
System ArchitectureSystem Architecture

7 Thread States, Dispatching7 Thread States, Dispatching

1© 2008 Universität Karlsruhe (TH), System Architecture Group

Thread States, Dispatching,
Cooperating Threads

November 17 2008
Winter Term 2008/09

Gerd Liefländer

Agenda

 Review: Interrupts, Activity Switches

 Motivation

 Thread State Models

 Implementing Thread States

Introduction

© 2008 Universität Karlsruhe (TH), System Architecture Group 2

p g

 Consequences for Dispatching

 Relation between Task & Thread States

 Cooperating Threads

Interrupt Controller

IntID

Interrupt

Interrupt M
ask

ControlSoftware

CPU

Priority Encoder

Tim
er

Int Disable

© 2008 Universität Karlsruhe (TH), System Architecture Group 3

 Interrupts invoked with interrupt lines from devices

 Interrupt controller chooses interrupt request to honor
 Mask enables/disables interrupts
 Priority encoder picks highest enabled interrupt
 Software Interrupt Set/Cleared by Software
 Interrupt identity specified with ID line

 CPU can disable some interrupts with internal flag

 Non maskable interrupt (NMI) can not be disabled

Network
ControlSoftware

Interrupt NMI

Multiprogramming
 Running multiple applications concurrently

 Requires multiplexing of the CPU

firefox word javac firefox word javac
time

© 2008 Universität Karlsruhe (TH), System Architecture Group 4

 Transfer of control is called an activity-switch, i.e.
depending on the type of activity:
 Pure PULT switch (completely at user level)

 Pure process switch

 Pure KLT switch

 Mixed switch, e.g. between a KLT and a process

MotivationMotivation

5© 2008 Universität Karlsruhe (TH), System Architecture Group

Why ”thread states”?
Are these external thread states really necessary?
Do they at least enhance thread control?
If necessary, what thread states shall we implement?
First: Focus on KLT states
Later: PULT ~ and task states

Potential Benefits of KLT States

 Suppose you want to wake up a specific sleeping KLT

 You can find this KLT looking up the set of all KLTs
 Assume t threads, i.e. O(t)

 If there is a subset containing only sleeping KLTs

Motivation

© 2008 Universität Karlsruhe (TH), System Architecture Group 6

a ub o a g o y p g
 You can wake up your sleepers in time

 In SMPs with a central ready queue and a global
scheduling policy, KLT states are even necessary

 Observation:
First place, we see a major difference between a single-
processor and a multi-processor system

Enhanced TCB of a KLT in a SMP
Motivation

Thread Identifier (TID)

Stack Pointer (SP)

St t Fl (SF)

Instruction Pointer (IP)
Scheduling Thread State Either “Running”

or “Not Running”

© 2008 Universität Karlsruhe (TH), System Architecture Group 7

Status Flags (SF)

Thread State ModelsThread State Models

8© 2008 Universität Karlsruhe (TH), System Architecture Group

KLT Thread States

Remark:
The term thread state is a bit confusing because a
running thread changes its “internal execution state”
with every instruction

 This internal execution state of is called the KLTs context

Definition

© 2008 Universität Karlsruhe (TH), System Architecture Group 9

 This internal execution state of is called the KLTs context
(see thread switching)

The term thread state represents the external relation
of the KLT to its environment, i.e. to

 resources
 other KLTs
 …

KLT Thread State1

 A running thread is executing on a CPU

 A ready thread is a runnable thread, e.g. it
could run, but it has no processor yet

 A blocked thread waits for an event to occur

Definition

© 2008 Universität Karlsruhe (TH), System Architecture Group 10

 A blocked thread waits for an event to occur
somewhere else, e.g.
 end of previously initiated I/O
 keyboard input
 arrival of a message
 arrival of a signal
 release of a resource
 …

1See process states

by a polled or
interrupting device

by another CPU activity

Ready Running

Assign

Release
(e.g. end of time slice)

Three-State Thread Model
Thread State Models

© 2008 Universität Karlsruhe (TH), System Architecture Group 11

Blocked

Block
(“wait for event”)

Unblock
(“event has

occurred”)

Remark:
Matter of design and not a matter of implementation
whether  only one state “blocked” for all waiting events
…

Ready Running

Assign

Release
(end of time slice)

Three-State Thread Model
Thread State Models

© 2008 Universität Karlsruhe (TH), System Architecture Group 12

Blocked

(end of time slice)
Specific Block

(“wait for specific event Ei”)
Unblock

(“specific event Ei
has occurred”)

Blockedi

… or a separate KLT state blockedi per event Ei

Additional KLT State

State “New”

 OS has created a KLT, i.e. it has
 created a unique thread identifier
 created a KLT TCB to manage the KLT

created corresponding AS entries (e g PTEs)

Thread State Models

© 2008 Universität Karlsruhe (TH), System Architecture Group 13

 created corresponding AS entries (e.g. PTEs)
 … created or initiated other needed system resources

 but OS has not yet committed to run the KLT (it
is not yet admitted)* because
 resources are limited or
  some timing constraints, etc.

*Some claim that a modern OS needs an admission control

Additional KLT State

State “Exit”
 Thread no longer eligible for execution

 TCB, sub-tables and other info temporarily
preserved for auxiliary programs

Thread State Models

No answer to the question

© 2008 Universität Karlsruhe (TH), System Architecture Group 14

 Example: accounting program that accumulates
resource usage for billing its user

 When to delete code and stack and other thread
specific regions in user space?

 TCB (and its sub-tables) deleted when TCB
entries are no longer needed

Ready Running
Assign

Release

BlockUnblock

New Admit Exit
Terminate

Five-State Thread Model
Thread State Models

© 2008 Universität Karlsruhe (TH), System Architecture Group 15

Remark:
 good reasons for introducing additional thread states,
however, beware of overly complex “thread state models”

Blocked

Design Rule 1: Keep Things Simple

Ready Running
Assign

Bl k t i

New Exit
Admit Terminate

Standby
Preselect

Windows Six-State Thread Model

Thread State Models

Preempt

© 2008 Universität Karlsruhe (TH), System Architecture Group 16

Blocked

Release Block on event iDeblock

Reinitialize

Blocked

Why did MS system architects introduce KLT state standby?
• Without it, can we do the job less or more elegantly?

•  other reasons for this thread state?

Need for Swapping (States)

 In most systems complete tasks are mapped to RAM

 Even in a virtual memory system the following holds:

 When too many applications are admitted at the
same time, i.e. partially mapped to RAM, system
performance decreases significantly (thrashing

Thread State Models

© 2008 Universität Karlsruhe (TH), System Architecture Group 17

performance decreases significantly (thrashing
phenomenon)*

 If OS swaps out a complete KLT-task to disk, we have to
distinguish:
 Blocked Suspend: blocked threads that have been swapped

out to disk or

 Ready Suspend: ready threads that have been swapped
out to disk

Implementing Thread StateImplementing Thread State

18© 2008 Universität Karlsruhe (TH), System Architecture Group

Implementing Thread States

 Another specific attribute (entry) in the TCB or

 An explicit data structure, e.g.
 tree

 double-linked list

Implementation

© 2008 Universität Karlsruhe (TH), System Architecture Group 19

doub e ed st

 Vector of dll

 array …

Remark:
In some systems TCB attributes as well as explicit data
structures are used to implement a specific thread state

TCB 1 TCB 2

 Specific TCB attribute

 Explicit Data Structure

Implementing Thread States
Implementation

© 2008 Universität Karlsruhe (TH), System Architecture Group 20

Running Blocked

Discuss Pros and Cons

Thread State as a TCB Attribute
Obvious application:
1. Previous thread state for sake of state history or
2. An intermediate thread state without an extra

subset implementation (see L4Ka)

Implementation

© 2008 Universität Karlsruhe (TH) System Architecture Group
21

Running Blocked

TCB 1 TCB 2

 Specific TCB attribute

 Data Structure

Implementation of a Thread State
Implementation

© 2008 Universität Karlsruhe (TH), System Architecture Group 22

Head of ... TCB A TCB B TCB C

Discuss Pros and Cons!

Thread State via Data Structures

Obvious application:
Ready list = {threads which might be running next}

NT = first TCB after head of ready list (with O(1))

Implementation

© 2008 Universität Karlsruhe (TH) System Architecture Group
23

Head of ... TCB A TCB B TCB C

Rough Analysis 1

Assumption:

1. Given 1001 threads + 1 list for all threads

2. No attribute “thread state” within the TCB

3. No specific data structure for all runnable threads

4 Only CT is runnable all other threads wait for events

Implementation

© 2008 Universität Karlsruhe (TH), System Architecture Group 24

4. Only CT is runnable, all other threads wait for events

Question: Overhead for fair dispatching?
A thread switch costs ~ 1 µsec

Result: 1000 thread switches in vain until previous
running thread is dispatched again, i.e.

Overhead = 1000 µsec = “1 ms”

Rough Analysis 2

Assumption:

1. Given 1001 threads + 1 list for all threads

2. Offer attribute “thread state” within the TCB
3. No specific data structure for runnable threads

4 Only CT is runnable all other threads wait for events

Implementation

© 2008 Universität Karlsruhe (TH), System Architecture Group 25

4. Only CT is runnable, all other threads wait for events

Question: Overhead for fair dispatching?
A thread switch still costs 1 µsec,
comparing 2 list entries ~ 0.1 µsec

Result: 1000 additional comparisons in vain

Overhead = 101 µsec = “0.101 ms”

Rough Analysis 3

Assumption:

1. Given 1001 threads

2. Offer lists for runnable/not runnable threads
3. Only CT is runnable, all other threads wait for events

Question: Overhead for fair dispatching?

Implementation

© 2008 Universität Karlsruhe (TH), System Architecture Group 26

Question: Overhead for fair dispatching?
A thread switch costs 1 µsec,
comparing 2 list entries ~ 0.1 µsec

Result: Compare head of ready list, list empty
 no thread switch is necessary

Overhead = “1.1 µsec”

Head of WT

Waiting State = Some Type of a Queue*

Pointers inside TCB
´Thread State Models

© 2008 Universität Karlsruhe (TH), System Architecture Group 27

Identity(TID)Identity(TID)
WaitingWaiting

Identity(TID)Identity(TID)
WaitingWaiting

Identity(TID)Identity(TID)
WaitingWaiting

......

*A single-linked list is often not a good choice at all

Others Others Others

Head of WT

......

Pointers outside of TCB
Thread State Models

© 2008 Universität Karlsruhe (TH), System Architecture Group 28

Identity(TID)Identity(TID)
WaitingWaiting
Others

Identity(TID)Identity(TID)
WaitingWaiting
Others

Identity(TID)Identity(TID)
WaitingWaiting
Others

Discuss Pros and Cons of this indirect method

TCB TCB TCB

Concluding Remarks

 If you chose a bad data structure for a frequently
updated set of system entities, e.g. TCBs

 poor performance

Thread State Models

© 2008 Universität Karlsruhe (TH), System Architecture Group 29

p p
 What is good for few threads (t < 16) can lead to a

mission impossible for t >100, i.e. lack of scalability

 If we have to insert/delete at any position in the data
set, a single linked list is one of the worst choices

Consequences for Consequences for
DispatchingDispatching

30© 2008 Universität Karlsruhe (TH), System Architecture Group

interrupt procedure EoTS {End of Time Slice}
begin
…{time slice specific operations}

Release(CT, SRT) {queue of ready threads}
NT:=Schedule() {later}
CT := ThreadSwitch(NT)

Consequences: 3-State Thread Model

Thread State Models

© 2008 Universität Karlsruhe (TH), System Architecture Group 31

Thread T2Thread T1

Thread_Switch
Release Assign

CT : ThreadSwitch(NT)
Assign(CT) {running thread(s)?}
…{time slice specific operations}

end

Time Slice
Schedule

End of time slice
interrupt handler

Implementing the Running Set

 On a single processor most processors have a
specific register CURRENT pointing to the TCB of the
running KLT (if not, you can define a specific pointer
in the kernel AS to hold this address value)

On a multi processor each processor has this register

© 2008 Universität Karlsruhe (TH), System Architecture Group 32

 On a multi processor each processor has this register,
CURRENT[i] but sometimes we need to know the
load of the other processors as well
 When?

 Implement an array of all relevant TCB attributes as
the set of running KLTs

interrupt procedure EoTS
begin
Release(CT,SRT)
NT := Schedule()

kernel procedure yield
begin
Release(CT,SRT)
NT := Schedule()

Consequences: 3-State Thread Model

´Thread State Models

Asynchronously & non voluntarily Synchronously & voluntarily

© 2008 Universität Karlsruhe (TH), System Architecture Group 33

Thread T2Thread T1

Thread_SwitchRelease Assign

CT := ThreadSwitch(NT)
Assign(CT)
end

yield
Schedule

CT := ThreadSwitch(NT)
Assign(CT)
end

System call handler
for sys call yield()

… procedure Wait(condition c)
begin
if c = true then {if sometimes not sufficient}
... {remember case of just 1 state}
Block(CT, c.SWT) {≠ BLOCK() see next chapter}
NT := Schedule()
CT := ThreadSwitch(NT)

Consequences: 3-State Thread Model

´Thread State Models

© 2008 Universität Karlsruhe (TH), System Architecture Group 34

Thread T2Thread T1

Thread_SwitchBlock Assign

CT := ThreadSwitch(NT)
Assign(CT)
else …
fi
end

Wait

Schedule

… procedure Wait(condition c)
begin
if c = true then
...
Block(CT,c.SWT)
CT := Schedule(NT)
ThreadSwitch(NT)

… procedure Signal(condition c)
begin
if c.SWT = non empty then
...
Deblock(any(c.SWT),SRT)
...
l

Consequences: 3-State Thread Model

´Thread State Models

© 2008 Universität Karlsruhe (TH), System Architecture Group 35

Optional Part

ThreadSwitch(NT)
Assign(CT)
else
...
fi
end

else
...
fi
end

Thread T1Thread T2

Deblock Assign

Signal

Schedule

Preemption versus Non Preemption

 Without optional part scheduling policy is lazy
 You do not deal with the fact that there is a new ready thread

 There are system where you can do that

 There are systems that would result in a disaster if you
ld t t i di t l h th i

© 2008 Universität Karlsruhe (TH), System Architecture Group 36

would not react immediately whenever there is a
change in the set of ready KLTs
 Suppose a very urgent KLT has waited for a specific signal

 Now this event happens, the signal handler unblocks this
waiting KLT, i.e. it transfers the KLT from state “blocking” into
the state “ready”

 If you do not schedule, i.e. compare the urgency of the
previously running KLT with the urgency of KLT you might risk
life and limb

From TID to TCB?

 Some system calls need a TID as parameter,
e.g. yield(NT)oder abort(child)

 How to find the related TCB?

´Thread State Models

TCB.TxyzHASH-Table

© 2008 Universität Karlsruhe (TH), System Architecture Group 37

TID for Txyz
TID for Txyz?

Hash(TID.Txxz)

TCB.Txyz

Relation between Task & Relation between Task &
Thread StatesThread States

38© 2008 Universität Karlsruhe (TH), System Architecture Group

Task States & KLT States
Task States & PULT States

Task & KLT States

Suppose a task T has t>1 KLTs, whereby t-1 KLTs are
currently blocked and only 1 KLT is either ready or
running:

Is this task blocked or running or ready?

© 2008 Universität Karlsruhe (TH), System Architecture Group 39

KA specific

Related to the CPU the following holds:

running ≥ ready ≥ blocked, i.e.

Consequence: As long as at least one KLT of a task is
running  this task is running, regardless
how many of its other KLTs are ready or
even blocked

Kernel Activity for PULTs

Thread Library

Though kernel is not aware of a PULT, it manages
its hosting task

Example:
When a “PULT” does a “blocking system call ” 
h l k ll b bl k d k l l l

© 2008 Universität Karlsruhe (TH), System Architecture Group 40

the complete task will be blocked at kernel level

However, from the point of view of the user level
scheduler that PULT is still “running” at user level

 PULT states are independent of task states

R
U
N

PULT & Task States

Thread Library

blocking sys_call

running ready blocked

© 2008 Universität Karlsruhe (TH), System Architecture Group 41

Thread library with PULT scheduler

N
I
N
G

TaskCB and Process/KLT Scheduler

PULT- and Task-States

Thread Library

blocking sys_call

running ready blocked
B
L
O
C

R
U
N

© 2008 Universität Karlsruhe (TH), System Architecture Group 42

Thread library with PULT scheduler

TaskCB and Process/KLT Scheduler

K
E
D

block corresponding TaskCB

N
I
N
G

assign another
task or process

PULT- and Task-States

Thread Library

blocking sys_call

running ready blocked
B
L
O
C
K

R
U
N
N

© 2008 Universität Karlsruhe (TH), System Architecture Group 43

Thread library with PULT scheduler

TaskCB and Process/KLT Scheduler

K
E
D

I
N
G

Interrupt → Reason for blocking the virtually
running PULT is no longer valid

What happens next?

PULT- and Task-States

Thread Library

blocking sys_call

running ready blocked

R
E
A
D

R
U
N
N

© 2008 Universität Karlsruhe (TH), System Architecture Group 44

Thread library with PULT scheduler

TaskCB and Process/KLT Scheduler

D
Y

N
I
N
G

Potentially check whether preemption of
running task/kernel-level thread is useful

How can PULTs block at User-Level?

  thread library functions enabling a blocking
(and unblocking) of a PULT at user-level, e.g.

 In the Java-VM  wait (and notify) to be
used within a synchronized section (e.g. a method
of a synchronized class)

Thread Library

© 2008 Universität Karlsruhe (TH), System Architecture Group 45

of a synchronized class)

 Calling wait() blocks only the calling PULT and
activates the library scheduler selecting the next
ready PULT

What about Preemption?

How to prevent a PULT from hogging the CPU?

 Policy 1: No-Preemption

 Requires cooperating PULTs

Thread Preemption

© 2008 Universität Karlsruhe (TH), System Architecture Group 46

 Each PULT must call back into the thread library
periodically
 Gives the library control over the threads’ execution

 yield() operation
 The calling PULT voluntary gives up the CPU

What about Preemption?

How to prevent a PULT from hogging the CPU?

 Policy 2: Use Preemption

 Thread library tells kernel to send a time signal
periodically

Thread Preemption

© 2008 Universität Karlsruhe (TH), System Architecture Group 47

periodically
 Causes the task to jump into a signal handler

 Signal handler gives control back to user level
scheduler
 User level scheduler selects next running thread and

performs a PULT-switch

Summary

 Establish another thread state iff useful

 KLT-states & PULT-states ≠ task states (not always,
but often)

© 2008 Universität Karlsruhe (TH), System Architecture Group 48

 A PULT can be running (only virtually at user level)
while its surrounding task is blocked

 A KLT can be blocked while other cooperating KLTs
of the same task are running, i.e. while its task is still
running

Cooperating ThreadsCooperating Threads

49© 2008 Universität Karlsruhe (TH), System Architecture Group

Forking

Thread Fork

 ThreadFork(arg) is not the same thing as UNIX
fork()
 UNIX fork() creates a new process (task) so it has to

create a new address space
 For now, don’t worry about how to create and switch

between address spaces

© 2008 Universität Karlsruhe (TH), System Architecture Group 50

between address spaces

 Threadfork() is ~ an asynchronous procedure call
 Runs procedure arg in a separate thread in the same AS
 Calling thread doesn’t wait for finish
 If it want so it has to call it explicitly (e.g. ThreadJoin)

 What if thread wants to exit early?
 ThreadFinish() and exit() are essentially the same

procedure entered at user level

Thread Join
 One thread can wait for another to finish with the

ThreadJoin(tid) call
 Calling thread will be taken off the run queue and placed on

waiting queue for thread tid
 Where is a logical place to store this wait queue?

 On queue inside the TCB of tid

TCBtid

??

© 2008 Universität Karlsruhe (TH), System Architecture Group 51

 Quite similar to wait() system call in UNIX
 Lets parents wait for child processes

Other
State
TCB9

Link
Registers

Other
State
TCB6

Link
Registers

Other
State
TCB16

Link
Registers

Head
Tail

Termination
Wait queue

Use of Join for Procedures

 A traditional procedure call is logically equivalent to
doing a ThreadFork() followed by ThreadJoin()

 Consider the following procedure call of B() by A():
A() { B(); }
B() { Do interesting stuff }

© 2008 Universität Karlsruhe (TH), System Architecture Group 52

() { g }

 The procedure A() is equivalent to A’():
A’() {

tid = ThreadFork(B,null);
ThreadJoin(tid);

}

 Why not do this for every procedure?
 Context Switch Overhead
 Memory Overhead for Stacks

Multi-Activity Models
 Multiprocessing  Multiple CPUs
 Multiprogramming  Multiple Jobs or Processes
 Multithreading  Multiple threads per Task
 What does it mean to run two threads “concurrently”?

 Scheduler is free to run threads in any order and interleaving:
FIFO, Random, …

© 2008 Universität Karlsruhe (TH), System Architecture Group 53

 Dispatcher can choose to run each thread to

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing

Correctness with Threads

 If a dispatcher can schedule threads in any way,
programs must work under all circumstances
 Can you test for this?
 How can you know if your program works?

I d d Th d

© 2008 Universität Karlsruhe (TH), System Architecture Group 54

 Independent Threads:
 No state shared with other threads

 Deterministic  input state determines results

 Reproducible  can recreate initial conditions, I/O

 Scheduling order doesn’t matter (if switch()
works!!!)

Correctness with Threads

 Cooperating Threads:

 Shared State between multiple threads

 Non-deterministic

© 2008 Universität Karlsruhe (TH), System Architecture Group 55

 Non-reproducible

 Non-deterministic and non-reproducible
means that bugs can be intermittent

 Sometimes called “Heisenbugs”

Interactions & Debugging

 Is any program truly independent?
 Every process shares the file system, OS resources, network, etc.
 Extreme example: buggy device driver causes thread A to crash

“independent thread” B

 You probably don’t realize how much you depend on
reproducibility:

© 2008 Universität Karlsruhe (TH), System Architecture Group 56

p y
 Example: Evil C compiler

 Modifies files behind your back by inserting errors into C program
unless you insert debugging code

 Example: Debugging statements can overrun stack

 Non-deterministic errors are really difficult to find
 Example: Memory layout of kernel + user programs

 depends on scheduling, which depends on timer/other things
 Original UNIX had a bunch of non-deterministic errors

Why Cooperating Threads?
People cooperate; computers help/enhance people’s lives, that’s
why computers must cooperate
 Advantage 1: Share resources

 One computer, many users
 One bank balance, many ATMs

 What if ATMs were only updated at night?
E b dd d t (b t t l di t & h d)

© 2008 Universität Karlsruhe (TH), System Architecture Group 57

 Embedded systems (robot control: coordinate arm & hand)

 Advantage 2: Speedup
 Overlap I/O and computation

 Many different file systems do read-ahead
 Multiprocessors – chop up program into parallel pieces

 Advantage 3: Modularity
 More important than you might think
 Chop a large problem up into simpler pieces

 To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld
 Makes system easier to extend

Example: Web Server

© 2008 Universität Karlsruhe (TH), System Architecture Group 58

 Server must handle many requests
 Non-cooperating version:

serverLoop() {
con = AcceptCon();
“ProcessFork”(ServiceWebPage(),con);

}

 What are some disadvantages of this technique?

Multi-Threaded Web Server

 Now, use a single process

 Multithreaded (cooperating) version:
serverLoop() {

connection = AcceptCon();
ThreadFork(ServiceWebPage(),connection);

}

© 2008 Universität Karlsruhe (TH), System Architecture Group 59

}

 Looks almost the same, but has many advantages:
 Can share file caches kept in memory, results of CGI scripts, other things
 Threads are much cheaper to create than processes, so this has a lower

per-request overhead

 Question: would a user-level (say one-to-many) thread package make
sense here?
 When one request blocks on disk, all block…

 What about Denial of Service attacks or digg / Slash-dot effects?

(Un)Limited Thread Pools
 Problem with previous version: Unbounded Threads

 When web-site becomes too popular – throughput slows down

 Instead, allocate a bounded “pool” of worker threads,
representing the maximum level of multiprogramming

Master
Thread

queue

© 2008 Universität Karlsruhe (TH), System Architecture Group 60

master() {
allocThreads(worker,queue);
while(TRUE) {

con=AcceptCon();
Enqueue(queue,con);
wakeUp(queue);

}
}

worker(queue) {
while(TRUE) {

con=Dequeue(queue);
if (con==null)

sleepOn(queue);
else

ServiceWebPage(con);
}

}

Thread Pool

e

Summary

 Interrupts = HW mechanism for returning control to OS kernel
 Used for important/high-priority peripheral events
 Can force dispatcher to schedule a different thread (preemptive

multithreading)

 New Threads Created with ThreadFork()
 Create initial TCB and stack to point at ThreadRoot()

© 2008 Universität Karlsruhe (TH), System Architecture Group 61

Create initial TCB and stack to point at ThreadRoot()
 ThreadRoot() calls thread code, then ThreadFinish()
 ThreadFinish() wakes up waiting threads then prepares

TCB/stack for destruction

 Threads can wait for other threads using ThreadJoin()
 Threads may be “implemented” as user-level or kernel level

 Cooperating threads have many potential advantages
 But: introduces non-reproducibility and non-determinism
 Need to have atomic operations

Recommended Reading

 Bacon, J.: Operating Systems (4)

 Nehmer, J.: Grundlagen moderner BS (5.2)

 Silberschatz, A.: Operating System Concepts (2)

© 2008 Universität Karlsruhe (TH), System Architecture Group 62

 Stallings, W.: Operating Systems (3, 4)

 Tanenbaum, A.: Modern Operating Systems (2)

 Vogt, C.: Betriebssysteme (3)

