
System ArchitectureSystem Architecture

8 Coordination8 Coordination

1© 2008 Universität Karlsruhe (TH), System Architecture Group

Concurrency Problems
Orthogonal Design Parameter

Unilateral synchronization (Signals)

November 19 2008
Winter Term 2008/09

Gerd Liefländer

Literature

 Bacon, J.: OS (9, 10, 11)
 Exhaustive (all POSIX thread functions)
 Event handling, Path Expressions etc.

 Nehmer, J.: Grundlagen moderner BS (6, 7, 8)

Introduction

© 2008 Universität Karlsruhe (TH), System Architecture Group 2

 Silberschatz, A.: OS Concepts (3, 4, 6)

 Stallings, W.: OS (5, 6)

 Tanenbaum, A.: MOS (2)

 Additional Research Papers

Agenda

 Review: Discussed Kernel Components
 Introduction & Motivation

 Example Problems
 Definitions and Notions

 Condition Synchronization(Signaling)

© 2008 Universität Karlsruhe (TH), System Architecture Group 3

y (g g)
 Mutual Exclusion

 Standard Concurrency Problems
 Design Space of Condition Synchronization

 Signaling
 Flags
 Semaphores

 Mutual Exclusion

User Land

Discussed Kernel Components

system call
interrupt
exception

GUI or Command Interpreter

Review

© 2008 Universität Karlsruhe (TH), System Architecture Group 4

Kernel Land

syscall “abc” yield time slice
interrupt handler syscall “xyz”

state transitions, e.g. assign, release, block, unblock, …

thread_switch

Two Levels: Controlling Concurrency
1. How to coordinate tasks, processes, threads … ?

?

Introduction

Only PULTs

© 2008 Universität Karlsruhe (TH), System Architecture Group 5

Kernel

Task T1 Process P0815 Task T4711

…
kernel
object

2. How to coordinate kernel activities, i.e. kernel mode threads,
exceptions handlers and interrupt handlers?

user
object

kernel
object

Live Lock

Motivation & IntroductionMotivation & Introduction

6© 2008 Universität Karlsruhe (TH), System Architecture Group

Why do we need coordination?
Whom do we have to coordinate?

Activities of same or of different kinds?
Can we classify coordination problems?

Threads access exclusive resources and/or
access common data (e.g. objects in a shared
memory or records of a shared files)

 If result of applications depends on the execution
f h h d d

Motivation

Why Coordination?

© 2008 Universität Karlsruhe (TH), System Architecture Group 7

sequence of the threads → race condition

 Concurrent threads might have access conflicts,
e.g. competing for exclusive resources

 If there is no controlled access to common data,
threads can produce inconsistent data

Too many cooks
spoil the broth

Bad
Timing

Need for
protocols

Whom to coordinate?

 In many cases, concurrent activities of the same
kind have to be coordinated, e.g. because
 they access common data within a task, e.g. k>1 KLTs

share a file
 to preserve file consistency, we must coordinate file updates

 they share the same physical/logical resource

 In some cases, a process must be coordinated
with all PULTs of another multi-threaded task,
because they all compete for the same physical
device, e.g. the network-card

© 2008 Universität Karlsruhe (TH), System Architecture Group 8

Classification of Coordination

 Condition Synchronization
 Waiting for the occurrence of a condition

 Goal: determine a specific order of operations

 Mutual Exclusion
 Prevent concurrent access to exclusive resources

 Goal: consistency of data

© 2008 Universität Karlsruhe (TH), System Architecture Group 9

Orthogonal Concepts

 Condition synchronization and mutual exclusion

Mutual Exclusion Condition
i i

Goal

© 2008 Universität Karlsruhe (TH), System Architecture Group 10

Syncronization
- - Independent

Activities

- + Precedence Relation

+ - Data Consistency

+ + Data Consistency &
Precedence Relation

Shared Resources?
Basic problem:

 At least two concurrent threads access a shared object
 If shared object is modified by at least one thread, access

must be serialized

 We’ll study concepts & mechanism to control access to

Motivation

© 2008 Universität Karlsruhe (TH), System Architecture Group 11

y p
shared resources
 HW-mechanisms: TestAndSet, …, EnableInterrupt
 Low level mechanisms: Condition variables
 high level mechanisms: semaphore, monitors
 User land algorithms: Dekker, Peterson

 Any coordination stuff is complicated & rife with pitfalls
 There are “solutions” even in OS-textbooks that are invalid
 Details are important to get a valid solution

ATM Bank Server

© 2008 Universität Karlsruhe (TH), System Architecture Group 12

 ATM server problem:
 Service a set of requests

 Do so without corrupting the underlying database
containing your and others’ bank accounts

 Neither hand out too much money nor too few money

Bank Account Example

Design a function to withdraw money from your bank account:

int withdraw(account, amount){
balance = get_balance(account);
balance -= amount; /*balance is local*/

Motivation

© 2008 Universität Karlsruhe (TH), System Architecture Group 13

put_balance(account, balance);
return balance;}

Now suppose that you and your spouse share a bank
account with a current balance of $ 2000.00

 What might happen if you both go to separate ATMs* and
simultaneously withdraw $100 respectively $1000 from
your account?

*ATM = automated teller machine

Bank Account Example (2)

We model these concurrent actions by two threads,
for each ATM one withdrawal thread:

Thread 2
int withdraw(account, amount){

balance = get_balance(account);

Thread 1
int withdraw(account, amount){

balance = get_balance(account);

Motivation

© 2008 Universität Karlsruhe (TH), System Architecture Group 14

 Any problems?

 What are the possible balance values after each
thread has terminated?

_
balance -= amount;
put_balance(account, balance);
return balance;}

spouse

balance -= amount;
put_balance(account, balance);
return balance;}

you

Bank Account Example (3)

Interleaved execution of both threads due to
 preemptive scheduling, i.e.
 there might be a thread_switch after each instruction

Let’s study a possible interleaved execution trace of both threads:
balance = get balance(account);

Motivation

© 2008 Universität Karlsruhe (TH), System Architecture Group 15

balance get_balance(account);
balance -= amount; /* 100 $ */

balance = get_balance(account);
balance -= amount; /* 1000 $ */
put_balance(account, balance);

put_balance(account, balance);

What’s the account balance afterwards?
 Who is happier, your bank or you and/or your spouse?

thread_switch

thread_switch

Design Parameters
 Type(s) of Involved Activities

 Only PULTs of the same task

 Only KLTs of the same task

 KLTs of different tasks

 Processes and KLTs

 Number of Involved Activities
Only 2 activities

© 2008 Universität Karlsruhe (TH), System Architecture Group 16

 Only 2 activities
 a >2 activities
 a>>2 (we must find highly scalable solutions)

 Uni-/Multilateral Synchronization

 Busy waiting or blocked waiting (or adaptive waiting?)

 Levels of Implementation
 User level
 Kernel level
 HW level

Uni-/Multilateral Synchronization

Motivation

a1 b1

T1 T2

a1 b1

T1 T2

© 2008 Universität Karlsruhe (TH), System Architecture Group 17

a) Unilateral: section b2 waits until section a1 has completed,
sections a1 & a2, i.e. thread T1 is not affected at all

b) Multilateral: sections b2 and a2 wait until section a1 respectively
b1 have completed.

a2 b2 a2 b2

a) b)

Busy/Blocked Waiting

 Busy waiting
 Whenever you can guarantee that the event will occur

within t time units whereby the overhead for blocking (&
later deblocking) the activity is oht > t time units

syscall busywait

 Blocking waiting in all other cases

© 2008 Universität Karlsruhe (TH), System Architecture Group 18

syscall blockwait syscall signal

oht

t

Levels of Implementation

Various Locks Semaphores Monitors Send/Receive

synchronized methods or synchronization algorithms

Kernel
API

Application
Programs

© 2008 Universität Karlsruhe (TH), System Architecture Group 19

 We are going to design & implement various
synchronization primitives using atomic operations
 Everything is painful if the only atomic HW instructions are
load and store

 We must provide primitives, useful at kernel- and at user-level

Load/Store Disable Ints Test&Set Comp&Swap …Hardware

Concurrency ProblemsConcurrency Problems

20© 2008 Universität Karlsruhe (TH), System Architecture Group

Standard Problems

6 5 4 3 2 1

Producer/Consumer (Bounded Buffer)

Concurrency Problems

© 2008 Universität Karlsruhe (TH), System Architecture Group 21

Problems with bounded buffer?

Additional problems with p>1 producer or c>1 consumer?

file document

Reader/Writer Problem

Concurrency Problems

© 2008 Universität Karlsruhe (TH), System Architecture Group 22

..

..

..

Which problems may occur?

 Data inconsistency

Life of a philosopher:

repeat forever
begin
thinking
getting hungry

tti th t

Dining Philosopher Problem1

Concurrency Problems

© 2008 Universität Karlsruhe (TH), System Architecture Group 23

getting the two
neighbored forks
eating
end

Requirements:

No StarvationNo Starvation
No DeadlockNo Deadlock

?

1Edsgar Wybe Dijkstra

Condition SynchronizationCondition Synchronization
or Signalingor Signaling

24© 2008 Universität Karlsruhe (TH), System Architecture Group

HW Signals & Interrupt Handling
Simple Signal Objects
Handling Interrupts

Complex Signal Objects

Semantics of Simple1 Signaling

 Only one of the involved activities potentially waits,
the other is notifying(signaling) its partner activity

 Simple signaling is used at various levels:
 HW-level

Peripheral device sends I/O signal (interrupt)

© 2008 Universität Karlsruhe (TH), System Architecture Group 25

 Peripheral device sends I/O signal (interrupt)

 CPU sends inter-processor-signal to another CPU (SMP)

 SW-level
 Thread Ti wants to notify another thread when Ti has

reached a certain point (=IP value) within its program

 Process sends an abort signal (kill) to one its family
processes

1Only 2 activities are involved

Interrupt Handling

 Scheduling interrupt handlers is often prescribed by
HW design
 Sequential versus nested interrupt handling
 Interrupt priorities
 Round robin interrupt handling

© 2008 Universität Karlsruhe (TH), System Architecture Group 26

 Depending on the HW implementation some devices
share one single “interrupt line”

 In any case, an interrupt handler has to guarantee to
handle all interrupts otherwise events might be lost

 In some extremely critical kernel code paths a
CPU does not want to be interrupted, i.e. it disables
(or masks out) all or at least some HW interrupts

First Approach: Design a Signal

 Flag (1 = Signal set, 0 = Signal not valid)
 Signal only reflects that a event had happened

 Vector of flags a bit more comfortable (see Unix)
 You can distinguish between specific signal events

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 27

 You might order signal vector according to signal priorities

 Counter
 Each value might have a different meaning or

 Value reflects the number of pending signals

 Implement flag or counter as global variable

see http://www.frostbytes.com/~jimf/papers/signals/signals.html

First View Analysis

 All flag oriented solutions suffer from the
fact:

 If a signal is not accepted in time, it is lost

© 2008 Universität Karlsruhe (TH), System Architecture Group 28

 Use flags in environments (e.g. inside the
kernel) with a deterministic behavior of all
involved activities

 Busy waiting for signals to arrive can lead to
system starvation

Interrupt Handling

 Timer interrupt (enabling time slice mechanism)

 All other interrupts are handled similarly
 Interrupt handling can involve a thread_switch

1. HW saves user land context of the interrupted user
land activity, in case it has to resume it, i.e.

© 2008 Universität Karlsruhe (TH), System Architecture Group 29

land activity, in case it has to resume it, i.e.
1. immediately after handling the current interrupt or
2. some time later, depending on scheduling

2. HW saves kernel land context of a kernel activity
1. However, sometimes the current kernel activity is in

a “critical section”, i.e. a previous interrupt handler
2. We need HW support to protect those very

”low critical sections”

How to use Flags?
 Flags are used in almost every system
 Assume: Inside every interrupt handler another user

level activity has to be assigned for whatever
reason, i.e. every preempted activity Ti
will be preempted by another one

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 30

p p y

time

T1 T2 T3 T4

Suppose the interrupts occur with short arrival times,
and you support a nested interrupt schema.

Example: Usage of Flags

 Lazy scheduling and thread switching: wait until you have to
return from kernel to user land

 Every interrupted IR-handler with a potential scheduler activity
sets the “scheduling flag”

 Benefit: You avoid system overhead (thread_switch or even
process switch) if T2 or T3 belong to different address spaces

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 31

Low level critical sections, protected via privileged instructions
allowing to disable “all” or at least “some” interrupts

process_switch) if T2 or T3 belong to different address spaces

time

T1

Lazy scheduling
thread_switch

T4

Signal Objects at User LevelSignal Objects at User Level

32© 2008 Universität Karlsruhe (TH), System Architecture Group

Avoiding Signals
Implementing Signal Objects

Producer/Consumer (Bounded Buffer)

Assume: Both, producer and consumer are KLTs
Bounded buffer is a global array

Coordination problems:
 The producer having put another item into the buffer notifies

© 2008 Universität Karlsruhe (TH), System Architecture Group 33

 The producer having put another item into the buffer notifies
the consumer that there is another item in the buffer (to be
taken)

 The consumer having taken an item from the buffer notifies the
producer that there is another free slot in the buffer (to be
filled)

 The producer has to wait when the buffer is full

 The consumer has to wait when the buffer is empty

Approach 1: Cons./Prod. Problem
#define BUFFER_SIZE 10
typedef struct { /* Buffer element */

. . .
} item;
item buffer[BUFFER_SIZE]; /* Contiguous buffer */
int in = 0; /* Pointer for filling */
int out = 0; /* Pointer for deleting */

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 34

void producer(void){ /* executed as a thread */
item nextProduced;
while (1) {
while (((in + 1) % BUFFER_SIZE) == out)
; /* do nothing, but busy waiting */

buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;

}
}

Always 1 buffer element is not used

Approach 1: Cons./Prod. Problem
#define BUFFER_SIZE 10
Typedef struct {

. . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

void producer() {
item nextProduced;
while (1) {
while (((in + 1) % BUFFER_SIZE) == out)
; /* do nothing */

buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
}
}}

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 35

void consumer(void){
item nextConsumed;
while (1) {
while (in == out)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

}
}}

Scalability?

Producer/consumer approach 1 scalable?

 When it works effectively with

 p ≥ 1 producers and/or

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 36

 c ≥ 1 consumers and/or

 0<b<MAXINT sized buffers

 Previous solution is not scalable

 Only valid for p = 1 & c = 1 & BUFFER_SIZE 1

Efficiency?

When is a producer/consumer solution efficient?

 When it works fast and with low overhead

 Previous solution is not efficient because
B iti t CPU l

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 37

 Busy waiting wastes CPU cycles

 It’s up to the kernel scheduler (iff scheduler will be
activated) to prevent inefficient busy waiting

How to improve?
 Use the kernel API to avoid busy waiting

Kernel API to avoid Busy Waiting

 BLOCK()

 ~ Tanenbaum’s and Unix’s sleep()

 UNBLOCK()

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 38

UNBLOCK()

 ~ Tanenbaum’s and Unix’s wakeup()

 YIELD()

 Anonymous yield() of KLTs

System Call BLOCK*

BLOCK(condition c, myself)
{
block(CT, c.SWT) {state transition}
NT = Schedule()

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 39

NT Schedule()
CT = Thread_Switch(NT)
assign(CT) {state transition}

}

*Solution for the 3-state model;
analogous functions UNBLOCK or YIELD

2nd Approach Producer/Consumer
#define N 100 /*number of slots in buffer*/
int count = 0; /*number of items in buffer*/

void producer(void){
int item;
while (1) { /*repeat forever*/

item =produce_item(); /*produce next item*/
if (count==N) BLOCK(myself); /*if buffer full*/
insert item(item); /*put item into buffer*/

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 40

insert_item(item); / put item into buffer /
count = count + 1; /*increment counter*/
if (count ==1) DEBLOCK(consumer); /*was buffer empty?*/

}}

void consumer(void){
int item;
while (1) {

if (count ==0) BLOCK(myself) /*if buffer empty*/
item = remove_item(); /*take item out of buffer*/
count = count – 1; /*decrement counter*/
if (count==N-1) DEBLOCK(producer); /*was buffer full?*/
consume_item(item); /* consume current item*/

}}

Summary

 Usage of KLT-operations at the kernel-API
can be dangerous

 Better to offer well-defined signal-objects or
h i i bj i h i h d

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 41

synchronization-objects with atomic methods

 First Attempts:

 Signal objects with busy waiting

 Signal objects with blocked waiting

Thread T1
.
.
.

{ section a1

Thread T2
.
.
.

{ section b1

1:1_signal s; /* type 1:1_signal_object */

1:1_Signal_Object
Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 42

{ section a1
… }

{ section a2
… }

.

.

.

{
… }

{ section b2
… }

.

.

.

Signal(T2,s) Wait(T1,s)

flag s is a common shared variable of both threads

signal(s) wait(s)

noset s
t

s == set?

1st Approach: Simple Signal Object

busy
waiting

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 43

Hint: Discuss this approach carefully!
Does it work on every system effectively and/or efficiently?
Does it work with any types of activities?

reset s

module 1:1_signal
export signal, wait;
import YIELD;
type signal = record

S: signal = reset /* Initialization important */
end

procedure signal(SO:signal)
begin

Requires cooperative scheduling

2nd Approach Simple SO

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 44

g
SO.S = set;
YIELD(); /* anonymous yield */
end

procedure wait (SO:signal)
begin
while SO.S == reset do
YIELD()

od
SO.S =reset
end

end module Remark: It’s similar to the busy waiting solution.

module 1:1_signal
export signal, wait
import BLOCK,UNBLOCK
type signal = record

W: thread = nil
end

procedure signal(SO:signal)

Simple implementation of
the thread state blockedi

~ sleep and wakeup semantics

3rd Approach Simple SO

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 45

p g g
begin
UNBLOCK(SO.W);

end

procedure wait(SO:signal)
begin
SO.W = myself;
BLOCK(myself);
SO.W = nil /* necessary or redundancy? */

end
end module

module 1:1_signal
export signal, wait
import UNBLOCK, BLOCK
type signal = record

S: signal = reset
W: waiting thread = nil

end
procedure signal(SO:signal)
begin
SO.S = set;

4rth Approach Simple SO

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 46

SO.S set;
if SO.W nil then {thread waiting?}

UNBLOCK(SO.W) {unblock it}
end

procedure wait(SO:signal)
begin
while SO.S = reset do

SO.W = myself
BLOCK(myself)

od
SO.S =reset
end

end module

Open Problem
Conclusion:
 Signal interface operations wait() and signal() or

notify() should be atomic
 How to achieve this property? (see later)

Assumption:
Implement the previously mentioned signal objects with the

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 47

Implement the previously mentioned signal objects with the
monitor concept at user level or implement them as kernel
objects with mutually exclusive interface functions, then some
approaches can be valid.

Personal Recommendation:
Avoid any form of busy waiting at user level if you
want to produce portable applications1

1In embedded system you often have proprietary code

Summary

1. All versions had potential signal losses, i.e.
signaling threads may overwrite as-yet
unconsumed signals

2 Signal operation asynchronous i e in case

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 48

2. Signal operation = asynchronous, i.e. in case
of a non-waiting partner it is not blocked

→ Danger of flooding another thread or even a
sub system (e.g. a server)

signal(s1) wait(s1)
wait(s2)

How to Prevent Flooding?
Signaling

request

serverclient

© 2008 Universität Karlsruhe (TH), System Architecture Group 49

signal(s2)

Remark: signal() is still asynchronous
Is there a more obvious solution?
Does it help against malicious clients?

acknowledge

module synchronous 1:1_signal
export signal, wait
import BLOCK, UNBLOCK
type signal = record

S: signal = reset
SW: waiting thread = NIL {signaling thread}
WW: waiting thread = NIL {waiting thread}

end
procedure signal(SO:signal)
begin
SO.S = set;
if SO.W ≠ nil then {thread waiting}

UNBLOCK(SO.WW) {unblock it}

Synchronous Signal
Object

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 50

() { }
else begin SO.SW = myself

BLOCK(myself) end
end
procedure wait (SO:signal)
begin
while SO.S == reset do

SO.WW = myself
BLOCK(myself)

od
SO.S =reset
UNBLOCK(SO.SW)
end

end module

Evaluate this
proposal carefully

{Thread 1}
.
.
.
{section a1
… }

{Thread 2}
.
.
.
{section b1
… }

Mutual Precedence Relation

a1 b1

T1 T2

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 51

Problem: How to achieve a1 <* b2 and b1 <* a2 ?

}

{section a2
… }

.

.

.

… }

{section b2
… }

.

.

.

a2 b2

{Thread 1}
.
.
.

{section a1

{Thread 2}
.
.
.

{section b1

sync s; /* synchronization object */

Pure Synchronization

Synchronization

© 2008 Universität Karlsruhe (TH), System Architecture Group 52

… }
synchronize(s)
{section a2

… }
.
.
.

… }
synchronize(s)
{section b2

… }
.
.
.

Problem:
How to implement a synchronization object for 2 threads?

Synchronization

module synchronization
export synchronize
import INBLOCK, BLOCK
type sync = record

S: signal = reset
W: waiting thread = NIL

end
procedure Synchronize(SY:sync)
begin

Simple Synchronization Object*

© 2008 Universität Karlsruhe (TH), System Architecture Group 53

begin
if SY.S = reset
then begin {I am first}

SY.S = set
SY.W = myself

BLOCK(myself) {and wait for my partner}
end

else begin {I am second and}
SY.S = reset {do a reset for future reuse}
UNBLOCK(SY.W) {release my partner}

end
end

end module Hint*: Generalize this module for n > 2 threads

…
{numerical problem solved via difference equations}
while true do
begin
for all i,j

begin
temp[i,j] = old[i-1,j] + old[i+1,j]

Application of N-Way Synchronization1

Synchronization

© 2008 Universität Karlsruhe (TH), System Architecture Group 54

end
n_synchronize(S) {First usage}
for all i,j

begin
old[i,j] = temp[i,j]
end

n_synchronize(S) {Second usage}
end

…
1 barrier synchronization

Barrier Synchronization
Synchronization

© 2008 Universität Karlsruhe (TH), System Architecture Group 55

 Use of a barrier
(a) Threads approaching a barrier
(b) All Threads but one blocked at barrier
(c) Last thread arrives, all can run again

High Level Signal ConceptsHigh Level Signal Concepts

56© 2008 Universität Karlsruhe (TH), System Architecture Group

Signal Pattern: Many to One (m:1)

Signaling

WP

© 2008 Universität Karlsruhe (TH), System Architecture Group 57

Semantics:
The blue thread can only continue at WP if all the three
green threads have reached a specific SP in their code

Pattern: One to Many (1:n)

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 58

Semantic: The two blue threads can only continue
iff the green thread has passed a code section

Pattern: Many to Many (m:n)

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 59

Alternative Semantics for Signals

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 60

The blue thread can continue at WP when one of the
two green threads has reached its SP

Additional Problem: How to buffer signals?

Buffering SignalsBuffering Signals

61© 2008 Universität Karlsruhe (TH), System Architecture Group

Buffering Signals

 Every incoming signal is buffered until a
potential waiting thread consumes this signal

 Pro: Reaction on each signal

Con: Deficient signaling source floods the system

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 62

 Con: Deficient signaling source floods the system

 An incoming signal overwrites a previous one
(e.g. a flag or a binary semaphore)

 Pro: Reaction only on the newest signal

 Con: Danger of lost signals

Kernel Signal ObjectsKernel Signal Objects

63© 2008 Universität Karlsruhe (TH), System Architecture Group

Definition:
A semaphore S is an integer variable that, apart from
initialization, can only be accessed by 2 atomic and
mutually exclusive operations.

Dijkstras (Counting) Semaphores

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 64

P(S) P ~ Passeren (from Dutch signaling language
some say proberen ~ decrement)

V(S) V ~ Verlaaten (see above,

some say verhogen ~ increment)

Dijkstras (Counting) Semaphores

How to design and implement counting semaphores?

 To avoid busy waiting:

 When thread cannot “passeren” inside of P(S)
 put calling thread into a blocked queue

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 65

 put calling thread into a blocked queue
waiting for an event

 Occurrence of event will be signaled via V(S)
by another thread (hopefully)

 What happens if not?

Dijkstras Semaphores

Semantics of a counting semaphore (for signaling):

 A positive value of counter indicates:
number of signals currently pending

 A negative value of the counter indicates:

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 66

number of threads currently waiting for a signal,
i.e. are queued within the semaphore object

 If counter == 0 no thread is waiting
and no signal is pending

Remark (Margo Seltzer, Harvard University, Cambridge &
Boston, MA, USA): “A semaphore offers a simple and
elegant mechanism for mutual exclusion and other things”

module semaphore
export p, v
import BLOCK, UNBLOCK
type semaphore = record

Count: integer = 0 {no signal pending}
QWT: list of Threads = empty {no waiting threads}

end
p(S:semaphore)

Counting Semaphores (1)

Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 67

S.Count = S.Count - 1
if S.Count < 0 then
insert (S.QWT, myself) {+ 1 waiting thread}
BLOCK(myself)
fi

v(S:semaphore)
S.Count = S.Count + 1 {+ 1 pending signal}
if S.Count <= 0 then
UNBLOCK(delete first(S.QWT))
fi

end

Examples of Signal Objects Examples of Signal Objects

68© 2008 Universität Karlsruhe (TH), System Architecture Group

Unix-Signal (Wikipedia)

A signal is a limited form of IPC used in Unix, Unix-like,
and other POSIX-compliant operating systems.
Essentially it is an asynchronous notification sent to a
process in order to notify it of an event that occurred.
When a signal is sent to a process the operating

© 2008 Universität Karlsruhe (TH), System Architecture Group 69

When a signal is sent to a process, the operating
system interrupts the process' normal flow of execution.
Execution can be interrupted during any non-atomic
instruction.
If process has previously registered a signal handler,
that routine is executed.
Otherwise the default signal handler is executed.

Unix Signals

 Besides a terrible notation (e.g. kill = signal) no
common semantics nor a widely accepted interface

 They are four different signal versions:

 System-V unreliable

Unix Signaling

© 2008 Universität Karlsruhe (TH), System Architecture Group 70

y

 BSD

 System-V reliable

 POSIX

 Using Unix signals can lead to severe race conditions

 Programming is cumbersome

Unix Signals

Unix Signaling

SIGNAL ID DEFAULT DESCRIPTION
===
SIGHUP 1 Termination Hang up on controlling terminal
SIGINT 2 Termination Interrupt. Generated when we enter CTRL-C
SIGQUIT 3 Core Generated when at terminal we enter CTRL-\
SIGILL 4 Core Generated when we execute an illegal instruction
SIGTRAP 5 Core Trace trap (not reset when caught)
SIGABRT 6 Core Generated by the abort function
SIGFPE 8 Core Floating Point error
SIGKILL 9 Termination Termination (can't catch, block, ignore)

© 2008 Universität Karlsruhe (TH), System Architecture Group 71

SIGBUS 10 Core Generated in case of hardware fault or invalid address
SIGSEGV 11 Core Generated in case of illegal address
SIGSYS 12 Core Generated when we use a bad argument in a system service call
SIGPIPE 13 Termination Generated when writing to a pipe/socket when no reader anymore
SIGALRM 14 Termination Generated by clock when alarm expires
SIGTERM 15 Termination Software termination signal
SIGURG 16 Ignore Urgent condition on IO channel
SIGCHLD 20 Ignore A child process has terminated or stopped
SIGTTIN 21 Stop Generated when a background process reads from terminal
SIGTTOUT 22 Stop Generated when a background process writes to terminal
SIGXCPU 24 Discard CPU time has expired
SIGUSR1 30 Termination User defiled signal 1
SIGUSR2 31 Termination User defined signal 2

Unix Signals*

Unix Signaling

The following diagram describes how a Unix signal is raised,
possibly it will be blocked before delivery, and then it is handled

© 2008 Universität Karlsruhe (TH), System Architecture Group 72

*http://www.xs4all.nl/~evbergen/unix-signals.html

Unix Signals

 A Unix signal can be received
 synchronously or
 asynchronously

 Synchronous signals (typically sent to the same process)
 Exception address violation

© 2008 Universität Karlsruhe (TH), System Architecture Group 73

 Exception division by zero
 …

 Asynchronous signal (typically sent to another process)
 <CTRL><C> = SIGINT ~ terminate process immediately
 <CTRL><Z> = SIGTSTP ~ suspend process
 Command kill -<signal> <PID>
 System Call kill (see following slide)
 Timer has expired

Using System Call kill()

#include <unistd.h> /* standard unix functions,
like getpid() */

#include <sys/types.h> /* various type
definitions, like pid_t */

#include <signal.h> /* signal name macros, and

© 2008 Universität Karlsruhe (TH), System Architecture Group 74

g g ,
the kill() prototype */

/* first, find my own process ID */

pid_t my_pid = getpid();
/* now that I got my PID, send myself STOP signal. */

kill(my_pid, SIGSTOP);

Unix Signal Handlers

 Default handler
 Running in user or kernel mode?

 User-defined handlers
Implement short signal handlers

© 2008 Universität Karlsruhe (TH), System Architecture Group 75

 Implement short signal handlers
 Be careful when using system calls
 Some Unix systems require another installing of

the same signal handler if it should be used a
second time

How to use Unix Signal handlers, see
http://users.actcom.co.il/~choo/lupg/tutorials/signals/signals-programming.html

Remark:

Kernel semaphore objects offer primitive, yet robust
synchronization methods for processes and KLTs

Preview

© 2008 Universität Karlsruhe (TH), System Architecture Group 76

However, semaphores also solve another class of
coordination problems:

Mutual ExclusionMutual Exclusion

