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 Relation between Task & Thread States
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Interrupt Controller
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 Interrupts invoked with interrupt lines from devices

 Interrupt controller chooses interrupt request to honor
 Mask enables/disables interrupts
 Priority encoder picks highest enabled interrupt 
 Software Interrupt Set/Cleared by Software
 Interrupt identity specified with ID line

 CPU can disable some interrupts with internal flag

 Non maskable interrupt (NMI) can not be disabled

Network
ControlSoftware

Interrupt NMI



Multiprogramming
 Running multiple applications concurrently

 Requires multiplexing of the CPU

firefox word javac firefox word javac
time
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 Transfer of control is called an activity-switch, i.e. 
depending on the type of activity:
 Pure PULT switch (completely at user level)

 Pure process switch

 Pure KLT switch

 Mixed switch, e.g. between a KLT and a process



MotivationMotivation
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Why ”thread states”? 
Are these external thread states really necessary?
Do they at least enhance thread control?
If necessary, what thread states shall we implement?
First: Focus on KLT states
Later: PULT ~ and task states 



Potential Benefits of KLT States 

 Suppose you want to wake up a specific sleeping KLT

 You can find this KLT looking up the set of all KLTs
 Assume t threads, i.e. O(t)

 If there is a subset containing only sleeping KLTs            

Motivation
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a ub o a g o y p g
 You can wake up your sleepers in time

 In SMPs with a central ready queue and a global 
scheduling policy, KLT states are even necessary

 Observation: 
First place, we see a major difference between a single-
processor and a multi-processor system



Enhanced TCB of a KLT in a SMP 
Motivation

Thread Identifier (TID)

Stack Pointer (SP)

St t Fl (SF)

Instruction Pointer (IP)
Scheduling Thread State Either “Running” 

or “Not Running”
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Status Flags (SF)



Thread State ModelsThread State Models
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KLT Thread States

Remark:
The term thread state is a bit confusing because a 
running thread changes its “internal execution state”
with every instruction

 This internal execution state of is called the KLTs context

Definition
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 This internal execution state of is called the KLTs context 
(see thread switching)

The term thread state represents the external relation
of the KLT to its environment, i.e. to 

 resources
 other KLTs
 …



KLT Thread State1

 A running thread is executing on a CPU

 A ready thread is a runnable thread, e.g. it 
could run, but it has no processor yet

 A blocked thread waits for an event to occur

Definition
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 A blocked thread waits for an event to occur 
somewhere else, e.g.
 end of previously initiated I/O
 keyboard input
 arrival of a message
 arrival of a signal 
 release of a resource 
 …

1See process states

by a polled or 
interrupting device 

by another CPU activity 



Ready Running

Assign

Release
(e.g. end of time slice)

Three-State Thread Model 
Thread State Models
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Blocked

Block
(“wait for event”)

Unblock
(“event has 

occurred”)

Remark:
Matter of design and not a matter of implementation
whether  only one state “blocked” for all waiting events 
…



Ready Running

Assign

Release
(end of time slice)

Three-State Thread Model
Thread State Models
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Blocked

(end of time slice)
Specific Block

(“wait for specific event Ei”)
Unblock

(“specific event Ei
has occurred”)

Blockedi

… or a separate KLT state blockedi per event Ei



Additional KLT State

State “New”

 OS has created a KLT, i.e. it has
 created a unique thread identifier
 created a KLT TCB  to manage the KLT

created corresponding AS entries (e g PTEs)

Thread State Models
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 created corresponding AS entries (e.g. PTEs)
 … created or initiated other needed system resources

 but OS has not yet committed to run the KLT (it 
is not yet admitted)* because
 resources are limited or 
  some timing constraints, etc.

*Some claim that a modern OS needs an admission control



Additional KLT State

State “Exit”
 Thread no longer eligible for execution

 TCB, sub-tables and other info temporarily 
preserved for auxiliary programs

Thread State Models

No answer to the question
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 Example: accounting program that accumulates 
resource usage for billing its user

 When to delete code and stack and other thread 
specific regions in user space?

 TCB (and its sub-tables) deleted when TCB 
entries are no longer needed



Ready Running
Assign

Release

BlockUnblock

New Admit Exit
Terminate

Five-State Thread Model
Thread State Models
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Remark:
 good reasons for introducing additional thread states,
however, beware of overly complex “thread state models”

Blocked

Design Rule 1: Keep Things Simple



Ready Running
Assign

Bl k t i

New Exit
Admit Terminate

Standby
Preselect

Windows Six-State Thread Model

Thread State Models

Preempt
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Blocked

Release Block on event iDeblock

Reinitialize

Blocked

Why did MS system architects introduce KLT state standby?
• Without it, can we do the job less or more elegantly?

•  other reasons for this thread state?



Need for Swapping (States)

 In most systems complete tasks are mapped to RAM

 Even in a virtual memory system the following holds: 

 When too many applications are admitted at the 
same time, i.e. partially mapped to RAM, system 
performance decreases significantly (thrashing

Thread State Models
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performance decreases significantly (thrashing 
phenomenon)*

 If OS swaps out a complete KLT-task to disk, we have to 
distinguish:
 Blocked Suspend: blocked threads that have been swapped 

out to disk or

 Ready Suspend:   ready threads that have been swapped 
out to disk



Implementing Thread StateImplementing Thread State
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Implementing Thread States

 Another specific attribute (entry) in the TCB or

 An explicit data structure, e.g. 
 tree 

 double-linked list 

Implementation

© 2008 Universität Karlsruhe (TH), System Architecture Group 19

doub e ed st

 Vector of dll

 array … 

Remark:
In some systems TCB attributes as well as explicit data
structures are used to implement a specific thread state



TCB 1 TCB 2

 Specific TCB attribute

 Explicit Data Structure

Implementing Thread States
Implementation
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Running Blocked

Discuss Pros and Cons



Thread State as a TCB Attribute
Obvious application:
1. Previous thread state for sake of state history or 
2. An intermediate thread state without an extra 

subset implementation (see L4Ka)

Implementation
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Running Blocked

TCB 1 TCB 2



 Specific TCB attribute

 Data Structure

Implementation of a Thread State
Implementation
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Head of ... TCB A TCB B TCB C

Discuss Pros and Cons!



Thread State via Data Structures

Obvious application:
Ready list = {threads which might be running next}

NT = first TCB after head of ready list (with O(1)) 

Implementation
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Head of ... TCB A TCB B TCB C



Rough Analysis 1

Assumption:

1. Given 1001 threads + 1 list for all threads 

2. No attribute “thread state” within the TCB

3. No specific data structure for all runnable threads

4 Only CT is runnable all other threads wait for events

Implementation
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4. Only CT is runnable, all other threads wait for events

Question: Overhead for fair dispatching?
A thread switch costs ~ 1 µsec

Result:  1000 thread switches in vain until previous
running thread is dispatched again, i.e.

Overhead = 1000 µsec = “1 ms” 



Rough Analysis 2

Assumption:

1. Given 1001 threads + 1 list for all threads 

2. Offer attribute “thread state” within the TCB
3. No specific data structure for runnable threads

4 Only CT is runnable all other threads wait for events

Implementation
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4. Only CT is runnable, all other threads wait for events

Question: Overhead for fair dispatching?
A thread switch still costs 1 µsec, 
comparing 2 list entries ~ 0.1 µsec

Result:    1000 additional comparisons in vain 

Overhead = 101 µsec = “0.101 ms”



Rough Analysis 3

Assumption:

1. Given 1001 threads 

2. Offer lists for runnable/not runnable threads
3. Only CT is runnable, all other threads wait for events

Question: Overhead for fair dispatching?

Implementation
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Question:   Overhead for fair dispatching?
A thread switch costs 1 µsec, 
comparing 2 list entries ~ 0.1 µsec

Result:     Compare head of ready list, list empty  
 no thread switch is necessary

Overhead = “1.1 µsec” 



Head of WT

Waiting State = Some Type of a Queue*

Pointers inside TCB
´Thread State Models
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Identity(TID)Identity(TID)
WaitingWaiting

Identity(TID)Identity(TID)
WaitingWaiting

Identity(TID)Identity(TID)
WaitingWaiting

......

*A single-linked list is often not a good choice at all

Others Others Others



Head of WT

......

Pointers outside of TCB
Thread State Models
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Identity(TID)Identity(TID)
WaitingWaiting
Others

Identity(TID)Identity(TID)
WaitingWaiting
Others

Identity(TID)Identity(TID)
WaitingWaiting
Others

Discuss Pros and Cons of this indirect method

TCB TCB TCB



Concluding Remarks

 If you chose a bad data structure for a frequently 
updated set of system entities, e.g. TCBs 

 poor performance 

Thread State Models
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p p
 What is good for few threads (t < 16) can lead to a 

mission impossible for t >100, i.e. lack of scalability

 If we have to insert/delete at any position in the data 
set, a single linked list is one of the worst choices



Consequences for Consequences for 
DispatchingDispatching
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interrupt procedure EoTS {End of Time Slice}
begin
…{time slice specific operations}

Release(CT, SRT) {queue of ready threads}
NT:=Schedule() {later}
CT := ThreadSwitch(NT)

Consequences: 3-State Thread Model

Thread State Models
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Thread T2Thread T1

Thread_Switch
Release Assign

CT :  ThreadSwitch(NT)
Assign(CT) {running thread(s)?}
…{time slice specific operations}

end

Time Slice
Schedule

End of time slice 
interrupt handler



Implementing the Running Set

 On a single processor most processors have a 
specific register CURRENT pointing to the TCB of the 
running KLT (if not, you can define a specific pointer 
in the kernel AS to hold this address value)

On a multi processor each processor has this register

© 2008 Universität Karlsruhe (TH), System Architecture Group 32

 On a multi processor each processor has this register, 
CURRENT[i] but sometimes we need to know the 
load of the other processors as well
 When?

 Implement an array of all relevant TCB attributes as 
the set of running KLTs



interrupt procedure EoTS
begin
Release(CT,SRT)
NT := Schedule()   

kernel procedure yield
begin
Release(CT,SRT)
NT := Schedule()

Consequences: 3-State Thread Model

´Thread State Models

Asynchronously & non voluntarily Synchronously & voluntarily 
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Thread T2Thread T1

Thread_SwitchRelease Assign

CT := ThreadSwitch(NT)
Assign(CT)
end

yield 
Schedule

CT := ThreadSwitch(NT)
Assign(CT)
end

System call handler
for sys call yield()



… procedure Wait(condition c)
begin 
if c = true then   {if sometimes not sufficient}
...                {remember case of just 1 state}
Block(CT, c.SWT) {≠ BLOCK() see next chapter}
NT := Schedule()
CT := ThreadSwitch(NT)

Consequences: 3-State Thread Model

´Thread State Models
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Thread T2Thread T1

Thread_SwitchBlock Assign

CT := ThreadSwitch(NT)
Assign(CT)
else …
fi
end

Wait

Schedule



… procedure Wait(condition c)
begin 
if c = true then
... 
Block(CT,c.SWT)
CT := Schedule(NT)
ThreadSwitch(NT)

… procedure Signal(condition c)
begin 
if c.SWT = non empty then
... 
Deblock(any(c.SWT),SRT)
...
l

Consequences: 3-State Thread Model

´Thread State Models
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Optional Part

ThreadSwitch(NT)
Assign(CT)
else
...
fi
end

else
...
fi
end

Thread T1Thread T2

Deblock Assign

Signal

Schedule



Preemption versus Non Preemption

 Without optional part scheduling policy is lazy
 You do not deal with the fact that there is a new ready thread

 There are system where you can do that

 There are systems that would result in a disaster if you 
ld t t i di t l h th i
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would not react immediately whenever there is a 
change in the set of ready KLTs
 Suppose a very urgent KLT has waited for a specific signal

 Now this event happens, the signal handler unblocks this 
waiting KLT, i.e. it transfers the KLT from state “blocking” into 
the state “ready”

 If you do not schedule, i.e. compare the urgency of the 
previously running KLT with the urgency of KLT you might risk 
life and limb



From TID to TCB?

 Some system calls need a TID as parameter, 
e.g. yield(NT)oder abort(child)

 How to find the related TCB?

´Thread State Models

TCB.TxyzHASH-Table
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TID for Txyz
TID for Txyz?

Hash(TID.Txxz)

TCB.Txyz



Relation between Task & Relation between Task & 
Thread StatesThread States
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Task States & KLT States
Task States & PULT States



Task & KLT States

Suppose a task T has t>1 KLTs, whereby t-1 KLTs are 
currently blocked and only 1 KLT is either ready or 
running:

Is this task blocked or running or ready?

© 2008 Universität Karlsruhe (TH), System Architecture Group 39

KA specific

Related to the CPU the following holds:

running ≥ ready ≥ blocked, i.e.

Consequence: As long as at least one KLT of a task is 
running  this task is running, regardless 
how many of its other KLTs are ready or 
even blocked



Kernel Activity for PULTs

Thread Library

Though kernel is not aware of a PULT, it manages 
its hosting task

Example:
When a “PULT” does a “blocking system call ” 
h l k ll b bl k d k l l l
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the complete task will be blocked at kernel level

However, from the point of view of the user level 
scheduler  that PULT is still “running” at user level

 PULT states are independent of task states



R
U
N

PULT & Task States

Thread Library

blocking  sys_call

running ready blocked

© 2008 Universität Karlsruhe (TH), System Architecture Group 41

Thread library with PULT scheduler

N
I
N
G

TaskCB and Process/KLT Scheduler



PULT- and Task-States

Thread Library

blocking  sys_call

running ready blocked
B
L
O
C

R
U
N
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Thread library with PULT scheduler

TaskCB and Process/KLT Scheduler

K
E
D

block corresponding TaskCB

N
I
N
G

assign another 
task or process



PULT- and Task-States

Thread Library

blocking  sys_call

running ready blocked
B
L
O
C
K

R
U
N
N

© 2008 Universität Karlsruhe (TH), System Architecture Group 43

Thread library with PULT scheduler

TaskCB and Process/KLT Scheduler

K
E
D

I
N
G

Interrupt → Reason for blocking the virtually 
running PULT is no longer valid

What happens next?



PULT- and Task-States

Thread Library

blocking  sys_call

running ready blocked

R
E
A
D

R
U
N
N

© 2008 Universität Karlsruhe (TH), System Architecture Group 44

Thread library with PULT scheduler

TaskCB and Process/KLT Scheduler

D
Y

N
I
N
G

Potentially check whether preemption of 
running task/kernel-level thread is useful



How can PULTs block at User-Level?

  thread library functions enabling a blocking 
(and unblocking) of a PULT at user-level, e.g.

 In the Java-VM  wait (and notify) to be 
used within a synchronized section (e.g. a method 
of a synchronized class)

Thread Library
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of a synchronized class) 

 Calling wait() blocks only the calling PULT and 
activates the library scheduler selecting the next 
ready PULT



What about Preemption?

How to prevent a PULT from hogging the CPU?

 Policy 1: No-Preemption

 Requires cooperating PULTs

Thread Preemption
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 Each PULT must call back into the thread library 
periodically
 Gives the library control over the threads’ execution

 yield() operation
 The calling PULT voluntary gives up the CPU



What about Preemption?

How to prevent a PULT from hogging the CPU?

 Policy 2: Use Preemption

 Thread library tells kernel to send a time signal 
periodically

Thread Preemption
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periodically
 Causes the task to jump into a signal handler

 Signal handler gives control back to user level 
scheduler
 User level scheduler selects next running thread and 

performs a PULT-switch



Summary

 Establish another thread state iff useful

 KLT-states & PULT-states ≠ task states (not always, 
but often)
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 A PULT can be running (only virtually at user level)
while its surrounding task is blocked

 A KLT can be blocked while other cooperating KLTs 
of the same task are running, i.e. while its task is still
running



Cooperating ThreadsCooperating Threads
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Forking



Thread Fork 

 ThreadFork(arg) is not the same thing as UNIX 
fork()
 UNIX fork() creates a new process (task) so it has to 

create a new address space
 For now, don’t worry about how to create and switch 

between address spaces
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between address spaces

 Threadfork() is ~ an asynchronous procedure call
 Runs procedure arg in a separate thread in the same AS
 Calling thread doesn’t wait for finish
 If it want so it has to call it explicitly (e.g. ThreadJoin)

 What if thread wants to exit early?
 ThreadFinish() and exit() are essentially the same 

procedure entered at user level



Thread Join
 One thread can wait for another to finish with the 

ThreadJoin(tid) call
 Calling thread will be taken off the run queue and placed on 

waiting queue for thread tid
 Where is a logical place to store this wait queue?

 On queue inside the TCB of tid

TCBtid

??
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 Quite similar to wait() system call in UNIX
 Lets parents wait for child processes

Other
State
TCB9

Link
Registers

Other
State
TCB6

Link
Registers

Other
State
TCB16

Link
Registers

Head
Tail

Termination
Wait queue



Use of Join for Procedures

 A traditional procedure call is logically equivalent to 
doing a ThreadFork() followed by ThreadJoin()

 Consider the following procedure call of B() by A():
A() { B(); }
B() { Do interesting stuff }
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() { g }

 The procedure A() is equivalent to A’():
A’() {

tid = ThreadFork(B,null);
ThreadJoin(tid);

}

 Why not do this for every procedure?
 Context Switch Overhead
 Memory Overhead for Stacks



Multi-Activity Models
 Multiprocessing  Multiple CPUs
 Multiprogramming  Multiple Jobs or Processes
 Multithreading  Multiple threads per Task
 What does it mean to run two threads “concurrently”?

 Scheduler is free to run threads in any order and interleaving: 
FIFO, Random, …
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 Dispatcher can choose to run each thread to

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing



Correctness with Threads

 If a dispatcher can schedule threads in any way, 
programs must work under all circumstances
 Can you test for this?
 How can you know if your program works?

I d d Th d
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 Independent Threads:
 No state shared with other threads

 Deterministic  input state determines results

 Reproducible  can recreate initial conditions, I/O

 Scheduling order doesn’t matter (if switch()
works!!!)



Correctness with Threads

 Cooperating Threads:

 Shared State between multiple threads

 Non-deterministic
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 Non-reproducible

 Non-deterministic and non-reproducible 
means that bugs can be intermittent

 Sometimes called “Heisenbugs”



Interactions & Debugging

 Is any program truly independent?
 Every process shares the file system, OS resources, network, etc.
 Extreme example: buggy device driver causes thread A to crash 

“independent thread” B

 You probably don’t realize how much you depend on 
reproducibility:
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p y
 Example: Evil C compiler

 Modifies files behind your back by inserting errors into C program 
unless you insert debugging code

 Example: Debugging statements can overrun stack

 Non-deterministic errors are really difficult to find
 Example: Memory layout of kernel + user programs

 depends on scheduling, which depends on timer/other things
 Original UNIX had a bunch of non-deterministic errors



Why Cooperating Threads?
People cooperate; computers help/enhance people’s lives, that’s
why computers must cooperate
 Advantage 1: Share resources

 One computer, many users
 One bank balance, many ATMs

 What if ATMs were only updated at night?
E b dd d t ( b t t l di t & h d)
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 Embedded systems (robot control: coordinate arm & hand)

 Advantage 2: Speedup
 Overlap I/O and computation

 Many different file systems do read-ahead
 Multiprocessors – chop up program into parallel pieces

 Advantage 3: Modularity 
 More important than you might think
 Chop a large problem up into simpler pieces

 To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld
 Makes system easier to extend



Example: Web Server
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 Server must handle many requests
 Non-cooperating version:

serverLoop() {
con = AcceptCon();
“ProcessFork”(ServiceWebPage(),con);

}

 What are some disadvantages of this technique?



Multi-Threaded Web Server

 Now, use a single process

 Multithreaded (cooperating) version:
serverLoop() {

connection = AcceptCon();
ThreadFork(ServiceWebPage(),connection);

}
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}

 Looks almost the same, but has many advantages:
 Can share file caches kept in memory, results of CGI scripts, other things
 Threads are much cheaper to create than processes, so this has a lower 

per-request overhead

 Question: would a user-level (say one-to-many) thread package make 
sense here?
 When one request blocks on disk, all block…

 What about Denial of Service attacks or digg / Slash-dot effects?



(Un)Limited Thread Pools
 Problem with previous version: Unbounded Threads

 When web-site becomes too popular – throughput slows down

 Instead, allocate a bounded “pool” of worker threads, 
representing the maximum level of multiprogramming

Master
Thread

queue
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master() {
allocThreads(worker,queue);
while(TRUE) {

con=AcceptCon();
Enqueue(queue,con);
wakeUp(queue);

}
}

worker(queue) {
while(TRUE) {

con=Dequeue(queue);
if (con==null)

sleepOn(queue);
else

ServiceWebPage(con);
}

}

Thread Pool

e



Summary

 Interrupts = HW mechanism for returning control to OS kernel
 Used for important/high-priority peripheral events
 Can force dispatcher to schedule a different thread (preemptive 

multithreading)

 New Threads Created with ThreadFork()
 Create initial TCB and stack to point at ThreadRoot()
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Create initial TCB and stack to point at ThreadRoot()
 ThreadRoot() calls thread code, then ThreadFinish()
 ThreadFinish() wakes up waiting threads then prepares 

TCB/stack for destruction

 Threads can wait for other threads using ThreadJoin()
 Threads may be “implemented” as user-level or kernel level

 Cooperating threads have many potential advantages
 But: introduces non-reproducibility and non-determinism
 Need to have atomic operations
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