Structure of mutual-exclusion protocol

© 2008 Universität Karlsruhe (TH), System Architecture Group 43

Activity Ai:
while (true) {
disable interrupt;
CS;
enable interrupt;
RS;

};

activity Ai:
while (true) {
disable interrupt;
CS;
enable interrupt;

Disabling Interrupts at User Level?
Single processor:
Mutual exclusion preserved, but
efficiency degraded: while in CS,
no interrupt handling anymore

 No time-slicing anymore
Delay of interrupt handling may

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 44

RS;
};

Summary: Approach is unacceptable due to its side effects
Good news: disable_interrupts is privileged on CPUs,

i.e. it can not be used at application level at all

 Delay of interrupt handling may
affect the whole system

 Application programmers may
abuse → system hangs

Multi processors:
Not effective at all

Why?

Interrupt Locking

 Problems with interrupt locking
 CS must be very short,

 Interrupts can not be delayed too long, otherwise interrupt signals
might be lost

 Suppose inside the CS, the KLT aborts, then the rest of the
t i i lif l k i t t b h dl dsystem is in a life lock, no interrupt can be handled anymore

 Mechanism can be used only on single processors

 Summary:
 Mechanism is not suitable for mutual exclusion and

conditional synchronization at application level
 However, it might be useful inside the kernel

© 2008 Universität Karlsruhe (TH), System Architecture Group 45

Disabling Interrupts at Kernel Level

 Could help us in implementing atomic Spin Lock operations
Acquire_lock() & Release_lock()

Discuss this approach carefully
 Do we still have a race condition?

Mutual Exclusion

struct lock{
int held = 0;
}

© 2008 Universität Karlsruhe (TH), System Architecture Group 46

 Do we still have a race condition?
 Would you use this approach when

you have to solve a critical section
problem?

 What are the major disadvantages?

void Acquire_lock(lock) {
Disable_Interrupts;
while (lock->held);
lock->held=1;
Enable_Interrupts;
}

void Release_lock(lock){
Disable_Interrupts;
lock->held=0
Enable_Interrupts;
}

Still Busy Waiting with
Side Effects on System

Severe Bug on Previous Slide

struct lock{
int held = 0;
}

void Acquire_lock(lock) {
Disable_Interrupts;
while (lock->held);
lock >held=1;

© 2008 Universität Karlsruhe (TH), System Architecture Group 47

lock->held=1;
Enable_Interrupts;
}

void Release_lock(lock){
Disable_Interrupts;
lock->held=0
Enable_Interrupts;
}

Improved Simple Spin Lock?
struct lock{
int held = 0;
}

void acquire(lock) {
Disable_Interrupts;
while (lock->held) {

Enable_Interrupts;
 possibility for a thread switch

© 2008 Universität Karlsruhe (TH), System Architecture Group 48

Disable_Interrupts;
} //systemno longer spinning with pending interrupts
lock->held=1;
Enable_Interrupts;
}

void set_free(lock){
Disable_Interrupts;
lock->held=0
Enable_Interrupts;
}

More HW Support for a Spin-Lock

 If we could test and set the synchronization variable in one
atomic instruction, we might have solved the spin-lock problem

 Some processors offer this atomic testandset instruction
 Two possible implementations of the TAS instruction:

TAS1:
b l t t d t(b l *fl){boolean test_and_set(boolean *flag){
boolean old = *flag;
*flag = true;
return old;

}

TAS2:
boolean testset(int i){
if (i==0){

i=1; return true
}
else return false

}

© 2008 Universität Karlsruhe (TH), System Architecture Group 49

Semantics:
Result = true, the spinlock could be set successfully
Result = false, the spinlock is held by someone else

TAS2 for Mutual Exclusion

const int t=100; // number of KLTs
int spinlock;
void T(inti){
while(true){
while (!testset(spinlock)); //busy waiting
CSCS;
spinlock = 0;
RS;
}

}
void main(){
spinlock=0; // initially no one is in ist CS
parbegin (T(1),T(2), …,T(n));

}

© 2008 Universität Karlsruhe (TH), System Architecture Group 50

Spin Lock with TAS1

Mutual Exclusion

struct lock_SMP{
int held = false; /* initialization */
}

void Acquire_SMP(lock_SMP) {
while (test and set(&lock SMP >held));

© 2008 Universität Karlsruhe (TH), System Architecture Group 51

while (test_and_set(&lock_SMP->held));
}

void Release_SMP(lock_SMP){
lock_SMP->held=false
}

Do we still have a race condition at the variable lock_SMP_held?
Is this solution portable and efficient?
What happens when many KLTs try to acquire the same Spin Lock?

static lock_SMP Spin = false;

thread Ti {

repeat

Approach with Lock_SMP

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 52

Acquire_SMP(Spin);

CS

Release_SMP(Spin);

RS

forever

}

Analysis of TAS1 or TAS2
 Advantages:

 Number of involved threads is not limited
 Quite simple approach and easy to understand
 You can use it also to control many critical regions CRs, as

long as you provide a different spinlock variable per CR

 Disadvantages:
 Busy waiting can always be inefficient
 A KLT can starve in front of its critical section in case it has

only low priority
 Deadlocks and priority inversion can happen with nested CS

© 2008 Universität Karlsruhe (TH), System Architecture Group 53

Deeper Analysis of Lock_SMP (1)
 Mutual exclusion is preserved

 However, if one Ti is in its CS, all other Tj –trying to
enter their CS- perform busy waiting

 a potential efficiency problem

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 54

However, what is the main problem with any of these
“spin lock” solutions?

When Ti exits CS, selection of Tj that will enter its CS is
arbitrary  no bounded waiting guaranteed

possible starvation of a T

What about consequences concerning cache coherence?

Analysis of LOCK_SMP (2)

Repeated test-and-set-instructions can monopolize the
system bus affecting other activities (whether related to
that critical section or whether not)

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 55

Furthermore there is a severe danger of another sort
of starvation on a single processor system
(compare with busy waiting at application level)

q g

Spin-Lock Problems in SMPs

CPU1 CPU2

1 1

CPU3

cache
01

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 56

0 main memory

Result: “Ping-pong” effect between cache(CPU1) &
cache(CPU2) wasting system-bus capacity

Corollary: Design & implement a better spin lock

1

Other Atomic CPU Instructions

(1) Some machines offer instructions that perform read-modify-write
operations atomically (indivisible, same memory location):

 inc [mem]
 xchg [mem],reg
 bts [mem] {bit test and set}

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 57

(2) Some machines offer conditional LD/ST instructions instead:
 LDL [mem] processor becomes sensitive

for memory address mem
 STC [mem] fails if another processor executed STC

on the same address in the meantime

 instructions like (1) execute mutually exclusive on multiple CPUs
 like (2) allow emulating mutually exclusive instructions

Swap Instruction

void swap (boolean *a, boolean *b)
{
boolean temp = *a;
*a = *b;

© 2008 Universität Karlsruhe (TH), System Architecture Group 58

*a = *b;
*b = temp:

}

Can you use this Swap instruction to enable a suitable
& portable CS protocol? (see assignments)

KernelKernel--Level SolutionsLevel Solutions

59© 2008 Universität Karlsruhe (TH), System Architecture Group

Low-Level
High-Level

Mutex at Kernel-Level

 Instead of implementing Acquire_lock() with busy
waiting we can use our Kernel API, i.e. BLOCK(),
UNBLOCK()

 If lock is currently held by another thread, the thread having
called Acquire_mutex() will be blocked
 Put the thread to sleep until it can acquire the lock

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 60

 Put the thread to sleep until it can acquire the lock
 Free the CPU for other KLTs to run

 However, we must also change Release_mutex(), because
in the meantime some thread could have been blocked
waiting for the mutex

 Each mutex has an associated wait queue (similar to a
semaphore)

 Design and implement a kernel object mutex with
atomic Acquire_mutex() and Release_mutex()
operations at least for a single-processor system

First Approach: A Simple Lock*

 A lock is an object (in main memory)
providing the following two operations:

 Acquire_lock(): before entering a CS

 If lock is held KLT must wait in front of CS

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 61

 If lock is held, KLT must wait in front of CS

 Release_lock(): after leaving a CS

 Allows another KLT to enter the CS

First Approach: Simple Lock
 After an Acquire_lock() there must

follow a Release_lock()
 Between Acquire_lock() &

Release_lock(), a KLT is holding the lock
(=current lock holder)

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 62

()
 Acquire()_lock with blocking waiting only

returns when the caller is the current lock holder

1. What might happen if Acquire_lock() and
Release_lock() calls are not paired?

2. What happens when the current lock holder tries to
acquire the same lock once more?

Using the Simple Lock

int withdraw(account, amount){

Acquire_lock(lock1);

balance = get_balance(account);

Mutual Exclusion

CS

© 2008 Universität Karlsruhe (TH), System Architecture Group 63

balance -= amount;

put_balance(account, balance);

Release_lock(lock1);

return balance;

}

CS

Execution with Simple Lock

Mutual Exclusion

Acquire_lock(lock1);
balance = get_balance(account);
balance -= amount;

Acquire_lock(lock1);

Thread 1 runs

Thread 2 runs but
must wait on lock?

© 2008 Universität Karlsruhe (TH), System Architecture Group 64

put_balance(account, balance);
Release_lock(lock1);

balance = get_balance(account);
balance -= amount;
put_balance(account, balance);
Release_lock(lock1);

Thread 1 runs
& completes

Thread 2
resumes and
completes

What happens when thread 2 tries to acquire the lock?

1. Approach: Simple Lock

Mutual Exclusion

struct lock{
int held = 0;

}
void Acquire_lock(lock){

while (lock->held);

Initialization:
lock is free

Caller is busy waiting
Spinning

bug

© 2008 Universität Karlsruhe (TH), System Architecture Group 65

lock->held=1;
}
void Release_lock(lock){

lock->held=0
}

Observation: There is a severe bug Where?

y g
till lock is released

Most system architects
call it a “Spin Lock”

g

Implementing a Spin Lock
Problem:

Internals of both operations have critical sections
 Acquire_lock() and Release_lock() must be atomic
 The all or nothing principle (see: transactions)

Now, we face a really hard dilemma*:

We’ e int od ced spin locks to p o ide a m t al e cl si e

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 66

We’ve introduced spin locks to provide a mutual exclusive
protocol to solve critical section problems, but our solution
contains yet another critical section problem

What to do? Who can help us poor system architects?

Help comes from the processor architect
He helps us to end the recursion

*Baron Münchhausen Syndrome

Adaptive Lock

 Waiting in front of an adaptive lock is done
 either via spinning
 or via blocking

Criteria for spinning

© 2008 Universität Karlsruhe (TH), System Architecture Group 67

 Criteria for spinning
 When lock holder is currently running
 When trying to acquire the lock a timer is started

that blocks the caller after n time units

 Criteria for blocking
 When lock holder is ready or waiting

Recursive Lock

 How to enhance a simple lock to be able to
note that the current lock holder wants to
acquire the lock again?

Wh t t d i th l f ti ?

© 2008 Universität Karlsruhe (TH), System Architecture Group 68

 What to do in the release function?

CountingCounting SemaphoreSemaphore

69© 2008 Universität Karlsruhe (TH), System Architecture Group

Mutual Exclusion

Counting Semaphore for CS

1. Positive value of counter→ #threads that can enter
the “CS” concurrently
 If mutual exclusion is required, initialize the semaphore

counter with 1

2 Negative value of counter #waiting threads in

© 2008 Universität Karlsruhe (TH), System Architecture Group 70

2. Negative value of counter → #waiting threads in
front of CS, i.e. queued at semaphore object

3. Counter == 0 → no thread is waiting and
maximal #threads are currently in CS

Still an open problem:
How to establish atomic semaphore operations?

Mutual Exclusion

Implement Counting Semaphores
module semaphore {
export p, v
import BLOCK, UNBLOCK
type semaphore = record{

Count: integer = 1 {CS not yet locked}
QWT: list of Threads = empty {no waiting threads}

}
p(S:semaphore){

© 2008 Universität Karlsruhe (TH), System Architecture Group 71

p(S:semaphore){
S.Count = S.Count - 1
if (S.Count < 0){
insert (S.QWT, myself) {+ 1 waiting thread}
BLOCK(myself)
}}

v(S:semaphore){
S.Count = S.Count + 1 {unlock CS }
if (S.Count ≤ 0) {
UNBLOCK(take_any_of S.QWT) {weak semaphore}
}}

}

Mutual Exclusion

“very short”
enter_section

(S)

Atomic Semaphore Operations

Problem:
p() and v() -each consisting of
multiple machine instructions-
have to be atomic!

© 2008 Universität Karlsruhe (TH), System Architecture Group 72

p(S)
“very short”
exit_section

Solution:
Use “another” type of critical
sections, hopefully with shorter
execution times, establishing
atomic and exclusive
semaphore operations

Mutual Exclusion

Revisiting Dijkstra’s Semaphores

Short CS implementing atomic, exclusive p(S) and v(S)

Possible solutions for short CS around p(S), v(S):

Single processor:

© 2008 Universität Karlsruhe (TH), System Architecture Group 73

Single processor:
 Disable interrupts as long as p() or v() running
 Contradiction to our recommendation not to

manipulate interrupts at application level?

Multi processor:
 Use special instructions (e.g. TAS)

Mutual Exclusion

p(sema S)
begin
DisableInterupt
s.count--
if (s.count < 0){
i ()

v(sema S)
begin
DisableInterrupt
s.count++
if (s.count ≤ 0){

T(QWT)

Single Processor Solution

© 2008 Universität Karlsruhe (TH), System Architecture Group 74

insert_T(s.QWT)
BLOCK’(S)

}
else

EnableInterrupt
end

remove_T(s.QWT)
UNBLOCK’(S)

}
EnableInterrupt
end

What happens, if switching to another thread?
Interrupts still disabled?

Mutual Exclusion

P(sema S)
begin
while (TAS(S.flag)==1){};
{ busy waiting }
S.Count= S.Count-1

V(semaS)
begin
while (TAS(S.flag)==1){};
{ busy waiting }
S.Count= S.Count+1

Multiprocessor Solution

© 2008 Universität Karlsruhe (TH), System Architecture Group 75

if (S.Count < 0){
insert_T(S.QWT)
BLOCK(S)
{inkl.S.flag=0)!!!}

}
else S.flag =0

end

if S.Count ≤ 0 {
remove_T(S.QWT)
UNBLOCK(S)

}
S.flag =0
end

Mutual Exclusion

Weak Counting Semaphores
p(S:semaphore)

S.Count = S.Count – 1;
if S.Count < 0 {
insert(S.QWT, myself); {i.e. somewhere}
BLOCK(myself);
}
fi

© 2008 Universität Karlsruhe (TH), System Architecture Group 76

fi.

v(S:semaphore)
S.Count = S.Count + 1;
if (S.Count ≤ 0) {
thread = take_any_of S.QWT; {no order}
UNBLOCK (thread);
}
fi

Mutual Exclusion

Strong1 Counting Semaphores

p(S:semaphore)
S.Count = S.Count - 1
if S.Count < 0 {
append (S.QWT, myself)
BLOCK(myself)
}

© 2008 Universität Karlsruhe (TH), System Architecture Group 77

}
fi.

v(S:semaphore)
S.Count = S.Count + 1 {unlock CS }
if (S.Count ≤ 0) {
thread = take_first_of S.QWT;
UNBLOCK (thread)

}
fi

1Strict

Mutual Exclusion

thread Ti:
repeat

p(S);

Application of Counting Semaphores

Suppose: n concurrent threads

Initialize S.Count to 1  only 1
thread allowed to enter its CS

© 2008 Universität Karlsruhe (TH), System Architecture Group 78

CS
v(S);

RS
forever

ad a o d o s CS
(i.e. mutual exclusion)

Initialize S.Count to k>1  k>1
threads allowed to enter their CS
When to use this semantics?

Mutual Exclusion

Producer/Consumer

A semaphore S to perform mutual exclusion on the buffer:
Only one thread at a time should access the buffer

A semaphore N to synchronize producer and consumer on the
number N (= in - out) of items in the buffer:
An item can be consumed only after it has been created

© 2008 Universität Karlsruhe (TH), System Architecture Group 79

An item can be consumed only after it has been created

Producer is free to add an item into the buffer at any time,
but it has to do P(S) before appending and V(S) afterwards
to prevent concurrent accesses by the consumer

It also performs V(N) after each append to increment N
Consumer must first do P(N) to see if there is an item to consume,
then it uses P(S) and V(S) while accessing the buffer

Mutual Exclusion

Initialization:
S.count:=1;
N.count:=0;
in:=out:=0;

Auxiliary functions:
append(v){
b[in]:=v;
in++;}

take(){
w:=b[out];
out++;
return w;}

Producer/Consumer ( Buffer)

© 2008 Universität Karlsruhe (TH), System Architecture Group 80

Producer:
repeat
produce v;
p(S);
append(v);
v(S);
v(N);

forever

Consumer:
repeat
p(N);
p(S);
w:=take();
v(S);
consume(w);

forever

Q: Semaphore Solutions*

 Why do we need mutual exclusion at the buffer?

 Why does the producer v(N) ?

 Why is the order of the p() in the consumer
important?

Mutual Exclusion

© 2008 Universität Karlsruhe (TH), System Architecture Group 81

important?

 Is order of the v() in the producer important?

 Is this solution extensible to p>1 producers and/or
c>1 consumers?

*Be prepared for similar questions in assignments and exams

Mutual Exclusion

Summary on Semaphores

Semaphores provide a primitive coordination tool
 for enforcing mutual exclusion and/or
 for synchronizing threads

p(S) and v(S) are scattered among several threads.

© 2008 Universität Karlsruhe (TH), System Architecture Group 82

p() () g
Hence, it’s difficult to understand all their effects

Usage must be correct in all threads

One buggy (malicious) thread can crash an entire
application or sub system

Recommendation

Avoid using Semaphores*

personal recommendation

Recommendation

© 2008 Universität Karlsruhe (TH), System Architecture Group 83

personal recommendation,
Jochen Liedtke

What to use instead of?

 better synchronizations tools?

“Software” Monitors“Software” Monitors

Monitors

84© 2008 Universität Karlsruhe (TH), System Architecture Group

*Remark: Java language offers monitors
You should be familiar with them

Monitor (1)

 High-level “language construct”

 ~ semantics of binary semaphore, but easier to
control

 Offered in some programming languages

Monitors

© 2008 Universität Karlsruhe (TH), System Architecture Group 85

p g g g g

 Concurrent Pascal

 Modula-3

 Java

 ...

 Can be implemented using semaphores or other
synchronization mechanisms

Monitor (2)

A software module* consisting of:
 one or more interface procedures

 an initialization sequence

 local data variables

Monitors

© 2008 Universität Karlsruhe (TH), System Architecture Group 86

Characteristics:
 local variables accessible only inside monitor methods

 thread enters monitor by invoking a monitor method

 only one thread can run inside a monitor at any time, i.e. a
monitor can be used to implement mutual exclusion

*Java’s synchronized classes enable monitor-objects

Monitor (3)

Monitor already ensures mutual exclusion 
no need to program this constraint explicitly

Hence, shared data are protected automatically
by placing them inside a monitor.
Monitor locks its data whenever a thread enters

Monitors

© 2008 Universität Karlsruhe (TH), System Architecture Group 87

Monitor locks its data whenever a thread enters

Additional thread synchronization inside the monitor can
be done by the programmer using condition variables

A condition variable represents a certain condition (e.g.
an event) that has to be met before a thread may
continue to execute one of the monitor procedures

Cyclic buffer of N slots with interface operations
fetch() and deposit()

1 n

Approach for a Monitor Solution*

Monitors

© 2008 Universität Karlsruhe (TH), System Architecture Group 88

*Detailed example for the development of a solution
“step by step“

head tail
fetch deposit

occupied free

monitor module bounded_buffer
export fetch, deposit;
buffer_object = record
array buffer[1..N] of datatype
head: integer = 1
tail: integer = 1
count: integer = 0

end
procedure deposit(b:buffer_object, d:datatype)
begin
b.buffer[b.tail] = d

head tail
fetch deposit

occupied free

1 n

Monitors

© 2008 Universität Karlsruhe (TH), System Architecture Group 89

Automatically with mutual exclusion

Automatically with mutual exclusion

b.buffer[b.tail] d
b.tail = b.tail mod N +1
b.count = b.count + 1

end
procedure fetch(b:buffer_object, result:datatype)
begin
result = b.buffer[b.head]
b.head = b.head mod N +1
b.count = b.count - 1

end
end monitor modul

Concurrent deposits or fetches are serialized, but you can still deposit
to a full buffer and you can still try to fetch from an empty buffer!
 two additional constraints have to be considered.

monitor module bounded_buffer
export fetch, deposit;
import BLOCK, UNBLOCK;
buffer_object = record
array buffer[1..n] of datatype
head: integer = 1
tail: integer = 1
count: integer = 0
SWT_D,SWT_F of threads = empty {2 waiting queues due to deposit,fetch}

end
procedure deposit(b:buffer_object, d:datatype)
begin
while (b.count == n) do BLOCK(b.SWT_D)
b.buffer[b.tail] = d

Also blocks the monitor

Monitors

head tail
fetch deposit

occupied free

1 n

© 2008 Universität Karlsruhe (TH), System Architecture Group 90

b.tail = b.tail mod n +1
b.count = b.count + 1
if (b.SWT_F ≠ empty) UNBLOCK(b.SWT_F)

end
procedure fetch(b:buffer_object, result:datatype)
begin
while (b.count == 0) do BLOCK(b.SWT_F)
result = b.buffer[b.head]
b.head = b.head mod n +1
b.count = b.count - 1
if (b.SWT_D ≠ empty) UNBLOCK(b.SWT_D)

end
end monitor modul

No longer deposits to a full buffer or fetches from an empty buffer, but …???

Also blocks the monitor

Condition Variables

Local to the monitor (accessible only inside the monitor)
can be accessed only by:

CondWait(cv) blocks execution of the calling thread on
condition variable cv

Monitors

© 2008 Universität Karlsruhe (TH), System Architecture Group 91

condition variable cv
This blocked thread can resume its execution only
if another thread executes CondSignal(cv)

CondSignal(cv) resumes execution of some thread
blocked on this condition variable cv

If there are several such threads: choose any one
If no such thread exists: void, i.e. nothing to do

Monitor (4)

Waiting threads are either in the
entrance queue or in a condition
queue

A thread puts itself into the
condition queue cn by invoking
C dW it()

Monitors

© 2008 Universität Karlsruhe (TH), System Architecture Group 92

CondWait(cn)

CondSignal(cn) enables one
thread, waiting at condition
queue cn, to continue

Hence CondSignal(cn) blocks the
calling thread and puts it into the
urgent queue (unless Condsignal
is the last operation of the
monitor procedure)

monitor module bounded_buffer
export fetch, deposit
import CondSignal,CondWait
buffer_object = record
array buffer[1..n] of datatype
head: integer = 1
tail: integer = 1
count: integer = 0
not_full: cond = true
not_empty: cond = false

end
procedure deposit(b:buffer_object, d:datatype)
begin
while (b count == n) do CondWait(b not full) {only block thread}

Monitors

head tail
fetch deposit

occupied free

1 n

© 2008 Universität Karlsruhe (TH), System Architecture Group 93

while (b.count == n) do CondWait(b.not_full) {only block thread}
b.buffer[b.tail] = d
b.tail = b.tail mod n +1
b.count = b.count + 1
CondSignal(b.not_empty)

end
procedure fetch(b:buffer_object, result:datatype)
begin
while (b.count == 0) do CondWait(b.not_empty) {only block thread}
result = b.buffer[b.head]
b.head = b.head mod n +1
b.count = b.count - 1
CondSignal(b.not_full)

end
end monitor modul

ProducerI:
repeat
produce v;
deposit(v);

forever

Summary: Producer/Consumer

Two types of threads:
 Producer(s)
 Consumer(s)

Synchronization is now confined
to the monitor

Monitors

© 2008 Universität Karlsruhe (TH), System Architecture Group 94

forever

ConsumerI:
repeat
fetch(v);
consume v;

forever

to the monitor

deposit(...) and fetch(...) are
monitor interface methods

If these 2 methods are correct,
synchronization will be correct
for all participating threads.

Reader/Writer with Monitor

Using monitors you can also solve reader/writer
problems with either reader or writer preference,

Compare your solution with the one using semaphores

Monitors

© 2008 Universität Karlsruhe (TH), System Architecture Group 95

in one of the text books

Remarks and Open Questions

 Which of the 2 threads T and T’ should continue
when T executes CondSignal(cv) while T’ was
waiting due to a previous CondWait(cv)?

 A monitor must stay closed if some externally

Monitors

© 2008 Universität Karlsruhe (TH), System Architecture Group 96

 A monitor must stay closed if some externally
initiated event occurs, e.g. end of time slice
(Otherwise no mutual exclusion anymore)

 However, what to do when a monitor method of
monitor M invokes a method of monitor M’?

